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Abstract 

 

Currently, almost all systems involve an identity authentication process before a user can access requested 

services; such as, online transactions, entrance to a secured vault, logging into a computer system, 

accessing laptops, secure access to buildings, etc. Therefore, authentication has become the core of any 

secure system; wherein, most of the cases rely on identity recognition approaches. Biometric systems 

provide the solution to ensure that the rendered services are accessed only by a legitimate user and no one 

else. Biometric Systems identify users based on behavioural or physiological characteristics. The 

advantages of such systems over traditional authentication methods, such as passwords and ids, are well 

known; hence, biometric systems are gradually gaining ground in terms of usage. We investigate the issues 

related to the usage of Haptics as a mechanism to extract behavioural features that define a biometric 

identifier system. In order to test this possibility, we design a Haptic system in which position, velocity, 

force, and torque data from the instrument is continuously measured and stored as users perform a specific 

task. We analyze the information content of the haptic data generated directly from the instrument’s 

interface. We then measure the physical attributes, such as force and torque that provide the richest 

information content pertaining to a user’s identity. Through of series of experimental work, we discover 

that haptic interfaces are more suited to verification mode rather than identification mode. Finally, we 

implement a biometric system based on Haptics.  

 

 

1. INTRODUCTION 

 
In general, biometric recognition systems use physiological and behavioural identifiers for recognizing 

individuals [1]. Such given identifiers need to meet requirements like Universality, Distinctiveness, 

Permanence and Collectability. In practical terms, additional issues should be considered: Performance, 

Acceptability and Circumvention [2]. These systems are based on pattern recognition methodology, which 

follows the acquisition of the biometric data by building a biometric feature set, and comparing versus a 

pre-stored template pattern. Depending on the application context, the biometric system could operate in 

two modes: identification or verification [2]. In identification mode, an attempt is made to establish the 

identity of an unknown individual; whereas, in verification mode, an attempt is made to verify the claimed 

identity of an individual. Put otherwise, identification systems respond to the query “who is this user?”, 

while verification systems respond to the query “is this user who s/he claims to be?”. Identification can 

only be established through biometrics, while traditional methods such as keys, smartcards, Tokens and 

personal Identification Numbers (PINs) have been used as methods of personal recognition for verification 

systems. The precision of such systems is reliant on the choice of biometric identifiers and also on the 

operational mode of the application. For accurate identity recognition, identifiers must be chosen so that 

they are unique for each individual. Conventional choices of biometric identifiers in use include writing 

style, hand geometry, iris, facial, DNA, ears, voice and fingerprint features among others. Recently, it has 

been shown that identity recognition based on human-haptic interactions is feasible [3] [4]. In this paper, 

we are interested in identity recognition based on human manipulations of the haptic interface PHANTOM 

Desktop™ Stylus [5] integrated in the Reachin system [6]. We use position, velocity, force, and torque data 



as biometric identifiers. This data was collected from the stylus as users solved a haptic-based maze 

application [3] and signed a virtual cheque based application [4]. 

The purpose of our analysis is to evaluate the information content of this data. Hence, we assess the 

uniqueness of each biometric identifier. To measure the uniqueness of identifiers, we calculate the relative 

entropy of different users’ biometric feature distributions with respect to the population distribution. Such a 

measurement reveals the information content of each feature. Our analysis shows that the information 

content of identifiers is variant among the users. Therefore, we propose the construction of entropic 

signatures to characterize both the way in which an individual is unique, and the magnitude of that 

uniqueness. We also evaluate the performance of haptic-biometric systems employing force and toque data 

to form and match biometric feature profiles, in order to distinguish the interaction mode that best suits 

haptic biometric systems. In addition we propose a complete biometric system based on our findings of the 

biometric data content and the suitability of the haptic interfaces as biometric mechanism. 

The remainder of this paper is organized as follows: in section 2 we provide a brief introduction to the 

world of haptics, while in section 3 we address the state of the art and technology related to our proposed 

research. In section 4 we develop an experimental framework for our study, and in section 5 we introduce 

the construction of a biometric system based on haptics using the physical parameters with the most user-

classificatory value, and we evaluate the system’s performance. The results are described in section 6 

where we also provide a direction for further work in this field. Finally, in section 7, we draw conclusions. 

 

2. HAPTIC SYSTEMS 

2.1. Introduction 
 

Haptics is related to the study of touch and the cutaneous senses. The word “Haptic’ derives from the Greek 

haptesthai, meaning ‘able to touch’. This word was introduced at the beginning of 20
th

 century by research 

work in the field of experimental psychology. Currently, such a term has brought many disciplines, 

including biomechanics, psychology, neurophysiology, engineering, and computer science to meet for the 

important aim of contributing to the study of human touch and interaction with the external environment. 

