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Abstract

A biometric system is designed to accurately identify people based on human physio-

logical features such as face, iris, fingerprint and voice recognition. Iris recognition is

considered to have the highest identification accuracy and commercial iris recognition

systems have been deployed in many applications, like passports and border control.

One of the key performance limitations in iris recognition is the low image quality,

including rotated iris images, partial eyelash and eyelid occlusions.

We developed an algorithm to accurately detect the eyelash occlusion and eliminate

these eyelash occluded regions from the recognition. The resulting detection error tradeoff

curve showed an improved error rate in most of the false match (FMR) rate range. We

also examined two methods of rotational invariant feature extraction: one based on the

covariance features and one based on the Fourier transform magnitudes. In addition,

we evaluated the errors in the localizations of circles. The system performance after

correction was re-evaluated, and a marginal improvement was observed, in terms of the

rank-1 identification rate, the DET curve, and the cumulative match curve. Moreover,

we tested a progressive segmentation scheme. It gradually increased the area of the iris

region that was segmented for the inter-class and intra-class comparisons. It showed that

in a particular range of an iris image area, the system performance improves rapidly.

Overall, this thesis suggests that it is possible to improve the iris recognition with

low quality iris images. It also provides several research directions for future work.
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Chapter 1

Introduction

1.1 Iris Recognition

In recent years, the accurate surveillance and access control have been given a lot of

attention because of the potential security threats. Biometric technologies are able to

achieve the personal identification and verification based on the physiological and behav-

ioral characteristics of the subject. Currently, there are various biometric technologies,

such as fingerprint recognition, face recognition, iris recognition and voice recognition

[1]. Some of these technologies are intrusive, like fingerprint recognition, which requires

skin contact between the subject and the imaging facility [2]. Some other technologies

have relatively low recognition rates, like face recognition [3] and speaker recognition [4].

For the above reasons, iris recognition shows the advantages of non-intrusiveness and

higher accuracy. It is non-intrusive, since it only requires the subject to look into the

camera for iris image acquisition. It also has a very high identification rate, because of

the unique texture patterns and abundant information contained in iris images.

With the current development of iris recognition technology, there are still problems

to be solved to improve the system performance. Recognition based on low-quality

iris images is a particularly interesting area. Some low-quality iris images are partially

occluded by the eyelid and eyelash regions. Other iris images could be rotated before

recognition and processing, and therefore they require rotation compensations before the

cross-comparisons between iris feature templates.

Here we give a brief introduction of the iris recognition system and its components

as well as a major literature review. There are many ways to classify the components

of a biometric system. One way is to divide the system into five blocks: data collection,

2
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transmission, signal processing, storage and decision [5]. In this thesis, we break down

an iris recognition system in a similar way in terms of image processing procedures:

image acquisition, iris localization and segmentation, registration, feature extraction,

and pattern matching.

1.2 Iris Texture and Image Acquisition

1.2.1 Iris structure and unique texture pattern

Iris structure

The iris anatomy has a multi-layered structure. The most posterior layer is comprised

of epithelial cells containing iris pigments. The anterior layer is comprised of two sets

of muscles, the sphincter muscle and the dilator muscle. The former one contracts the

pupil and the latter one opens it. Further into the anterior side is the stromal layer, a

layer of collagenous tissues. This layer generates the most part of an iris image. The

most anterior layer is the border layer [6].

Eyelid

Eyelash

Pupil
Iris

Collarette

Figure 1.1: Iris structure.

Iris textures and colors

The iris texture features are formed by various components within the iris. These compo-

nents include crypts, furrows, arching, collarette and rings of various shapes. Also, these

components are filled with color pigments, such as green, red and blue. The natural iris
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colors observed by humans are generated mostly from a combination of melanin pigments

[7], mostly in the anterior layer and stromal layer. Visible light goes through the iris, and

the absorption and reflection of light depend on the wavelength. The variation in the

pigment density determines the amount and combination of the reflected light spectrum,

which further determines the color of the iris.

In iris recognition, near infrared (NIR) cameras are usually used instead of visible

light. The NIR camera applies a wavelength spectrum from 700 nm to 900 nm (Iridian

Technology 2005), which emphasizes the texture pattern accurately, especially when it

comes to darker regions. Another reason for the use of NIR lighting is that it is a more

comfortable and mild light source, and therefore it does not irritate the subject as would

the regular light source. In this project, the database applied was acquired with NIR

light cameras.

The unique and abundant texture patterns in the iris images are ”determined epige-

netically by random events in the morphogenesis process”, as stated by John Daugman

[8]. Moreover, the cross-comparisons are performed between genetically identical images,

taken from the left and right eyes of the same persons. It shows that the statistical dis-

tributions are the same between genetically identical subjects and genetically unrelated

subjects. Furthermore from 2001 to 2005, a project was conducted by the University of

Cambridge and the United Arab Emirates interior ministry. In this project, 632500 iris

images were acquired in the Middle East and over 200 billion cross-comparisons were

generated between different eyes. With the Daugman algorithm and an appropriate

threshold setting, it achieved a false match rate (FMR) of less than 1 in 200 billion [9].

However, it seems too idealistic to claim an FMR of 1 in 200 billion. Recently, three

third-party evaluations of iris recognition algorithms were performed by independent

institutions, based on individually collected iris image databases. In the comparison

results, a similar range of a false non-match rate (FNMR) from 0.01 to 0.03 is observed,

when examined with a common FMR of 0.001 [10, 11, 12].

Stability with age

One characteristic of iris images, when they are used as biometric information templates,

is the stability with age as compared to face recognition, in which the facial images and

features could vary dramatically over time. Even facial expressions could be largely

different within one day. Ophthalmologists and anatomists have observed that the iris

patterns change to a very small extent, keeping most of its original features across the

lifetime [13]. From the explanations of development biology, a healthy iris keeps most of
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its forms and patterns after the adolescence period [6, 14].

1.2.2 Imaging Systems

Currently, two well-known iris imaging algorithms are developed individually by the

John Daugman group and the Richard Wildes group. As far as commercially distributed

systems, there are several companies engaged in the design, research and manufacture of

iris recognition systems, including LG, Oki, Iridian and Panasonic.

Both the Daugman and the Wildes algorithms use monochrome gray-scale images,

which provide enough information to achieve satisfactory identification rates. The main

difference between these two imaging systems is the lighting source implementation. The

Daugman system uses a light source from the side, while the Wildes system applies a

diffuser to illuminate the entire eye region uniformly.

The Daugman system

In the Daugman system, the light source is placed to the side of the eye, as shown in

Fig 1.2. The light is reflected and captured by a camera after going through a beam

splitter. The captured iris image typically has a diameter of 100 to 200 pixels, which

gives sufficient information for iris recognition.

The Wildes system

The imaging system developed by the Wildes team applies a series of light sources,

illuminating the iris region through a diffuser and a circular polarizer, as shown in Fig 1.3.

The captured iris image has a diameter of around 256 pixels. The benefit of this schematic

is that the strong specular reflections generated from a single light source are reduced

because of the more evenly distributed light illumination [15].

As far as the type of light used, both of these former systems applied a visible light

spectrum initially. Later on, the use of a near infrared light source was proposed for the

advantage of the more detailed and complex features from the stromal regions, because

the visible light sources revealed only human visible ligament meshwork.
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Daugman Imaging System for Iris Recognition

Figure 1.2: The Daugman iris imaging system diagram [13].

Figure 1.3: The Wildes iris imaging system diagram [13].
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1.3 Iris Localization and Segmentation

Iris localization and segmentation accomplish the job of determining the specific iris

region from an eye image, mainly the iris boundary, the pupil boundary, the upper eyelid

and lower eyelids. The artifacts could exist commonly within the iris images, such as

the eyelash occlusion, the eyelid occlusion and the image noise. A successful removal of

these artifacts generates the clean iris region for the subsequent recognition. Moreover,

various methods have been proposed to identify and eliminate the artifacts in iris images,

particularly the eyelash occlusion and specular reflections.

1.3.1 Integro-differential operator

John Daugman proposed to use the integro-differential operator to locate the pupil and

iris circles as well as the upper and lower eyelid boundaries [7].

max(r,x0,y0) | Gσ(r) ∗ ∂

∂r

∮

r,x0,y0

I(x, y)

2πr
ds | (1.1)

Gσ(r) =
1√
2πσ

e−
(r−r0)2

2σ2 (1.2)

in which I(x, y) is the entire iris image to search for the iris region, (r, x0, y0) represents

a circle to be searched with a radius r and center coordinates (x0, y0), and Gσ(r) is a

radial Gaussian smoothing function with the center r and the standard deviation σ.

In general, this function searches through the whole image (x, y) for integrations

along different circular contours with center coordinates (x0, y0) and an increasing radius

r. The maximum contour integral derivative corresponds to the most likely circle tracing

the iris. As is used in the segmentation of iris images, the circular boundaries for the

pupil and iris regions are localized by searching through the entire iris image for the

maximum integration along various circular contours.

Moreover, in the Daugman system, the upper and lower eyelids are also approximated

with two open curves that are part of two separate circles. The same method is also used

to find the boundaries of these two circles that go through the upper and lower eyelid.

Thus, the iris region used for feature extraction and pattern recognition is the area

surrounded by the upper eyelid, the lower eyelid, the circular pupil boundary and the

circular iris boundary.
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1.3.2 Circular Hough Transform

Gradient-based edge detection, followed by the circular Hough transform is a standard

machine vision technique to find circular contours in images. Many iris recognition

systems apply this technique to find the iris boundary contours, including the Wildes

system [13].

First, the entire image I(x, y) is smoothed with a Gaussian filter G(x, y) as in Equa-

tion 1.3. The Gaussian filter is defined as in Equation 1.4, centered at (x0, y0) with a

standard deviation of σ.

F (x, y) = G(x, y) ∗ I(x, y) (1.3)

G(x, y) =
1

2πσ2
e−

(x−x0)2+(y−y0)2

2σ2 (1.4)

The intensity gradient image map M(x, y) is generated from the smoothed image

F (x, y), as shown in Equation 1.5. The gradient operation is defined in Equation 1.6.

Then, the binary edge map is generated by setting a threshold on the intensity gradient

image M(x, y).

M(x, y) = |∇F (x, y)| (1.5)

∇ ≡ (∂/∂x, ∂/∂y) (1.6)

From the binary image map, the Hough transform is performed to locate a circle

with the largest number of edge points and its circular parameter set(x0, y0, r) could be

modeled as:

(xi − x0)
2 + (yi − y0)

2 = r2 (1.7)

in which (x0, y0, r) represents a circle to be searched with the radius r, and the center

coordinates (x0, y0), and (xi, yi) represents one of the possible edge points.

The Hough transform is performed through the entire collection of the edge points.

Whenever Equation 1.7 is satisfied, it means that the circular contour (x0, y0, r) goes

through this point, and one vote is added to the histogram of this contour. In the end,

the contour with the highest histogram or votes represents the most likely circle in the

edge map.
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1.3.3 Discrete Circular Active Contour Model

Nicola Ritter et al. [16] applied the circular active contour model to locate the pupil

and iris boundaries. First, the variance image is generated from the original image, and

this variance image is used to localize the pupil region. Then, an active contour with a

starting point in the center of the pupil is initiated and moved within the iris image under

the influence of so called ”the internal and external forces”. Along the active contour,

the vertex v moves from time t to time t + 1 according to:

vi(t + 1) = vi(t) + Fi(t) + Gi(t) (1.8)

in which vi represents the location of the vertex, from position at time t to t + 1, and Fi

represents the internal force and Gi represents the external force.

The internal force relies on certain characteristics like the continuity, and other prior

knowledge about the iris boundary (like its circular shape). The external force is based on

the gray-scale intensity values immediately inside and outside the vertex, which confines

the contour within the iris region. The result of this iterative contour searching is the

equilibrium with minimum energy or minimum mean variance of the annulus, which gives

the final iris segmentation for later processing.

1.3.4 Noise and Artifacts in Iris Images

Noise and artifacts exist in iris images, and they have a negative impact on the system

performance. Such artifacts include the eyelash occlusion, the eyelid occlusion and the

specular reflections.

Fig 1.4 shows an example of an iris image contaminated with both eyelash occlusion

and eyelid occlusion. It is clearly illustrated that part of the image is covered by the top

and bottom eyelids, and they do not represent true iris image information. Furthermore,

the eyelashes that spread across the image also modified the regions intended for iris

recognition use. Therefore, they should be detected and eliminated from the subsequent

recognition process.

Specular reflections are mirror-like reflections, such as the light reflected on a tranquil

water surface. Similarly in the iris image acquisition procedure, the specular reflections

occur in such a way that the light source gets reflected and imaged by the camera. The

strong reflection intensity in the image results in high pixel values which deviate ab-

solutely from the original iris patterns. Fig 1.5 shows an example of iris image with
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Figure 1.4: An iris image with eyelash and eyelid occlusions (image selected from the

CASIA database [17]).
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specular reflections. Inside the iris region, it is obvious that the illuminating light is re-

flected and captured by the camera. These specular reflections constitute a major source

of distortion, and therefore should be eliminated, in order to make the iris recognition

more accurate.

Figure 1.5: An iris image with specular reflections (image adapted from [18]).

1.3.5 Noise Detection and Removal

Several noise detection methods have been proposed to remove the noise introduced by

the eyelash occlusion, the eyelid occlusion and the specular reflections. Eyelash detection

proposed by Kong and Zhang [19] is based on the following three criteria.

Separable eyelash detection with 1D Gabor filter

First, the iris image is convolved with a 1D Gabor filter defined in Equation 1.9

G(x, µ, σ) = e−x2/2σ2

cos(2πµx) (1.9)

in which µ is the frequency of the sinusoidal wave, and σ is the standard deviation of

the Gaussian envelope.
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Then, a pre-defined threshold K1 is set on the filtered image I as in Equation 1.10.

The pixels with intensity values smaller than the threshold K1 are identified as eyelash

occluded regions. The threshold value K1 is not given in the reference [19].

G(x, µ, σ) ∗ I(x) < K1 (1.10)

Multiple eyelash detection with local intensity variance

A 5× 5 window is defined, and the variance var of image I are calculated as:

var =

∑2
i=−2

∑2
j=−2 (I(x + i, y + j)−M)2

(2N + 1)2 − 1
(1.11)

in which M is used to represent the mean of the image gray-scale intensities.

When multiple eyelashes are overlapping with one another, the local variance de-

creases from when there is no overlapping. By setting a threshold on the local variance

with another pre-defined value K2, the areas of overlapped eyelashes could be discovered.

Connective criterion

With our prior knowledge, we know that the eyelash is a continuous line instead of

unconnected points. If a detected eyelash point is singled out as independent with

no connection to another eyelash or eyelid pixel, then this point is removed from the

candidates of potential eyelash pixels.

Specular reflection

Beside the eyelash detection algorithm, Kong and Zhang also presented one way to locate

the specular reflection points, including strong reflections and weak reflections. Strong

reflection points are located by setting a threshold K3 on the iris pixel values.

