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ABSTRACT 
 
Biometric systems identify users based on behavioral or 
physiological characteristics. The advantages of such systems 
over traditional authentication methods such as passwords are 
well known and hence biometric systems are gradually gaining 
ground in terms of usage. This paper explores the feasibility of 
automatically and continuously identifying participants in Haptic 
systems. Such a biometric system could be used for authentication 
in any Haptic based application, such as tele-operation or tele-
training, not only at the beginning of the session, but continuously 
and throughout the session as it progresses. In order to test this 
possibility, we designed a Haptic system in which position, 
velocity, force and torque data from the tool was continuously 
measured and stored as users were performing a specific task. 
Subsequently, several algorithms and methods were developed to 
extract biometric features from the measured data. Overall, the 
results suggest reasonable practicality of implementing haptic-
based biometric systems, and that it is an avenue worth pursuing; 
although they also indicate that it might be quite difficult to 
develop a highly accurate Haptic ID algorithm. 
 
Categories and Subject Descriptors: K.6.5 [Security and 
Protection]: Authentication, H.5.2 [User Interfaces]: Haptics I/O. 
Keywords: Haptic Authentication, Biometrics, Continuous 
Authentication. 
  
1. INTRODUCTION 

 
Biometric systems allow identification of individuals based on 
behavioral or physiological characteristics [7]. The most common 
implementations of such technology are to recognize people based 
on their fingerprint, voice, iris, or face image. Applications for 
such systems are vast, and range from national security 
applications to access control and authentication.  

In this paper, we are particularly interested in access control 
for Haptic systems. Haptics provide the complex sense of touch, 
force, and hand-kinaesthetic in human-computer interaction. The 
potential of this emerging technology is significant for interactive 
virtual reality, tele-presence, tele-medicine and tele-manipulation 
applications. This technology has already been explored in 
contexts as diverse as modeling and animation, geophysical 
analysis, dentistry training, virtual museums, assembly planning, 
surgical simulation, and remote control of scientific 
instrumentation [3, 4]. Other examples of sensitive haptic systems 
are for military and industrial applications. 

 
 
 

These systems, sensitive or conventional, have some type of 
authentication requirement, which may be based on a password, 
token, or perhaps a physical biometric. However, login 
authentication, at best, can only offer assurance that the correct 
person is present at the start of a session; it cannot detect if an 
intruder subsequently takes over the haptic controls (physically or 
electronically). In addition, login ID and passwords can be 
compromised or “hacked”, whereas biometric-based systems are 
significantly more difficult to compromise.  

In this paper, we propose the novel idea of using haptic 
equipment for continuous authentication. Such equipment are 
already in use in haptic systems and using them for authentication 
purposes adds no infrastructure overhead to existing systems. We 
propose to base this continuous authentication on the 
characteristic patterns with which participants perform their work. 
We assume that it is possible to automatically characterize and 
differentiate participants based on these data, and in this work we 
explore this assumption. This concept is somewhat similar to that 
of traditional behavioral biometric systems, such as keystroke 
dynamics, speaker recognition and signature recognition [1, 2]. 
We believe that, similar to user interactions with a signature pad 
[5, 6], user interactions with a Haptic device are also 
characteristic of an individual’s biological and physical attributes. 
By measuring the position, velocity, and force exerted in those 
interactions, one should be able to identify an individual with a 
specific degree of certainty. To the best of our knowledge, no 
other work has examined haptics from a Biometric perspective, 
and this work is novel in both the concept and in the design and 
study of enabling algorithms and methods for that concept.  

The identification methods that were used to test the system 
are first order statistics, dynamic time warping, spectral analysis, 
Hidden Markov Model, and stylistic navigation. Out of these, 
dynamic time warping, spectral analysis, and Hidden Markov 
Model were objectively used to identify users. The results for 
these methods are presented in this paper. 

The remainder of this paper is organized as follows: section 2 
discusses the haptic application that was used for testing purposes, 
while section 3 presents the algorithms that were used and how 
they were applied. In section 4 we analyze the outcome of various 
algorithms and methods, before conclusion at the end. Let us 
begin by looking into the haptic application itself. 
 
