
Curvewise DET confidence regions and

pointwise EER confidence intervals using radial

sweep methodology

Michael E. Schuckers1, Yordan Minev1 and Andy Adler2

1 Department of Mathematics, Computer Science and Statistics
St. Lawrence University, Canton, NY USA

2 Department of Systems and Computer Engineering
Carleton University, Ottawa, ON Canada

Abstract. One methodology for evaluating the matching performance
of biometric authentication systems is the detection error tradeoff (DET)
curve. The DET curve graphically illustrates the relationship between
false rejects and false accepts when varying a threshold across a gen-
uine and an imposter match score distributions. This paper makes two
contributions to the literature on the matching performance evaluation
of biometric identification or bioauthentication systems. First, we create
curvewise DET confidence regions using radial sweep methods. Second
we use this same methodology to create pointwise confidence intervals
for the equal error rate (EER). The EER is the rate at which the false
accept rate and the false reject rate are identical. We utilize resampling
or bootstrap methods to to estimate the variability in both the DET
and the EER. Our radial sweep is based on converting the false reject
and false accept errors to polar coordinates. Application is made of these
methods to data from three different biometric modalities and we discuss
the results of these applications.

1 Introduction

Biometric identification is the process of matching an individuals physical or
behaviour traits to a stored version of those same traits. Measuring how well
a bioauthentication process matches these traits is an important facet of the
overall performance of the system in which it is embedded. The focus of this
article will be the estimation of how the matching performance of these bioau-
thentication systems. In this context genuine users are generally those that the
system should accept and imposters are those that the system should reject.
An effective biometrics authentication system evaluates a given match score as a
genuine or an imposter match score with a minimal error. There are two possible
error rates that can occur. The proportion of imposter match scores which are
accepted from the system is called a False Accept Rate (FAR). The proportion
of genuine match scores which are rejected by the system is called a False Reject
Rate (FRR). Some authors prefer the use of false match and false non-match
rate. For generality here we will use FAR and FRR. See Mansfield and Wayman



[1] for a discussion of the differences. Our interest focuses on the representation
of the tradeoff between these two curves known as the DET. The DET curve
evaluates the matching performance of a biometric system. One factor that is
often overlooked in the use of DET’s is that the curves are sample estimates of
a population DET and, thus, there is variability in the estimated curves. This
paper quantifies this variability and builds confidence regions for the population
DET curve based upon the observed sample.

There is a good deal of literature on DET’s or their equivalent the receiver
operating characteristic curve (ROC) beginning with the work of Green and
Swets [2]. In this paper we will focus on the DET; however, the methods de-
scribed here apply directly to the ROC. An ROC is a plot of the FAR against
the true accept rate (TAR) — TAR = 1 - FRR — while we use a DET that is
a plot of the FAR against the FRR. (Some authors, e.g. Poh et al [3] transform
the FAR and FRR to achieve a DET.) A good deal has been written about the
ROC in a variety of contexts. See, e.g. Zhou et al [4] or Hernández-Orallo et al

[5] . Macskassy et al [6] compared three methods that have been proposed for
ROC confidence bands. These include: a simultaneous joint confidence region
and a fixed width approach both due to Campbell [7], a Working-Hotelling band
technique due to Ma and Hall [8]. The simultaneous joint confidence approach
converts confidence rectangles at various points along the ROC to create a joint
region. The fixed width approach creates a region of single width in a direction
determined by number of observations used to calculate each FAR and TAR.
Working-Hotelling bands are based upon confidence regions for a regression line.
Based upon its performance in their evaluation, Macskassy et al recommend the
fixed width approach. The drawback of this methodology for bioauthentication
applications is that it produces large regions near the ends of the ROC or DET
which is often the area of interest for such applications. Recall that larger inter-
vals imply less knowledge about an estimate. Recently, Poh et al [9] suggested
a new DET confidence methodology based upon the radial sweep methodology
of Adler and Schuckers [10]. However, this methodology is a pointwise approach
to confidence unlike the curvewise approached described by Macskassy et al [6].
The difference between these is that a curvewise approach aims to capture the
entire DET curve while a pointwise approach only provides confidence about a
single point and thus neglects the correlation between points along the curve.
This is often referred to as the multiple comparison problem. We will utilize the
pointwise approach to make a confidence interval for the EER since it is ap-
propriate for a single point; however, we take the curvewise approach for DET
estimation. Finally, we mention work by Dass et al [11] to create a confidence
region for FRR’s given a range of values for FAR. This approach is essentially
univariate rather than the bivariate approach taken here.