I(x, y) < K3 (1.12)

For the transition area from the strong reflection to the surrounding iris region, the

reflection intensities are relatively weaker, and they are still considered as noise instead

of genuine iris pixels. A statistical test based on a normal distribution of intensity values

is used. These intensity values are employed in this case to locate these weak reflection

points. However, it lacks proper evidence to prove that the intensity values follow a

normal distribution.
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1.4 Size-invariant Unwrapping and Representation

1.4.1 Daugman Rubber Sheet Model

In order to accomplish a size-invariant sampling of the authenticate iris pixel points,

John Daugman applied a rubber sheet model to map the sampled iris pixels from the

Cartesian coordinates to the normalized polar coordinates.

Figure 1.6: Daugman rubber sheet model.

Along the radial direction, the sampled intensity values are lined up corresponding to

a column in the normalized polar scale. Similarly, the concentric circumferential circles

in the Cartesian coordinates become rows of pixels in the polar coordinates.

The mapping functions from the Cartesian coordinates (x, y) to the Polar coordinates

(r, θ) are as follows:

x(r, θ) = (1− r)xp(θ) + rxi(θ) (1.13)

y(r, θ) = (1− r)yp(θ) + ryi(θ) (1.14)

(x, y) represents the pixel location of the point in the Cartesian coordinates. (xp, yp)

represents the pixel location of the point on the radius on the boundary of pupil circle.

(xi, yi) represents the pixel location of the point along the radius on the boundary of

iris circle. (r, θ) represents the corresponding coordinates in the unwrapped polar coor-

dinates. r is the radial distance from the pixel to the boundary of pupil circle, and θ is

the rotated angle from the starting radius.
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The sampled iris feature points are uniformly distributed along a set of concentric cir-

cles. Moreover, there are more feature extraction schemes for the subsequent recognition

process in a rectangular scale.

The rubber sheet model transfers the iris region from the circular Cartesian scale to

the rectangular polar scale. When these two circle centers are located in the same pixel

point, the sampled points are uniformly distributed across the iris region, as shown in

Fig 1.7.

If the center of the iris circular boundary and the center of the pupil circular boundary

are different from each other, the feature points are sampled non-uniformly within the

iris region. First, a series of sampling lines are emitting from the center of the pupil

circle, and rotating along the circumferential direction for 360◦. Then a fixed number of

sampled points would be taken inside the iris region along each sampling line, as shown

in Fig 1.8.

Figure 1.7: Uniform feature points sampling with the rubber sheet model.
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Figure 1.8: Feature points sampling with displaced pupil and iris centers.
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1.4.2 Wildes Image Registration

The Wildes system is using an image representation technique, mapping the original iris

image Ia(x, y) to a base image Id(x, y) that minimizes the energy difference between the

two images. The energy is defined as [13]:

∫

x

∫

y

Id(x, y) = Ia(x− u, y − v)2dxdy (1.15)

Here the mapping function (u(x, y), v(x, y)) is employed to calculate the image in-

tensity values (u, v) from the original pixel value (x, y), as is used in Equation 1.15 for

calculating the energy difference.

The similarity between the two coordinates could be calculated as the difference

between the original coordinates and a scaled rotated version:

(
x
′

y
′

)
=

(
x

y

)
− sR(φ)

(
x

y

)
(1.16)

in which s represents the scaling factor and R(φ) represents the rotation transform ma-

trix.

As a result, the aligned image after the registration has a uniform distribution of iris

image sample points, and it is suitable for the subsequent feature extraction with the

Laplacian pyramid.

1.4.3 Boles Virtual Circles

Boles and Boashash proposed to utilize a set of virtual circles from the iris region for

representation before the feature extraction [20]. Before the comparison of iris images,

the pupil and iris circular boundaries are first detected for both images, using standard

techniques like the Hough transform. Then the images are scaled and mapped to the

size-invariant circular templates that have uniform iris boundaries and pupil boundaries.

In other words, the image pixels are aligned to the same circular positions. If it is a one-

to-many comparison, the largest diameter of all image sets would be taken as a reference

image, other images are scaled to the reference image before extracting the virtual circle

sets. Using the center of the pupil region as a reference point, a set of virtual circles

between the pupil boundary and the iris boundary are selected.

On each virtual circle, N points are selected uniformly as the feature points. N is an

integer power of two, because the subsequent feature extraction uses the dyadic wavelet
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transform to find the zero-crossings along the circle as the feature vectors.

This representation with virtual circles is essentially the same to the Daugman rubber

sheet model, because both models take the feature points along the concentric circles

which spreads within the iris region between the iris and the pupil circular boundaries.

1.5 Feature Extraction

Using different image representation techniques from various systems, the iris image

features are extracted from the gray-scale image intensity values before the pattern com-

parison procedure. The uniqueness and variability are the key to successful personal

identifications, in order to distinguish between templates.

1.5.1 2D Gabor Filter

The Daugman system applies a series of 2D Gabor wavelets to the isolated iris region

in the normalized polar coordinates (r, θ). The Gabor filter could be seen as a Gaussian

envelope multiplexed by a series of sinusoidal waves with different scales and rotations.

Here the Daugman system uses the same function to explore the local intensity correlation

of iris images in the space and frequency domains [7]. The filter wavelet is specified as:

H(r, θ) = e−iw(θ−θ0)e−(r−r0)2/α2

e−i(θ−θ0)2/β2

(1.17)

in which α and β are used to specify the multi-scale 2D wavelet size. ω represents the

wavelet frequency, which is inversely proportional to α and β. (r0, θ0) represents the

center location of the frequency selective filter bank.

A collection of feature points are sampled from the original iris image in the Cartesian

coordinates. These feature points are mapped, or in other words, unwrapped into a

matrix representation in the normalized polar coordinates according to the Daugman

rubber sheet model. Then the set of Gabor filter banks are applied to this matrix

template and the template is decomposed into a set of complex coefficients h at each

location (r0, θ0):

h =

∫

r

∫

θ

I(r, θ)e−iw(θ−θ0)e−(r−r0)2/α2

e−i(θ−θ0)2/β2

rdrdθ (1.18)

in which r and θ represent, respectively, the dimensions along the radial and circumfer-

ential directions in the normalized polar coordinates.
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The complex domain is divided into four phases, and each phase is represented by two

binary bits. After the Gabor feature extraction, a complex feature matrix is generated

from the image. For each complex feature value h, two binary bits (hR, hI) are used

to represent phase information at the pixel location. And the binary phase pairs from

the entire image are combined into a binary feature template for pattern comparison

and decision making. The Hamming distance is calculated between two binary feature

templates to evaluate their closeness of match.

Figure 1.9: Gabor phase feature representation [7].

With different parameters selected for the Gabor decomposition, the phase encoding

and feature extraction repeatedly process the iris region. One set of Gabor filter bank

will extract one pair of complex phasors over each feature point. With k sets of Gabor

filter banks applied to an unwrapped image template of M ×N matrix, a binary phase

feature matrix of 2kM × 2kN would be extracted as the binary iris template for the

Hamming distance calculation.



19

1.5.2 Laplacian of Gaussian filter

Compared to the Gabor filter wavelets used by the Daugman system, the Wildes system

employs a Laplacian of Gaussian filter G to extract the features from the iris image [13].

The filter G is defined as:

G = − 1

πσ4
(1− ρ2

2σ2
)e−ρ2/2σ2

(1.19)

in which ρ is the distance from the Gaussian center to the image point along the radius,

and σ is the standard deviation of the Gaussian filter.

The segmented image I in the Cartesian coordinates is filtered with the Gaussian

filter G to construct a Laplacian pyramid. First the image I is convolved with the filter

G, and then down-sampled by 2 to generate the first filtered image g1. Subsequently,

each filtered image gk is generated by convolving the previous one gk−1 with filter G,

then down-sampled by 2, as shown in Equation 1.20.

gk = (G ∗ gk−1)↓2 (1.20)

Each level of the Laplacian pyramid is generated according to Equation 1.21.

lk = gk − 4G ∗ (gk+1)↑2 (1.21)

in which lk is the kth level of the Laplacian pyramid [21].

In the Wildes system, these different levels of Laplacian pyramids are combined into

the feature templates of the iris images. During the pattern comparison, the normalized

correlation is used to compare two iris feature templates to calculate the closeness of

match and thus make the decision of classification.

1.5.3 Log-Gabor filter

Brady et al. presented a model to explore the effectiveness in coding the information in

natural images [22]. The use of the Log-Gabor filter is examined to encode the spatial,

frequency and orientation information in an image. He pointed out that Daugman system

uses the Gabor filter for feature extraction, which is mostly efficient in the Cartesian

coordinates.

However, the unwrapping process maps the iris pixel intensities from the Cartesian

coordinates to the normalized polar coordinates. This transfer changes the relative spa-

tial distribution among iris pixels, and therefore partially destroys some of the ability of

the Gabor filter in extracting and compacting the spatial and frequency information.
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Brady et al. proposed the Log-Gabor function to counterbalance the effect produced

by the polar-mapping. The frequency response of the Log-Gabor function is:

G(f) = e−[log(f/f0)]2/2[log(σ/f0)]2 (1.22)

in which f0 represents the center frequency and σ represents the bandwidth of the filter.

With an unwrapped iris matrix representation, each row of pixel intensities corre-

sponds to a ring of pixels centered at the pupil center. The Log-Gabor filter is applied

to the 1D image vectors to extract the phase feature templates.

Since the normalization process is warping the iris region from the circular shape

to the rectangular matrix, or from the Cartesian coordinates to the normalized polar

coordinates, the spatial relationship along the concentric sampling rings is different from

the spatial relationship along the radius. As a result, 2D Gabor filter feature extraction

mechanism mixes the relative spatial relationship when it multiplexes over the normal-

ized polar scale. In other words, 2D Gabor filter applies a symmetric Gaussian envelope

to the normalized polar image representation which is not supposed to be treated evenly

between radial and circumferential directions. On the other hand, the 1D Log-Gabor

filter extracts the feature vector from each row of the normalized matrix representa-

tion, which avoids mixing the relative position information between the radial and the

circumferential directions.

1.5.4 Zero-crossings of 1D wavelet

In the Boles and Boashash system, the dyadic wavelet transform is applied to preprocess

the image intensity vectors, and uses the zero-crossings from the decomposed signals as

the feature vectors for pattern matching [20].

A series of virtual circles are sampled from the gray-scale intensity iris images. Each

circle is centered at the centroid of the pupil and represented with a 1-dimension signal

vector f(n). The iris signal vector f(n) is sampled with a resolution of N . N is chosen

to be an integer square as N = 2j, to make it convenient for the subsequent dyadic

wavelet decomposition. Then, the 1-dimension image vector f(n) is decomposed with a

set of dyadic wavelets at different resolutions. The locations of the zero-crossing points

are used as the feature vectors.

The dyadic wavelet transform of signal f(n) is defined as:

Wa,bf(n) =
N∑

n=−N

f(n)
1

a
ψ(

n− b

a
) (1.23)
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ψ(n−b
a

) represents the dyadic wavelet function. a is a scalar, and b is a translation

parameter to specify the size and position of the mother wavelet. The dyadic wavelet is

defined as the second derivative of smoothing function θ(n), which is not specified in the

reference.

1.5.5 Haar Transform

Lim et al. proposed to use the Haar transform [23] to extract the compact and efficient

feature vectors. They used a relatively small number of feature values to effectively

distinguish and classify iris images. The same unwrapping method is used in the prepro-

cessing as the rubber sheet model by John Daugman. After the iris region is unwrapped

into the normalized polar coordinates, a collection of feature points are sampled from

the original iris image, with 450 feature points along the circumferential direction and

60 feature points along the radial direction. Then, the Haar wavelet decomposition is

applied to this rectangular iris region of 450× 60 matrix, as shown in Fig 1.11:

−0.5

Haar Wavelet
1.0

0.5

−1.0

Figure 1.10: Haar basis wavelet [23].

There are wavelet decompositions from high-pass filters and low-pass filters along the

vertical and horizontal directions. Four decompositions are applied, and the fourth HH

component, with a size of 28 × 3, is comprised of 84 coefficients. The 84 coefficients
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Figure 1.11: Wavelet decomposition with the Haar transform [23].
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combined with the average values of the other three HH components, together make up

the 87 feature coefficients. The 87 feature coefficients are within the range of −1 and 1,

in which the signs of the coefficients are taken as the binary feature template.

The Haar wavelet feature extraction is compared to the Gabor feature extraction for

evaluation [23]. The comparison are conducted over 200 people, with 30 images taken

per person. The Haar wavelet feature templates are classified with a neural network,

and it shows that the Haar feature vector of size 87-bit gives a slightly better recognition

rate than the Gabor feature vector of 256-bit. At the same time, this feature extraction

scheme reduces the computation cost by using feature templates of smaller size.

1.5.6 2D Hilbert transform

Using the same representation or unwrapping process as Daugman rubber sheet model,

Christel Tisse et al. [24] presented a method of using 2D Hilbert transform to extract

the features from the normalized rectangular iris images. The concept of the analytical

signal is used here:

zx(t) = x(t) + jHx(t) (1.24)

in which zx(t) is the 1-D complex feature vector generated from original signal x(t), and

H stands for the Hilbert transform.

Similarly, the 2D version of the Hilbert transformed image is constructed, called

analytical image, and calculated the instantaneous phase and the emergent frequency.

Then, the complex phase information is taken as the iris feature template, in the same

way as the Gabor transformed phase template in the Daugman system.

1.6 Distance Measure and Identification

With various feature extraction schemes, an iris image is transformed into a unique

representation within the feature space. In order to make the decision of acceptance or

refusal, a distance is calculated to measure the closeness of match. In iris recognition

systems, such distance measures include the Hamming distance (HD), the normalized

correlation (NC) and the weighted Euclidean distance (WED).
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1.6.1 Hamming Distance

The Daugman algorithm [7] calculates the difference between individual patterns as a

measure of statistical independence. With the encoded binary phase feature vectors, the

Hamming distance between any two iris templates is defined in Equation 1.25.

HD =
‖ (templateA ⊗ templateB ∩maskA ∩maskB ‖

‖ maskA ∩maskB ‖ (1.25)

in which templateA and templateB represent the two encoded iris feature matrices.

maskA and maskB are two binary masks, with the locations of the identified noise pixels

marked with binary ’0’ and the rest of the mask with binary ’1’. ⊗ is the logical XOR

operator comparing bit by bit, and ∩ is the logical AND operator taking the common

area of the valid iris regions.

Therefore, the Hamming distance calculates the pattern difference with a bit-by-bit

comparison. For iris templates from the same eye, their statistical independence and

the Hamming distance tend to approach zero, while two different iris templates tend to

have a Hamming distance of 0.5. As a result, by setting a threshold on the Hamming

distance between iris templates, a decision could be made about whether they come from

the same eye or not, thus achieving the personal identification.