2. THE HAPTIC APPLICATION 

 
For authentication purposes, the data offered in a haptic 
environment is much broader than that of the traditional 
authentication tools. Haptic systems can provide us with 
information about direction, pressure, force, angle, speed, and 
position of the user’s interactions. In addition, all of the above are 
provided in a 3D space covering width, height, and depth. For our 
tests, we constructed a haptic maze application built on an elastic 



membrane surface, as shown in figure 1. The user is asked to 
navigate the stylus through a maze, which has sticky walls and an 
elastic floor. Such a task allows many different behavioral 
attributes of the user to be measured, such as reaction time to 
release from a sticky wall, the route, the velocity, and the pressure 
applied to the floor. The user is required to begin at “enter” and 
follow a path to “exit” without crossing any walls. 

 

   
Figure 1. Screenshot of a user navigating the maze. The stylus 
path is indicated with the blue line. 
 

 
Figure 2: The color Codes of the Maze Recording Process 

 
A total of 22 different participants’ movements were captured 

for the purposes of analysis. Each person performed the exact 

same maze 10 times, one trial immediately after the other. 
Participants were given the opportunity to practice the maze 
before the trials were actually recorded, in order to mitigate the 
training effect. Since there is only one correct path through the 
maze and the ability to solve the maze was not being judged, it 
was important to ensure participants knew how to correctly solve 
the maze in advance. 

The maze was used as the means of testing individuals’ 
abilities and describing a psychomotor pattern followed through 
the path and performance speed. The haptic software application 
was developed in a combination of Python script code and 
VRML-based scene graph module using the PHANToM haptic 
interface [13]. The 3D environment was defined by using VRML-
node-fields approach, while Python provided the procedural 
process to handle certain events and output the data to a file. The 
haptic stimuli are provided by accessing the Reachin API [9] 
which handles the complex calculations for the touch simulation 
and the synchronization with graphic rendering.  

As can be seen in figure 2, the process starts recording data 
when the user makes contact through the stylus within a 
reasonable radius of the starting point of the maze. The trail ends 
when the user reaches the end point of the maze, at which point 
the process stops recording data and the maze changes color to 
indicate this. The software application is able to record two types 
of 3D world coordinates, the weighted-position and the device 
position. The weighted-position is calculated as an average of the 
pen’s real location versus its position on the maze if it was not 
elastic. The device position is a format for expressing the real 
position of the pen. The data files also recorded the force and 
torque applied by the pen on the maze as 3D vectors, as well as 
the pen rotation angle. Timing information for all of the above 
was also recorded. 

 
3. STATISTICAL METHODS FOR AUTHENTICATION 

 
3.1 First order statistic 
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Figure 3: Comparison of subjects’ mean velocity and its 
standard deviation (X axis sorted). 
 

The experiment provides data that describe particular user 
behavior. First, the 3D world location of the pen reflects how 
consistently the user handles the pen device. Each subject’s 
comparable positions through the maze were evaluated, by 
calculating a user’s mean normalized path and velocity in units 
traveled per second. Based on these data, the set of trials for each 
subject showed a high standard deviation making it difficult to 

Before Recording 
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discriminate subjects. On the other hand, such variability in 
velocity could characterize the subject. The average speed defines 
a particular “character” for each subject’s handling of the task: 
some users are behaviorally speaking faster than others, and this 
could potentially be used to distinguish between users. While 
speed is generally relatively steady for each subject, it appears 
that subjects with higher stylus speeds showed more variability in 
speeds across different trails than those performing in lower 
speed. These results are shown in figure 3. Mean velocity and 
mean standard deviation in velocity across trials were compared 
among participants. There is a direct correlation between speed 
and standard deviation with a slope of 0.433. In other words, the 
quickest subject completed the maze path with the highest 
unpredictability in speed while the subject with the lowest speed 
had the steadiest movements to complete the task. 
 
3.2 Dynamic time warping 
 

Dynamic time warping analysis creates a match score (MS) of 
two data sets, d1 and d2, by comparing their respective strokes. A 
stroke is a sudden change in direction along a given plane, such as 
the xy or xz planes. Initially, the approach matches the time scale 
of d1 to d2 through interpolation so that the data points represent 
similar xyz location. The data of l2 is the interpolated version of d2 

matched to d1 based on linear interpolation.  
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The best interpolation match is selected based on the Nelder-
Mead non-linear minimization [8] used to determine the 
appropriate p value. The initial p value is set to be 1 and non-
linear minimization determines a local p that provides the lowest 
square difference. Finally, the MS is determined as shown in 
equation 1 on the velocity approximated by the first derivative of 
d1 and l2. The reason is that the actual xyz position is more 
sensitive to changes between data sets of the same user, while 
stylus velocity would be more constant. This technique is used in 
our calculations of false reject rate and false accept rate 
(FRR/FAR) results discussed in section 4. 
 