The approach we propose in this paper is a new curvewise method for creating
a confidence region for the DET as a function of both the FAR and FRR based
on a radial sweep methodology. By curvewise in this context we mean that our
confidence will be based upon the entire curve rather than on each individual
point. This yields a wider confidence interval – due to the correlation between



points on the curve – but one that is more accurate for variability of the entire
curve. This approach, described below, transforms each curve from the (FAR,
FRR) space to polar coordinates, (radius, angle). By using a polar representation
of the error rate data we can create regions that are appropriate for inference
about both the FAR and FRR simultaneously. Adler and Schuckers [10] originally
used this approach to average across several DET’s to create a composite DET.
We extend their work to create a curvewise confidence region. In addition, this
methodology has variable width which allows for smaller intervals as the DET
curves approach the axes. This is a distinct advantage over the fixed width
approach advocated by Macskassy et al [6]. These regions — where the FAR
and FRR approach unity — are often the focus of biometric authentication
applications and threshold settings. Having created such a confidence region, one
gains a better understanding of the variability in the system and the location
of the population DET based upon the sample selected. Further, it is possible
to derive using a pointwise confidence interval for the equal error rate (EER)
as a carryover of the work done to create the DET region. The rest of this
article is organized in the following way. Section 2 discusses the calculation of
a DET and the conversion to polar coordinates. Our approach for making a
confidence region for a DET is given in Section 3. This section also describes the
methodology for creating an EER confidence interval. We apply our inferential
estimation approach to data from three biometric modalities: face, fingerprint
and hand geometry in Section 4. These data comes from the paper by Ross and
Jain [12]. Section 5 discusses these results and their possible extensions.

2 DET curve estimation

We begin by outlining the methodology for estimating a DET curve. For the
purposes here, we assume that we have a population of genuine and imposter

matching scores from a biometric system. Further we assume that these scores
represent a sample of an ongoing process which we would like to evaluate. The
distributions of match scores, t, are denoted by g(t) and f(t) for the genuine
and imposters distributions respectively. From these distributions, a DET, R, is
plotted as the false accept rate (FAR) on the x-axis against the false reject rate
(FRR) on the y-axis, by varying a threshold τ , and calculating

FAR(τ) =

∫ ∞

τ

f(x)dx (1)

and

FRR(τ) =

∫ τ

−∞

g(y)dy. (2)

If f(t) and g(t) are known then R can be calculated based upon Equations (1) and
(2) by varying τ . In general this is rarely the case and these distributions much
be estimated. In that case we can calculate, R̂ based upon an approximation of
f(t) and g(t).

ˆFAR(τ) =

∫ ∞

τ

f̂(x)dx =

∑

x I(x > τ)
∑

x I(x ∈ R)
(3)



and

ˆFRR(τ) =

∫ τ

−∞

ĝ(y)dy =

∑

y I(y ≤ τ)
∑

y I(y ∈ R)
(4)

where I() represents an indictor function. As with R, R̂ is computed by cal-
culating ˆFAR and ˆFRR for various values of τ . In this way the sample DET
curve summarizes the authentication performance of the biometric system on
the sample on which it is calculated. The FAR and FRR calculations above are
based on a criterion of accept if a match score is greater than τ . An alternative
formulation can easily be made for other decisions. Thus, we will treat this DET,
R̂ as an estimate of the population DET, R.

Having calculated a DET, either sample or population, We next convert the
coordinates of the curve from rectangular to polar coordinates. Then our DET
curve over a range of values Θ is R = {(rθ, θ) : θ ∈ Θ = (θL, θU )} and θL and
θU represent lower and upper values for the range of the radial coordinates. In
practice we sweep across a range of T θ’s using a discrete list of values Θ∗ =
(θL, θL + δ, θL + 2δ, . . . , θL + (T − 2)δ, θU ) where Θ = (θL, θU ) is given. Then
we can write R̂ = {(r̂θ, θ) : θ ∈ Θ∗} One important issue in radial sweeping is
the location of the radial center, (cx, cy). Because we would like the confidence
region to not depend on which error rate is on which axis and in order to have
a confidence interval for the EER as a derived outcome for our data, we limited
possible center points cx = cy = c for some specified constant c. It is immediately
clear that choosing a center along the FAR = FRR line results in an average
curve that is independent of the selection of axes. Additionally having Once we
have determined the origin of the polar coordinate system, we can convert the
coordinates of every point on the DET curve, R, to polar coordinates. We next
turn our attention to deriving a confidence region for the DET, R.

