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Abstract—Electrical Impedance Tomography (EIT) calcu-  “prior information” to address the solution ill-conditiomg.
lates internal conductivity from surface measurements; inage  In order to quantify thigsnformation, we ask: how many bits
reconstruction is most commonly formulated as an inverse ,¢information (in the Shannon sense) do we get from an EIT

problem using regularization techniques. Regularizationadds . . IS
“orior information” to address the solution ill-condition ing. ~ dat@ frame. We define the tenmformation in measurements

This paper presents a novel approach to understand and (IM) to represent this information content.
quantify this information. We ask: how many bits of infor- o ) )
mation (in the Shannon sense) do we get from an EIT data Information in Measurements. the decrease in uncertainty

frame. We define the terminformation in measurements (IM) about the contents of a medium, due to a set of

as the: decrease in uncertainty about the contents of a mediuo, measurements.

due to a set of measurements. Before the measurement,

we know the prior information (inter-class model, ¢). The In order to interpret this definition, we refer to two

measured data tell us about the medium (which, corrupted . . . ;
by noise, gives the intra-class modelp). The measurement instants:Instant ¢;: before an EIT measurement, at which

information is given by the relative entropy (or Kullback- ~ time we only know that the medium is part of a general
Leibler divergence). Based on this expression, and given aise  classp. This is the prior information; if we know that the
covariancel 3, and a QrioIlmodel of the element covariances  EIT system is connected to a patient’s thorax, then the class
ﬁgé!shﬁr:n?éﬁfﬂr{f;gisfgoxg ﬂé#ensdg:éhjni'g?g:gf[::é'olnlvtlhr?];y p is smaller (ie. conductivities will be in a narrow range, and
be approximated as a function of the signal to noise r’atio and _the mos_t likely number of lungs is two)' If we have I'ttle_
the Jacobian and prior matrices. For an example 16 electrode information on the nature of the medium the EIT system is
EIT system, IM was calculated to be 245.1 bits. Finally, seval ~ connected to, then the clagswill be broader and the prior
applications of an information measure for EIT are given. information less (ie. conductivities are positivestant ¢,:
after receiving a frame of data (with added noise) we have
specific information on this mediurg as well as prior
information on the clasg. The uncertainly on the contents
of the medium will thus be less, reflecting thformation

in measurements gained.

Based on this formulation, we develop a strategy to
In this paper we ask: 1) how much information is there incalculate optimal stimulation patterns in an information-

a set of measurements? and 2) how much information do wi€oretic sense. We then show two examples: 1) for a single
add when we “add” prior information via regularization? To Measurement impedance plethysmography equipment, and

address these questions, we develop an information-tieore?) T @ 16 electrode EIT system.
formulation of the image reconstruction inverse problem.
Electrical Impedance Tomography (EIT) calculates an
estimate of the conductivity distribution within a body . METHODS
based on current stimulations and voltage measurements
on the body surface. EIT has fairly low spatial resolution,
limited by the low sensitivity of surface measurements toA. Information Theory
conductivity changes deep within the body. EIT images are
most commonly reconstructed by formulating the inverse In Bayesian statistics the Kullback-Leibler divergence
problem using regularization techniques (eg. [1]) in order (KLD) can be used as a measure of the information gain
calculate a conductivity change image estimatewhich  in moving from a prior distributiong(y), to a posterior
is both faithful to the measurementg, and toa priori distribution,p(y). It can also be understood to be the “extra
constraints on a “reasonable” image. Regularization addsits” of information needed to representy) with respect

Keywords—Measurement Information, Kullback Leibler
Divergence, Electrical Impedance Tomography
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to ¢(y). The KLD is defined as [3]: In normal applications, the variability due to noise is
() much less than the prior variability, af#,| < |X,|, giving

q(y)

D(pllq) :/p(y)logz dy (1)
y

IM = Zloga(|24l/ I, ) @

where the integral is over all measurement channels. Ahe tr (trace) term will only have an effect in the very
comment on notation: we ugeto refer to both a specific unusual case that the measurement distributioris larger
realization of an EIT image, and the distribution of mea-than that of the priorg.

surements from that image (including measurement noise),

while g represents therior distribution and the distribution B. Information in Impedance Plethysmography

of its features.