3.3 Spectral analysis 
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Figure 4: Spectral content of data from three data sets. Data1 
and Data2 are from a single user; Data3 from a different user. 
 
This algorithm calculates a match score based on the spectral 
analysis of d1 and d2. The analysis is carried out after first 

matching the time scales using linear interpolation and Nelder-
Mead non-linear minimization as described in the previous 
section. Subsequently, the frequency content of the xyz position 
data was analyzed based on windowed Discreet Time Fourier 
transforms. Due to the low frequency content of the data, a large 
hanging window size of length 256 with non-overlap data points 
of 128 is applied. The Fourier Transform of d1 and d2 is obtained 
and the square of the difference is calculated. Figure 4 shows an 
example of the frequency content of three data sets. Data 1 and 2 
are from the same user acquired at different times, whereas data 3 
is from a different user. The frequency profiles of data 1 and 2 are 
matched better than that of data 3.  
 
3.4 Hidden Markov Model (HMM) 
 
Hidden Markov modeling is a powerful statistical technique with 
widespread applications in the pattern recognition field, such as 
speech recognition. HMMs have also been applied successfully to 
other language related tasks, including part-of-speech tagging, 
named entity recognition and text segmentation. An important 
motivation for the use of HMMs is their strong statistical 
foundations, which provide a sound theoretical basis for the 
constructed models [10]. It should however be noted that in order 
to achieve reliable results, HMMs must be used with a large 
amount of training data to produce good estimates of the model 
parameters.  

An HMM has a set of states, Q, an output alphabet, O, 
transition probabilities, A, output probabilities, B, and initial state 
probabilities, �. The current state is not observable. Instead, each 
state produces an output with a certain probability, as defined in 
B. Usually the states, Q, and outputs, O, are understood, so an 
HMM is said to be a triple, (A, B, �) [11]. 

From a task classification point of view, solving a maze has 5 
different states: Idle, Placement, Position, Solve Maze, and 
Removal. The general state diagram connectivity is outlined in 
figure 5. The general requirement is that the state begins and ends 
with an idle state where there is no movement of the stylus. The 
solve maze state is the part where the user navigates through the 
maze.  

 
Figure 5: Task level state machine 

 
To incorporate more details for participant identification, the 

solve maze state is sub divided into more states at the maze level 
based on the strokes. There are M different strokes and k 
segments per stroke, as shown in figure 7. The structure of the 
state for this subdivision is a left-to-right transition with no state 
skips allowed, as illustrated in figure 6. Two different output 
types for the both task level and segment level states are possible: 
one is the stylus torque as a function of position (x,y,z), referred 
to as T(x,y,z), and the other is the stylus force as a function of 
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position (x,y,z), referred to as P(x,y,z). Figure 8 shows an 
example of the torque and force data for a given subject. 

 

  
Figure 6. State structure for the solve maze state 
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Figure 7. Stroke location represented with four dots and the 
corresponding states (M=4)  

In these datasets, only output parameter information in the 
solve maze state was recorded. The maze is encoded as a sequence 
of the above 6 output parameters. Recorded data were then 
quantized and normalized all across. Each maze is uniformly 
divided into N=M*k segments, the length of which may slightly 
differ from each other. The number N can be though t of as the 
observation length of the sequence for use in HMMs. The result 
of this normalization and quantization is shown in figure 9. 

 
3.5 Stylistic Navigation 
 
Another possibility for distinguishing between subjects is their 
stylistic navigation patterns. Each user will have a different 
navigation style, in terms of the shape of path taken. Coupled with 
other data, such as applied force and speed, it could be possible to 
identify individuals. Figure 10 on the second next page illustrates 
the position data representing the paths taken by two different 
users. The path taken by the stylus is shown, revealing the 
difference in motion between them. Data1 and Data2 have a more 
angular pattern around curves, while Data3 shows a more rounded 
path. Hence, it is clear that one user makes more angular turns 
with the stylus, while the other takes more rounded corners. These 
participants’ data are more visually distinct than others, but all 
show similar differences. This is what we refer to as the stylistic 
navigation pattern. For this test, each participant solved the maze 
ten times in one sitting. 
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Figure 8: Raw Force and Torque for user 1. 
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Figure 9: normalized and quantized Force and Torque for user 1 (M=4, k=10).
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Figure 10. Paths taken while navigating the maze. Data1 and 
Data2 are from two different tests by the same user, while Data3 
is a different participant. 

