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Abstract—This paper proposes 4-D EIT image reconstruc-
tion for functional EIT measurements. The approach directly
accounts for 3-D interslice spatial correlations and temporal
correlations between images in successive data frames. Image
reconstruction is posed in terms of an augmented image x̃ and
measurement vector ỹ, which concatenate the values from the d
previous and future frames. Image reconstruction is then based
on an augmented regularization matrix R̃, which accounts for
a model with 4-D correlations of image elements, interslices
and temporal frames. The temporal correlation matrix is
objectively calculated from measurement data. Results of
simulations are compared by reconstruction algorithms based
on conventional 3-D and proposed 4-D priors.

Keywords—Electrical Impedance Tomography, regulariza-
tion, spatial and temporal priors, image reconstruction.

I. INTRODUCTION

Electrical Impedance Tomography (EIT) calculates an
estimate of the conductivity distribution within a body based
on current stimulations and voltage measurements on the
body surface. EIT typically has poor spatial resolution, but
can have excellent temporal resolution; some recent systems
have frame rates up to 1000/s [1]. Such high temporal
resolution makes EIT a promising technology to monitor
fast physiological events which affect the conductivity dis-
tribution. e.g. cardiac activities, high frequency ventilation,
functional brain EIT.

3-D EIT algorithms use multi-plane electrode arrange-
ments to accurately reconstruct 3-D conductivity distribu-
tions [2][3]. In 3-D EIT reconstructions, the Tikhonov [4]
and the NOSER priors [3] are commonly used regularization
approaches. While such priors are easy to compute, they
assume that elements of the conductivity distributions are
statistically independent – which is clearly not true for
most EIT applications. Instead, conductivity distributions are
likely to change relatively slowly, both in the spatial and
time directions.

Most EIT reconstruction algorithms solve data frames
independently, although Kalman filter algorithms track the
image changes across frames. Formulated as an iterative
state estimation problem, the first Kalman filter based al-
gorithm for difference EIT was proposed in [5].

In this paper, we explore an approach to describe spatial
and temporal correlations in the images in the regularization
prior. The correlations between successive vertial slices in
a 3-D phantom are modelled with a parameter η, and the
correlations between successive data frames (ie. 4-D) are
modelled with a parameter γ. We then propose an image
reconstruction algorithm which reconstructs the 3-D image
at frame t from the set of data in a window of frames from
t− d to t + d.

II. METHODS

We consider an EIT system with nE electrodes applied
to a body using planar placement [3] and adjacent current
stimulation with parallel voltage measurement. nE current
stimulation patterns are sequentially applied and nV differ-
ential measurements are made for each stimulation. Differ-
ence EIT calculates difference data y, ([y]i = [v2]i− [v1]i;
or normalized as [y]i = ([v2]i−[v1]i)/[v1]i). To improve its
precision, v1 is typically averaged over many data frames,
at a time when the conductivity distribution may be assumed
to be stable; we thus assume that v1 is noise free.

The body under investigation is modelled using a cylin-
drical finite element model (FEM) which has nN piecewise
smooth tetrahedral elements and is discretized onto k slices,
represented by a vector σ ∈ RnN (In this paragraph,
σ represents conductivity; elsewhere in this paper, σ is
the standard deviation). Again, difference EIT calculates
a vector of conductivity change, x = σ2 − σ1 between
the present conductivity distribution, σ2, and the reference
measurement, σ1. For small variations around σ1, the
relationship between x and y can be linearized (giving the
difference EIT forward model):

y = Jx + n (1)

where J ∈ RnM×nN is the Jacobian or sensitivity matrix;
n ∈ RnM is the measurement noise which is assumed to
be uncorrelated white Gaussian. J is calculated from the
FEM as Jij = ∂yi

∂xj

∣∣∣
σ1

. This system is underdetermined
since nN > nM . This problem is solved using regularization
techniques (e.g. [6], [7]) to calculate a conductivity change



estimate, x̂, which is both faithful to the measurements, y,
and to a priori constraints on a “reasonable” image.

In subsequent sections we consider the following recon-
struction approaches: 1) Gauss-Newton (GN) inverse, using
yt only; 2) Temporal inverse, using yt−d . . .yt+d based on
a temporal prior model; and 3) 4-D prior inverse, using
yt−d . . .yt+d based on the temporal prior model and 3-D
interslice spatial model.

A. One-step linear Gauss-Newton (GN) solver

The GN inverse seeks a solution, x̂, which minimizes

‖y − Jx̂‖2
Σ−1

n
+ ‖x− x◦‖2

Σ−1
x

(2)

where x◦ represents the expected value of element con-
ductivity changes, which is zero for difference EIT. Σn ∈
RnM×nM is the covariance matrix of the measurement noise
n. Since n is uncorrelated, Σn is a diagonal matrix with
[Σn]i,i = σ2

i , where σ2
i is the noise variance at measurement

i. Σx ∈ RnN×nN is the expected image covariance.
Let W = σ2

nΣ−1
n and R = σ2

xΣ−1
x . W and R are

heuristically determined from a priori considerations. Here
σn is the average measurement noise amplitude and σx is
the a priori amplitude of conductivity change. W models
the measurement accuracy. For uncorrelated noise, each
diagonal element is proportional to the signal to noise ratio.
For difference EIT with identical channels, W = I. The
regularization matrix R may be understood to model the
“unlikelihood” of image elements correlations.