This concept is mainly associated with active tactile senses, such as those of our hands. These senses can be 

categorized in several ways and they form a link to the kinesthetic senses. By using special input/output 

devices (joysticks, data gloves, or other devices), users can receive feedback from computer applications in 

the form of felt sensations in the hand or other parts of the body [22]. The development of haptics has been 

distributed in several research fields, but especially significant contributions have surfaced from particular 

domains. First, psychophysical experiments provided the contextual clues involved in the haptic perception 

between the human and the machine. Second, the area of tele-operation and tele-presence provided the 

practical essence of this new technology. 

 

2.2. Applications 
In combination with a visual display, haptics technology can be used to train people for tasks requiring 

hand-eye coordination, such as surgery and handling hazardous substances. It can also be used for games 

that connect the visual experience to the cutaneous senses. For example, you might play a “haptic paddle 

pong game” with another computer user somewhere else in the world. Both of you can see the moving ball 

and, using the haptic device, position and swing your pong racket and feel the impact of the ball [23]. By 

gaining access to the perceptual information of the objects such as shape, weight and object stiffness 

through the haptic display, the computer generation world is extended to simulate real applications. 

 

Therefore, the application spectrum is quite vast, and its trend of expansion is expected to continue. 

Applications of this technology have rapidly spread to devices applied to graphical user interfaces (GUI’s), 

games, multimedia publishing, scientific discovery and visualization, arts and creation, editing sound and 

images, vehicle industry, engineering, manufacturing, tele-robotics and tele-operation, education and 

training, medical simulation and rehabilitation. 

 

Consequently, haptic research and development has been focused to design and evaluate several prototypes 

of different characteristics and capabilities for use in virtual environments. Recently some of these 

prototypes have become commercially available in the market. Haptic interfaces are becoming part of 

research studies being conducted in many disciplines such as neuroscience, robotics, virtual reality, and 



medicine and although they are not yet as commonplace a tool as the computer itself is today in our 

environment, they are gaining ground in terms of usage in real-world applications, and, like any other 

system, authentication and/or verification of users becomes a necessity. Hence, in this work we set out to 

create such authentication and verification system for applications that use haptic Tools and instruments. 

 

 

3. RELATED WORK 
Using haptics as a mechanism for identifying and verifying the authenticity of users is a novel avenue for 

research in haptics, which involves disciplines such as traditional behavioural biometric systems, 

physiological studies and haptic perception. It has been shown that haptic-based biometrics can be feasible 

[3][4]. Biometrics is a wide field of study which can be related with disciplines that fall into behavioral 

approaches such as, keystroke dynamics, speaker recognition, gait analysis, signature verification and 

physiological methodologies. Among the most popular of these approaches are iris recognition, 

fingerprints, retina scans, hand and ear geometry, DNA analysis, and palm prints. Our methodology is 

related to dynamic signature verification and keystroke dynamics, due to the specification of the haptic-

based applications that we implement. The initial motivation for the use of these methods is that there are 

special features that define, for example, a Handwriting human skill, which consists of artificial graphic 

marks on a surface. In addition, its purpose is to communicate something based on a standard that 

represents the content not only in terms of language, but also by personalizing the characters that represent 

the information content [7]. Several types of analysis, recognition, and interpretation can be associated with 

handwriting [8] [9]. Consequently, numerous methods and approaches have been proposed in this domain 

[10] [11]. However, due to the technology available, this research was initially focused on static variables 

that were not directly associated with a function of time. On the other hand, time-based comparison can be 

performed by Dynamic Signature Verification (DSV), which analyzes different features such as the shape, 

speed, stroke, pen pressure and timing information of a test signature during the act of signing. This 

requires the extraction of writer-specific information from the signature signal, regardless of its handwritten 

content [12]. Several approaches have been proposed to provide favourable conditions for the deployment 

of dynamic signature verification (DSV) systems [13], [14]. An idea associated with DSV is the use of 

haptic devices to provide users with force feedback information on the motion and/or the force to simulate 

a realistic environment with the real world. Based on a virtual environment with force feedback, the haptic 

parameters output from the devices such as force, velocity and position have not been exploited 

exhaustively yet [15]. Guerraz et al in [15] have presented a framework for active haptic evaluation using 

parameters coming directly from the haptic device. Their work is focused on the quantitative approach of 

measuring physical parameters as important threshold to validate the haptic user interface or experiments 

involved with haptic devices. In this paper we are using and evaluating physical attributes in order to build 

a biometric identifier to authenticate the identity of a user in a haptic system environment, helping us to 

understand the human behaviour when interacting with machines. In addition to identifying a user, we also 

propose approaches for verifying a user: a concept not explored in the related literature. 