1.6.2 Normalized Correlation

The Wildes system employs the normalized correlation between two encoded iris images

to measure their closeness of match.

The normalized correlation is defined as:

NC =

∑n
i=1

∑m
j=1(p1[i, j]− u1)(p2[i, j]− u2)

nmσ1σ2

(1.26)

in which p1 and p2 are the two encoded iris templates of size n ×m, u1 and u2 are the

means of the images p1 and p2, and σ1 and σ2 are the standard deviations of the images

p1 and p2.

1.6.3 Weighted Euclidean Distance

The Euclidean distance is one way of defining the closeness of match between two iris

feature templates. It is calculated by measuring the norm between two vectors. For
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the weighted Euclidean distance, another factor is taken into consideration because the

percentage of decision-making varies in different dimensions.

Y. Zhu et al. [25] tried to use the weighted Euclidean distance to evaluate the closeness

of an unknown iris template to a template in the existing database, defined as:

WED =
N∑

i=1

(fi − gi)
2

δi
2 (1.27)

in which f is the unknown iris template to be matched and g is the iris template in the

existing database to be compared with. i is used to denote the index of features in the

templates, and δ is the standard deviation of the ith feature in template g.

Similar to the Hamming distance, the weighted Euclidean distance is another distance

metric within a biometric system. In a complete system, the designer would have to

interpret the metric to achieve identification or verification. In the Wildes algorithm,

the iris template g with a minimum WED to the template f is identified to be from the

same subject.

1.7 Evaluation Metrics

1.7.1 Genuine and Imposter Distributions

The genuine imposter distributions plot the normalized histogram of the matching metric,

in this case the WED between the feature templates, according to whether or not they

belong to the same subject.

The genuine histogram would be all the distances within the same class, while the

imposter histogram would be all the distances between different classes. The genuine

distances should be smaller to represent the closeness of two iris templates. The im-

poster distances should be generally bigger than genuine distances so that they could

be classified with an appropriate threshold. The genuine and imposter distributions are

represented by functions f(x) and g(x), which would be used to calculate the false match

rate and the false non match rate.

1.7.2 False Match Rate and False Non Match Rate

Performance of an iris recognition system could also be evaluated with the variability

among iris feature templates: within subject variability and between subject variability.
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The within subject variability sets the limit for minimum false non match rate and the

between subject variability sets the limit for minimum false match rate [26].

Given the genuine and imposter distributions as described before, another method,

the false match rate (FMR) and the false non match rate (FNMR) curve could be plotted

to evaluate the iris recognition system. With the above functions f(x) and g(x), the intra-

class and inter-class comparisons between the feature templates could be represented with

the genuine and imposter distributions. The x-axis is the direction along which the WED

distances between iris feature vectors are plotted, and the y-axis is the percentage of WED

distances that fall into that range. Then the FMR and FNMR could be calculated as

Equation 1.28 and Equation 1.29 [27, 28]:

FMR(τ) =

∫ ∞

τ−
f(x)dx = 1−

∫ τ+

−∞
f(x)dx (1.28)

FNMR(τ) =

∫ τ−

−∞
g(x)dx (1.29)

The threshold τ is varied within a range in the above calculations, and a series of

corresponding FMR and FNMR values are generated. These match and non-match rate

pairs are plotted in one graph of FNMR against FMR. The FNMR-FMR graph directly

illustrates the trade-off between the false reject rates and the false accept rates, made with

varying threshold τ . From a 100% reject to a 100% accept, the curve sweeps across the

range of all possible thresholds τ during the identification process. An effective biometric

system typically has a FNMR-FMR curve that extends from the position (1, 0) to (0, 1),

and the curve in between warps towards the axes. In other words, the smaller is the area

surrounded by the x-axis and y-axis, the better performance it achieves. FNMR-FMR

graphs have been used extensively to evaluate the performance of a biometric system,

and it is termed as detection error tradeoff (DET) in other occasions. The DET curve

has been used in this thesis to evaluate the performance of iris recognition algorithm.

One such example is shown in Fig 3.3.

1.7.3 Rank-1 Identification Rate

In iris recognition systems, a feature template is extracted from the acquired iris image,

and compared to all other feature templates within the database by certain distance

measurement, such as the Euclidean distance. Then the identification decision is made

based on this distance, in other words, the closeness of match. Typically the smallest
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distance is taken as the match. The decision based on the smallest distance is considered

as the Rank-1 match, and the percentage of the correct matches among all comparisons

is the rank-1 match score.

The Daugman system [7] uses the Hamming distance as the comparison metric. The

smallest Hamming distance is considered as the right match. In the Wildes system [13],

the WED is used as the comparison metric.

In this thesis, the Log-Gabor filter is used for the feature extraction, and the Hamming

distance is used as the decision making metric. Therefore, among all cross-comparisons

between the feature templates, the smallest Hamming distance is used to indicate a

match. The percentage of such correct matches among all comparisons is the rank-1

identification rate.

1.7.4 Cumulative Match Curve

Cumulative match curve (CMC) is another way to evaluate the performance of a bio-

metric system. It plots the cumulative match score against the rank, in other words the

percent of images identified below the rank [29].

In the case of iris recognition, each feature template is compared to all other feature

templates in the database. A complete set of distance metrics are generated, among which

the smallest one is taken as the closest match in the class. Among all the comparisons,

the rank-1 match score would be the percentage of the correct matches or identifications

if using the smallest distance to determine the subject that the iris template belongs to.

Similarly, the rank-2 match score would be the percentage of correct matches if using

the second smallest distance as the correct match. So on and so forth, a series of match

scores could be calculated against the ranks.

1.8 Independent Performance Evaluations

The theoretical analysis about the iris recognition technology claims that the texture

pattern phase complexity has a 244 dimensions of freedom, and a discriminant entropy

of 3.2bits/mm2 [30], which gives it very low error rates in personal identification.

However, for any emerging biometric technology to be accepted by the community, it

typically requires an independent party to perform the evaluations, design the protocols,

collect the data sets, supervise the tests and analyze the results [31]. There exist widely

accepted standards and framework about how to design a biometric testing protocol,
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how to collect data sets and minimize evaluation bias [32].

Over the years, the evaluations of iris recognition algorithms and systems has been

done on various databases and population groups to acquire large scale results. The

metrics like the FNMR and FMR, the detection error rate curve (DET) are used to

indicate the level of accuracy of iris recognition systems.

Most recently, three independent evaluations with various iris recognition systems

including hardware, software, image sensors, were performed by three institutions: the

International Biometric Group (IBG), the Authenti-Corp and the National Institute of

Standards and Technology (NIST).

1.8.1 Meta-analysis of Iris Recognition System

The meta-analysis was performed to compare the performances of three independent

experiments. Three parties evaluated the iris recognition systems individually and sep-

arately. Each party collected an iris image database for its own experiment. The iris

database included a collection from 29000 to 100000 images. The iris recognition algo-

rithms that they evaluated were mostly modified versions of the Daugman system, except

the algorithm from the IriTech Inc, which was claimed to be proprietary [11].

To compare the algorithms and systems, these evaluations utilized various metrics,

such as the false accept rate and the false reject rate, the transaction time, the enrollment

and acquisition failure rate. The meta-analysis used the results from all three indepen-

dent evaluations, compared the FNMR at a common operating point of FMR = 0.001.

It showed that all the tested iris recognition systems achieved very high identification

rates, strong inter-operability and repeatability [10].

1.8.2 Iris Recognition Study 2006 (IRIS06)

The Iris Recognition Study 2006 (IRIS06) was funded by the US Department of Justice,

the National Institute of Justice and the Department of Homeland Security. It was

performed by the Authenti-Corp and lasted from December 2005 to early 2007 [12].

Authenti-Corp performed the evaluations of three up-to-date commercial iris recog-

nition systems. Over 29000 iris images were acquired from around 300 people that de-

mographically represented the US population. The images were taken according to the

ISO/IEC 1994-6 standard within 15 minutes to 6 weeks periods, and under the supervi-

sion of their BETH systems (Biometric Evaluation Test Harness). The algorithms used

for feature extraction and pattern matching were derived from the Daugman algorithm.
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Their experiment findings include:

• The three-attempt failure to enroll (FTE) rates for all three systems are under

3.39%, and the true match rate reaches as high as 99.7% within a confidence interval

of 95%.

• Multiple images are acquired from the same subject with up to six weeks period

between the samples. The difference in acquisition time has very little impact on

the system performance.

• There exists a tradeoff between the verification accuracy and the transaction time.

A higher accuracy generally requires longer transaction time, and a low transaction

time usually accompanies a higher error rate.

• Eyeglasses and the ambient lighting conditions have a direct influence on the iris

image quality, and therefore have an impact on the recognition performance.

• All three systems perform the best when the subjects gaze upwards, rotate the head

(ear-to-shoulder) within a 20◦ range, and stand within the designated distance.

At the same time, the IRIS06 project presented some future work to solve:

• How do iris image quality parameters influence the recognition performance?

• How to better understand the intra-individual correlation factor?

• Why do genuine iris image pairs fail to match sometimes?

1.8.3 Independent Testing of Iris Recognition Technology (ITIRT)

The ITIRT experiment was funded by the US Department of Homeland Security for

border control and security access consulting. The test was performed in July 2004 on

several state-of-the-art iris recognition systems [33]:

• Iridian KnoWho OEM SDK

• LG IrisAccess 3000

• Oki IRISPASS-WG
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• Panasonic BM-ET300

Within the experiment period, over 100000 iris images were acquired at different times,

with different devices. These images were taken from 1224 people of different ethnic

and age groups. The image templates were compared and generated the false accept

rates (FAR) and the false reject rates (FRR), the failure to enroll (FTE) and the failure

to acquire rates (FTA). The feature extraction and matching algorithm used in those

experiments was a generic version of the Daugman algorithm, and the same algorithm is

used to test all of the four hardware systems.

The FNMR at FMR of 0.001 was used as one of the indicators of error rates. The

Panasonic BM-ET300 image sensor achieved a FNMR of around 0.014. The Oki image

sensor achieved a FNMR of around 0.03 at an FMR of 0.001. And the LG image sensor

achieved a FNMR of around 0.038 [10].

1.8.4 Iris Challenge Evaluation (ICE 2006)

The Iris Challenge Evaluation 2006 (ICE2006) [11] was jointly funded by the US Depart-

ment Homeland Security (DHS), the Federal Bureau of Investigation (FBI), the National

Institute of Justice (NIJ) and the Technical Support Working Group (TWSG). It was a

large-scale, independent testing and evaluation of iris recognition technologies.

The tested algorithms included:

• The CAM-2 from the University of Cambridge

• The SG-2 from Sagem-Iridian

• The IRTCH-2 from Iritech Inc.

The first two algorithms, the CAM-2 and the SG-2, were essentially the same based on

the Daugman algorithm, and the IRTCH-2 is a proprietary algorithm from Iritech Inc.

There were 59558 images acquired from 240 subjects, including 29056 images from the

right eyes and 30502 images from the left eyes. These images were further divided into

30 smaller data-sets. Each data-set was evaluated individually with various algorithms.

The evaluations were also performed separately between the left and right eyes, and then

the statistical results were combined for the subsequent analysis. All images were taken

under the same controlled sampling condition and illumination, and they were of a high

resolution at 480× 640 pixels.
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The experiment used the FRR at a FAR of 0.001 as a major evaluation metric for

the statistical analysis. Among the three algorithms, at a FAR of 0.001, the smallest

interquartile was a FRR of 0.09 and the largest interquartile was a FRR of 0.26. The

Sagem-Iridian (SG-2) iris algorithm showed a relatively better performance with a FRR

interquartile range of 0.011 to 0.014 at a FAR of 0.001 [11].

In terms of execution time needed to evaluate the database, the CAM-2 algorithm

took 6 hours, and SG-2 and IRTCH-2 algorithms took about 300 hours.

1.9 Summary

Like any other biometric systems, an iris recognition system is a pattern recognition sys-

tem that performs personal identification by ”establishing the authenticity of a specific

physiological or behavioral characteristic possessed by the user” [34]. Over the years,

the iris recognition systems, from sensor technologies, to algorithms design, have been

improved dramatically. Still, several issues need to be addressed and further under-

stood. This thesis investigates the possible methods and solutions to improve the system

performance of iris recognition with low quality iris images.

1.9.1 Database and Open Source Software Used

In this thesis, the CASIA iris image database [17] is used for the testing and experi-

mentation. The CASIA database consists of 689 iris images that are acquired from 108

subjects with NIR cameras. All iris images in this database are gray-scale bit-map im-

ages, with the resolution of 320×280. The 108 subjects correspond to 108 different eyes,

and we use each subject to represent one specific class of iris images. Each class consists

of 6 or 7 iris images taken from the same eye.

In our test of iris recognition with low quality iris images, a subset database of 327

iris images are selected from the original CASIA database. These 327 images have re-

gions that are partially occluded by eyelashes. All experimentations are conducted over

these 327 iris images, including the eyelash detection, the circular localization, the co-

variance feature extraction, the Fourier magnitude feature extraction and the progressive

segmentation.

One open source Matlab code framework was implemented by Libor Masek and Peter

Kovesi [35], and new algorithms could be added into this framework for further investiga-

tion. The software is based on John Daugman’s iris recognition algorithm, including the
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segmentation, the normalization, the Gabor filter based feature extraction and the Ham-

ming distance based pattern comparison. The different methods and experiments that

we developed are implemented within this open source software framework by adding

new functions, algorithms and libraries.

1.9.2 Eyelash and Eyelid Occlusions

Low quality images include the images with eyelash occlusions and eyelid occlusions. A

typical example of such occluded image is shown previously in Fig 1.4. The upper eyelid

and eyelashes have covered a significant portion of the iris, which introduce distortions

from the ideal iris pixel intensity values. Moreover, the feature encoding process of these

erroneous pixel values give erroneous feature values not only for these pixel locations,

but also for adjacent pixel locations, because the feature extraction schemes involve the

correlation calculation within the regional and global iris image, in both the frequency

and spatial domains.

To solve the issue of eyelash occlusion, we developed an algorithm to detect the eyelash

locations. With the eyelashes identified, the iris image pixels between these eyelashes are

utilized, and the occluded iris regions are eliminated from the cross-comparison between

image templates. The resulting DET curve showed improved error rates in most of the

FMR range.

1.9.3 Erroneous Localization of Circular Boundaries

The first step in the iris recognition is to localize the iris region, typically surrounded by

the iris and pupil boundaries. These two circular boundaries are usually detected using

techniques like the Sobel or the Canny edge detector with the Hough transform. The large

amount of iris image variations sometimes give errors during the circular segmentation,

as observed in our examination. Fig 1.12 shows an example of the localization of the iris

boundary with a large offset.