By solving (2) and defining the hyperparameter λ =
σn/σx, a linearized, one-step inverse solution is obtained

x̂ =
(
JT WJ + λ2R

)−1

JT Wy = By (3)

where B =
(
JT WJ + λ2R

)−1

JT W is the linear, one-
step inverse. λ controls the trade-off between resolution and
noise attenuation in the reconstructed image.

If image elements are assumed to be independent with
identical expected magnitude, R becomes an identity matrix
I and (3) uses zeroth-order Tikhonov regularization. For EIT,
such solutions tend to push reconstructed noise toward the
boundary, since the measured data is much more sensitive to
boundary image elements. Instead, R may be scaled with the
sensitivity of each element, so that R is a diagonal matrix
with elements [R]i,i =

[
JT J

]p

i,i
. This is the NOSER prior

of [6] for an exponent p.
In this paper, the NOSER prior is used to calculate the

matrix R with p = 0.5 in all tested algorithms. The choice
of exponent is a heuristic compromise between the pushing
noise to the boundary (p = 0) or to the centre (p = 1).

In (3), the term inverted is of size nN × nN . We rewrite
the matrix B using the data form [8] as:

B = PJT
(
JPJT + λ2V

)−1

(4)

where P = R−1 = Σx/σ2
x and V = W−1 = Σn/σ2

n;
Using (4), the size of the term in the inverse is reduced to
nM ×nM . This is especially significant for 3-D EIT models
and the temporal inverse which will be introduced below.

B. 3-D spatial prior with interslice correlation

In this section, we develop a model of a 3-D prior (P)
which accounts for a priori correlations between image ele-
ments. We only account for those correlations in the vertical
direction, although the approach can be directly extended to
account for both horizontal and vertical correlations.

The prior, P, is designed in the form

P = P
1
2
NPCP

1
2
N (5)

where PN is a diagonal matrix and reflects the weightings
of the NOSER prior. Rather than calculate R and then its
inverse, we directly compute P

1
2
N using

[
P

1
2
N

]
i,i

=
[
JT J

]− p
2

i,i
(6)

PC is designed to account for the interslice correlations. Its
value is zero, except for elements which are in the same
vertical column, in which case has the weighting η|d| where
d is the interslice distance. Thus,

[PC ]i,j =
{

η|Si−Sj | if Xi = Xj and Yi = Yj

0 otherwise.
(7)

where (Xi, Yi) is the horizontal (x, y) centre position of ele-
ment i, and Si is the vertical layer number. This formulation
is applicable for vertically extruded FEM meshes.

C. Temporal solver

In this section, we develop a temporal image recon-
struction algorithm which calculates the image at a current
frame using a set of data frames nearby in time. This
differs from Kalman filter based algorithms, since the data
frame sequence is treated as a single inverse problem,
with a regularization prior to account for both spatial and
temporal correlations between image elements. Given a
vertically concatenated sequence of measurements frames
ỹ = [y−d; . . . ;y0; . . . ;yd] and the corresponding concate-
nated images x̃ = [x−d; . . . ;x0; . . . ;xd], the direct temporal
forward model (1) is rewritten as

ỹ = J̃x̃ + ñ (8)



where ñ = [n−d; . . . ;n0; . . . ;nd]. Based on the approxima-
tion that J is constant, J̃ = I⊗J, where the identity matrix
I has size 2d + 1, and ⊗ is the Kronecker product.

The correlation of corresponding elements between adja-
cent frames (delay is 1) can be evaluated by an interframe
correlation γ which has value between 0 (independent) and 1
(fully dependent). γ could possibly be negative if subsequent
frames have inverse correlation, although this scenario is
physiologically unrealistic. As frames become separated in
time, the interframe correlation decreases; for a separation
δ, the interframe correlation is assumed as γδ . Frames with
large time lag, |δ| > d, can be considered independent. The
one-step inverse (4) for image reconstruction then becomes

B̃ = P̃J̃
T

(
J̃P̃J̃

T
+ λ2Ṽ

)−1

(9)

where Ṽ = I⊗V. Ṽ is diagonal since measurement noise
is uncorrelated between frames. P̃ = Γ ⊗ P, where Γ is
the temporal weight matrix of an image sequence x̃ and is
defined to have the form as

[Γ]i,j = γ|i−j| i, j = 1, 2, . . . , 2d + 1. (10)

From (9) and (10),

B̃ =
[
Γ⊗

(
PJT

)] [
Γ⊗

(
JPJT

)
+ λ2 (I⊗V)

]−1

(11)
In this case, the one step solution for the current image (x̂)
is rewritten as

x̂0 = B̃0ỹ (12)

where B̃0 is the rows nMd + 1 . . . nM (d + 1) of B̃.