 

4. MODELING THE INFORMATION CONTENT OF HUMAN-HAPTIC 

INTERACTION 

 

 

4.1. General Experiment procedure 
Every day, people interact with different devices, such as checking e-mail messages via the computer, 

driving a car, or using mobile phones. These devices have become part of our daily environment. It is 

probable that almost everybody has a unique way of opening a door, typing a massage, etc. In order to 

discover such patterns, we designed a set of experiments to conduct a simple hapto-task operation. First, 

one must realize that the data offered in a haptic environment is much broader than that of the traditional 

authentication tools, and therefore can be used for more elaborate authentication. Haptic systems can 

provide us with direct measurements of physical attributes such as force, angle, torque, and position, from 

which we can indirectly measure speed, pressure and acceleration of the user’s interactions. Second, all of 

the above features are provided in a 3D space covering width, height, and depth. We constructed a haptic 

maze application built on an elastic membrane surface, as shown in figure 1a. The user is asked to navigate 



the stylus through a maze, which has sticky walls and an elastic floor. Such a task allows many different 

behavioural attributes of the user to be measured, such as reaction time to release from a sticky wall, the 

route, the velocity, and the pressure applied to the floor. Referring to figure 1a, the user is required to begin 

at “enter” and follow a path to “exit” without crossing any walls. 

 

4.2. Experiment Setup 
The experiment was conducted by introducing a total of 22 different participants to the haptic interfaces 

and by providing a brief explanation about those devices and the purpose of the experiment. Each person 

performed the exact same maze 10 times, one trial immediately after the other. Participants were given the 

opportunity to practice the maze before the trials are actually recorded, in order to mitigate the warm-up 

effect. Participants’ movements were captured for the purposes of analysis. Since there is only one correct 

path through the maze and the ability to solve the maze was not being judged, we ensured participants 

knew how to correctly solve the maze in advance. 

 

 
 

Figure 1 a. Screenshot of a user navigating the maze. The stylus path is indicated with the blue line. The picture besides 

shows the color codes of the Maze Recording Process 

 

 
Figure 1 b. The PHANToM device used as the haptic instrument. 



 

Therefore the maze was used to capture psychomotor patterns of each individual. The haptic software 

application was developed in a combination of Python script code and VRML-based scene graph module 

using the PHANToM haptic interface [5] which is shown in figure 1b.. The 3D environment was defined 

by using VRML-node-fields approach, while Python provided the procedural processes to handle certain 

events, and to output the data to a file. The haptic stimuli are provided by accessing the Reachin API [6], 

which handles the complex calculations for the touch simulation defined in the haptic rendering loop and 

the synchronization with graphic rendering.  

As can be seen in figure 1, the process starts with recording data when the user first makes stylus contact 

within a reasonable radius of the starting point of the maze, marked as “enter”. The trial ends when the user 

reaches the end point of the maze marked as “exit”, at which point the application stops recording data (the 

maze changes colour to indicate this). The software application is able to record two types of 3D world 

coordinates: the weighted-position and the device position. The weighted-position is calculated as an 

average of the pen’s real location versus its position on the maze if it was not elastic. The device position is 

a format for expressing the real position of the pen. The data files also record the force and torque applied 

by the pen on the maze as 3D vectors, as well as the pen’s angular orientation. Furthermore, all of the 

aforementioned physical attributes are recorded as a function of real time. 

 

A second application was implemented with the target to remove any mental interference that could 

influence the performance of a user. This application, essentially a cheque signing application, allows for 

the extraction of human patterns observed during a human-computer interaction session. In order to 

discover such patterns, the application asked users to perform their hand written signature on a virtual 

check. It was built on a rigid membrane surface where the user was asked to perform their signature by 

navigating the stylus. The pen’s position, force exerted, and velocity are computed from the haptic-based 

application to provide input for obtaining the user’s patterns. 

 
Figure 2: Screenshot of a virtual check application. The user is required to perform his/her hand written signature by 

using the haptic stylus in the area selected 

 

Sixteen subjects, 4 females and 12 males, took part in this experiment. Most subjects were unfamiliar with 

haptics; therefore, they were first familiarized with the devices by way of several demonstrations where 

they subsequently became accustomed to the virtual environment. Written instructions were prepared to 

explain the task requirements. The task of signing the cheque was only a subsidiary exercise within a larger 

program (game). This is in contrast to the maze application, where users had only one objective. The idea 

of placing the cheque within a larger application was implemented to lessen the test anxiety. 
 