The circular parameters are corrected by sampling selected edge points and fitting to

circular contours. The system with the corrected circular parameters is then compared

to the one without the circular parameter correction to impact of erroneous circular

localizations on the iris identification. The rank-1 identification rate, the DET curve,

and the cumulative match curve have shown marginal improvement.
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Erroneous Circular Localization

Figure 1.12: Erroneous circular localizations of iris and pupil boundaries.

1.9.4 Rotational Invariant Feature Extraction

Currently, in most feature extraction algorithms [7, 13, 20, 23, 24], the feature extrac-

tion procedure generates different feature templates when the iris images are rotated.

Therefore, extra measures have to be taken to compensate the rotation offsets during

the image acquisition and segmentation. For example, the Daugman system uses the

rubber sheet model to transfer the rotational offset to a row-wise circular shifting in the

normalized polar scale template. Then multiple comparisons between these shifted iris

templates are calculated, among which the smallest Hamming distance is chosen as the

one representing the closest match.

Two methods of feature extraction to explore the possibility of rotational invariant

iris recognition systems : one based on the covariance features and one based on the

Fourier transform magnitudes. The linear discriminant analysis was modified and used

to classify and distinguish the covariance features for identification. The other algorithm

is based on one-dimensional Fourier transform on the unwrapped iris image vectors, and

two-dimensional Fourier transform on the entire unwrapped iris matrix templates. These

features are classified with the Euclidean distance. The 1-D Fourier features achieve a

78.2% rank-1 identification rate, and the 2-D Fourier features achieve a 77.68% rank-1
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identification rate. The performances from these two methods are not as good as the

method with the Gabor feature extraction, and the main reason is the loss of the phase

information when the Fourier magnitudes are calculated.

1.9.5 Information Content and Performance

A common assumption about an iris recognition system is that more valid iris image

information contributes to a higher and better system performance for recognition.

We conducted tests to examine the quantitative relationship between the iris image

content and the identification performance: the band-limited segmentation and the fea-

ture point sampling resolution. The selected area of iris region is gradually increased for

the segmentation and for the subsequent inter-class and intra-class comparisons. It is

shown that during a critical range of iris image area, the system performance improves

rapidly. Overall, it proves in this thesis that the iris recognition with low quality iris

images could provide reliable and satisfactory system performance.



Chapter 2

Eyelash Detection and Enhanced

Segmentation

2.1 Eyelash and Eyelid Occlusions

One of the problems inside an iris recognition system is the use of incomplete or dis-

torted iris images, as well as the noise introduced during processing, such as unsuccessful

segmentation, unwanted eyelash and eyelid pixels.

There are some algorithms that try to bypass the eyelash occlusion by selecting an

iris boundary within the real iris region, such as the one presented by A. Poursaberil et

al. [36]. We consider this method unacceptable since it avoids eyelashes by eliminating

both the eyelashes and certain iris regions. Furthermore, it changes the relative sampling

distribution of the feature points.

In this chapter, we developed an algorithm to obtain more detailed iris image area

while eliminating distortion as much as possible. This approach is based on the enhanced

iris segmentation with an advanced eyelash detection algorithm.

The advantages of this approach include:

• Fewer artifacts and distortion

• More iris pixels from iris images for the recognition

The masked images are normalized and encoded by the Log-Gabor filter. Then the

encoded iris feature templates are classified with the Hamming distance as used by the

Daugman system [7]. The result shows that the enhanced segmentation decreases the

35
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genuine distances and the error rates, which effectively increases the robustness of the

recognition system.

2.2 Enhanced Segmentation

2.2.1 Pupil and Iris Circle Localization

The pupil and iris regions are assumed to be of circular shape. The Hough transform,

combined with standard edge detection techniques, has been used widely for the circular

localization. Our approach is also based on the Hough transform to detect the circular

boundaries in iris images.

Image enhancement

The original image F (x, y) goes through a recursive smoothing processing as shown in

the block diagram in Fig 2.1 [37, 38]. The low pass filter (LPF) applied here is a 9 × 9

Gaussian filter. In each step, the output image from the previous Gaussian LPF is the

input of the next Gaussian LPF. An(x, y) represents the low pass filtered image in each

step. Hn(x, y) represents the subtraction of the images before and after low pass filtering.

s is the scalar to control the contrast level in the final enhanced image F
′
(x, y). The

recursive filtering procedure is repeated until An−1(x, y)ª An(x, y) ≈ 0.

Figure 2.1: Non-linear image enhancement, adapted from [38].

The Gaussian filtering is computed in the gray-scale intensity space, while the ad-

dition ⊕, subtraction ª and multiplication ⊗ are defined in the logarithmic mapping

space. In other words, the images are mapped into logarithmic space before the addi-

tion, subtraction and multiplication, and inversely mapped into the gray-scale intensity

space after these operations.
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The mapping function from the gray-scale image F (x, y) into the logarithmic space

is defined in Equation 2.1:

Ψ(F (x, y)) = log(
255− F (x, y)

F (x, y)
) (2.1)

Based on this mapping approach, the addition operation of images A and H in the

logarithmic space is defined in Equation 2.2:

A⊕H = Ψ−1(Ψ(A) + Ψ(H)) (2.2)

The subtraction operation of images F and A in logarithmic space is defined in

Equation 2.3:

AªH = Ψ−1(Ψ(A)−Ψ(H)) (2.3)

The multiplication operation of an image A and a scalar s in logarithmic space is

defined in Equation 2.4:

s⊗ A = Ψ−1(sΨ(H)) (2.4)

This recursive filtering procedure attempts to smooth and clean the distortions in

the images, which makes it more accurate in the subsequent localization of the circular

boundaries in iris images. Then the images with clean edges and contrasts are used for

the segmentation, the feature extraction and the pattern comparison.

Here the smoothed image F
′
(x, y) is used to search for the circular boundaries of iris

and pupil regions. Once the parameters of these boundaries are located, the original iris

image is used for the feature extraction and the subsequent processing.

Edge detection and the Hough transform

The contrast and edge enhanced image F
′
(x, y) is used here to identify the spatial gradi-

ent map with the Sobel edge detector. Then the Hough transform is applied to the binary

edge image to locate the iris and pupil circles. By polling through a series of circular

parameter sets corresponding to the circular center and radius, the circular parameter

set that goes through the most number of edge points is taken as the most likely circular

parameter set.

This approach is applied to find both the iris and pupil circles, with different area

limits. First of all, the Hough transform polling is conducted over the entire image

after edge detection. In this case, the iris boundaries are most likely those with the

most amount of edge points located on the circular boundaries, and the detected circular
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parameters indicate the center and radius of the iris circle. Then, the area of the Hough

transform search is limited to within this iris circle, and the circle with the most amount

of edge candidates would be the pupil boundary.

2.2.2 Eyelash Detection

The eyelash detection is based on local image statistics, and the eyelashes are divided

into two groups: separable eyelashes and multiple eyelashes.

Separable eyelashes

Separable eyelashes could be in various directions: horizontal, vertical or diagonal.

Therefore, four different convolution masks are used to detect these directional edges.

The kernels are shown in Fig 2.2.

Figure 2.2: Separable eyelash detection kernels

The image is convolved with the kernel masks as:

Ri(x, y) =
N∑

m=−N

N∑
n=−N

I(x−m, y − n)M(m,n) (2.5)

in which I denotes the original image, and M(m,n) denotes the convolution kernel of

size (2N+1) by (2N+1).

Then a threshold is set on the mask response Ri(x, y) to identify the possible eyelash

locations. In our algorithm, a threshold of −200 is selected.

Also, a connective criterion must be satisfied for a candidate eyelash pixel to be valid

[19], which means that a possible eyelash point is only valid when it is connected to other

identified eyelash points in the surrounding pixel regions.
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Multiple eyelashes

Local statistics are used to locate the regions with multiple eyelashes crossing over one

another. The mean ubi and variance vbi of each (2N +1)× (2N +1) block are calculated

from the original iris image I. Then the mean and variance values are compared to the

predefined thresholds to find out the possible eyelash regions. In this experiment, the

block is chosen to be size 5× 5, and N equals 2.

ubi(x, y) =
1

N2

N∑
i=−N

n∑
j=−N

I(x + i, y + j) (2.6)

vbi(x, y) =
1

N2

n∑
i=−N

n∑
j=−N

(I(x + i, y + j)− ubi(x, y))2 (2.7)

A similar connective criterion is also applied to the detection of multiple eyelashes.

Each potential eyelash candidate pixel has to be connected to at least one other identified

eyelash pixel in the surrounding region.

2.3 Iris Recognition based on Enhanced Segmenta-

tion

The iris image is unwrapped into a normalized polar scale template, according to the

Daugman rubber sheet model. At the same time, the mask indicating the location of

unwanted artifact pixels is also mapped from the Cartesian coordinates to the normalized

polar scale.

2.3.1 Enhanced Segmentation

The traditional way of segmenting the iris image consists of locating the iris and pupil

boundary circles, and the parabola of the upper and lower eyelids, using the Hough

transform. Fig 2.3 is one of the original images from the CASIA database. Fig 2.4

shows the segmented iris region generated with the open-source software provided by

Libor Masek et al. [35]. The performance evaluation is compared between the algorithm

from Libor Masek et al., which does not perform eyelash detection, and our enhanced

segmentation with eyelash detection.

In Fig 2.4, the shaded regions on the top and bottom of the iris image are discarded as

noise. The valid iris region utilized is the area surrounded by the iris circular boundary,
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Figure 2.3: One sample iris image from the CASIA database [17]

Figure 2.4: Segmentation using the Masek’s algorithm [39].
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pupil circular boundary and the two shaded areas. Instead, the average pixel intensity

value of the valid iris region is filled into these shaded regions for the subsequent feature

extraction.

Our proposed advanced segmentation aims to improve the result of Fig 2.4 by elimi-

nating the eyelashes outside the mask, and identifying all the valid iris regions that would

otherwise be discarded (the region that is covered by the dark mask in Fig 2.4).

With the above method of eyelash detection, the same image as Fig 2.4 is segmented

as shown in Fig 2.5. In Fig 2.5, the eyelashes are detected, and the iris pixel loca-

tions occluded by the eyelashes are discarded. Meanwhile, the valid iris pixels between

these eyelashes are kept for the subsequent feature extraction and the pattern matching.

Therefore, it further reduces the unwanted noise region while revealing the iris region

that is ignored by the Masek’s segmentation.

Enhanced Segmentation

Figure 2.5: Enhanced segmentation with eyelash detection.

2.3.2 Unwrapping

The unwrapping involves mapping the segmented iris image into a rectangular polar scale

matrix. The feature points are selected from the original image with a specified sampling

resolution, like 20 × 120, which indicates that 20 feature points are selected along the

radial direction and 120 feature points are selected along the circumferential direction.
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The rubber sheet model [7] is proposed by John Daugman as a representation of an

iris image, which makes it easy to use the Gabor filter to extract the binary feature

templates for the pattern comparison.

This unwrapping model maps each point in the Cartesian coordinates (x, y) to the

polar coordinates (r, θ), in which r represents the radial distance from the center of pupil

circle, and θ represents the angular shifting from 0 to 2π.

The mapping function from the Cartesian to the polar coordinates is defined in Equa-

tion 2.8 and 2.9 [39]:

x(r, θ) = (1− r)xp(θ) + rxi(θ) (2.8)

y(r, θ) = (1− r)yp(θ) + ryi(θ) (2.9)

in which (x, y) represents the Cartesian coordinates, (r, θ) is the corresponding polar

coordinates. (xp, yp) and (xi, yi) are the Cartesian coordinates for the two end points

of the radius across the iris region, along which the mapped points are located. Fig 2.6

shows an example of the unwrapping process to generate the normalized polar scale

representation.

The unwrapping according to this rubber sheet model compensates the distortions,

like the displacement between iris and pupil centers. As a result, it gives a uniform

sampling of the feature points across the iris region. Fig 2.7 and Fig 2.8 show the

sampling process of both the iris image with the Masek’s segmentation and with the

enhanced segmentation. The white dots within the two circles indicate the points at

which features are selected, including 20 points along the radial direction and 120 points

along the circumferential direction.

For the iris region covered by eyelids, eyelashes, and other identified noise, they would

be given an interpolated value before encoding. An averaged value of all other valid iris

pixel values to interpolate the eyelash covered region [39] as is shown in Fig 2.9. A

5 × 5 averaging filter is used to generate the estimated pixel values at those regions

as illustrated in Fig 2.10. The benefit of the second interpolation method is that it

introduces relatively less sharp edges, and less distortion for the feature extractor. It is

shown by comparing Fig 2.9 and Fig 2.10. In Fig 2.9, the artifact pixels are interpolated

using a 5× 5 averaging filter.

Then these two rectangular iris templates are convolved with the 1-D Log-Gabor

filter to extract the binary feature templates, including the binary features for valid iris
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Unwrapping Process

Figure 2.6: Rubber sheet model unwrapping, adapted from [40]. The yellow region in

the original iris image is mapped to the rectangular yellow region between column 230

and 250 in the unwrapped iris template shown above.
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Figure 2.7: Sampling of the image with the Masek’s segmentation.
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Figure 2.8: Sampling of the image with accurate eyelash detection.
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regions and invalid interpolated regions, which will be masked out subsequently. The

mask is a binary template that has the same size as the iris intensity pixel template.

Examples are shown in Fig 2.11 and Fig 2.12. Inside the binary masks, the binary 0s

indicates the locations of unwanted pixels in the iris templates, which would be used to

discard these pixel features during the Hamming distance calculation.

Figure 2.9: Unwrapping of the Masek’s segmented image. The segmented iris images are

unwrapped into this rectangular image templates according the Daugman’s rubber sheet

model.

Figure 2.10: Unwrapping of the iris image with the eyelash detection.

The sampled points within the identified noise region will be marked, as indicated by

the black shades in Fig 2.7 and Fig 2.8. After the unwrapping process, the noise points

will also be marked in the polar coordinates, as explained above in terms of masks.

Fig 2.11 and Fig 2.12 are the corresponding masks, indicating the locations of invalid

and unwanted pixels, which are used to eliminate the noise during the Hamming distance

calculation.

2.3.3 Feature extraction

The Log-Gabor filter is used as a feature extractor to encode the unwrapped iris images

into binary templates. The frequency response of the Log-Gabor filter is represented in

equation 2.10:

G(f) = e
− [log(f/f0)]2

2[log(σ/f0)]2 (2.10)

where f represents the frequency component of the image vector, f0 represents the center

frequency of the filter and σ gives the bandwidth of the Log-Gabor filter.



47

Figure 2.11: The binary mask for the Masek’s segmentation. The binary 0s (black)

indicate the existence of noise, and they are discarded from the Hamming distance cal-

culation. Only the pixel values indicated by the binary 1s (white) are used for the

Hamming distance calculation and the pattern matching.

Figure 2.12: The binary mask for the enhanced segmentation. It is shown that more

accurate eyelashes are detected and discarded from the pattern matching.
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Each row in the unwrapped iris template corresponds to one circle in the iris region

in the Cartesian scale. The normalized iris image in the polar scale is convolved by the

1-D Log-Gabor filter, row by row. The output of the convolution produces one complex

value for each pixel point, which is located in one of the four complex phase domains.

