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Abstract. Electrical Impedance Tomography (EIT) calculates images of the body
from body impedance measurements. While the spatial resolution of these images
is relatively low, the temporal resolution of EIT data can be high. Most EIT
reconstruction algorithms solve each data frame independently, although Kalman filter
algorithms track the image changes across frames. This paper proposes a new approach
which directly accounts for correlations between images in successive data frames.
Image reconstruction is posed in terms of an augmented image x̃ and measurement
vector ỹ, which concatenate the values from the d previous and future frames. Image
reconstruction is then based on an augmented regularization matrix R̃, which accounts
for a model of both the spatial and temporal correlations between image elements.
Results are compared for reconstruction algorithms based on independent frames,
Kalman filters, and the proposed approach. For low values of the regularization
hyperparameter, the proposed approach performs similarly to independent frames, but
for higher hyperparameter values, it uses adjacent frame data to reduce reconstructed
image noise.
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1. Introduction

Electrical Impedance Tomography (EIT) calculates an estimate of the conductivity

distribution within a body based on current stimulations and voltage measurements

on the body surface. EIT has fairly low spatial resolution, limited by the low sensitivity

of surface measurements to conductivity changes deep within the body. On the other

hand, EIT has excellent temporal resolution, with some recent systems having frame

rates up to 1000/s (Wilkinson et al 2005). Such high temporal resolution makes EIT a

promising technology to monitor fast physiological events which affect the conductivity

distribution. For cardiac activity, the frequency content of the QRS complex is mainly

between 10–25 Hz (Kohler et al 2002). Another example is high frequency ventilation in

which air is pumped into the lungs at rates of 5–25 Hz (with smaller tidal volumes). High

frequency ventilation is indicated for many patients with respiratory distress syndrome

since it is understood to place less stress on injured lung tissue (Eichenwald, 1999). EIT

can potentially be of great benefit to these patients, since the distribution of ventilation
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in their lungs is highly non-uniform and cannot be otherwise monitored (Wolf and

Arnold, 2005).

Like many biomedical instrumentation techniques, the ability of EIT to see small

physiological changes is limited by the signal to noise ratio (SNR). A widely used

technique to improve SNR is ensemble averaging, which reduces random noise by the

square root of the number of averaged frames. If EIT data acquisition is sufficiently

rapid compared to the underlying physiological processes to be imaged, then ensemble

averaging may be used on multiple frames of EIT. However, in EIT applications

where conductivity changes are very fast with respect to the EIT frame rate, ensemble

averaging is not appropriate, since it will effectively reduce the temporal resolution.

In these cases, each frame of EIT data is typically reconstructed independently of the

others.

In this paper, we are interested in approaches to image a body which is undergoing

fast changes with respect to the EIT frame rate. In these cases, ensemble averaging

is not appropriate; however, it is clear that individual data frames are not completely

independent, but do contain useful correlations, which could be exploited to improve

EIT image noise performance. We call an approach which uses the time sequence of

EIT frame data temporal image reconstruction.

Temporal image reconstruction can be represented as a linear tracking problem, and

formulated as an extended Kalman filter, in which the image at each instant is estimated

from the current data and the previous image estimate. Vauhkonen et al (1998a)

proposed the first Kalman filter based algorithm for difference EIT; we describe this

approach using the notation of this paper in section 2.3. More recently, this approach

has been extended by Kim et al (2004) to reconstruct the resistivity of a contrast of

known shape and location. Kim et al (2006) also proposed a computationally efficient

algorithm based on pre-computing the Kalman gain and state estimation matrices. An

algorithm for absolute EIT has also been shown for simulation data (Trigo et al 2004).

In this paper, we propose a new approach for temporal EIT image reconstruction,

which directly estimates the image at frame t0 from the set of data in a window of frames

from t−d to td. Using these data, the temporal inverse is formulated as an inverse problem

with a regularization prior which accounts for both spatial and temporal correlations

between image elements.

2. Methods

We consider an EIT system with nE electrodes applied to a body using sequential

current stimulation with parallel voltage measurement. Using these electrodes, nE

current stimulation patterns are sequentially applied and nV differential measurements

are made for each stimulation. For an adjacent drive EIT system, voltages are typically

not measured at driven electrodes, and nV = nE−3. The delay between each successive

stimulation pattern is tS; thus, a complete set (frame) of EIT measurements takes

time tF = nEtS. Each data frame measures a vector, v ∈ RnM , of nM = nEnV data
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points (some of which are redundant if the medium is not changing). Difference EIT

calculates difference data y, ([y]i = [v2]i − [v1]i; or the normalized difference data

[y]i = ([v2]i− [v1]i)/[v1]i). To improve its precision, v1 is typically averaged over many

data frames, at a time when the conductivity distribution may be assumed to be stable;

we thus assume that v1 is noise free.