 

4.3. Haptic Data Collected 
The data source created a database repository represented by a flat files system. The data files recorded the 

3D world coordinates of the pen’s position, force exerted, and angular orientation. Indirectly, other features 

were generated such as velocity, acceleration and pressure. These features were computed from the haptic-

based applications, in order to provide the input for obtaining users’ patterns. Table 1 shows an example of 

some of the physical parameters obtained from the output of the haptic devices. 



 

Trial Timestamp Position X Position Y … Force X 
(N) 

1 0 0.23344 0.56768  0.00456 
1 … … …  … 
1 0.0123090 0.37676 0.98989  0.03767 

 
Table 1: Data describing physical characteristics of the human-haptic interaction 

 

Additional features were also calculated from the output files, such as mean value, standard deviation and 

maximum and minimum values of each of the original physical attributes. The additional features provide 

an insight about the content of the haptic data. A set of ten trials was conducted by each participant; 

however, missing data from some of them was detected. Based on that set we could afford to discard one or 

two trials to keep a homogenous number for each participant, with which we form the feature vectors. 

 

5. Building a Biometric Identifier 
In this section we discuss the rationale behind the design and implementation of our biometric identifier 

system. 

 

5.1. Haptic System State Vectors and their Distribution 
The first step to identify measurable quantities that make users distinct from each other is to characterize 

the state of a haptic system. First, by capturing different physical attributes such as velocity (v), force (F), 

torque (T), and angular orientation of the stylus (θ), we built a vector r defined as an instance of the state 

vector which in the more general case contains m features described as rm = (vx, vy, vz, Fx, Fy, Fz, Tx, Ty, Tz, 

θ), where the subscripts x,y,z indicate spatial dimensions. For example, vx is the projection of the velocity 

vector onto the x axis. In order to evaluate the information content of specific features, we consider state 

vectors of a reduced dimension. For instance, in the analysis of the information content of velocity data, we 

consider state vectors of the form r = (vx, vy, vz). Due to each state vector, r provides a quantitative 

characterization of the system’s features at some moment in time. Therefore it is possible to define the state 

of the haptic system by the collection of such vectors. In terms of a dynamic system, there exists a set S of 

all state vectors with a finite, non-zero probability of measurement. The definition of S assumes the 

existence of a probability distribution function: f: S -> (0, 1]. Via the formulation of f, we define the 

probability of measuring a system to be in some unique state u, as: f(r = u). 

 

5.2. Relative Entropy 
In order to investigate what variables involved in the state of the haptic system do not share information in 

order to apply such values to our a biometric system, we followed the measurement approach between two 

distributions called relative entropy. The relative entropy between probability distributions belonging to 

inter-person p(r) and intra-person q(r) on an entire population S is given by: D (p||q) = ∫ 
p(r)log(p(r)/q(r))dr. [16] . The relative entropy or Kullback and Leibler divergence, we can think of D(p||q) 

as describing the ‘distance’ of q from p . The term ‘distance’ is not intended to be taken in its most literal 

sense, since D (p||q) is not a true metric and also is not symmetric. Indeed, D (p||q) ≠ D (q||p) in the general 

case. From an information theory viewpoint, we interpret D (p||q) as a measure of how much information is 

contained in the assumption of a distribution p on S, when the distribution is actually q on S [17]. By the 

definition of D (p||q) : D (p||q) = 0 ���� p = q . This result indicates that no information is gained by correctly 

assuming that the distribution is p.  

The choice of logarithmic base used in the integration of p(r)log(p(r)/q(r))dr corresponds to the units used 

to measure information [18]. In our study, we choose log2, yielding information measurements in ‘bits.’ 

This choice suits the potential application of our findings to a system where information is also measured in 

bits. 

 

5.2.1. Analysis of Haptic Information Content 
 

For a given biometric feature, we average the information content for each individual user as shown in 

figure 3. On average, certain features are more informative than others. Indeed, using force as an identifier 



would, on average, reveal the most information about a user (15 bits); whereas, using xy-Torque would 

reveal the least amount of information (3 bits).  
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Figure 3: Average Information Content of Biometric Features 
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Figure 4: Standard Deviations from Mean Values of Information Content 

 

However, the amount of information in features is extremely variant amongst the different users (See 

Figure 4). The most information found in any feature was in User 9’s angular orientation distribution (142 

bits). The least amount of information was found in User 14’s xy Torque distribution (< 1 bit). The 

standard deviations from mean values of information content suggest that choosing a single identifier 

would not be the most effective approach in identifying individuals. 