D. Parameter selection

γ may be considered a parameter of the system: it
is dependent on the data acquisition speed, the speed of
underlying conductivity changes and the system noise level.
By taking covariance on both sides of (8), we have

Σỹ = J̃Σx̃J̃
t
+ Σñ (13)

the optimal γ is chosen so that the error Σỹ −(
J̃Σx̃J̃

t
+ Σñ

)
is minized as

γ = arg min
γ

∥∥∥Σỹ − Σñ − J̃Σx̃J̃
t
∥∥∥

2

F
(14)

where the subscript F is the Frobenius norm. Since Σx̃ =
Γ⊗ Σx and J̃ = I⊗ J, (14) becomes

γ = arg min
γ

∥∥∥Σỹ − Σñ − Γ⊗ (
JΣxJt

)∥∥∥
2

F
(15)

By taking covariance on both sides of (1), we have

Σy = JΣxJt + Σn (16)

so that JΣxJt = Σy − Σn; we also have Σñ = I ⊗ Σn
and Σỹ = Γy ⊗ Σy, where Γy ∈ R(2d+1)×(2d+1) is the
correlation matrix of ỹ. Thus the optimal γ is calculated by

γ = arg min
γ

∥∥Γy ⊗ Σy − I⊗ Σn − Γ⊗ (
Σy − Σn

)∥∥2

F
(17)

Γy and Σy can be calculated directly from the data. Σn
can be measured by calibration of EIT system.

III. RESULTS

Numerical simulations were conducted using a 3-D 10-
slice cylindrical FEM model with 576 elements each slice
(unit radius) using the EIDORS software [7]. Illustrated as
figure (1), the model height is 1 (z : −0.5 ∼ 0.5); 2 electrode
rings (8 electrodes each) was attached at z = ±0.2 using
adjacent stimulation and measurement pattern. Inside this
model, a conductive sphere with 0.05 unit radius spires up-
ward, moving clockwise (bird’s eye view) along a trajectory
with radius 2/3 unit, while moving upward from z = −0.3
to z = 0.3. The sphere rotates in the horizontal plane at
one rotation per 40 frames. The noise performance of the
algorithms was tested by adding pseudo random, zero mean
Gaussian noise with the same random seed. Images were
reconstructed on a 3-D model with 4-slice and 64 elements
each slice, which differs from the simulation model to avoid
the inverse crime.
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F ig. 1 3-D 10-slice finite element model. Electrodes are indicated by
green stars, while the conductive target is shown in red.

Reconstructed targets were calculated for evaluation of
three algorithms: GN method; GN method with tempo-
ral solver; GN method with 4-D prior. The current data
frame was chosen when the sphere located at (x, y, z) =



(0.54,−0.39,−0.24) (figure 1). For temporal solver, d = 3
frames were calculated before and after the current frame,
respectively. The reconstructions were plotted as slices ver-
tically chosen at z = 0,±0.24. Figures 2 and 3 show images
with Noise to Signal Ratios (NSR) of 0 and 2, respectively.
NSR was defined as σn/ȳ. The optimal value of γ was
calculated based on II-C as 0.86 and 0.76, for NSR=0 and
NSR= 2, respectively; η was heuristically chosen as 0.7 for
this reconstruction model.

In order to choose a hyperparameter to allow comparison
across algorithms, we select its value for all algorithms in
order to give a fixed “Noise Figure” [8]. Due to the fact that
when noise figure is high, there is no significant difference
between GN method and temporal/4-D prior methods [8],
here we only investigate low noise figure cases (NF = 0.1).

In order to classify the quality of reconstructed images,
the following figures of merit are used: (a) the vertical
position of the reconstructed target is correct (matching
the location of the phantom target, z = −0.24); (b) the
point spread function (PSF) of the target is small in the
horizontal plane; (c) the PSF is small in the vertical plane
(this is determined by looking for ghost target regions in the
slices at z = 0 and 0.24); (d) the image is not sensitive to
measurement noise. Using these criteria and figures 2 and 3,
the reconstruction algorithms were ranked in quality order,
giving from worst to best: conventional GN, temporal solver,
4-D prior solver.

F ig. 2 Algorithm comparison: NSR=0, NF=0.1 γ = 0.86. (a)
conventional GN solver; (b) Temporal solver; (c) 4-D prior solver

IV. CONCLUSION

A novel EIT reconstruction algorithm is proposed, based
on a 4-D regularization prior. By introducing temporal
correlations among image frames, the temporal solver is

F ig. 3 Algorithm comparison: NSR=2, NF=0.1 γ = 0.76.(a) conven-
tional GN solver; (b) Temporal solver; (c) 4-D prior solver

able to improve reconstructed image quality. With spatial
interslice correlation added, the 4-D prior solver improved
reconstruction resolution further.
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