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Abstract—Electrical Impedance Tomography (EIT) calcu-
lates internal conductivity from surface measurements; image
reconstruction is most commonly formulated as an inverse
problem using regularization techniques. Regularizationadds
“prior information” to address the solution ill-condition ing.
This paper presents a novel approach to understand and
quantify this information. We ask: how many bits of infor-
mation (in the Shannon sense) do we get from an EIT data
frame. We define the term information in measurements (IM)
as the: decrease in uncertainty about the contents of a medium,
due to a set of measurements. Before the measurement,
we know the prior information (inter-class model, q). The
measured data tell us about the medium (which, corrupted
by noise, gives the intra-class model,p). The measurement
information is given by the relative entropy (or Kullback-
Leibler divergence). Based on this expression, and given a noise
covariance Σn and a prior model of the element covariances
Σx, IM =

1

2
log2|JΣxJT

Σ
−1

n +I|. Under the simplification that
measurement and noise covarianes are uncorrelated, IM may
be approximated as a function of the signal to noise ratio and
the Jacobian and prior matrices. For an example 16 electrode
EIT system, IM was calculated to be 245.1 bits. Finally, several
applications of an information measure for EIT are given.

Keywords—Measurement Information, Kullback Leibler
Divergence, Electrical Impedance Tomography

I. I NTRODUCTION

In this paper we ask: 1) how much information is there in
a set of measurements? and 2) how much information do we
add when we “add” prior information via regularization? To
address these questions, we develop an information-theoretic
formulation of the image reconstruction inverse problem.

Electrical Impedance Tomography (EIT) calculates an
estimate of the conductivity distribution within a body
based on current stimulations and voltage measurements
on the body surface. EIT has fairly low spatial resolution,
limited by the low sensitivity of surface measurements to
conductivity changes deep within the body. EIT images are
most commonly reconstructed by formulating the inverse
problem using regularization techniques (eg. [1]) in orderto
calculate a conductivity change image estimate,x̂, which
is both faithful to the measurements,y, and to a priori
constraints on a “reasonable” image. Regularization adds

“prior information” to address the solution ill-conditioning.
In order to quantify thisinformation, we ask: how many bits
of information (in the Shannon sense) do we get from an EIT
data frame. We define the terminformation in measurements
(IM) to represent this information content.

Information in Measurements: the decrease in uncertainty
about the contents of a medium, due to a set of

measurements.

In order to interpret this definition, we refer to two
instants:Instant t1: before an EIT measurement, at which
time we only know that the medium is part of a general
classp. This is the prior information; if we know that the
EIT system is connected to a patient’s thorax, then the class
p is smaller (ie. conductivities will be in a narrow range, and
the most likely number of lungs is two). If we have little
information on the nature of the medium the EIT system is
connected to, then the classp will be broader and the prior
information less (ie. conductivities are positive).Instant t2:
after receiving a frame of data (with added noise) we have
specific information on this mediumq as well as prior
information on the classp. The uncertainly on the contents
of the medium will thus be less, reflecting theinformation
in measurements gained.

Based on this formulation, we develop a strategy to
calculate optimal stimulation patterns in an information-
theoretic sense. We then show two examples: 1) for a single
measurement impedance plethysmography equipment, and
2) for a 16 electrode EIT system.

II. M ETHODS

A. Information Theory

In Bayesian statistics the Kullback-Leibler divergence
(KLD) can be used as a measure of the information gain
in moving from a prior distribution,q(y), to a posterior
distribution,p(y). It can also be understood to be the “extra
bits” of information needed to representp(y) with respect



to q(y). The KLD is defined as [3]:

D(p‖q) =

∫

y

p(y)log2

p(y)

q(y)
dy (1)

where the integral is over all measurement channels. A
comment on notation: we usep to refer to both a specific
realization of an EIT image, and the distribution of mea-
surements from that image (including measurement noise),
while q represents theprior distribution and the distribution
of its features.

One important general difficulty with direct information-
theoretic measures is that of data availability. Distributions
are difficult to estimate accurately, especially at the tails;
and yetlog2 (p(y)/q(y)) will give large absolute values for
small p(y) or q(y). Instead, it is typical to fit data to a
model with a small number of parameters. The Gaussian
distribution is the most common model; it is often a good
reflection of the real world distributions, and is analytically
solvable in entropy integrals. Another important propertyof
the Gaussian is that it gives the maximum entropy for a
given standard deviation, allowing such models to be used
to give an upper bound to entropy values. Thus, we model
the distributionsp and q as Guassian with vector means
µp, µq and covariancesΣp,Σq. For Gaussian distributions
the KLD is calculated:

D(p‖q) =E
p

[

(y − µp)
tΣp

−1(y − µp)

+ (y − µq)
tΣq

−1(y − µq) + log2

√

|2πΣq|

|2πΣp|

]

=
1

2
log2|ΣqΣ

−1

p | + tr
(

ΣpΣ
−1

q − I
)

+ tTΣqt (2)

where t = µp − µq is the difference between the mean
measurement for the instance and the prior mean. Ast be-
comes large, the KLD increases dramatically as the current
realization moves to the tails of the prior.