 

 

5.3. Construction of Biometric Identifier 
The Gaussian distribution is a suitable model of quantitative phenomena in the natural and behavioural 

sciences. Additionally, the normal distribution maximizes information entropy among all distributions with 

a known mean and variance; making it the natural choice of the underlying distribution for data 

summarized in terms of sample mean and variance [21]. Therefore, we conducted an analysis to investigate 

the content of a biometric feature representation of a single individual with respect to the feature 

distribution for the population. 



 
Based on the average information across all population in the haptic system the mean vector, µ, and 

covariance matrix, cov, were used to characterize a Gaussian probability distribution f on S. For an 

arbitrary dimension ‘n’ of all r ε S, µ = (E[r1], E[r2],…, E[rn]) and covij = cov(ri,rj) = cov(rj,ri). If we define 

two Gaussian distributions p and q on S then the relative entropy measured in bits is: 
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wherein, subscripts refer to the distributions p and q, and I is the identity matrix of rank n. [17] 

 

5.3.1. Feature Distribution 
To evaluate the uniqueness of a user’s biometric features, we compare the probability of measuring that 

user’s interaction to be characterized by r vs. the probability of measuring any user’s interaction to be 

characterized by r. This comparison is done by calculating the relative entropy between the general 

(interpersonal) biometric feature distribution, p, and the specific (intra-personal) biometric feature 

distribution, q. D(p||q) measures the information content of the assumption that all individuals will have a 

feature distribution p, when indeed each individual has their own feature distribution q.  

To construct the general p distribution, we fit the measurements of all users’ identifiers to a Gaussian 

distribution. For each individual user, we construct a different feature distribution q. We formulate q by 

fitting of measurements of a single user’s identifiers to a Gaussian distribution. We use 21346 data points 

to construct the interpersonal distribution for each biometric feature. These points are collected from 22 

different users’ completion of the haptic-based maze application. To construct the intra-personal 

distributions, we consider data from the last 5 trials of a user completing the maze. In the data collection 

process, each user completed the task 10 times. We choose to compile intra-personal distributions based on 

the last 5 trials completed by the user, to mitigate the warm-up effect [3]. 

 

5.3.2. Entropic Signatures 
The information content of biometric features differs amongst users of the haptic system, as evident from 

figure 5). As D (p||q) = 0 ���� p = q, and considering that all users had non-zero information content of all 

features, our analysis confirms that the biometric identifiers are at least somewhat unique to an individual. 

Our measure of that uniqueness is D (p||q). Therefore, we can characterize the identity of an individual by 

how unique their features are. The characterization takes the form of an entropic signature. From a 

statistical perspective, an entropic signature is a vector s = (D (p1||q1), D(p2||q2),…D(pn||qn) ), where 

subscripts denote the different biometric identifiers. By its definition, s characterizes the uniqueness of each 

individual’s various biometric features. From a geometrical perspective, an entropic signature can be 

modeled as a curve in the plane. Figure 6 presents a small collection of entropic signatures obtained from 

10 users.  

We propose the following analogy: users interact with the haptic system in a similar way to how people 

sign their name. The scale and size of each letter in a handwritten signature is analogous to the magnitude 

of each D (pi||qi) in an entropic signature. The shape of letters in a handwritten signature is analogous to the 

distribution of information content in an entropic signature.  
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Figure 5: Relative Entropy of User Features. 

 

A biometric recognition system based on handwritten signatures would operate differently from a system 

based on entropic signatures. The underlying assumption of identity recognition based on handwritten 

signatures is that each signature is unique. From this assumption, the system makes a geometrical analysis 

of a sample of handwriting. A biometric recognition system based on entropic signatures would operate 

differently. The uniqueness of the signature features are evaluated, not assumed. So instead of evaluating 

geometry based on an assumption of uniqueness, this system would evaluate uniqueness based on an 

assumption of geometry. The geometric assumption translates into the statistical assumption that one can 

indeed construct s for any individual. 

 

  

 
 

Figure 6: Sample entropic signature of User 1 (left). Sample entropic signatures of different users (right). 