3 A curvewise DET confidence region

In this section, we develop our methodology for creating a curvewise DET confi-
dence region. To derive the confidence regions, we need to estimate the variance
of r̂θ for each θ. Several methods are possible. We use bootstrap methods to
approximate this radial variance. Bootstrap procedures, such as those proposed
by Poh et al [9] or Bolle et al [13], resample the observed data to estimate in
a non-parametric way the distributions which generated this data. Here, we re-
sample both the genuine and imposter distributions. The general outline for our
confidence region technique is as follows:

1. Calculate estimated DET, R̂.
2. Bootstrap both genuine and imposter distributions.
3. Calculate bootstrapped DET, R†.
4. Repeat previous two steps M times and store each generated DET.
5. Determine curvewise bounds for confidence region, ℜ.

Let R† = {(r†mθ, θ) : θ ∈ Θ∗} be the mth bootstrapped DET m = 1, . . . ,M for

some large number M . r†mθ represents the radial length for the mth bootstrapped



DET at the angle θ. Next we find the adjusted standard deviation of rmθ’s at
each θ in Θ∗ by taking the square root of the variance plus a slight adjustment,

ǫ. We will denote this by sr̂θ
=

√

var(r†θ) + ǫ. This adjustment is made to ensure

that some variability is present in the confidence region when no radial variability
is present in the bootstrapped replications.

We define the DET confidence region ℜ as the region bounded by a spline of
rL,θ’s, the lower limits for the region at angle θ, and a spline of rU,θ’s, the upper
limits for the region at angle θ for each θ ∈ Θ∗. We want that region to have the
property that P (R ∈ ℜ) = 1−α where 1−α is the confidence level. We say the
population DET, R, is captured by the (1−α)100% ROC confidence region and
denote it by R ∈ ℜ if rL,θ ≤ rθ ≤ rU,θ for all θ ∈ Θ∗. In order to determine the
DET confidence region, ℜ, we need to create a region that captures the entire
curve R with probability (1 − α). The pointwise approach of Poh et al [9], is to
take the α/2×100th and (1 − α/2) × 100th percentiles of the r†’s at each θ. As
mentioned above, this ignores the correlation between radii at different values
of θ, particularly neighboring values of θ in Θ∗. Consequently it fails to yield a
confidence region with P (R ∈ ℜ) = 1 − α.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FAR

F
R

R

DET curve
Pointwise bounds
Curvewise bounds

Fig. 1. 95% confidence region for DET of Facial Recognition System

Several options exist for finding an DET confidence region, ℜ, that meets our
criteria. We prefer an approach that uses a different width at each θ to match the
variability in the data. To achieve this systematically we build our DET region
by connecting the endpoints (r̂θ + ηLsrθ

, r̂θ + ηUsrθ
) at each θ ∈ Θ∗ where ηL



and ηU represent lower and upper constants, respectively, that yield the desired
(1 − α) × 100% confidence level. Below we describe the process for determining
ηL and ηU . First, we calculate a standardized residual, emθ for each rmθ,

emθ =
rmθ − r̂θ

sr̂θ

. (5)

This residual tells us how far each bootstrapped radius, r̂θ, is from the estimated
DET, R̂ as measured by the variability, srθ

at each θ. Next, the maximum
absolute standardized residual, ωm, for the mth DET curve is calculated. This
value, ωm, tells us the furthest amount that each bootstrapped curve is from the
the estimated DET, R̂. We do this in order to determine the largest standardized
valued needed to have (1− α)100% of the bootstrapped curves within the DET
region, ℜ. We define ωm to be:

ωm =

{

minθ(emθ) if | minθ(emθ) |<| maxθ(emθ) |
maxθ(emθ) if | minθ(emθ) |≥| maxθ(emθ) | .

(6)

Once we have all M ωm’s we find the α/2th and the 1−α/2th percentiles of the
ωm’s and they become ηL and ηU respectively. Note that the ωm’s can take both
positive and negative values. In fact, in our experience it is likely that ηL will
be negative. Having found ηL and ηU we then build our confidence region ℜ, as
the region bounded by the splines created by connecting the upper endpoints,
r̂θ +ηUsr̂θ

, and the splines created by connecting the lower endpoints, r̂θ +ηLsr̂θ
.