Equation 2 represents the information for a specificp.
Instead, we are interested in the average information from
measurements, weighted over the prior probability of each
measurement configuration. Thus, we define theinformation
in measurements (IM) to be

IM =E
q

[D(p‖q)]

=
1

2
log2|ΣqΣ

−1

p | + tr
(

ΣpΣ
−1

q − I
)

+ E
q

[

tTΣqt
]

=
1

2
log2|ΣqΣ

−1

p | + tr
(

ΣpΣ
−1

q

)

(3)

In normal applications, the variability due to noise is
much less than the prior variability, and|Σp| ≪ |Σq|, giving

IM =
1

2
log2(|Σq|/|Σp|) (4)

The tr (trace) term will only have an effect in the very
unusual case that the measurement distribution,p, is larger
than that of the prior,q.

B. Information in Impedance Plethysmography

To clarify the application of IM, we initially consider an
impedance plethymography system which measures a single
impedance value for the change in impedance,y, across
the thorax, which varies with breathing, posture and heart
activity.

In order to estimate the prior distribution, data acqui-
sitions would be performed on a number of patients. From
these data the inter-class mean (µq) and variance (Σq = σ2

q )
would be calculated. Since we are calculating difference
measurements,µq would be zero. For illustration purposes,
consider thatσq = 800 mV .

When using the measurement system on a specific patient
at a given time, the measurements,y, will be due to the
current physiological condition and the noise. Consider
measurement noiseσn = 10 mV , and at a specific time,
the difference measurement is1 V . The information via the
KL divergence is

log2

σq

σp

+

(

µq − µp

σq

)2

+

(

σp

σq

)2

− 1 (5)

which is 7.9 bits. In order to calculate theinformation in
measurements, we must average over measurements on the
specific patient, giving

IM = log2

σq

σp

+
1

2

(

σp

σq

)

≈ log2

σq

σp

(6)

which is 6.3 bits.

C. Information in EIT

We consider a difference EIT system withnE electrodes
applied to a body using sequential current stimulation with
parallel voltage measurement. Using these electrodes,nE

current stimulation patterns are sequentially applied andnV

differential measurements are made for each stimulation.
For an adjacent drive EIT system, voltages are typically not
measured at driven electrodes, andnV = nE − 3. Each
data frame measures a vector,v ∈ R

nM , of nM = nEnV

data points (some of which are redundant if the medium
is not changing). Difference EIT calculates difference data



y = v2−v1. To improve its precision,v1 is typically aver-
aged over many data frames, at a time when the conductivity
distribution may be assumed to be stable; we thus assume
that v1 is noise free.

The body under investigation is modelled using a finite
element model (FEM) which discretizes the conductivity
ontonN piecewise smooth elements, represented by a vector
σ ∈ R

nN (In this paragraph,σ represents conductivity; else-
where in this paper,σ is the standard deviation). Difference
EIT calculates a vector of conductivity change,x = σ2−σ1,
between the present conductivity distribution,σ2, and that at
the reference measurement,σ1. For small variations around
the reference conductivityσ1, the relationship betweenx
andy can be linearized (giving the difference EIT forward
model):

y = Jx + n (7)

whereJ ∈ R
nM×nN is the Jacobian or sensitivity matrix

andn ∈ R
nM is the measurement noise which is assumed

to be uncorrelated white Gaussian.J is calculated from
the FEM asJij =

∂y
i

∂xj

∣

∣

∣

σ1

, and depends on the FEM,

current injection patterns, the reference conductivity, and the
electrode models. This system is typically ill-posed, since
nN > nM .

In order to calculate the class statistics from the forward
model (eqn. 7), we calculate

µy =E [y] = E [Jx + n] = Jµx + E[n]

Σy =E
[

(y − µy)(y − µy)T
]

=JE
[

(x − µx)(x − µx)T
]

J
T + E

[

nnT
]

(8)

For distribution q, µx = µy = 0, since for difference
EIT, positive and negative changes are equally likely. For
distribution p, x is the realization of the image in the
medium, andµy = Jx. Assuming a Gaussian model, the
distribution covariances may be calculated:

Σq =JΣxJ
T + Σn

Σp =Σn (9)

giving the information in measurements

IM =
1

2
log2|ΣqΣ

−1

p |

=
1

2
log2

∣

∣

∣
JΣxJ

TΣ−1

n + I

∣

∣

∣
(10)

In many cases, the measurement noise is equal on all
channels, and can be measured, givingΣn = σ2

nI. In
a similar way, a prior model can be constructed giving
Σx = σ2

xR
−1, where R

−1 is the generalized Tikhonov
regularization matrix. In this case, the regularization prior

is λ = σn

σx
. In order that( σx

σn
)2 represent the signal to noise

ratio (SNR),R−1 should be normalized so that

tr(JR
−1

J
T ) = nN (11)