 

 

5.4. Construction of Biometric Identifier: IDENTYFICATION VS VERIFICATION 

 
We are interested in identity recognition and/or verification based upon measurements of the human-haptic 

interaction. The fundamental assumption of our study is that each person interacts with haptics in a unique 

0

5

0

50

0

20

0

1

0

10

0

20

0

20

0

100

200

0

5User 1

0

10

20

30

40

50

60

70

1 2 3 4 5 6

Biometric Feature

R
e
la

ti
v

e
 E

n
tr

o
p

y
 [

b
it

s
]



way. As already mentioned, measurements have been taken from a small group of users interacting with the 

PHANTOM Desktop Stylus. These measurements are of position, force, torque, and time. In the previous 

section, we stated that, on average, force and torque measurements contain the most information. In 

general, biometric systems are of two varieties: identification and verification systems [2][19]. The former 

is designed to establish the identity of an unknown individual: the system recognizes an individual by 

searching patterns of all users in database for a match whereas. The latter is designed to verify the claimed 

identity of an individual: the system validates an individual’s identity by comparing the captured biometric 

data with its own biometric pattern or patterns which have been stored in the database previously. Put 

otherwise, identification systems respond to the query “who is this user?”, while verification systems 

respond to the query “is this user who s/he claims to be?” As we will show next, our results indicate that 

haptic-biometrics is best suited for verification, where it achieves much better performance compared to 

identification. 

 

5.5. Methodology 
The precision of a biometric system is reliant on the choice of features used to form biometric profiles. For 

accurate identity recognition, features must be chosen so that they are unique for each individual. Relative 

entropy calculations allow us to identify such features embedded in raw human-haptic interaction data. 

Using signal processing techniques, we extract these features from the raw data to form biometric profiles 

of haptic users. Next, we employ pattern recognition methods to authenticate the identity of these users. 

Authentication decisions are made by measuring the match score between two profiles. A predetermined 

threshold value places an upper bound on acceptable match scores. Our haptic-biometric system is 

structured into modules corresponding to the different phases of this process, as shown in figure 7.  

 
 

 
Figure 7: Overview of the proposed Framework 

 

5.5.1. Feature Extraction 
There exists a vast array of possible features that we can extract from the raw human-haptic interaction 

data. To maximize the precision of our biometric system, we choose to only extract features that are the 

most indicative of a users’ identity. The relative entropy measure provides us with a mechanism to assess 

the information content of all features; thus, calculations of relative entropy allow for us to evaluate the 

user-classificatory worth of the different features. As we discuss in section 5.2.1, force and torque data 

contain the most information pertaining to identity. Therefore, we choose to extract features from raw force 

and toque signals. This choice is made in order to maximize the variance between the profiles of different 

users. These biometric profiles are formed, as we discuss next, by processing the rich force and torque data. 

 

5.5.2. Signal Processing: Biometric Profile 



The function of the signal processing sub-system (SPS) is to form the biometric profile of a user given the 

input of raw force and torque data and the decision-making process carried out in the relative entropy 

analysis. The format of the raw data is a set of six-dimensional state vectors obtained via frequent 

measurements of the haptic interaction. These state vectors provide quantitative snapshots of the 

interaction. The rate of sampling is ~ 15 milliseconds. For each dimension of the state space, there is the 

associated biometric feature; i.e., ‘force in the z direction’. We consider measurements of different features 

as separate signals. To process these signals with the most rich content and asses them in order to quantify 

the shared information between two distributions; we first apply a hamming window of length 256. 

Subsequently, we take the fast Fourier transform of each windowed signal. Hence, the input data to the SPS 

is transformed into a 256x6 matrix in frequency domain, whose 6 columns are associated with pairwise 

distinct biometric features. We refer to this matrix as the biometric profile. 

 

5.5.3. Profile Recognition 

 
A biometric system is essentially a pattern recognition system that operates by acquiring biometric data 

form an individual, extracting a feature set from the acquired data, and comparing this feature set against 

the template set in the database. 

 

5.6. Classifier Design 
In this section we describe the rationale behind our classifier design. 

 

5.6.1. Quantitative Score 
The sample vs. template comparisons produce a quantitative match score. The match score between two 

biometric profiles d1 and d2 is calculated using:  

MS = ln{ ∑∑
= =

6

1

256

1i j

( ||d1,i,j|| - ||d2,i,j|| )
 ^2

 }.  

In the above equation, ln denotes the natural logarithm and ||d1,i,j|| denotes the complex norm of the i,j
th

 

element of biometric profile 1. The summation indices run to the number of features (6), and the length of 

the windowed signals (256). By definition, a low MS implies a small difference between two profiles, 

while a high MS implies a large difference. Essentially, the MS measures the separation between two 

biometric signals.  

 

5.6.2. Decision Sub-System 
The decision sub-system (DS) serves to either accept or reject a user. The identification DS accepts a user 

by establishing their identity, and rejects a user if this establishment cannot be formed. To identify a 

biometric profile, the match score between that profile and one of the template profiles must be less than or 

equal to some upper bound τ. The performance of the identification system is variant with the choice of this 

upper bound. If τ is chosen to be large, lots of imposters will match with template profiles; whereas, if τ is 

chosen to be too small, some genuine users will fail to match with their template profile, as shown in Figure 

8. 