4 Application and results

In this section we apply the methodology proposed above to three different bio-
metric modalities. These are facial recognition, fingerprints and a hand geometry.
These data is described in Ross and Jain [12]. We briefly summarize them here.
Biometric captures were taken from 50 individuals. Ten genuine comparisons
were made for each individual and five imposter comparisons were made for
each cross- comparison pair. All cross-comparison pairs were run. Thus, there
were 10× 50 = 500 genuine comparisons and 50× 49× 5 = 12250 imposter com-
parisons. For these regions we followed Adler and Schuckers [10] in establishing
the radial center at (c = 1, c = 1). This value was chosen because the radial
angles from this center point seem match the typical curvature of a DET curve
and, hence, are more likely to be perpendicular to such curves. Note that it is
possible to use this methodology to create regions strictly for the FAR or FRR
like those proposed by Dass et al [11] by allowing the coordinate of the polar
center for the error rate of interest to become very small i.e. (0,−C) for some
larger number C. We selected T , the number of angles in Θ∗, to be 1000 so that
there were 1000 different angles, θ’s, used to create our confidence region. Due to
our choice of c = 1, θL was π and θU was 3π/2. We adjusted the radial variance
by ǫ = 2n̄−2 where n̄ is the average number of comparisons between the genuine
and imposter samples. For the data here that is n̄ = 6375. The use of this ǫ is
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Fig. 2. 95% confidence region for DET of a Hand Geometry System

meant to approximate the use of the +2/ + 4 adjustment suggested by Agresti
and Coull [14]. Finally it is worth noting that, in practice, we truncate the final
DET confidence region by limiting it to values in the range of (0, 1) × (0, 1). In
some cases the confidence region included negative values because of the width
of ℜ due to the calculation of ηL and ηU . We use 95% for the confidence level
in these applications. Figures 1, 2, 3 contain the DET curves and the derived
95% confidence regions for each of these curves. In these figures the center line
is the estimated DET, R̂, the next pair of lines moving outward are the point-
wise confidence bounds and the last pair of lines are the curvewise confidence
bounds which define the confidence region, ℜ. The lighter dashed lines represent
the M = 1000 bootstrapped DET’s. Table 1 gives a summary of the percentage
of ROC curves that exceed each of these bounds. The confidence region for the

Modality Pointwise Curvewise
Region Region

Face 64.5% 95.0%
Hand Geometry 62.5% 94.9%

Fingerprint 81.2% 95.0%

Table 1. Percent of bootstrapped ROC curves inside the bounds of 95% confidence
regions



facial recognition system and the hand geometry classifier tend to both be sym-
metric around the EER while the fingerprint region tends to diminish quickly
along the FRR axis and very slowly along the FAR axis. The latter effect is do
to the larger variability in bootstrapped DET’s in that region. This can be seen
by the dashed lines, each being a bootstrapped DET, in Figure 3. Thus the DET
confidence region accurately reflects the variability in the sample data.
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Fig. 3. 95% confidence region for the DET of a Fingerprint System

One byproduct of this methodology is that we can derive a confidence interval
for the EER. As mentioned above this quantity is a one that is often reported
as an overall measure of performance for a biometric classifier. As with other
sample measures, there is a need to quantify the variability in such estimates. To
that end, it is possible to create an approximate (1−α)100% confidence interval
for the EER from the bootstrapped DET’s. Since the EER is found at a single
θ, there is no need to worry about the multiple comparisons problem outlined
above. Consequently, we can simply find the α/2th percentile and the 1−α/2th

percentile for the appropriate radius. (In the case when T , the number of angles,
is an even number, an approximation can be calculated by taking the average
of the two appropriate endpoints.) Table 2 contains 95% confidence intervals for
the EER’s of the three classifiers described above. Note that the EER for the
facial recognition system here is the lowest; however, there is a great deal of
variability in that estimate. The width of the error rate is approximately 4.75%.
The hand geometry system has the highest estimated EER and the upper bound



on that EER is approximately 18%. Given that we are dealing with non-Gaussian
distributions it is not a surprise that the confidence regions are asymmetric. It is
perhaps surprising that the facial recognition system outperforms the fingerprint
system in this particular application; however, the larger overlap in these two
distributions suggests that their EER’s are not significantly different.