One important general difficulty with direct information-
theoretic measures is that of data availability. Distridos
are difficult to estimate accurately, especially at thestail
and yetlogs (p(y)/q(y)) will give large absolute values for activit
small p(y) or ¢(y). Instead, it is typical to fit data to a Y-

: . In order to estimate the prior distribution, data acqui-
model with a small number of parameters. The G{’lusslagitions would be performed on a number of patients. From
distribution is the most common model; it is often a good P P ]

o . Y
reflection of the real world distributions, and is analyliga \t/CSSIE(}j dt?éaé{gim;?égla;snCmeeaﬁg(zr:g \:;I:J;ﬁ:q dif(ff élr)ence
solvable in entropy integrals. Another important propesty ' : wing

the Gaussian is that it gives the maximum entropy for ameagurementg;q would be zero. For illustration purposes,
given standard deviation, allowing such models to be useaOnSIder th"?‘”q = 800 mV. . .

to give an upper bound to entropy values. Thus, we model Wh(_an using the measurement SySte‘T‘ on a specific patient
the distributionsp and ¢ as Guassian with vector means at a given time, the measuremenys, will be due to the

©,, i, and covariance¥,, 3,. For Gaussian distributions current phyS|oIog|caI condition and the noISe. _Co_n5|der
thpe KCII_D is calculated: measurement noise,, = 10 mV/, and at a specific time,

the difference measurementlisi’. The information via the
KL divergence is

2 2
g — a.
|2wzq|] loga " + <—“q “p> + (—p) 1 )

p a, g,
275, | g ! !

To clarify the application of IM, we initially consider an
impedance plethymography system which measures a single
impedance value for the change in impedanggeacross
the thorax, which varies with breathing, posture and heart

D(pllg) = E|(y — wy) Sy — )

+(y = 1) Sy (y — 1) + logs
which is 7.9 bits. In order to calculate thanformation in
measurements, we must average over measurements on the

_ 5l092|2q§:;1| Tty (Ele;l B I) + tTeq ) specific patient, giving

wheret = p, — p, is the difference between the mean IM = 1092% + % (?) ~ 1092% (6)
measurement for the instance and the prior meant As- P 1 P
comes large, the KLD increases dramatically as the currenrhich is 6.3 bits.
realization moves to the tails of the prior.
Equation 2 represents the information for a specific C. Information in EIT
Instead, we are interested in the average information from

measurements, weighted over the prior probability of each We consider a dn‘f_erence EIT _system Wity _eIectr_odes .
. ) . . applied to a body using sequential current stimulation with
measurement configuration. Thus, we defineitiermation

. parallel voltage measurement. Using these electrodes,
in measurements (IM) to be . . : .
current stimulation patterns are sequentially appliedand

IM = E[D(pl|q)] differential measurements are made for each stimulation.

a For an adjacent drive EIT system, voltages are typically not
1 ; _

:—logg|EqE;1| T (E,,E;l —I) T E [tTeq] measured at driven electrodes, angg = ng — 3. Each
2 q data frame measures a vectere R™™, of ny; = ngny
1 - - data points (some of which are redundant if the medium

=—logs| | +tr (2,3, 3) . \ ) )
2 092/ 2%, | +1r (5,3, ) 3) is not changing). Difference EIT calculates differenceadat



y = vo —v1. TO improve its precisiony; is typically aver- is A= 2=, In order that( ‘”) represent the signal to noise

aged over many data frames, at a time when the conductivityatio (SNR) 1 should be normalized so that
distribution may be assumed to be stable; we thus assume I
thatv, is noise free. tr(JR™J) =ny (11)

The body under investigation is modelled using a finiteThus, in the case whe8NR > 1, IM is as
element model (FEM) which discretizes the conductivity

2
ontony piecevyise smooth elements, represente_d _by avector [ :11092 U_;;JRAJT n I‘
o € R"~ (In this paragraphg represents conductivity; else- 2
where in this papes is the standard deviation). Difference 1 14T | \2
EIT calculates a vector of conductivity changes o2 —o0o71, _2l092 ()\2 JURTJT 4+ A7)
between the present conductivity distributiet, and that at O LT )
the reference measuremeat,. For small variations around =nnlogs (0 ) —1092 (JR J+A I) (12)

the reference conductivity;, the relationship betweer

andy can be linearized (giving the difference EIT forward Equations for information content, such as (12) are often
model): singular [7]; in this case IM will diverge te-co. This effect

@) is due to the fact that measurements are not independent.
To solve this problem, we wish to extract an independent

whereJ € R™™*"~ is the Jacobian or sensitivity matrix set of measurementsg, from y. Using the singular value

andn € R"™ is the measurement noise which is assumediecomposition, we decompose the Jacobian matrix such that

to be uncorrelated white Gaussiad.is calculated from UDU? = JR'J7, with orthonormalU and diagonal

the FEM asJ;; = g)}; ‘U , and depends on the FEM, D. By truncatingU after the firstnz columns (yeilding

y=Jx+n

current injection patterns, the reference conductivitg the  Un;), We keep ther; most important measurements, and
electrode models. This system is typically ill-posed, sinc generate a mappingl’ : y — z), from the original
ny > na. EIT measurementg € R™™ to a new measurement space