 



 
 

Figure 8: Match scores less than τ2 would allow access to a significant portion of imposters; whereas, Match scores less 

than τ2 would deny access to a significant portion of genuine users. 

 

By sending many raw signals through the SPS and the PRS, we evaluate the system performance. 

Comparisons between profiles of the same user yield a ‘genuine’ MS distribution. Comparisons between 

dissimilar profiles yield an ‘imposter distribution.’ For different values of τ, we calculate the FAR (false 

accept rate) by integrating the imposter distribution from zero to τ. We calculate the FRR (false reject rate) 

by integrating the genuine distribution form τ to infinity. The set of points FRR (τ), FAR (τ ) form the ROC 

(Receiver Operating Curve). 

 

The verification DS operates differently. Using the pre-stored template profiles, we determine a different 

threshold Match Score for each user. To calculate a specific threshold for a user, we first construct a 

genuine distribution based only upon comparisons of this user’s template profiles. Then, we form an 

imposter distribution by comparing all dissimilar user profiles to this user’s profiles. We construct several 

sets of threshold values where the FAR rate is constant amongst the users; hence, allowing the construction 

of the ROC. 

 

5.7. Results  
In this section, the results of our trials and analysis are presented. 

 

5.7.1. Spectral Analysis 
Our methodology requires the spectral analysis of biometric signals produced by the SPS. We assume that 

two signals from the same user will have a closer match when compared with the signal from another user. 

Our findings support this claim; however, due to the time-variability of an individual’s biometric profile, 

the like-signals are not perfectly matched, as illustrated by Figure 9.  
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Figure 9: window #1 and window #2 are from the same user; whereas window #3 is from a different user. 

 

5.7.2. Identification Mode 
As mentioned earlier, 22 different participants completed the haptic maze application 10 times. Our 

analysis shows that the probability of successful identification (PV) depends on which sections of the 

windowed signals are used in the calculation of MS. PV is calculated as 1 – FRR, and figure 10 shows the 

variance of PV with signal section.  

At 25% FAR, PV was highest for data from the 6
th

,7
th

,and 8
th

 trials completed by the users. The genuine 

and imposter distributions drawn from these data sets are shown in figure 11. The analysis of these trials 

through window 8 (see figure 12) allowed for the highest PV @ 25% FAR. The ROC curve using data from 

the 7
th

,8
th

,and 9
th 

trials is shown in Figure 11.  

 

PV also depends on the length of the hamming windows that are applied to the raw data. By doubling the 

length of the window, PV improves from 71.2% @ 25.5% FAR to 75.5% @ 24.7% FAR. Despite the 

improvement of PV with an increase in window size, one cannot simply choose an arbitrarily large window 

size, due to the finite length of a raw signal. In the cases where the length of the window exceeded the 

length of the raw signal, the signal was padded with zeros. 
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Figure 10: Probability of Verification seen through different windowed signal sections. 

 

  
Figure 11: The imposter (left) and genuine (right) match score distributions from profiles constructed from trials 7,8 and 9 of the maze 

test. The genuine distribution is bimodal, which shows the significant inconsistency certain users have between their different profiles. 

 

 

 



 
Figure 12: ROC for the identification system based on 3 trials from the maze tests seen through window 8. The line of 

identity is used to show the equal error rate of (EER) ~ 27%. 

 
 

The Data from the virtual cheque signatures was also analyzed as input to an identification system. Each of 

14 users signed their cheque 9 times. Using the samples taken from the first 8 trials, PV was calculated as 

50% at 25% FAR. By removing samples from the first 4 ‘warm-up’ trials, PV increased. This trend 

continued as shown in Figure 13. 
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Figure 13: The probability of successful identification as a function of the dataset used for testing. 

 

5.7.3. Verification Mode 
The identity verification system is more precise than the identification system. With raw data obtained from 

human interactions with the maze application, we form three template profiles for each user. The 

aforementioned templates are generated using data from the seventh, eighth, and ninth trials completed by 

each user. We then use data from trials six and ten to create sample profiles, in order to make comparisons 

against the templates. The test results from trial ten were more accurate than the test results using samples 

from trial six. This agrees with the notion that users behave more consistently as they become more 

familiar with using the haptic application.  

 



In verification mode, we integrate additional features into the biometric profiles: total time taken to solve 

the maze, and average angular orientation of the stylus. The system accepts a user claiming to be X, if their 

biometric profile meets the following criteria: (1) the spectral analysis match score (with template X) is 

below a predetermined user-dependent threshold, (2) the total time taken to solve the maze no more than 

26.4% different than the average of times recorded in the X’s template, and (3) the average angular 

orientation is no more than 20% different than that of the X’s template. Using test samples gathered during 

trial 10, the system performance is evaluated: PV = 95.4% @ 4.5% FAR; moreover, the equal error rate of 

the system is 4.5%. 