The body under investigation is modelled using a finite element model (FEM)

which discretizes the conductivity onto nN piecewise smooth elements, represented by a

vector σ ∈ RnN (In this paragraph, σ represents conductivity; elsewhere in this paper,

σ is the standard deviation). Again, difference EIT calculates a vector of conductivity

change, x = σ2−σ1 between the present conductivity distribution, σ2, and that at the

reference measurement, σ1. For small variations around the reference conductivity σ1,

the relationship between x and y can be linearized (giving the difference EIT forward

model):

y = Jx + n (1)

where J ∈ RnM×nN is the Jacobian or sensitivity matrix and n ∈ RnM is the measurement

noise which is assumed to be uncorrelated white Gaussian. J is calculated from the FEM

as Jij =
∂yi

∂xj

∣∣∣
σ1

, and depends on the FEM, current injection patterns, the reference

conductivity, and the electrode models. This system is underdetermined since nN > nM .

This problem is commonly solved using regularization techniques (eg. Cheney et al 1990,

Adler and Lionheart, 2006) in order to calculate a conductivity change estimate, x̂, which

is both faithful to the measurements, y, and to a priori constraints on a “reasonable”

image.

Over time steps, k, a sequence of difference vectors, yk = Jxk, are measured

(assuming the body and electrode geometry, and thus J, stay fixed). If the conductivity

of the body under investigation doesn’t change too rapidly, then it is reasonable to

expect that a certain number of measurements, d, into the past and future provide

useful information about the current image. Labelling the current instant as t, we

therefore seek to estimate x̂t from data [yt−d; . . . ;yt−1;yt;yt+1; . . . ;yt+d].

In the subsequent sections we consider three traditional approaches and the

proposed temporal inverse; each estimates x̂t at frame t from a sequence of data starting

at frame 0, using the indicated data: 2.1) Gauss-Newton (GN) inverse, using yt only;

2.2) GN with weighted data, using a weighted average of yt−d . . .yt+d; 2.3) Kalman filter

inverse, using all previous and current data, y0 . . .yt; and 2.4) Temporal inverse, using

yt−d . . .yt+d based on a temporal prior model.

2.1. One-step linear GN(Gauss-Newton) solver

One-step Gauss-Newton (GN) EIT reconstruction approaches have been widely used in

EIT (eg. Cheney et al 1990; Adler and Guardo, 1996). They allow use of sophisticated

regularized models of the EIT inverse problem, are able to represent this solution as a

linear reconstruction matrix, which can then allow rapid, real-time imaging. The GN

inverse problem seeks to calculate a solution, x̂, to the EIT inverse problem expressed
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as the minimum of a sum of quadratic norms

‖y − Jx̂‖2
Σ−1

n
+ ‖x− x◦‖2

Σ−1
x

(2)

where x◦ represents the expected value of element conductivity changes, which is zero

for difference EIT. Σn ∈ RnM×nM is the covariance matrix of the measurement noise n.

Since n is uncorrelated, Σn is a diagonal matrix with [Σn]i,i = σ2
i , where σ2

i is the noise

variance at measurement i. Σx ∈ RnN×nN is the expected image covariance.

Typically, Σn and Σx are not calculated directly. Instead, their inverses, W =

σ2
nΣ−1

n and R = σ2
xΣ

−1
x , are heuristically determined from a priori considerations. Here

σn is the average measurement noise amplitude and σx is the a priori amplitude of

conductivity change. W models the measurement accuracy. For uncorrelated noise,

each diagonal element is proportional to the signal to noise ratio. For difference EIT

with identical channels, W = I. The regularization matrix R may be understood to

model the “unlikelihood” of image elements.

By solving (2), a linearized, one-step inverse solution is obtained as

x̂ =

(
JT 1

σ2
n

WJ +
1

σ2
x

R

)−1

JT 1

σ2
n

Wy (3)

We define the hyperparameter λ = σn/σx, and rewrite (3) as

x̂ =
(
JTWJ + λ2R

)−1
JTWy = By (4)

where B =
(
JTWJ + λ2R

)−1
JTW is the linear, one-step inverse. The regularization

hyperparameter λ controls the trade-off between resolution and noise attenuation in the

reconstructed image.