Fig 2.13 shows an image intensity vector in the normalized gray-scale image template.

This normalized image template is convolved with the Log-Gabor filter to extract the

feature vectors, and the corresponding real and imaginary components of the complex

feature vector are displayed in Fig 2.14. In Fig 2.14, the blue line represents the real part

of the feature vector along the pixel index and the red line represents the imaginary part

of the feature vector. At each pixel location, a binary ’1’ is used to indicate a positive

value, and a binary ’0’ is used to indicate a non-positive value. Therefore, each feature

value is encoded with a binary pair. The binary pairs from the entire image make up the

binary feature template, which is used for pattern matching with the Hamming distance.
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Figure 2.13: Iris image gray-scale intensity vector.

The quadrature phase information for each pixel point is represented by two binary

values, indicating the complex convolved value in one of the 4 complex domains as shown

previously in Fig 1.9. Thus, each iris image template of size [M,N ] is decomposed into a

complex feature template of size [M, N ], which is further represented with binary phase

template of size [2M, 2N ].
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Figure 2.14: Real and imaginary components of Log-Gabor feature vector. The blue and

red curves correspond to the real and imaginary components of the Log-Gabor feature

vector respectively.



50

2.3.4 Pattern Recognition

In order to determine whether two iris feature templates are from the same subject,

a distance measure is calculated based on the comparison between images of the same

eye (intra-class comparison) and between images of different eyes (inter-class compar-

ison). Overall, the intra-class comparisons have smaller distances than the inter-class

comparisons.

The Hamming distance is defined previously in Equation 1.25. It is used to measure

the closeness of match of the intra-class and the inter-class comparisons [7].

The templates to be compared are the encoded iris feature binary matrices. The

masks are the corresponding binary masks, with the location of identified noise marked

with binary 0s and the remaining image with binary 1s as shown in Fig 2.11 and Fig 2.12.

Note that the XOR operation is taken between two iris feature templates. Then the

Hamming distance is calculated by averaging the XOR results from the common valid iris

region indicated by the masks. The values within the noise area are discarded, including

the noise marked by masks from both compared images. From all the cross-comparison

Hamming distances of all iris templates, the minimum distance is selected as the right

class to which the candidate iris image belongs.

Rotational invariance is compensated by circularly shifting the encoded iris templates

along the row-wise direction, including both left and right shifting. Each row in the

template corresponds to one circular contour in the original iris region. For a sampling

resolution of 120 along the circumferential direction, a collection of 240 binary feature

values are generated as the feature vector. Therefore in the feature templates, row-

wise bit-shifting could compensate for the circular rotation in the original Cartesian

coordinates.

2.4 Performance Evaluation

The CASIA database [17] is comprised of 689 gray-scale iris images in bit-map format.

From the entire database, we select a group of 327 iris image that are partially occluded

by eyelashes.

The detection error trade-off curve (DET) is generated by plotting the false non-match

rate against the false match rate, as shown in Fig 2.15. Among the two plotted curves,

the red curve represents the DET curve of the Masek’s segmentation and the blue curve

represents the DET curve of the enhanced segmentation with accurate eyelash detection.
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The enhanced segmentation improves the recognition performance for most of the region

except in very low FMR range.
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Figure 2.15: DET curve comparison. Performances are compared between the Masek’s

segmentation and the enhanced segmentation.

The DET curve with the enhanced segmentation has a lower error rate than the

Masek’s segmentation, except at very low FMR. In other words, we could say that with

the enhanced segmentation, the match score is better within the whole comparison range.

The major reason for the improved match score is the extra iris image information that

is utilized, as well as the artifact pixels that are discarded to minimize the distortion like

eyelash and eyelid occlusions. In other words, the Masek’s segmentation is too aggressive

in eliminating the noise pixels. As a result, a lot of useful information and valid iris pixel

points are discarded from recognition.

By using the advanced segmentation with additional valid iris pixels while eliminating

invalid eyelashes or eyelids, the iris recognition performance is improved in the detection

error trade-off curve. That is especially useful when the acquired iris images are noisy

and distorted as a result of the camera tilting or lack of client cooperation.



Chapter 3

Improved Pupil and Iris Localization

3.1 Introduction

One potential problem in the iris recognition system is that the same algorithm and

parameter settings are applied to a large amount of iris images in the database. Because

of the large variation in image quality and patterns, the errors and offsets often occur

during the processing, including the localization, the unwrapping, the feature extraction

and the pattern matching.

During the procedure of iris localization, the pupil and iris boundaries are identified

by fitting circles to the detected edge points. The Sobel edge detection with the Hough

transform is used to find the circular parameters for the iris and pupil boundaries. From

our experiments, the standard Hough transform generates a number of erroneous circular

detections. These errors are due to the texture patterns with misleading circular edges

from the eyelids and eyelashes that cause incorrect circular detections. One example is

shown in Fig 1.12 in Chapter 1. The figure is generated from the open source code by

Libor Masek et al. [35], in which the iris boundary is significantly offset from the true

iris region.

Therefore, we investigated the impact of these erroneous circular detections on over-

all performance. A more robust and accurate circular localization algorithm could be

developed, using recursive searching for decision making. Before that, it is valuable to

know how much impact the erroneous circular detections have on the overall recognition

performance.

Certain edge points along the circular boundaries are selected to fit into the circular

parameters. The system performance is evaluated before and after correcting the circular

52
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parameters. The test results show that an improved circular localization generates a

improved system performance.

3.2 Standard Method of Circular Localization

The standard method to determine the parameters for a circle is the Hough transform

combined with the edge detection. The edge detection method could be the Canny

detector, the Sobel detector or other methods.

Our experiments are performed on a database from CASIA [17], from which 327

low-quality iris images are selected, particularly with eyelash or eyelid occlusions. These

artifacts make it more difficult to accurately localize the circular boundaries, since the

sharp edges from eyelashes are taken as pixel points over a circle. Among the 327 images,

15 images show significant errors in the circular segmentation, like Fig 1.12. There are

15 additional images having minor errors in the circular radius detection.

3.3 Correction to Circular Localization

The images with erroneous circular localizations are picked out for manual correction.

The method we employed to find the correct circular parameters is to sample edge points

over the circular contour and search for a circle that fits the most with these points.

A circle is defined by three parameters: the center coordinates (cx, cy) and the radius

r. For all the points (x, y) on the circle, the relationship is defined as:

(x− cx)
2 + (y − cy)

2 = r2 (3.1)

To find the three parameters corresponding to the iris circular boundary, a set of

N points are manually sampled on the iris circle: (x1, y1)...(xN , yN). Then the Matlab

simplex search method is used to find the optimal parameter combinations of (cx, cy, r)

to minimize Equation 3.2:

min(cx,cy ,r)

N∑
i=1

∣∣(xi − cx)
2 + (yi − cy)

2 − r2
∣∣ (3.2)

Similarly, by sampling N points on the pupil circles and do the same search as above,

the optimal parameter sets could be found to localize the pupil boundaries.
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3.4 Testing and Performance Evaluation

With all the corrected circle parameter sets from above, the new system performance is

tested based on the rubber sheet model representation, the Log-Gabor feature extraction

and the Hamming distance for decision making, which we have introduced in Chapter 3.

Here we briefly describe it.

The newly corrected circular parameters are used to map the iris region from the

Cartesian coordinates to the normalized polar coordinates. M by N feature points are

sampled within the iris region, including M points along the radial direction and N

points along the circumferential direction. Their coordinates are mapped according to

Equations 2.8 and 2.9.

The unwrapped iris images are convolved with the Log-Gabor filter to extract the

binary phase features. The Log-Gabor filter is represented in Equation 2.10.

The Hamming distance is calculated by the cross-comparisons of all iris feature tem-

plates to find the closest match for recognition. The method to calculate the Hamming

distance is defined in Equation 1.25.

The algorithm is implemented within the open source software framework from Libor

Masek et al. [35] and the same algorithm with corrected circular parameters. Two tests

are examined, with two different sampling resolutions.

3.4.1 Test One with Sampling Resolution [10 60]

In each segmented iris image, 10 feature points are sampled along the radial direction

and 60 points are sampled along the circumferential direction. Each iris feature template

is compared to all other iris feature templates in the database in terms of the Hamming

distance. The smallest Hamming distance is used to indicate a correct match, and the

percentage of the correct matches is termed the rank-1 identification rate [Section 1.7.3].

Without the circular correction, the algorithm achieves a rank-1 identification rate of

72.47%. After the circular correction, the same algorithm achieves a rank-1 identification

rate of 74.37%. The comparison of the cumulative match curves is shown in Fig 3.1.

While there is some improvement in the rank-1 identification rate, the genuine-

imposter distributions look very similar to each other in Fig 3.2. The improvement

is difficult to notice. It is expected that this correction will influence the genuine distri-

butions at high distance regions.

The FMR-FNMR curves from both methods before and after circular correction are

illustrated in one graph as shown in Fig 3.3. Again, they overlap with each other for the
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Figure 3.1: Cumulative match curve before and after the circular correction. Without

the correction of erroneous circular localizations, it achieves a rank-1 identification rate of

72.47%. After the correction of the erroneous circular localizations, it achieves a rank-1

identification rate of 74.37%.
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Figure 3.2: Genuine imposter curve comparison. The genuine imposter distributions

before and after the circular correction are very similar.

majority of the curve, if viewed with a higher resolution in Fig 3.4.

3.4.2 Test Two with Sampling Resolution [20 120]

In this test, the method is using the same algorithm as above but with a different

sampling resolution of the feature points. Instead of sampling 10 feature points along

the radial direction and 60 points along the circumferential direction, a sample collection

of 20 points along the radial direction and 120 points along the circumferential direction

is utilized for the Log-Gabor binary feature extraction. Generally, the performance

shows similar comparison results between the old circular segmentation and the corrected

circular segmentation.

The rank-1 identification rate increases from 96.20% to 96.84%. In Fig 3.5, two

cumulative match curves from before and after the circular correction are illustrated.

The increase in the identification rate shows the positive effect of the corrected iris and

pupil boundaries parameters. The relative improvement of 0.64% is smaller than the

previous testing, because the recognition rate has already reached a very high level at

this sampling resolution. Therefore, it approves that an enhanced circular localization
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Figure 3.3: DET curve comparison. The red line represents the DET curve for the

evaluation without correction of the erroneous localizations of the circular boundaries.

The green line represents the DET curve after the correction of the circular localizations.
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Figure 3.4: A higher resolution of Fig 3.3. An improvement in the DET curve is observed

after the correction of the circular localizations in most of the FMR range.

has a positive impact on the system performance.

This relative improvement is small in the genuine imposter distributions, as shown in

Fig 3.6. The genuine-imposter distributions of the system without the corrected circular

segmentation are similar to the system with the circular correction.

Both FMR-FNMR curves are plotted together for comparison in Fig 3.7. The solid

line represents the DET curve with no circular correction and the dotted line represents

the DET curve after the circular correction. Two curves almost overlap with each other.

If the graph is viewed with a higher resolution in Fig 3.8, it shows that the corrected

circular localization gives better error rates in most of the range except at very low FMR.

3.5 Conclusion

From the two examinations and comparisons, the rank-1 rate, the DET curve and the

CMC curve have shown marginal improvement in the system performance after the erro-

neous circular localizations are corrected. Overall, it provides an alternative to improve

the robustness and performance in iris recognition, which is to increase the accuracy in

the circular localization. This is essentially based on the same assumption as Chapter 3,
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Figure 3.5: Cumulative match curves comparison with and without the circular cor-

rection. Without the correction of circular localizations, a rank-1 identification rate of

96.20% is observed. After the correction of circular localizations, a rank-1 identification

rate of 96.84% is observed.
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Figure 3.6: Genuine imposter distribution comparison with and without the circular

correction.

which extracts more iris information by detecting the eyelash locations and utilizing the

extra information between these eyelash occluded regions.
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Figure 3.7: DET curves comparison before and after the circular correction. The red

line represents the DET curve before the correction and the green line represents the

DET curve after correcting the circular localizations. Two curves are very similar, and

a higher resolution comparison is illustrated in Fig 3.8
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Figure 3.8: A higher resolution of Fig 3.7. It is shown that after the correction of the

erroneous circular localization, the FNMR is improved in most of the FMR range.



Chapter 4

Covariance Feature and Fisher

Discriminant Analysis

4.1 Introduction

In this chapter, a rotational invariant feature extraction method is developed, based on

the cross covariances between the iris image pixel rings. A modified linear discriminant

analysis is utilized to test the iris recognition performance. Experiments have been done

on the CASIA database. Extended issues over the feature selection are also discussed.

From the simulation, it is seen that the rotational invariance is achieved, but the classi-

fication capability of the linear discriminant classifier is limited. We try to explore the

possible reasons and solutions.

4.2 Localization, Representation and Feature Extrac-

tion

4.2.1 Segmentation and Unwrapping

The circular boundaries of the iris and pupil regions are localized with the standard

Hough transform. Artifacts like the eyelash occlusions are detected using the methods

described in Chapter 2. Then, a normalized representation template in polar scale is

generated according to the Daugman rubber sheet model [7].
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4.2.2 Covariance Feature Extraction

The assumption for the covariance feature is based on:

• The iris image features are spatially distributed in the radial and circumferential

directions

• The covariance of iris image pixels would be non-zero within the local region and

close to zero outside the local region.

• Iris pixel intensities far apart have a random distribution, thus little correlations

with each other.

After the process of segmentation and unwrapping, the iris region is mapped into a

matrix with specified dimensions. Each row of pixel values corresponds to one ring in the

iris image. Then, for each combination of row pairs, the covariances between different

pairs of ring pixels are calculated and combined as one feature template:

cov(i, j) =
1

N − 1

∑
ring(i) ∗ ring(j) (4.1)

where cov(i, j) is the covariance between two iris pixel rings; i, j represents the index of

each ring of pixel values; and N is the number of pixels across one ring of iris image.

Across the radial direction, the covariance between each pair of ring pixels are calcu-

lated as the feature point. All these feature points were combined together as one feature

vector for the subsequent identification purpose.

4.2.3 Feature Selection

It is shown that the covariances between iris ring pixels have abundant feature informa-

tion for identification. Similarly, the covariances between the same rings of iris image

also contain a lot of features. In our method, a ring-ring covariance has the characteristic

of the rotational invariance.

After the segmentation and the unwrapping, the circular rotation is transformed into a

linear bit shifting of pixel matrix rows. The above procedure of calculating the covariance

features generates a large number of feature vectors. Over the radial direction of 20 pixels,

400 possible combinations of ring pairs are generated. And during the calculation of the

covariances between the pixel rings, each pixel ring could be circularly shifted to the left

or right. Two rings of pixels could be rotated before calculating their covariances. Thus
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over the circumferential direction of 120 sampled pixels, each pixel ring could be rotated

by 0 to 60 bits before calculating the covariances, which give a lot more information

about the iris regional image distributions.