 
We believe that this stylistic navigational pattern also depends on 

a person’s behavioral and/or physiological characteristics, and could 
be utilized to identify users. Further work is required to come up 
with a dependable algorithm to achieve this objective. 

 
4. ANALYSIS AND RESULTS 

 
In order to quantify the performance of the proposed algorithms, 
standard biometric verification analysis methods were applied [7]. 
Since each analysis between d1 and d2 produces match scores, this 

can be compared with a decision threshold to calculate the biometric 
receiver operating curve (ROC) statistics: the false accept rate 
(FAR), which is the probability that a comparison between different 
users exceeds the match threshold, and the false reject rate (FRR), 
which is the probability that a comparison between samples from the 
same user is below the match threshold. We also define the 
probability of verification (PV) as 1-FRR. 

The analysis was applied to three of the tests described in section 
3: dynamic time warping, spectral analysis, and HMM. Although we 
believe that first order statistics and stylistic navigational patterns 
can also be used to authentication, we decided to concentrate on the 
said 3 tests as they were expected to give the better results. For all 
tests, the first five maze solutions were discarded to avoid variability 
due to training effect and the warm-up phenomenon. As a figure of 
merit, PV was calculated at FAR=25%. Figure 11 on the next page 
shows that PV is 78.8% at 25% FAR when the first 5 data sets are 
removed for each individual participant. The Equal Error Rate 
(EER) stands at 22.3 % with a threshold MS of 0.195. When all the 
data sets are considered the PV is 67.6% at 25% FAR. The time 
warping algorithm results in PV of 60.1 with the first 5 data sets 
removed for each individual participant. When all data sets are 
considered PV of 49.0% is observed. Table 1 summarizes the PV 
results for both algorithms. It can be observed that that spectral 
analysis algorithm out performs the time warping algorithm by 
approximately 18%, with or without the training effect. Also, as we 
can see, the training effect and the warm-up effect make a 
significant difference in the accuracy of authentication. This could 
be problematic for applications where the user interactions are very 
infrequent; however, for a typical continuous haptic application, the 
training/warm-up effect can be eliminated by ignoring the data 
collected in the first few seconds. 



 
Table 1. Summary of PV results at 25% FAR. The spectral 
analysis algorithm shows better results than the time warping 
algorithm. Removal of training data improves the PV regardless 
of the algorithm. 

Training Effect  
PV With Without 

Time Warping 49.0% 60.1% 
Spectral Analysis  67.6% 78.8% 

 
The analysis of the HMM approach is a bit more cumbersome. 

Based on the states and outputs, it is possible to calculate HMM 
parameters for each participant. The Baum-Welch algorithm is used 
to estimate the HMM, � = (A, B, �), as described in [12]. It generates 
a new estimate �1 = (A1, B1, �1) such that: 

 
�i P(�1| O(n))� �i P(�| O(n)) 

 

This estimate is optimized via the EM algorithm using the entire 
training dataset for each participant. The estimate, �1, is taken as the 
HMM model for each participant. Each model is then tested against 
a test dataset to determine the probability of the dataset, P(O| �1), 
belonging to a specific model via the Backward-Forward algorithm. 
This algorithm calculates the probability of observing the partial 
sequence o1,…,ot and resulting in state i at time t: 

 
�i(t)=P(O1=o1, ... ,Ot=ot,Qt=i|�) 

 
P(O | �) is determined as a sum of the above probabilities 

determined recursively: 
 

P(O | �)=�i=1…N �i(T) 
 

This is usually represented as the log likelihood log(P(O| �)). 
Obviously, a good match score is a negative value close to zero.

0 0.5 1 1.5
0

5

10

15

20
Distribution of genuine comparison

Match score

# 
of

 g
en

ui
ne

 c
om

p

0 0.5 1 1.5
0

20

40

60

80

100

120

140
Distribution of imposter comparison

Match score

# 
of

 im
po

st
er

 c
om

p

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
EER= 22.348, PV= 0.784 @ 25

FR
R

FAR  
Figure 11. Biometric statistics for the spectral analysis algorithm. Upper left: distribution of genuine (within data from same individual) 
match scores. Lower left: distribution of impostor (between data from different individuals) matches scores. Right: FRR vs FAR 
calculated by varying the decision threshold. The line of identity is used to show the equal error rate (EER). 