If image elements are assumed to be independent with identical expected

magnitude, R becomes an identity matrix I and (4) uses zeroth-order Tikhonov

regularization. For EIT, such solutions tend to push reconstructed noise toward the

boundary, since the measured data are much more sensitive to boundary image elements.

Instead, R may be scaled with the sensitivity of each element, so that each diagonal

element i of R is [R]i,i =
[
JTJ

]p

i,i
. This is the NOSER prior of Cheney et al (1990) for

an exponent p = 1. Many other prior matrices have been proposed: to model image

smoothness as a penalty for non-smooth image regions, R may be set to the discrete

Laplacian filter (Vauhkonen, 1998b) or a discrete high pass Gaussian filter (Adler and

Guardo, 1996).

In this paper, the NOSER prior is used for calculating the matrix R with p = 0.5 in

all tested algorithms, except for the Kalman filtering. Because it is diagonal, R can be

inverted without numerical difficulties. The choice of exponent is a heuristic compromise

between the pushing noise to the boundary (p = 0) or to the centre (p = 1).

In (4), the term in the inverse is of size nN ×nN . To save computational time, and

improve inverse accuracy and stability, we want to decrease the size of the matrix to be
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inverted. Thus, we rewrite the matrix B using the data form as:

=
(
JTWJ + λ2R

)−1
JTW

[(
J

1

λ2
PJT + V

)(
J

1

λ2
PJT + V

)−1
]

=
(
JTWJ + λ2R

)−1 (
JTWJ + λ2R

) (
1

λ2
PJT

)(
J

1

λ2
PJT + V

)−1

= PJT
(
JPJT + λ2V

)−1
(5)

where P = R−1 = 1
σ2

x
Σx and V = W−1 = 1

σ2
n
Σn. In practice, P and V are modelled

directly from the system covariances, rather than the inverse of R and W. Using (5),

the size of the term in the inverse is reduced to nM × nM . This is especially significant

for 3D EIT models and for the temporal inverse which we introduce below.

Note that the GN solver does not consider the time sequence of EIT data. Each

frame is solved individually, and inter-frame correlations are ignored.

2.2. One-step linear GN solver with weighted data

The one-step linear GN solver may be applied to weighted average data in order to

implement ensemble averaging. Given a temporal window with a half width d, we

model the time constant, τ , to represent the rate at which the most rapid changes of

interest occur in the body. That means that a feature of interest in a frame will dissipate

by a factor of γ = exp(−tF /τ) in the next frame, and by γd in the dth subsequent frame.

Using this factor, we calculate a weighted ensemble average EIT measurement, ȳ

ȳ =
1

wγ

d∑

i=−d

γ|i|yi (6)

where wγ =
∑d

i=−d γ|i|. When 0 < γ < 1, this is a forgetting process, and when γ = 1,

an averaging process. Noise amplitude will decrease by a factor of
√

wγ due to this

ensemble averaging. The GN solver with weighted data reconstructs images as

x̂ = Bȳ (7)

where B is calculated using (4).

2.3. Kalman solver

The Kalman filter is a widely used approach for many tracking and data prediction tasks.

The EIT image reconstruction algorithm of Vauhkonen et al (1998a) is formulated as an

iterative state estimation problem. The system discrete time prediction model is given

by (using the notation introduced above)

xk = Axk−1 + v (8)

for a discrete time sequence k. A ∈ RnN×nN is the state transition matrix, and v ∈ RnN

is the state noise (assumed to be zero mean white Gaussian). One traditional difficulty
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with Kalman filters is finding values for state space parameters. If the underlying

processes in the body were well known, then A could be derived; for example, in a

stirred mixing tank, the process would rotate image elements in each frame. We follow

the traditional heuristic approach of assigning A = I (representing a random walk

process) and setting the state noise covariance to the image element covariance P. The

discrete time observation model at time step k is:

yk = Jkxk + n (9)

which is equivalent to (1) if J is constant. Kalman image reconstruction iteratively

estimates xk based on the previous image xk−1 and measurements yk.

x−k = Ax̂k−1 state estimation (10)

x̂k = x−k + Kk(yk − Jkx
−
k ) state correction (11)

where Kk is the Kalman gain, which is calculated from the error covariance estimate

Ck as:

C−
k = AĈk−1A

T + P error covariance estimation (12)

Kk = C−
k JT

k

(
JkC

−
k JT

k + V
)−1

Kalman gain (13)

Ĉk = (I−KkJk)C
−
k error covariance correction (14)

Iterative calculation of K is computationally expensive. If J is constant, K will

eventually stabilize, and may be precomputed (Kim et al 2006) in order to dramatically

speed up the calculation. We do not take this approach here.