Noise sources include the eyelash occlusion, the eyelid occlusion, and the specular

reflections. The identified noise pixel intensities are set to zero, and they have no impact

on the covariance feature vectors.

It is assumed that in an iris image, along the radial direction, pixels values close to

each other should correlate more closely than those that are far apart. Therefore, the

cross-covariances between closer rings should weigh more in terms of the classification

capability. When choosing the feature points before the classification, we use the cross-

covariance between two rings that are no further than a pre-determined limit along the

radial direction.

For instance, the features calculated between rings within a bandwidth of 4 pixels is

shown in Fig 4.1. Similarly, for an iris image with 20 rings of pixels, the bandwidth could

be from 1 pixel, which is auto-covariance of each pixel ring, to 20 pixels, which include

the covariances between all possible pairs of ring pixel values.

4.3 Fisher Discriminant Analysis

One image generates a feature vector of 400 values with a bandwidth of 20 pixels. So it

becomes an issue about how to discriminate those features within the feature space or

classify against an appropriate hyper-plane.

With the feature vectors to represent the iris images, we applied the modified fisher

discrimination classifier.

4.3.1 Fisher Discriminant Analysis

With multi-dimension feature vectors, the traditional Fisher discriminant analysis (FDA)

projects each high-dimension feature vectors into the Fisher classification space, then

performs the identification based on a distance metric between the feature vectors in the

Fisher space.

The search for the projection matrix is aimed at finding a projection plane that

maximizes the distance between the means of two classes and minimizing the variance

within each class [41].

If there are samples from two different classes, x1
1, ..., x

1
M and x2

1, ..., x
2
N , the covariance
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matrix within the classes SW and the covariance matrix between the classes SB are defined

as:

SW =
∑

k

∑
m

(xk
m − x̄k)(xk

m − x̄k)
T

(4.2)

SB = (x̄1 − x̄2)(x̄1 − x̄2)T (4.3)

in which xk
m represents the mth feature vector in the kth class, x̄k represents the mean of

all feature vectors in kth class, k represents the index of class, 1 or 2 in this case, and m

represents the index of the feature vector in each class.

The projection matrix W is found based on the Fisher criterion [42] to maximize:

J(W ) =
W T SBW

W T SW W
(4.4)

The optimal projection matrix could be computed by solving the generalized eigen-

value problem [42]:

SBW = λSW W (4.5)

Thus, all feature vectors are projected into the Fisher space:

Y = W T ∗ x (4.6)

in which x represents the feature vector, W represents the projection matrix, and Y

represents the projected vector in the feature space.

The conventional way to classify the feature templates is calculating the Euclidean

distance between each vector Y, and make the decision based on the closeness of the

projected vectors.

4.3.2 Modified Fisher Discriminant Analysis

In our examination, the Fisher discriminant analysis is modified for classification among

multiple classes.

Moreover, the high dimension of the iris feature vectors results in the difficulty of

finding a convergent inverse matrix of the within-class covariance matrix. The traditional

Fisher discriminant analysis does not perform satisfactorily in this iris identification work.

Instead of projecting into one projection plane, each feature vector is projected into

a high-dimension Fisher space. The iris images from the same class tend to form a
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high-dimension spheres in this Fisher space, so we could use different Fisher spheres to

represent different iris classes. And each iris image is classified based on its closeness to

each iris Fisher sphere center.

The procedure is as follows:

• The within-class covariance matrix SW is calculated from the feature vectors of all

iris classes:

SW =
∑

k

∑
m

(xk
m − x̄k)(xk

m − x̄k)
T

(4.7)

in which SW represents the within class covariance matrix, x represents the covari-

ance feature vector, k represents the index of iris image class, and m represents the

image index inside each class of iris images.

• The singular value decomposition of SW is calculated as:

[U, S, V ] = svd(SW ) (4.8)

such that

SW = U ∗ S ∗ V
′

(4.9)

• The mapping matrix is generated from the covariance feature space to the Fisher

classification space, with certain regularization applied:

M = S−1/2 ∗ U
′

(4.10)

in which M is the mapping matrix from the covariance space to the Fisher space.

The regularization aims to select the highest covariance feature values. Before the

calculation of Equation 4.10, a regularization is done by selecting a limited rows or

columns of the SVD matrix as U = U(1 : 400, 1 : 100) and S = S(1 : 100, 1 : 100).

• All image features are mapped from all possible classes into this newly-defined

classification space:

F = M ∗ x (4.11)
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in which F represents the corresponding feature vector in the Fisher space, M

represents the mapping matrix from covariance space to the Fisher space, and x

represents the originally covariance feature vector.

• For any iris image to be identified, the Euclidean distance is calculated between

the feature vector to be identified and each feature vector template in the existing

database:

D = norm[Fi − Fj] (4.12)

in which D represents the Euclidean distance, Fi represents the iris feature vector

to be identified, and Fj represents the feature vector in database to be compared

with.

• Then the iris image is identified as belonging to the class, with the smallest Eu-

clidean distance D.

4.4 Performance Evaluation

4.4.1 Database

The covariance feature extraction scheme with the Fisher discriminant classifier is tested

on the CASIA database [17]. The 327 iris images are acquired from 108 eyes, with 6 or 7

images per subject. These images are segmented and normalized to generate the feature

vectors. The classification is achieved by calculating the within-class covariance matrix

SW from these 327 feature vectors, and finding the the Fisher mapping matrix by using

the singular value decomposition.

For the 108 eyes, the identification is done by comparing any one iris feature template

to all other 326 feature templates, and the smallest weighted Euclidean distance is used

to indicate the closest match. The identification results from the WED comparisons are

tested and verified using the prior information from the database.

4.4.2 Evaluation Metric

Cumulative Match Curve

The cumulative match curve is plotted with the rank against the cumulative match score,

indicating the percentage of the correct identifications below the specified rank [29].
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The cumulative match curve is a derivative curve from the rank rate scores, in which

the cumulative score at each rank is the sum of all match scores below or equal to the

selected rank. Fig 4.1 illustrates the CMC graph for the iris recognition system using

the covariance feature extraction with the Fisher discriminant analysis.

From the CMC graph, it is shown that the rank-1 identification rate is close to zero,

which means the feature vectors extracted from the images of the same subject do not

match close enough to be correctly identified. Therefore, the covariance feature combined

with the modified Fisher discriminant classifier fails to classify the iris images properly.

The reason is that the Fisher discriminant classifier does not have the capability to

classify these covariance features. From the genuine imposter distributions, it is shown

that the inter-class and intra-class feature distances fail to distinguish the iris classes.
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Figure 4.1: The cumulative match curve for the covariance features with the modified

FDA. It fails to distinguish between the feature templates.

Genuine Imposter Distribution

The genuine imposter distributions plot the normalized histogram of the distance mea-

surements between the feature templates, including the intra-class and inter-class com-

parisons.
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In our test with 327 iris images, 106602 cross comparisons between the images are

calculated including the genuine and the impostor distances, and the distributions are

shown in Fig 4.2. The solid line is the histogram of the intra-class WED distances, and

the dotted line is the histogram of the within-class WED distances. These two curves

have a large amount of overlap, and their peaks of statistical distributions nearly merge.

In other words, it is difficult to distinguish the two distributions by any threshold or

correctly identify the iris feature templates.
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Figure 4.2: Genuine imposter distributions of the covariance features with FDA. The

genuine distribution in red line and the imposter distribution in blue line are overlapping

with each other. This algorithm fails to separate the genuine distribution from the

imposter distribution.

FMR-FNMR Curve

The FMR-FNMR curve plots the percentage of the false acceptances against the per-

centage of the false rejections during the identification. It is sometimes termed as the

detection error rate curve.

f(x) and g(x) are used to represent the genuine and imposter distributions of the

intra-class and inter-class comparisons between the covariance feature templates. The x-

axis shows the index of each covariance feature distance, and the y-axis is the percentage
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of the distances. Then the FMR rate and FNMR rate are calculated in the same way as

described in Chapter 2, as in Equations 1.28 and 1.29.

In the test of the covariance feature combined with the Fisher discriminant analysis,

the FNMR-FMR curve is plotted in Fig 4.3. It shows that the area enclosed by the curve

and two axis is very large. This is a consequence of the genuine-imposter distribution as

the FMR-FNMR curve is determined using the match scores.
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Figure 4.3: The FMR-FNMR curve for the classification of the covariance features with

the modified FDA.

4.5 Discussion

The covariance features and the Fisher discriminant classifier fail to accurately identify

the iris templates. The modified Fisher discriminant uses the regularized singular value

decomposition because of the difficulty in calculating the inverse covariance matrix during

the mapping process. Moreover, the Fisher feature space is changed due to the presence

of noise, which distorts the classifying hyperplane between the feature classes.
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4.5.1 Inverse Covariance Matrix

The variance of a random variable describes the extent of dispersion of all elements from

the expected value, usually the mean. Define a random variable X, and the mean of X

is given as µ = E(X). Then, the variance is given as:

V ar(X) = E((X − µ)2) (4.13)

The covariance extends the concept of variance to a higher dimension. For a random

variable vector X =




x1

...

xn


, the covariance between vector i and j could be formulated

as:

Cov(i, j) = E[(Xi − µi)(Xj − µj)] (4.14)

in which µi and µj represent the mean of Xi and Xj respectively.

The covariance matrix is the collection of all possible covariance entries, with each

element in the matrix Σij defined as the covariance between vector i and j:




cov(1, 1) ... cov(1, n)

...

cov(n, 1) ... cov(n, n)


 (4.15)

In the definition of the Fisher discriminant, the within-class covariance matrix SW

is constructed from all feature vectors, symmetrical along the first diagonal. For the

feature vectors applied in this thesis, they are vectors of dimension 400, therefore the

SW is a matrix of 400 by 400 in size. Creating the Fisher mapping matrix involves the

inversion of the covariance matrix, which is most likely to be ill-conditioned in this large

dimension. It is difficult to effectively calculate the inverse covariance matrix of SW , and

this is one of the reasons that the Fisher discriminant analysis fails to classify the iris

feature templates in our experiments.

4.5.2 SVD and Feature Space Modeling

The covariance matrix SW of size m-by-m could be factorized into a product of three

matrices using singular value decomposition:

SW = USV T (4.16)
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in which U is an m-by-m unitary matrix that UU∗ = Im or U−1 = U∗, S is an m-by-m

diagonal matrix with non-negative values only on the main diagonal, and V is an m-by-m

unitary matrix that V V ∗ = Im or V −1 = V ∗.

We model each class of the feature vectors (iris feature templates) as a cluster of

feature points in the feature space or the Fisher classification space. In Fig 4.4, two

classes of the iris feature templates are modeled as two ellipses. The singular value

decomposition generates the principal components of the data sets as PC1 and PC2.

The PC1 corresponds to the largest eigenvalue, and the most representative feature

vector. In the case of the Fisher discriminant analysis, the PC2 direction is used to find

a hyperplane that could maximize the distance between two data-sets.

As shown in Fig 4.4, a line AB is drawn between PC1 and PC2. This line AB repre-

sents a hyperplane, and all data-sets from both classes are mapped perpendicularly onto

this hyperplane. Then, the classification distance is calculated between these mapped

points along the hyperplane AB. According to the linear discrimination analysis, this

distance has the maximum capability to linearly distinguish the two classes, and the

classification hyperplane AB is between the two PC2 from both data-sets. Any new

feature template to be identified is compared to each class, and the closest one is used

as an indication of a correct match.

Fisher Discriminant Projection

Figure 4.4: Fisher discriminant projection. The classification hyperplane is along the

direction of AB, between the PC2 directions from both classes.

However, during the calculation of the within-class covariance matrix SW and the

subsequent mapping, any noise data would have a minor influence on the PC1 direction,
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but a major impact on the PC2 direction. The erroneous PC2 components result in a

incorrect projection direction of AB, which finally results in the failed iris recognition.

Figure 4.5: Modeling of the Fisher feature space. Feature points from the same class are

modeled within one ellipse. The existence of noise distorted the PC1 direction slightly,

but this noise distorted the PC2 direction completely.



Chapter 5

Fourier Feature

5.1 Introduction

One problem with the iris recognition system is the compensation for the geometric

degrees of freedom: shifting, scaling and rotating [43]. The shifting comes mainly from

the movement of the eyes in the plane which is orthogonal to the camera’s optical axis.

During the image acquisition, a person moving or tilting the face around the camera’s

optical axis could result in the rotational offsets of the iris images.

In chapter 1, various compensation techniques are explained. In particular, the Daug-

man system compensates the shifting and the scaling by unwrapping a circular iris image

into a normalized polar scale template. As for the rotational compensation, it is resolved

with a comprehensive search: the shifting of the iris template in the polar scale which

corresponds to the rotation in the Cartesian scale.

For the Wildes system, the scaling and the rotation are compensated during the image

registration, by minimizing the energy difference defined in Equation 5.1 [13]:

∫

x

∫

y

(Id(x, y)− Ia(x− u, y − v))2dxdy (5.1)

between the mapped image and the comparison image according to the mapping function:

(
x
′

y
′

)
=

(
x

y

)
− sR(φ)

(
x

y

)
(5.2)

The above two methods of the rotation compensation take place either in the image

representation or in the pattern matching stage. In this chapter, the feature extraction is

achieved by applying the Fourier transform to the unwrapped iris image templates in the

75
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normalized polar scale, and using the magnitude information as the rotational-invariant

features. The pattern matching is examined with the weighted Euclidean distance, and

the performance evaluation is illustrated.

5.2 Localization and Unwrapping

The preprocessing of an iris image includes localizing the iris boundary, the pupil bound-

ary, the upper and lower eyelids. In fact, the eyelash detection techniques developed and

discussed in chapter 2 are applied into this preprocessing as well. After the iris regions of

the image are separated from the rest, they are unwrapped according to the Daugman’s

rubber sheet model into iris template representations in the normalized polar scale before

the subsequent feature extraction and pattern matching procedures.

These two steps of preprocessing are briefly stated here, and the detailed description

could be found in chapter 2.

5.2.1 Localization

The localization of the iris region, including the iris boundaries and pupil boundaries,

is accomplished using the standard circular detection technique: the edge detection and

the Hough transform.

The Sobel edge detector is used to perform the two dimensional convolution with a

3×3 kernel to recover the absolute spatial gradients which correspond to the edges. Two

typical convolution kernels are used in the Sobel detection, including the vertical edge

detector Gx:

Gx =



−1 0 1

−2 0 2

−1 0 1


 (5.3)

and the horizontal edge detector Gy:

Gy =




1 2 1

0 0 0

−1 −2 −1


 (5.4)

These two masks respond to the vertical edge and horizontal edge respectively, and

their combined absolute magnitude G is used to indicate the pixels along the edges:
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|G| =
√

G2
x + G2

y (5.5)

Another computation efficient way of calculating G is:

|G| = |Gx|+ |Gy| (5.6)

Even though the orientation of the edge could be calculated by the relativity of Gx

and Gy, it is normally used only with the magnitudes.