 
A total of 4 participants’ movements were used for the purposes 

of the HMM analysis. As described already, each person performed 
the exact same maze 10 times, one trial immediately after the other. 
Each HMM is determined based on 6 datasets each with 6 output 
parameters (36 sequences of length 20). The models were tested on 
a test database of these 4 data sets per user of 6 output parameters 
(24 sequences of length 20 per user). Let SUM(LL) denote the sum 
of log likelihood values of the six parameter sequences for all test 
data of the user. After the HMM of each user is estimated, each 
parameter sequence’s log likelihood per test set is determined. Then, 
the sum of these parameter sequence log likelihoods is recorded. 
Hence, HMM of user 1 is tested against all data sets and it is 
expected that the highest log likelihood corresponds to data sets of 

user 1. A Single parameter HMM approach was taken to determine 
the HMM, as opposed to a multi-parameter HMM. In a single 
parameter HMM, a model is created for each user based on a 
specific parameter. For example, user 1 will have six separate 
models corresponding to each output parameter. The models were 
tested on the 4 data sets (4 sequences per user of length 20). HMM 
based on torque in the Y direction is shown in figure 12. The 
SUM(LL) is the sum of log likelihood values of torque in the Y for 
the test data set of a specific user when applied to a particular 
HMM. We can see that HMM of user 1, user 2 and user 3 have a 
high log likelihood value for their corresponding user data. 
However, HMM of user 4 is only within the top 2. 
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Figure 12. HMM based on torque in the Y direction. All users 
correspond to their HMM except user 4. 

The percentage of overall identification is shown in table 2 as the 
probability of correct verification (PCV). User 1 data is identified 
within the top 2 log likelihood score for all six parameters and 50% 
of the time it was the top 2. Both user 2 and user 3 had 66% top 2 
match and 50% top 1 match. The worst performer was HMM of user 
4, where the test data was only identified only by Torque Z within 
the top 1. 

 
Table 2 Percentage of overall identification using single 
parameter HMM within the top 1 and 2 

 User 1 User 2 User 3 User 4 
Top 2 100% 66% 66% 33.3% 
Top 1 50% 50% 50% 16.67% 

 
5. CONCLUSION 

This work investigated the possibility of automatic identification 
in Haptic systems. Our goal was to implement a simple haptic task 
which was instrumented to capture the actions of participants. These 
data were then analyzed to calculate parameters to identify the 
individual participants. This system was successfully implemented 
and tested, allowing us to evaluate the suitability of Haptic systems 
for this kind of identification. 

Our results are mixed. Naive algorithms appear to show 
relatively low PV for a simple maze test. On the other hand, more 
complex algorithms, such as spectral analysis, appear to show 
improvements in system performance, suggesting that more 
sophisticated approaches may be able to perform better. 
Interestingly, based on what was observed from the single parameter 
HMM, a few output parameters (torque in the Y direction) do show 
good log likelihood values leading to participant identification. But 
some others are inadequate and should probably be removed from 
the modeling. Still, the result was promising where three out of four 
users were on average identified to their models. Considering that 
this identification scheme is continuous and live, it is possible to 
carry out the identification process on data sets from different time 
frames, averaging the PVs over time to obtain even more accurate 
results. 

Another interesting observation was that in general, it seems that 
the spectral density approach outperforms the single parameter 
HMM approach. It would be interesting to see how a multi-
parameter HMM approach would perform in these situations. 

An important result was witnessed from the analysis of the data 
believed to relate to the training/warm-up effect. It was shown that 
PV increases significantly as users become familiar with the system. 
In the real world, it is expected that users will be trained in an 
operational haptic application. Nevertheless, this can be a 
disadvantage for haptic systems without trained users, or those 
where the user doe not frequently interact with the application.  

One major consideration is the application that was tested. This 
was a relatively simple maze application. In the real world, haptic 
applications are considerably more complex and produce more 
sophisticated data from which to extract identity information. This 
may make the process both more complex and more accurate, 
potentially improving the PV. 

Overall, our results suggest that haptic-based biometrics may 
indeed be possible, especially for trained users and specific 
applications. More work is needed to come up with more reliable 
and more accurate algorithms before such systems can be used in 
practice. We are currently investigating the problem from a purely 
statistical perspective: by analyzing the gathered Haptic data in 
terms of information content and relative entropy, without taking 
into account any authentication algorithm. We expect that this study 
should give us more information in terms of how to utilize collected 
Haptic data in order to distinguish between different users, which in 
turn should lead to more optimized algorithms for authentication.  
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