2.4. Temporal one-step solver

Instead of calculating an image based on the sequence of past frames, we propose

a temporal image reconstruction algorithm which uses a set of data frames nearby

in time. The data frame sequence is treated as a single inverse problem, with a

regularization prior to account for both spatial and temporal correlations between

image elements. Given a vertically concatenated sequence of measurements frames

ỹt = [yt−d; . . . ;yt; . . . ;yt+d] and the corresponding concatenated images x̃t =

[xt−d; . . . ;xt; . . . ;xt+d], the direct temporal forward model (1) is rewritten as




yt−d
...

yt
...

yt+d




=




J · · · 0
. . .

... J
...

. . .

0 . . . J







xt−d

...

xt

...

xt+d




+




nt−d

...

nt

...

nt+d




(15)

and also as

ỹt = J̃x̃t + ñt (16)
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where ñt = [nt−d; . . . ;nt; . . . ;nt+d]. We assume J to be constant, although this

formulation could be modified to account for a time varying J. Based on this

approximation J̃ = I ⊗ J, where the identity matrix I has size 2d + 1, and ⊗ is the

Kronecker product.

The correlation of corresponding elements between adjacent frames (delay δ =

1) can be represented by an inter-frame correlation γ which has value between 0

(independent) and 1 (fully dependent). As frames become separated in time, the inter-

frame correlation decreases; for an inter-frame separation δ, the inter-frame correlation

is γδ. γ could also possibly be negative if subsequent frames have inverse correlation,

although this scenario is physiologically unrealistic. Frames with large inter-frame delay,

|δ| > d, are considered independent. Image reconstruction is then defined in terms of

minimizing the augmented expression:
∥∥∥∥∥∥∥∥∥∥∥∥∥




yt−d
...

yt
...

yt+d



−




J · · · 0
. . .

... J
...

. . .

0 . . . J







xt−d

...

xt

...

xt+d




∥∥∥∥∥∥∥∥∥∥∥∥∥

2

˜W

+ λ2

∥∥∥∥∥∥∥∥∥∥∥∥




xt−d

...

xt

...

xt+d




∥∥∥∥∥∥∥∥∥∥∥∥

2

˜R

(17)

and (5) becomes

B̃ = R̃
−1

J̃
T

(
J̃R̃

−1
J̃

T
+ λ2W̃

−1
)−1

(18)

where W̃ = I ⊗W. W̃ is diagonal since measurement noise is uncorrelated between

frames. R̃ = Γ−1 ⊗R where Γ is the temporal weight matrix of an image sequence x̃

and is defined to have the form as

Γ =




1 γ . . . γ2d−1 γ2d

γ 1 . . . γ2d−2 γ2d−1

...
...

. . .
...

...

γ2d−1 γ2d−2 . . . 1 γ

γ2d γ2d−1 . . . γ 1




(19)

From (18) and (19),

B̃ =
[
Γ⊗ (

PJT
)] [

Γ⊗ (
JPJT

)
+ λ2 (I⊗V)

]−1
(20)

Thus, (4) is rewritten as 


x̂t−d

...

x̂t

...

x̂t+d




= B̃ỹt (21)

Although this estimate is an augmented image sequence, we are typically only

interested in the current image x̂t. which is calculated from x̂t = B̃dỹt where B̃d is the

rows nMd + 1 . . . nM(d + 1) of B̃.
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2.5. Noise figure

In order to compare the different image reconstruction algorithms, it is important to

choose corresponding values of the hyperparameter for each algorithm. For a review

of hyperparameter selection methods for EIT, refer to Graham and Adler (2006).

For our application, we wish to compare the resolution and noise performance across

algorithms; however, since the regularization hyperparameter implicitly controls the

compromise between resolution and noise performance, we choose to control for noise

performance across algorithms, and then compare the resolution. Image reconstruction

noise performance may be measured with the noise figure (NF) parameter of Adler and

Guardo (1996). Here we generalize the NF calculation to apply to any difference EIT

formulation, not simply one-step Gauss Newton type algorithms.