After the Sobel edge detection, the Hough transform is applied to the binary edge map

to locate possible circles. Different circular parameters, (r, x0, y0), are polled through the

binary edge map to find out the circular contour with the most amount of edge points.

(x− x0)
2 + (y − y0)

2 = r2 (5.7)

5.2.2 Noise Elimination

The unwanted artifacts, like the eyelash occlusion, the eyelid occlusion and the specular

reflections, affect the performance of the feature extraction and the pattern classification.

Using the same method as in Chapter 2, the artifact pixels are located. One of the tested

iris images is shown in Fig 5.1. After the segmentation and the eyelash detection, the

resulting image to be interpolated and sampled is shown in Fig 5.2.

Figure 5.1: The original iris image selected from the CASIA database
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Figure 5.2: Segmented iris image. The original iris image is segmented within the iris

and the pupil circular boundaries. The eyelashes are detected and eliminated from the

pattern comparisons.

Before the next step of unwrapping into the normalized polar scale, the noise pixels

have to be interpolated or estimated from the adjacent pixel intensities. An averaging

filter F is applied to the image in order to estimate the noise region:

F = 1/25




1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1




The interpolation only applies to the identified noise region, meaning that the rest of

valid iris image information is retained for subsequent processing, as shown in Fig 5.3.

5.2.3 Representation

The Daugman rubber sheet model is adopted for the image representation, unwrapping

and mapping the image pixels from the Cartesian scale to the normalized polar scale

according to Equations 2.8 and 2.9.

In our test, 20 × 20 sampled feature pixels are used to generate the rectangular iris
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Figure 5.3: The interpolation over the identified noise pixels. The pixel intensities within

the identified noise region are interpolated with a 5 by 5 averaging filter, and the pixel

intensities within the valid iris region are kept as original .

templates. The same iris image in Fig 5.1 is represented in the polar scale as Fig 5.4.

This is the gray-scale image template that is applied for the Fourier feature extraction,

before the comparison and identification.

5.3 Fourier Feature Extraction

The Fourier transform decomposes a continuous signal into a sum of its spectrum com-

ponents in the frequency domain. Like a prism splits the visible light into a spectrum of

colors with different frequencies, the Fourier transform maps the signal into a series of

magnitudes and phases for various frequency components. The Fourier transform F (ω)

of a continuous signal f(t) is defined as:

F (ω) =
1√
2π

∫ +∞

−∞
f(t)e−i$tdt (5.8)

The discrete Fourier transform (DFT) is derived from the Fourier transform to analyze

a discrete signal in its corresponding time-frequency or spatial-frequency domain. In the

case of iris recognition, the digital images of iris texture patterns are analyzed with DFT
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Figure 5.4: An iris image in the normalized polar scale. The segmented iris image is

unwrapped into this rectangular iris template according to the Daugman rubber sheet

model.

to extract the Fourier features from the gray-scale intensity values. In a wide variety of

cases, the fast fourier transform (FFT) is used to increase the computation efficiency.

A series of N discrete signals x0, x1, ..., xN−1 is transformed into a series of N complex

Fourier coefficients X0, X1, ..., XN−1 according to:

Xk =
N−1∑
n=0

xne−
2πi
N

kn (5.9)

in which k = 0, 1, ..., N − 1 is the index of the Fourier coefficients.

In the same way, the inverse discrete Fourier transform (IDFT) is defined as:

xn =
1

N

N−1∑
n=0

Xke
− 2πi

N
kn (5.10)

The DFT coefficients X0, X1, ..., XN−1 represent the amplitudes and phases of differ-

ent sinusoidal components from the input signal. DFT has many useful properties that

give itself a wide range of applications. In this chapter, we utilize the property of the

circular shift invariance in the coefficient magnitudes to achieve the rotational invari-

ant feature extraction. Specifically, for discrete signal x0, x1, ..., xN−1, the magnitudes

of the DFT coefficients |X0|, |X1|, ..., |XN−1| are the same as the DFT coefficients of the

circularly shifted signal xN−1, x0, x1..., xN−2, and vice versa.
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From the previous unwrapping process according to Equation 2.8 and Equation 2.9,

the segmented and interpolated iris image in Fig 5.3 is mapped into the normalized polar

scale as in Fig 5.4. As a result, the rotational offset in Fig 5.3 is equivalent to the circular

shift offset along the row-wise direction in Fig 5.4. DFT is applied to the unwrapped iris

template in Fig 5.4. The magnitudes of the complex DFT coefficients are combined into

one feature vector. This feature vector would be circular shift invariant in Fig 5.4, while

it accomplishes rotational invariance in the image as shown in Fig 5.3.

During the implementation, the DFT of the unwrapped iris template could be done

in two ways:

• Applying the 2-D FFT to the whole iris template and taking the magnitude of each

coefficient as shown in Fig 5.5.

Figure 5.5: Fourier magnitude matrix after 2-D FFT. 2-D FFT is applied to the un-

wrapped iris image intensity matrix. The magnitude matrix is computed from the com-

plex FFT coefficient matrix.

• Applying the 1-D FFT to the iris template row by row, and taking the magnitude

information, which is shown in Fig 5.6.

The latter one using 1-D FFT would extract the feature only along the row-wise direction,

which corresponds to the concentric ring in iris images. Both of them would have the

same rotational-invariant feature, and both systems are evaluated below.
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Figure 5.6: The Fourier magnitudes matrix after 1-D FFT. FFT is applied to the un-

wrapped iris image intensity matrix row by row.

5.4 Classification with Weighted Euclidean Distance

With the extracted feature templates as shown in Fig 5.5 and Fig 5.6, different iris

templates are compared to each other in terms of the weighted Euclidean distance. In

this thesis, only an averaged Euclidean distance is used, with no specific weights on any

frequency components. For iris identification, each iris feature template is compared to

all other iris feature templates in the database.

5.5 Performance Evaluation and Discussion

The performance is evaluated with the same database used in Chapter 2 and Chapter

3, including 327 selected low quality iris images with partial eyelash occlusions. The

classification based on the WED between templates is evaluated, and several evaluation

metrics are plotted for analysis, like the cumulative match curves, the detection error

rate curves and the genuine-imposter distributions.
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5.5.1 Fourier Feature with 2-D FFT Magnitudes

With 2-D FFT magnitude feature matrix as described above, the genuine-imposter dis-

tributions are plotted in Fig 5.7. The solid line represents the histogram of the genuine

distances within the same class (images taken of the same eye), and the dotted line repre-

sents the histogram of the imposter distances between different classes (different eyes). It

is shown that the Fourier feature manages to distinguish the iris feature templates from

each other. The feature templates based on the Fourier transform magnitudes extract

the frequency components within the image intensity vectors, but these features do not

equal the performance of the features extracted with the Gabor wavelet decomposition.
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Figure 5.7: The genuine imposter distributions of the 2-D Fourier feature extraction. The

magnitude matrices after the 2-D Fourier transform are used as the feature templates

for classification.

The cumulative match curve of the 2-D Fourier features is shown in Fig 5.8. The

rank-1 identification rate is 77.68%, and it achieves the rotational invariance at the same

time.

The DET curve is shown in Fig 5.9. It shows that the false non match rate drops

sharply with the increase of false match rate.
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Figure 5.8: Cumulative match curve of the 2-D Fourier features. It is shown that a

rank-1 identification rate of 77.68% is achieved.
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Figure 5.9: DET curve of the classification with the magnitude feature templates from

the 2-D Fourier transform.
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5.5.2 Fourier Feature with 1-D FFT Magnitudes

The 1-D FFT magnitude rotational invariant features demonstrate a comparable per-

formance to the 2-D FFT magnitude rotational invariant features. It achieves a rank-1

identification rate of 78.28%, and a similar CMC curve in Fig 5.11 and the DET curve

in Fig 5.12. With the 1-D FFT feature, the genuine-imposter distributions in Fig 5.10 is

compared to the genuine imposter distributions in Fig 5.7. we could see that both the

genuine and imposter distances are significantly higher in 2-D Fourier features than in

1-D Fourier features, even though their relative distributions remain similar.
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Figure 5.10: Genuine imposter distribution of the 1-D Fourier features. 1D Fourier

magnitude matrices are used as the feature templates.

5.6 Discussion

Iris recognition relies on the abundant feature information embedded in the texture pat-

terns, which are better represented in the frequency domain than in the spatial domain.

The Fourier transform is able to decompose the iris texture information into the fre-

quency domain, and illustrate this information in terms of the magnitude of different

sinusoidal components. From the above performance evaluation, we have seen that the

algorithm based on the Fourier features could determine unique features for identification

purpose and accomplish an identification rate around 77%.
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Figure 5.11: Cumulative match curve of the 1-D Fourier feature. In this case, a Rank-1

identification rate of 78.28% is observed.
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Figure 5.12: FMR-FNMR curve of the classification with the feature templates from the

1-D Fourier transform.
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On the other hand, this Fourier transform based iris recognition algorithm does not

match the performance of either the Gabor or the Log-Gabor wavelet based feature

extractions, because of the loss of phase information within local texture patterns.

The wavelet transform analyzes the signal with various wavelet functions that are

dilated and translated from a mother function, such as the Haar wavelet and the Gabor

wavelet. It is localized in the spatial and frequency domains, which give more insights

into the local features of the signal. Such image processing techniques with the Gabor

wavelets have been utilized in many applications, such as the contrast enhancement in

MRI images [44] and the texture segmentation [45]. The Gabor filter bank could be seen

as a sinusoidal plane of particular frequency and orientation, modulated by a Gaussian

envelope [46]:

h(x, y) = exp[−1

2
(
x2

σ2
x

+
y2

σ2
y

)]cos(2πµ0x + φ) (5.11)

in which σx and σy represent the standard deviation of the Gaussian envelope, µ0 and φ

represent the frequency and phase of the sinusoidal wavelets, θ represents the orientation

of the Gabor filter.

Within the Gaussian window centered around various regions of the iris image, the

Gabor wavelet maps the texture information into the sinusoidal analyzing functions with

different frequencies, phases and orientations. The most important features in an iris

image are within the local texture patterns, since the intensity values that are far apart

tend to have less correlation. Therefore, this particular window and analyzing functions

are well suited to extract the iris local features, and the Daugman algorithm [7] based

on the Gabor filter banks have been the most successful and widely-used iris recognition

algorithm.

On the other hand, the Fourier transform extracts the frequency components from

the entire image intensity vectors, as compared to the Gabor wavelet transform which

extracts the frequency information from local regions. In addition, a significant portion

of the information is contained in the phase content of the image texture pattern. The

Fourier magnitude features lose the phase information. Therefore the Fourier magnitude

based feature extraction fails to perform as well as the Gabor feature extraction.

Overall, the comparison between the Fourier transform and the discrete Wavelet

transform shows that most of the unique iris features are within the local regions of iris

patterns. To make the maximum use of this information, it is best to utilize a localized

feature extractor with a suitable analyzing function.



Chapter 6

Progressive Segmentation and

Feature Analysis

6.1 Introduction

In the previous chapters, various issues regarding iris recognition have been examined

and discussed, like the enhanced segmentation, the artifact elimination and the rotational

invariant feature extraction. These approaches aim to improve the system robustness and

performance, and to utilize the maximum amount of the statistical variability within the

iris texture patterns.

One general assumption behind the enhanced segmentation and noise-removal ap-

proaches is that more accurate iris image information results in better identification per-

formance. Therefore the eyelash detection is able to explore more valid iris pixels while

eliminating the invalid eyelash pixels; the improved circular detection tries to localize

more accurate iris and pupil boundaries; the rotational invariant feature extraction com-

pensates the offsets from the camera tilting and the image shifting during the acquisition

period.

There is another question to be answered: what is the quantitative relationship be-

tween the quantity of iris image information and the recognition system performance?

In this chapter, we investigate the above concept in terms of the image feature points

sampling resolution and the band-limited image segmentation.
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6.2 Method Description

The method here is to take a limited amount of iris pixels for the iris recognition algo-

rithm, and evaluate the performance metrics.

Two ways are used to take the limited amount of iris pixels: a limited image area

and a limited pixel sampling resolution. And the recognition algorithm applied here

is the Daugman rubber sheet model [7], the Log-Gabor feature extraction [22] and the

Hamming distance for decision making.

6.2.1 Progressive Segmentation

The circular boundaries of iris and pupil regions are localized with the standard Hough

transform. Then, an area of a given width is selected from the original iris image for the

feature extraction, as is shown in Fig 6.1. Two parallel lines on both sides of the pupil

center are drawn across the iris image. The distance between these parallel lines is called

the bandwidth, in unit of pixels. Then the iris region surrounded by the iris circle, the

pupil circle and the two parallel lines is chosen for the subsequent feature extraction.

Iris regions, within the pupil and iris boundaries but outside the two parallel lines,

are masked out, which are shown by the shaded area in Fig 6.1.

Because of the subsequent Gabor filtering, these masked out iris regions will be given

a certain value for the convolution purpose. In this case, the average intensity value of all

the non-masked iris region is used to fill into these masked iris regions. However, during

the process of decision making, the Hamming distance is calculated using only between

the selected iris regions from two iris images. Basically, we compare the features from

those selected iris regions to determine if the iris image information is enough for the

recognition application.

6.2.2 Progressive Feature Points Sampling

Other than the band selection, various resolutions of intensity pixels could be selected

for the subsequent unwrapping and the Gabor filtering.

The feature points are sampled along the radial and circumferential directions. A

sampling line runs across the iris region between the iris boundary and pupil boundaries.

And a fixed number of gray-scale intensity pixels are sampled along the line.

At the same time, the sampling line rotates around the pupil center for a specific

angle, and another set of feature points are sampled. Therefore, two parameters are used
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Band−limited Segmentation

Figure 6.1: The segmentation with a bandwidth of 60 pixels. Within the segmented iris

region, an area is selected with a bandwidth of 60 pixels. And the rest of the iris region

is discarded from the feature extraction and the pattern matching.
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to simulate the sampling resolution: the radial resolution, which specifies the amount

of points on the sampling line and the circumferential resolution, which specifies the

amount of sampling lines over the 360◦.

A collection of intensity feature points are sampled from the iris image shown in

Fig 6.1, with a radial resolution of 20 points and a circumferential resolution of 120

points. The sampling scheme is shown in Fig 6.2.

Bandwidth 60 and Sampling Density [20 120]

Figure 6.2: Segmentation with a sampling resolution of [20 120]. From the segmented iris

region, an area of 60 pixels wide is used, and within this band-limited area, a sampling

resolution of [20 120] is adopted.

6.2.3 Unwrapping and Image Representation

With the combination of the band-limited segmentation and the sampling resolution, the

iris image will look like Fig 6.2 before being unwrapped into a normalized polar scale

representation.