Thus, in the case whereSNR ≫ 1, IM is as

IM =
1

2
log2

∣

∣

∣

∣

σ2

x

σ2
n

JR−1JT + I

∣

∣

∣

∣

=
1

2
log2

∣

∣

∣

∣

(
1

λ2
)(JR

−1
J

T + λ2I)

∣

∣

∣

∣

=nN log2

(

σx

σn

)

+
1

2
log2

(

JR
−1

J
T + λ2I

)

(12)

Equations for information content, such as (12) are often
singular [7]; in this case IM will diverge to−∞. This effect
is due to the fact that measurements are not independent.
To solve this problem, we wish to extract an independent
set of measurements,z, from y. Using the singular value
decomposition, we decompose the Jacobian matrix such that
UDU

T = JR
−1

J
T , with orthonormalU and diagonal

D. By truncatingU after the firstnZ columns (yeilding
UnZ

), we keep thenZ most important measurements, and
generate a mapping (U

T : y → z), from the original
EIT measurementsy ∈ R

nM to a new measurement space
z ∈ R

nZ . Equation (12) is then modified to give:

IM =nZ log2

(

σx

σn

)

+
1

2
log2

(

U
T
JR

−1
J

T
U + λ2InZ

)

=nZ log2

(

σx

σn

)

+
1

2
log2

(

[D
1

2 R
−1

D
1

2 ]nZ
+ λ2InZ

)

(13)

where [·]nZ
indicates selection of the upper leftnZ × nZ

submatrix.
Sinceλ is small, this is approximately

IM ≈nZ log2

(

σx

σn

)

+
1

2
log2

(

[D
1

2 R−1D
1

2 ]nZ

)

(14)

This formula is intuitively appealing. The information
in the measurements is proportional to the number of
measurements and the log SNR, plus a term related to the
Jacobian and the regularization matrix. Improvements to an
EIT system design can thus be implemented by 1) improving
the SNR, 2) adding measurement channels, and 3) designing
better measurement schemes. That last function is the goal
of the optimal current patterns, such as those of [4][5][6].

III. RESULTS

Test data were measured from a30 cm diameter and
30 cm tall plastic cylindrical phantom filled with 0.9% saline



solution. Sixteen stainless steel electrodes were placed,
equally spaced, around the circumference, and EIT data
were acquired using the Goë-MF II EIT system (Viasys
Healthcare, Höchberg, Germany) using an adjacent stim-
ulation and measurement pattern. In order to measure the
noise level, a sequence of750 frames were measured from a
homogeneous tank. To measure the signal level, a small non-
conductive spherical object of2 cm radius was introduced in
the plane of the electrodes and moved into various positions
on the horizontal plane.

To measureσn, the signal noise was calculated for each
measurement channel by taking the standard devition for
the entire frame sequence. The noise (σn) was taken as
the average across all channels; it was somewhat consistent
across measurement channels (std/mean = 0.71).

To measureσx the average signal (difference from homo-
geneous) from different placements of the spherical object
was calculated in the same way as the average noise. The
regularization priorR was set to the identity matrix,I,
scaled by the scheme of eqn 11. The Jacobian,J was
calculated for a 2D 576 element mesh using the EIDORS
software [1].

Two approaches are used to calculate IM: 1) Using eqn.
14 (unregularized); the value of IM was chosen correspond-
ing to its maximum atnZ = 63. The value calculated is
IM= 239.4 bits. FornZ above this value, the calculated IM
rapidly diverges to−∞. 2) Using eqn. 13 (regularized), the
value of IM was calculated and shown as a function ofnZ

in Fig. 1. The curve reaches a plateau ofIM = 245.1 bits at
nZ = 109 and stays constant after that point. Interestingly,
at nZ = 63 both equations calculate exactly the same value.
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F ig. 1 Information in measurements (IM) (bits) vs number of independent
measurementsnZ for EIT system

IV. D ISCUSSION

This paper has introduced a definition ofinformation
of measurements and a formula to measure it for an EIT
system. This calculation was implemented for a 16 electrode
EIT system and a value of IM=245.1 bits calculated.

Interestingly, a naı̈ve guess for the IM for this EIT system
would be the number of independent measurements1

2
nvne

times 1

2
log2(SNR). This calculation yeilds406.3. The actual

IM is less because EIT measurements from the medium
are highly correlated, and such correlated measures are less
informative.

Finally, we would like to suggest that this measure may
allow novel insights into a number of questions regarding
the performance of an EIT system, such as:

• Inherent limits to the compressibility of measurement
data. Measured data cannot be stored in less space than
the calculated IM value.

• Distinguishability limits may be defined in terms of the
IM content from small contrasts [2].

• Fusion of EIT with other modalities. Measurements
which are not independent will only add a small in-
crement to the IM from EIT.

• Optimal current patterns may be defined in terms of
maximizing IM [4][6].
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