An EIT difference measurement vector is y = y0 +ny, where y0 is the deterministic

underlying signal, and ny is stochastic, zero mean, measurement noise. Typically,

components of ny are independent, but this formulation does not make this assumption.

For difference EIT, [y]i = [v2]i − [v1]i, and components of ny are often assumed to be

equal, but this may potentially vary if the gain varies between channels. For normalized

difference EIT, [y]i = ([v2]i−[v1]i)/[v1]i, and components of ny are scaled by diag(v1)
−1.

Both y0 and ny may be complex valued.

The signal to noise ratio (SNR) of the difference measurement is defined as:

SNRy =
E[|y|]√
var(y)

(22)

where we approximate E[|y|] = 1
nM

∑ |y0| and calculate var(y) = 1
nM

trace Σn where

Σn is the measurement noise covariance. nM is the number of measured values in the

EIT data frame; we divide by nM rather than nM − 1 to calculate the variance, since

the noise is known to be zero mean.

This covariance may be modelled by a noise basis, Ny such that NyN
T
y = Σn.

For difference EIT with independent noise on each channel, this is a diagonal matrix

with [Ny]i,i equal to the noise amplitude on channel i. Using this noise basis, var(y) =
1

nM
‖Ny‖2

F , where ‖ · ‖2
F is the sum of each matrix element squared (Frobenius norm

squared).

A general EIT reconstruction algorithm, EIT , reconstructs an image estimate, x̂

from measurements as x̂ = EIT (y). This notation is also extended to reconstruct a

matrix of column concatenated images independently from a matrix of measurements.

The signal to noise ratio (SNR) of the difference image is:

SNRx =
E[|x|]√
var(x)

(23)

where we approximate E[|x|] =
∑

A |x0| where x0 = EIT (y0) and A is a diagonal

matrix of the volume (or area in 2D) of each reconstructed image element. We calculate

var(x) = traceA2Σx where Σx is the image noise covariance. For difference EIT, image
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reconstruction is linear for small y, Using noise basis, Nx, we calculate Σx = NxN
T
x

where Nx = EIT (Ny) for small Ny, and var(x) = ‖ANx‖2
F .

The NF is the ratio of output to input SNR, where the input signal y0 is chosen to

be a small change in a central inner circular disk covering 10% of the medium diameter,

and Nn is scaled to be within the linear range of the algorithm.

NF =
SNRx

SNRz

=

∑
A |EIT (y0)|∑ |y0|

√
‖nMNy‖2

F

‖AEIT (Ny)‖2
F

(24)

While the SNR is normally defined in terms of the signal power, here we define it in

terms of absolute amplitude. This is necessary because it is the signal amplitude, and

not the power, that is spread across image elements with changes in hyperparameter; our

experiments with the signal power definition do not show stable or useful results. Finally,

in distinction to the definition in Adler and Guardo (1996), we calculate the absolute

amplitude of the signal, allowing this definition to be appropriate to EIT systems which

measure complex signals.

3. Results

Numerical simulations were conducted using a planar 2D FEM model with 5184 elements

using the EIDORS software (Adler and Lionheart, 2006). A unit radius circular medium

with 16 electrodes using adjacent stimulation and measurement pattern is simulated, in

which a non-conductive spherical object with 0.05 unit radius rotates clockwise along

a trajectory that has a radius of 2/3 unit, moving at a speed of one rotation per 40

frames. The noise performance of the algorithms was tested by adding pseudo random,

zero mean Gaussian noise. All reconstructed images in figure 1 and 2 used the same

random seed; tests with different seed values did not vary significantly. Images were

reconstructed on a 576 element mesh, which differs from the simulation model to avoid

the inverse crime.

Reconstructed images were calculated for four image algorithms and are shown in

corresponding columns in Figs. 1 and 2: 1) Gauss-Newton, 2) GN with weighted data, 3)

temporal solver and 4) Kalman filter. In each image, the position of the target at all data

frames used in the algorithms are shown. In all cases, the target was at (x, y) = (−2
3
, 0)

in the image shown. We explored the behaviour of these algorithms as a function of

regularization hyperparameter for both noise free and noisy data. In order to choose

a hyperparameter to allow comparison across algorithms, we select its value for each

algorithm in order to give a fixed NF value (section 2.5). Figure 2 shows reconstructed

images for a low hyperparameter value (giving NF = 2.0), while figure 1 shows images

for a higher value (giving NF = 0.1). Noise levels were chosen heuristically in order to

illustrate the algorithm noise performance.
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−1

0

1

Figure 1. Reconstructed images of a target at (− 2
3 , 0) for high hyperparameter

(parameters NF = 0.1, γ = 0.8 and d = 3). Top row: No noise; Bottom row:
SNR = 0.25 Each column uses a different reconstruction algorithm: A: Gauss-Newton
B: Gauss-Newton with weighted data C: Temporal Solver D: Kalman Filter. The black
circles in the images indicate the position of the simulated target in each data frame
used for in the image reconstruction. The colourbar (with normalized units) is shown
at right.