 

When presented with feature vectors characterizing users’ interactions with the virtual cheque, our 

verification system performance is variant with the methodology chosen for match score generation. 

Template profiles are formed using each user’s first five signatures, and sample profiles are created using 

the remaining four signatures. Using a spectral analysis approach, the percentage of the equal error rate of 

the system is quite high: 18.8%. This result motivates us to propose two different methods for signature 

verification, among which is dynamic time warping, whose successful application to dynamic signature 

verification is well known. 

 

The dynamic time warping algorithm produces a match score between two biometric profiles by computing 

the minimum cost of aligning two sets of time-series measurements. We use two-dimensional time-series 

position data to characterize the virtual signature, and thus for use in the dynamic time warping 

calculations. The identity of a user is verified by the system if their sample signature produces a match 

score, less than a predetermined threshold, with at least two of the associated template signatures. The 

performance of dynamic time warping supercedes that of spectral analysis, as depicted in Figure 14. We 

also take another approach is towards virtual signature verification, where the match scores are produced 

via a simple calculation of the Euclidean distance between the 2
nd

 and 3
rd

 virtual 3D world coordinates of 

template and sample signatures. The results of employing this method for user verification are quite good, 

considering its simplicity. These results are also depicted in Figure 14.  

 

The false accept rates shown in Figure 14 are generated by the acceptance of ‘random’ forgeries. A random 

forgery is a signature that is falsely verified, despite the fact that no such verification was intentionally 

sought. We also evaluated the false accept rates generated by ‘skilled’ forgeries – intentionally fraudulent 

submissions. These skilled forgeries were made using, as a visual reference, handwritten signatures of five 

participants who signed the virtual cheque. At an operation level of 97.0% PV, the Euclidean method 

falsely accepted 20% of the skilled forgeries. Using dynamic time warping, 26% of the skilled forgeries 

were accepted at an operation level of 93.8% PV. 

 

 
 



Figure 14: 

 

Receiver Operating Curves depicting the performance of several verification algorithms. The ‘Euclidean’ method allows 

for the highest (98%) PV at 25% FAR; however, the dynamic time warping algorithm is more reliable at low FAR operating levels. 
 

6. CONCLUSIONS and FUTURE WORK 
One distinct advantage of using relative entropy as a measure of biometric feature uniqueness is that it 

accounts for both the mean and variance of a distribution. Analyzing the means and variances separately, 

using a first order statistical approach, cannot characterize uniqueness in the same way as D (p||q). For 

example, consider the velocity distributions of the users. The magnitude of the mean velocity is directly 

proportional to the variance [2]. Put otherwise, the user with the fastest mean velocity exhibited the most 

variability in their behaviour. On the other hand, the user with the slowest mean velocity exhibited the least 

variability in their behaviour. It turns out that we get more information from the slower user. The slow 

user’s behaviour is a more consistently characteristic; hence, a higher level of relative entropy exists 

between that user and the population. Suppose that two users have the same mean velocity. Then, from a 

first order statistical perspective, they are identical users. However, if the variance of user A’s speed is 

greater than and the variance of user B’s speed, more information is contained in user B’s velocity 

distribution. In this case, user B is more unique than user A, and so we get more information from the 

behaviour of user B. 

 

The results of our study suggest that haptic-based biometric systems are best suited to verification 

applications. At 25% FAR, the PV of our maze-based identification system was at best 75.5%, while the 

PV of the verification system was at best 95% at 4.5% FAR. The equal error rate of the identification 

system was 27%, compared to the 4.5% EER of the verification system.  

 

The majority of conventional biometric systems (iris scanners ,voice recognition, fingerprint/hand 

geometry, etc) can only assure that the correct user is present at the time of login. Indeed, such systems 

perform much better than the haptic identification systems studied in this report [20]; however, after a user 

logs in, these systems have no way to detect if the correct user is still present. The haptic verification 

systems overcome this difficulty. During the usage of the haptic application, our haptic-biometrics system 

can determine continuously and as needed whether the user who is using the system is still the user that 

originally logged in. This operation is applicable to high-security environments, where each manipulation 

of the system would ideally be followed by identity conformation/rejection. 

 

We also believe that the haptic biometric system can be improved by incorporating an adaptive feedback 

between the feature extraction and feature selections process. Adaptive feedback can be developed based 

on the nature of the requirements of the haptic based application but also by the preliminary analysis from 

the relative entropy approach. 
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