Modality Lower Bound Equal Error Upper Bound
Rate

Face 0.0384 0.0575 0.0847
Hand Geometry 0.1168 0.1494 0.1810

Fingerprint 0.0430 0.0715 0.0972

Table 2. Pointwise EER confidence intervals for three modalities

5 Discussion

This paper proposes a methodology for a curvewise DET confidence region. The
region and the methods that created it are flexible and adhere to the variabil-
ity in the sample data rather than being based upon a fixed width. We achieve
this confidence region by converting DET curve data to polar coordinates and
calculating the variability in the polar radii at a larger number of angles based
upon bootstrapping of the original data. Additionally we have shown how to
produce an EER confidence interval using a pointwise approach. It is clear from
the results here that a pointwise approach to DET estimation yields regions
that are too small. This work also has extensions beyond the confidence regions
described here. The region defined here is a two-sided region. A one-sided re-
gion which would yield a single upper confidence bound for a DET would be
straightforward to create. (One would create that bound by using r̂+ηsrθ

where
η would be based upon the (1−α)× 100th percentile). Another extension would
be to compare the confidence region based upon a sample to a hypothesized DET
curve. This would allow the acceptance or rejection of that hypothesized curve
based upon whether or not the curve fell within the confidence region. Dass et al

[11] tests a hypothesized curve with their univariate error rate approach. Like-
wise a corresponding approach could be taken for testing of an EER. Lastly, we
note that all of this work has been done on axes defined by the FAR and FRR.
There are equivalent confidence regions for any one-to-one transformations of the
axes and these regions will have the same properties as the confidence regions
described here.

Acknowledgements This work is supported by NSF grants CNS-0325640 and CNS-

0520990 (Dr. Schuckers) which is cooperatively funded by the National Science Founda-

tion and the United States Department of Homeland Security and by NSERC Canada

(Dr. Adler).



References

1. Tony Mansfield and James L. Wayman, “Best practices in testing and report-
ing performance of biometric devices,” on the web at www.cesg.gov.uk/site/
ast/biometrics/media/BestPractice.pdf, 2002.

2. D. M. Green and J. A. Swets, Signal Detection Theory and Psychophysics, John
Wiley & Sons, 1966.

3. Norman Poh and Samy Bengio, “Database, protocol and tools for evaluating score-
level fusion algorithms in biometric authentication,” Pattern Recognition Journal,
2005.

4. X.-H. Zhou, D. K. McClish, and Nancy A. Obuchowski, Statistical Methods in
Diagnostic Medicine, John W. Wiley & Sons, 2002.

5. J. Hernández-Orallo, C. Ferri, N. Lachiche, and P. A. Flach, Eds., ROC Analysis
in Artificial Intelligence, 1st Int. Workshop, ROCAI-2004, Valencia, Spain, 2004.

6. Sofus A. Macskassy, Foster J. Provost, and Saharon Rosset, “Roc confidence bands:
an empirical evaluation.,” in ICML, Luc De Raedt and Stefan Wrobel, Eds. 2005,
pp. 537–544, ACM.

7. G. Campbell, “Advance in statistical methodology for the evaluation of diagnostic
and laboratory tests,” Statistics in Medicine, vol. 13, pp. 499–508, 1994.

8. G. Ma and W. J. Hall, “Confidence bands for receiver operating characteristics
curves,” Medical Decision Making, vol. 13, pp. 191–197, 1993.

9. Norman Poh, Alvin Martin, and Sammy Bengio, “Performance generalization in
biometric authentication using joint user-specific and sample bootstraps,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, to appear.

10. Andy Adler and Michael E. Schuckers, “Calculation of a composite DET curve,”
in Proceedings of Audio- and Video-based Biometric Person Authentication 2005
(AVBPA2005), Takeo Kanade, Anil Jain, and Nalini K. Ratha, Eds. 2005, vol.
3546 of Lecture Notes in Computer Science, pp. 279–288, Springer.

11. Sarat C. Dass, Y. Zhu, and Anil K. Jain, “Validating a biometric authentication
system: Sample size requirements,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 28, no. 1, pp. 19–30, 2007.

12. Arun Ross and Anil K. Jain, “Information fusion in biometrics,” Pattern Recog-
nition Letters, vol. 24, no. 13, pp. 2115–2125, September 2003.

13. Ruud M. Bolle, Nalini K. Ratha, and Sharath Pankanti, “Error analysis of pat-
tern recognition systems – the subsets bootstrap,” Computer Vision and Image
Understanding, vol. 93, pp. 1–33, 2004.

14. Alan Agresti and Brent A. Coull, “Approximate is better than “exact” for interval
estimation of binomial proportions,” The American Statistician, vol. 52, no. 2, pp.
119–126, 1998.