4. Discussion

Traditionally, EIT reconstruction algorithms assume each data frame to be independent.

However, since EIT is able to make measurements at high frame rates, we know a

priori that image frames are correlated. This paper addresses reconstruction of EIT

data for temporal reconstructions, in which we use temporal correlations to improve

reconstructed image SNR. A new temporal reconstruction algorithm is introduced, which

directly formulates the temporal inverse in terms of a single regularized expression. We

compare four different algorithms: one-step GN (with no temporal behaviour), GN with

weighted data, Kalman filter reconstruction, and the proposed temporal reconstruction.

Results show that the GN algorithm is able to accurately reconstruct the position

and shape of the target, but shows poorer noise performance than the other algorithms.
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−1

0

1

Figure 2. Reconstructed images of a target at (− 2
3 , 0) for low hyperparameter (chosen

for NF = 2.0, γ = 0.8 and d = 3). Top row: No noise; Bottom row: SNR = 4.0 Each
column uses a different reconstruction algorithm: A: Gauss-Newton B: Gauss-Newton
with weighted data C: Temporal Solver D: Kalman Filter. The black circles in the
images indicate the position of the simulated target in each data frame used for in the
image reconstruction. The colourbar (with normalized units) is shown at right.

As the hyperparameter increases (figure 1), GN images tend to image targets closer

toward the centre of the body. This effect is well understood for EIT (eg. Adler and

Guardo, 1996), and is probably a consequence of the prior weighting of central image

elements. The GN with averaged data blurs the reconstructed image across all the

averaged data frames, but is able to show improved noise performance, as is expected

from ensemble averaging. Thus, GN algorithms are recommended when noise levels are

low, and GN with weighted data is a good solution when the conductivity is changing

slowly with respect to the frame rate.

At low hyperparameter, the Kalman filter tends to reconstruct images with the

target “pushed” outward toward the boundary, and create image artifacts and image

noise on the boundary. We hypothesize that this effect is due to the iterative calculation

of the error covariance term (in (12)), which results in a C− which tends toward the
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identity matrix. In the Kalman formulation, this term takes the place of R in the GN

inverse, making the Kalman filter images resemble GN images with zero-order Tikhonov

regularization. For larger hyperparameter values (figure 1), Kalman filter images tend

to show a “trail” as a larger weighting is given to previous frame data in the current

image calculation.

At high hyperparameter values, the temporal reconstruction shows improved

resolution (illustrated as figure 1). While at low hyperparameter, it gives similar images

to that of GN (illustrated as figure 2). This behaviour may be understood, since at low

hyperparameter (λ ≈ 0), (20) approximates

B̃ ≈ [
Γ⊗ (

PJT
)] [

Γ⊗ (
JPJT

)]−1
= I⊗

[
PJT

(
JPJT

)−1
]

(25)

which will reconstruct each data frame independently. On the other hand, at high

hyperparameter, the reconstructed image will weigh data frames together, as per GN

with weighted data,

B̃ ≈ [
Γ⊗ (

PJT
)] [

λ2 (I⊗V)
]−1

= Γ⊗
[
PJT

(
λ2V

)−1
]

(26)

In this paper, the temporal weight γ is chosen heuristically; however, objective selection

of γ is possible; its value could be estimated from the covariance of data frames measured.

In summary, this paper proposes a temporal EIT reconstruction algorithm. For

low noise solutions (low hyperparameter) its behaviour is approximates that of Gauss-

Newton reconstruction, while for high noise level and high frame rates cases where large

hyperparameters are adopted, it is advantageous by reconstructing higher resolution

images. It improves over Kalman filter based algorithms by allowing an explicit control

over the regularization prior and the weighting of measured data. We recommend

the temporal algorithm for cases in which the data noise is high and the underlying

conductivity changes are rapid with respect to the frame rate.
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