The image with all the sampled feature points, as shown in Fig 6.2, is unwrapped

from the Cartesian coordinates to the normalized polar coordinates according to the

Daugman rubber sheet model [7]. The mapping functions are described in Equations 2.8

and 2.9, and the unwrapped image and the corresponding mask are shown in Fig 6.3.
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Unwrapped Iris Image

Corresponding Binary Mask

Figure 6.3: The unwrapped iris image and the corresponding mask. The band-limited

segmentation of the iris image is unwrapped into the rectangular template in the top

graph. The corresponding binary mask is illustrated in the bottom graph.
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The unwrapped images are used for the Gabor feature extraction, and the masks are

used to indicate the positions of the valid iris feature points.

6.2.4 Feature Extraction and Pattern Matching

The feature extraction is achieved by convolving the iris image matrix in Fig 6.3 with

the Log-Gabor filter, and the phase information is taken as a binary feature template.

The frequency response of the Log-Gabor filter is defined as in Equation 2.10.

The Hamming distance is calculated between any two iris feature templates as in

Equation 1.25, among which the minimum Hamming distance indicates the correct pat-

tern match.

6.3 Performance Evaluation

With the combination of the bandwidth limited segmentation and the progressive sam-

pling resolution as described above, the iris feature templates are generated from a

database of 327 images from CASIA [17], and compared to each other.

The evaluation metrics used here include the cumulative match curve, the genuine-

imposter distribution, the detection error tradeoff curve and the rank-1 identification

rate. The tested segmentation bandwidth ranges from 2 to 100 by a step of 2, and the

sampling resolutions include: [10 60] (10 points along radial direction and 60 points along

circumferential direction), [20 120] and [30 180].

6.3.1 Progressive Band-Limited Segmentation

In this section, the sampling resolution is fixed to 20 points on the radial direction and 120

points on the circumferential direction, while at the same time changing the bandwidth

from 2 to 100. So there are 50 different combinations of these two parameters, and

selected results are shown below.

Cumulative Match Curve

The cumulative match curve with a bandwidth segmentation of 40 pixels, is shown in

Fig 6.4. The cumulative match score starts at a rank-1 rate of around 79%. In compari-

son, with a bandwidth of 80 pixels, the cumulative match curve is given in Fig 6.5, with

a rank-1 rate of around 95.6% and quickly jumps to 100%.



94

0 50 100 150 200 250 300 350
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1
Cumulative Match Curve at Bandwidth 40 Sampling [20 120]

Rank

C
um

ul
at

iv
e 

M
at

ch
 R

at
e

Rank1 rate of 79.11%

Figure 6.4: The CMC with a segmentation bandwidth of 40 pixels and a sampling

resolution of [20 120]. A rank-1 identification rate of 79% is observed.

Genuine-Imposter Curve

The genuine-imposter curve illustrates how well these two distributions are separated. It

is a direct indication of the algorithm’s ability to classify the iris image templates. For a

segmentation bandwidth of 40 pixels, the genuine-imposter curve is shown in Fig 6.6, in

which the solid line represents the genuine distribution, and the dotted line represents

the imposter distribution. As a comparison, Fig 6.7 shows the genuine-imposter curve

for a selected image bandwidth of 80 pixels.

The two distributions in Fig 6.6 have a large amount of overlap, and their respec-

tive peaks are not as high as the two distributions in Fig 6.7. This indicates a higher

classification capability as a result of a higher bandwidth.

Rank-1 Rate Curve

The rank-1 rate curve combines all the rank-1 identification rate from all 50 cases of

bandwidth selections with the same sampling resolution, and plots into one graph, as

shown in Fig 6.8. It shows how quantitatively and gradually the rank-1 identification

rate increases with the broadening of the bandwidth.
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Figure 6.5: CMC with a segmentation bandwidth of 80 pixels and a sampling resolution

of [20 120]. A rank-1 identification rate of 95.6% is observed, which is significantly higher

than the rank-1 rate from bandwidth of 40 pixels.
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Figure 6.6: The genuine imposter curve with a segmentation bandwidth of 40 pixels and

a sampling resolution of [20 120]. It is observed that there is still a large portion of

overlapping between the genuine and imposter distributions.
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Figure 6.7: The genuine imposter curve with a bandwidth of 80 pixels and a sampling

resolution of [20 120]. The overlapping region between the genuine and imposter distri-

butions is significantly reduced, as compared to Fig 6.6.
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With a sampling resolution of 20 feature points along the radial direction and 120

feature points along the circumferential direction, the rank-1 rate increases rapidly to

95.6% within a bandwidth range of 10 and 30 pixels. After that, the performance stops

to improve and even fluctuates up and down. First of all, with a widening bandwidth, the

selected iris region starts to include the regions with certain eyelash and eyelid occlusions,

which contribute the performance fluctuation. Second, the amount of image information

has reached the saturation level for the algorithm.
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Figure 6.8: The rank-1 rate with the bandwidths from 2 to 100 and a sampling resolution

of [20 120].

FMR-FNMR Curve

The FMR-FNMR curves from several different bandwidths are plotted in one graph for

comparison, as illustrated in Fig 6.9. Four curves, named as DET1 DET2 DET3 DET4,

represent the bandwidth of 20, 40, 60 and 80 pixels respectively. The improvement is

dramatic, and there is hardly any room for further improvement after a certain band-

width.
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Figure 6.9: DET curve comparison between different bandwidths. The four curves, red,

blue, green and black, represent the bandwidth of 20, 40, 60 and 80 pixels respectively.

The DET performance improves with the increase of bandwidth.
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6.3.2 Progressive Sampling Resolution

In this section, the sampling resolution is kept the same while changing the band-limited

segmentation of the iris images for the feature extraction and the pattern recognition.

Generally, it shows similar performance in the cumulative match curve, the genuine

imposter distributions, the rank-1 rate curve and the detection error trade-off curve.

The iris identification accuracy increases with the increase in the sampling resolution

when the segmentation band is fixed. It also experiences a similar critical range after

the performance stops to increase and fluctuate.

Cumulative Match Curve

The cumulative catch curves from two different sampling resolutions but the same band-

width segmentation are compared to illustrate the performance difference when a higher

feature point sampling resolution is applied. In Fig 6.10, it is observed that with 20

feature points along the radial direction and 120 feature points along the circumferen-

tial direction, it achieves a rank-1 identification rate of 92.09%. In comparison, when

sampling 30 feature points along the radial direction and 180 feature points along the

circumferential direction, a rank-1 identification rate of over 98.73% is achieved.
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Figure 6.10: CMC comparison of the sampling resolutions of [20 120] and [30 180].
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Genuine-Imposter Curve

The genuine-imposter distributions with the above sampling configurations of [20 120]

and [30 180] are calculated and compared to each other, as shown in Fig 6.11.

The upper graph shows the genuine imposter distribution when 20 feature points are

sampled along the radial direction and 120 feature points are sampled along the circum-

ferential direction. The lower graph shows the genuine imposter distribution when 30

feature points are sampled along the radial direction and 180 feature points are sampled

along the circumferential direction.

The separation of the genuine and imposter histograms is largely improved because

of the increased sampling resolution. The separation of the two peaks indicates the

classification capability of the two systems. Clearly, with a higher sampling resolution,

more feature points are selected in the rectangular representation of the iris patterns,

and the separation among the genuine and imposter distributions is improved.
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Figure 6.11: The genuine imposter distribution comparison of two different sampling

resolutions: [20 120] and [30 180].
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Rank-1 Identification Rate

The rank-1 identification rate curve combines the rank-1 rate from the gradually increased

sampling resolutions with a fixed bandwidth. We use [20 120] to indicate a sampling

scheme of 20 feature points along the radial direction and 120 feature points along the

circumferential direction.

In Fig 6.12, the upper graph illustrates the rank-1 rate curve at a bandwidth of 30

but increasing sampling resolutions from [1 6] to [30 180]. We can see that the system

identification rate stays almost zero until a sampling resolution of [10 60] is reached, then

it quickly rises to its optimal performance of around 90%. In contrast, the lower graph

in Fig 6.12 shows the rank-1 rate curve at a bandwidth of 80 with an increasing sampling

resolutions from [1 6] to [30 180]. The rank-1 rate curve in the lower graph rises rapidly

from a sampling resolution of [3 18], and reaches the optimal performance of close to

99%.
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Figure 6.12: The rank-1 rate curve with increasing sampling resolutions at two different

bandwidths.
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FMR-FNMR Curve

In Fig 6.13, the DET curves of three different sampling resolutions are compared. The

red, blue and green curves correspond to three different sampling resolutions at [10 60],

[20 120] and [30 180] respectively. With an increased sampling resolution, the system

performance is improved from DET1 to DET3. These different sampling resolutions

with the same bandwidth are illustrated, in a sequence of [10 60], [20 120] and [30

180], in Fig 6.14, Fig 6.15 and Fig 6.16 respectively. With the same iris image, a higher

sampling resolution gives a better system performance. However, the maximum sampling

resolution can not exceed the limit of the camera resolution during the image acquisition.

Therefore, it is an effective alternative to increase the system performance by increasing

the camera resolution during the image acquisition procedure.
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Figure 6.13: The DET comparison of three different sampling resolutions.

6.4 Discussion

The assumption of this experiment is that the system performance improves with the

increase in the amount of the iris information utilized for recognition. In other words,

the more valid iris image information that is applied to the system, the better will the
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Bandwidth 60 pixels and Sampling density [10 60]

Figure 6.14: Segmentation with a bandwidth of 60 pixels and a sampling resolution of

[10 60].

Bandwidth 60 pixels and Sampling density [20 120]

Figure 6.15: Segmentation with a bandwidth of 60 pixels and a sampling resolution of

[20 120].
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Bandwidth 60 pixels and Sampling density [30 180]

Figure 6.16: Segmentation with a bandwidth of 60 pixels and sampling resolution of [30

180].

performance be. However, the rate of performance improvement slows down after the

amount of information reaches to a certain level, which we term as saturation. This

testing shows a solution for iris recognition systems that are used in difficult situations,

where the image quality is low. By using more valid iris image area and sampling

more feature points, the system could be improved to a satisfactory level. Therefore, it

suggests an alternative to improve the performance of an iris recognition system, which

is to increase the camera resolution. A higher resolution in the image acquisition implies

a higher resolution of the information content used for the feature representation and

the classification.



Chapter 7

Conclusion

7.1 Summary of Work

The previous comparisons and evaluations of various biometric recognition algorithms

have ranked iris recognition as one of the highest in performance [47], as compared to

other biometric technologies such as fingerprint recognition, hand geometry recognition,

retina recognition, DNA and speaker recognition. Still, there are issues to be solved in

order to further improve the accuracy and robustness of an iris recognition system. In

this thesis, we have attempted to address the following issues:

• The increase of system performance with low quality iris images, particularly with

eyelash occlusions.

• The effect of erroneous localizations on the system performance.

• The impact of a more accurate circular detection on the system performance.

• The introduction of a rotational invariant feature extraction scheme so that com-

pensation is not needed during the decision making.

• The quantitative relationship between the amount of the iris image information

and the identification performance.

In this thesis, all the experiments were carried out with the following assumption:

more accurate iris image data result in better recognition performance.

In Chapter 2, we developed an algorithm to detect the eyelash locations, to further

explore the information between the eyelashes, and to discard the distortions from the

106
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eyelashes. The evaluation showed that this algorithm improves the error rates in DET

curves except in very low FMR range. The performance improvement was marginal, but

it showed an alternative for recognition with eyelash occluded iris images.

In Chapter 3, the manual edge point sampling and the circular curve fitting were used

to correct the erroneous circular localizations. The system with the fixed parameters for

iris and pupil boundaries were compared to the system without the circular correction.

The results showed positive improvement in the following metrics: the CMC curve, the

rank-1 rate and the DET curves.

Chapter 4 introduced the covariance feature extraction from the unwrapped iris image

templates in the normalized polar scale. These features are rotational invariant, and they

were combined with the modified Fisher discriminant analysis (FDA) for recognition.

However, the performance was not satisfactory due to the existence of the random noise

within the iris image classes that distorted the secondary principal component directions.

Overall, we concluded that this approach failed to carry out the proper classification as

shown in the genuine-imposter distributions.

In Chapter 5, the feature extraction was explored and examined using the Fourier

transform magnitudes. It achieved rotational invariance and revealed the feature in-

formation in the frequency domain for the representation. This Fourier features were

compared to the features with the wavelet decomposition. It showed that a significant

amount of the useful iris image features were within the local iris region in the frequency

domain. Therefore, the discrete wavelet transform had the advantage to extract this

information as opposed to the Fourier transform that was used to extract the global

frequency components. Furthermore, the Fourier magnitude-based feature extraction

scheme lost the phase information. The loss of phase information was the main reason

for the lower performance than the Gabor wavelet-based recognition.

Chapter 6 introduced the band-limited segmentation and the feature point sampling

resolution to gradually increase the iris information and evaluate the changes in system

performance. Clearly, the system performance improved with the increased iris informa-

tion. And interestingly, the improvement of system performance was not uniform with

the increase in iris information. Rather, it improved within a critical range, where the

performance improved rapidly and reaches a saturation level. After the saturation the

performance shows minor fluctuations.
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7.2 Suggestions for Future Work

There are several directions to pursue for future work. First, an algorithm could be

developed to enhance the circular detection, like recursive detection and verification after

each circle localization. For example, the relevant positions between the iris boundaries,

the pupil boundaries and the eyelid curves should be within a certain range proportional

to their respective radiuses and circular center coordinates. This could be used to decide

if the detected circular boundaries are accurate enough, and thus set new thresholds for

the next recursive detection.

Second, the inverse covariance matrix estimation is a very important issue with the

Fisher discriminant analysis, particularly when it comes to large dimensions of data

vectors and the singularity issue. An effective way to calculate the inverse covariance

matrix could potentially improve the system in Chapter 4. Also, it would be interesting to

investigate the relative importance of the second principal component directions. And,

if PCA uses the first principal component as a representative direction for the group

features, it is useful to understand how much the second principal component affects the

system behavior.

Another possible line of research is to use the entropy theory to analyze the infor-

mation content with the progressive image segmentation. It can give further insight into

how the segmentation affects the biometric entropy for recognition.

Overall, we have developed and examined various techniques that could improve iris

recognition system performance with low quality iris images:

• Eyelash detection and elimination

• Improved localization of the iris and pupil boundaries

• Rotational invariant feature extractions like the Fourier features and the covariance

features

• Band-limited segmentation and increased feature points sampling resolution

We have seen the potential use for these techniques in some practical applications,

such as security surveillance, unsupervised capture, and iris image capture under poor

lighting conditions. Some of these approaches show obvious improvement, and some other

approaches indicate the weakness and importance in various aspects of the iris image

feature extraction procedure. The results in this thesis help to clarify future research

directions in the effort to improve the iris recognition for low quality iris images.
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