In order to calculate the class statistics from the forwardz € R"#. Equation (12) is then modified to give:

model (egn. 7), we calculate o. 1
IM =nzlogs (—*) + 5logs (UTJR_lJTU + AQInZ)
On

pwy =E[y] = E[Jx +n] = Jux + E[n] X
Oz ip-1n3 2
Sy =E [(y )y — Ny)T} —nzlogs (—) + 5logs ([D R !D?],, + A Inz)
=JE [(X — px)(x — Hx)T} J'+E [nnT} (8) (13)
For distributiong, ux = py = 0, since for difference Where[]n, indicates selection of the upper left; x nz

EIT, positive and negative changes are equally likely. Fopubmatrix.
distribution p, x is the realization of the image in the  SinceA is small, this is approximately

medium, anduy = Jx. Assuming a Gaussian model, the O PR
distribution covariances may be calculated: IM ~nzlogs (U—R) + 51092 ([DQR DQ]nz) (14)
2, =J2,J" +3%, This formula is intuitively appealing. The information
>, =3, (9) in the measurements is proportional to the number of
measurements and the log SNR, plus a term related to the
giving theinformation in measurements Jacobian and the regularization matrix. Improvements to an

EIT system design can thus be implemented by 1) improving
the SNR, 2) adding measurement channels, and 3) designing
better measurement schemes. That last function is the goal
of the optimal current patterns, such as those of [4][5][6].

1 _
IM =2 l0gs| %3, o
1
=5 log> D) b YRR | (10)

In many cases, the measurement noise is equal on all
channels, and can be measured, givllg = o2I. In I1l. RESULTS
a similar way, a prior model can be constructed giving
X, = agR‘l, where R~} is the generalized Tikhonov Test data were measured from38 cm diameter and
regularization matrix. In this case, the regularizatioopr 30 cm tall plastic cylindrical phantom filled with 0.9% saline



solution. Sixteen stainless steel electrodes were placed, Interestingly, a naive guess for the IM for this EIT system
equally spaced, around the circumference, and EIT dataould be the number of independent measuremémsze
were acquired using the Goé-MF Il EIT system (Viasystimes%logg(SNR).This calculation yeildd06.3. The actual
Healthcare, Hochberg, Germany) using an adjacent stimM is less because EIT measurements from the medium
ulation and measurement pattern. In order to measure thare highly correlated, and such correlated measures e les
noise level, a sequence 880 frames were measured from a informative.

homogeneous tank. To measure the signal level, a small non- Finally, we would like to suggest that this measure may
conductive spherical object @fcm radius was introduced in allow novel insights into a number of questions regarding
the plane of the electrodes and moved into various positionthe performance of an EIT system, such as:

on the horizontal plane. « Inherent limits to the compressibility of measurement
To measurer,,, the signal noise was calculated for each  data. Measured data cannot be stored in less space than
measurement channel by taking the standard devition for the calculated IM value.
the entire frame sequence. The noisg,)(was taken as . Distinguishability limits may be defined in terms of the
the average across all channels; it was somewhat consistent |M content from small contrasts [2].
across measurement channels (std/mean = 0.71). o Fusion of EIT with other modalities. Measurements
To measurer, the average signal (difference from homo- which are not independent will only add a small in-
geneous) from different placements of the spherical object crement to the IM from EIT.
was calculated in the same way as the average noise. The Optimal current patterns may be defined in terms of
regularization priorR was set to the identity matrixI, maximizing IM [4][6].
scaled by the scheme of eqn 11. The Jacobihnyas
calculated for a 2D 576 element mesh using the EIDORS
software [1].
Two approaches are used to calculate IM: 1) Using edn. This work was supported by a grant from NSERC
14 (unregularized); the value of IM was chosen correspondcanada.
ing to its maximum atnz = 63. The value calculated is
IM = 239.4 bits. Fornz above this value, the calculated IM
rapidly diverges to-oco. 2) Using eqn. 13 (regularized), the REFERENCES
yalu.e of IM was calculated and shown as a functic_)m@f 1. Adler A, Lionheart W R B (2006) Uses and abuses of EIDORS: An
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Fig. 1 Information in measurements (IM) (bits) vs number of independent
measurements  for EIT system
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IV. DISCUSSION



