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ABSTRACT 
 
 

 

 

Electrical Impedance Tomography (EIT) is an imaging technique which calculates the 

conductivity distribution within a medium from voltage measurements made at a series of 

electrodes on the medium’s surface. Unfortunately, the electrodes can become detached 

or poorly connected, such that the measured data cannot be used. This thesis presents an 

automatic approach to detect such erroneous electrodes via the image reconstruction 

model. 

 

The method calculates an estimate of the data at an electrode, based on the measurements 

from all other electrodes. In order to detect an erroneous electrode amongst N electrodes, 

all sets of N-1 electrodes are tested, and the set with the best match between 

measurements and estimate is identified as the one which excludes the erroneous 

electrode.  

 

Tests performed on experimental data for 2D EIT showed similar classification to those 

made by a trained user. A detection parameter PER is developed, and a detection 

threshold of -22 ± 2 dB is recommended based analysis of simulated erroneous data. 

Extension of the method into 3D EIT showed similar results as that of 2D EIT. 
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Chapter 1 

1 Introduction 
In medical imaging, as well as in several other fields, there is interest in being able to 

“see inside” objects – to view the internal structure of a medium. Typically, this is 

accomplished using measurement devices that introduce energy and measure its 

interaction with the medium. For example, the chest radiograph uses X-rays to image the 

lungs. Similarly, Magnetic Resonance Imaging (MRI) provides 3D images of tissue 

based on the interaction of radio frequency energy with the hydrogen in the body, 

allowing imaging of the concentration of water. This thesis is concerned with Electrical 

Impedance Tomography (EIT), a technology to measure the internal impedance 

distribution using surface measurements. Electrical current is applied to the medium and 

the voltage at the surface is measured using electrodes; using this information, the 

measured voltage, injected current and geometry of the medium are then used to 

determine the impedance distribution. Such technologies have widespread applications, 

such as determining flow and contents of pipes, detection of land mines (Church et al, 

2001) and measurement of organ function of the human body.  

 

Currently, the most common use and research focus is for medical applications: to 

measure organ functions in the human body. This chapter explores the feasibility of EIT 

technology in clinical applications and compares it to other medical imaging 

technologies. Based on this background information, the goal of the thesis is discussed in 

the last section. 
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1.1 Clinical application of EIT 

Medical imaging technologies may be classified using two types of imaging: anatomical 

imaging and functional imaging. Anatomical imaging systems can identify the location 

and shape of an organ; examples of such systems are Computed Tomography (CT) and 

Magnetic Resonance Imaging (MRI). In functional imaging, the aim is to measure the 

physiological processes, and the requirement for a high resolution image is much less; 

examples are Positron Emission Tomography (PET), angiography, and EIT. 

 

Even though EIT images do provide the location of the organs, they cannot identify 

structure due to their low resolution. However, EIT is able to perform functional imaging 

for physiological process that causes change in impedance, such as those associated with 

fluid and gas movement in the body. Hence, blood or fluid circulation, respiration and 

digestive system activity can be imaged using EIT technology.  

 

This thesis is especially interested in applications of EIT to study air and blood flow in 

the lungs. The conductivity of both air and blood contrasts with that of the surrounding 

tissues, where blood is more conductive than air. For example, EIT can help identify 

changes in conductivity pattern caused by pulmonary diseases. These diseases are 

classified as restrictive or obstructive: restrictive diseases decrease the tidal volume 

capacity of the lungs, and obstructive diseases increase resistance to airflow affecting the 

rate of change in the tidal volume. For example, a restrictive disease such as pulmonary 

edema is due to fluid accumulation in the lung. Several studies have shown EIT to be 

able to detect the increases in lung conductivity due to the progression of edema (e.g. 

Adler et al., 1997). These results can aid clinicians in early diagnosis, treatment or 

monitoring of the pathology.     
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1.2 Comparison with other medical devices 

According to Leksell (1991), an ideal measurement device has the following parameters: 

accuracy, repeatability, sensitivity, and minimal invasiveness. In addition, the device 

ought to be inexpensive and non-cumbersome. These criteria cannot be fulfilled by one 

single medical device and usually some compromise is required. In this section EIT is 

compared with two anatomical imaging systems, chest radiography and Magnetic 

Resonance Imaging (MRI), and one functional imaging system, Positron Emission 

Tomography (PET).  

 

Chest radiography is a plain film x-ray of the chest. It has minimal cumbersomeness, 

minimal invasiveness and low cost. It allows identification of the pathologies from the 

characteristic of the image by trained clinicians but it cannot be used for monitoring since 

excessive exposure to radiation is harmful to patients.  

 

MRI provides 3D images of tissue based on the interaction of radio frequency and water 

concentration of the body. MRI has the ability to measure only the lung fluids of interest 

while rejecting the contribution from blood fluid. The cost and cumbersomeness of the 

apparatus do not allow for use in patient monitoring.  

 

PET generates a 3D image of the distribution of a radioactive tracer. By selecting a 

particular tracer it is possible to measure blood volume, intravascular volume, and the gas 

volume. But again the cost and cumbersomeness of the technique prevents it from 

becoming a monitoring device.   

 

Even though EIT has low resolution images it shows significant promise as a functional 

lung imaging system. It is non-invasive and minimally cumbersome making it desirable 

for patient monitoring. In comparison to MRI and CT, it is inexpensive, requiring a small 

measurement system with relatively small computing power. The technique is capable of 

producing a low resolution cross section of the thorax in 2D; and in 3D application it is 

able to produce an internal image of a large portion of the thorax. Figure 1.1 shows the 
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cross sectional image of human lungs during quiet breathing. The change in impedance 

near the center of images is indicative of heart activity. Figure 1.2 shows change in 

impedance in the heart area and the corresponding Electrocardiogram signal. These 

results illustrate EIT’s potential for clinical applications. Studies of sensitivity and 

accuracy of EIT in clinical applications are ongoing and show promising results (see 

chapter 3) (Blott et al., 1998).  

 

Figure 1.1 Human lung imaging: Inspiration and expiration (Adapted from Adler (1996)) 

 

 
Figure 1.2 Heart activity monitor with EIT(Adapted from Adler (1996)) 

1.3 Thesis objective  

EIT has several promising areas of clinical application. The low cost, non-

cumbersomeness, and non-invasive nature of the technology makes it a good candidate 

for patient monitoring. For example, it is able to continuously image the heart and lungs 

in patients in intensive or critical care. Since EIT requires attaching several electrodes 
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and wires to the patient, one important difficulty with experimental and clinical EIT 

measurements is the care required in attaching the electrodes to ensure accurate voltage 

measurements. Many conditions can cause electrodes to give false readings, such as 

errors due to electronics noise (Al-Hatib, 1998, Meeson et al, 1996), and poor electrode 

contact due to patient movement (Blott et al, 1998), or sweat and peripheral edema, 

especially in long term monitoring applications (Lozano et al, 1995).  

 

In order for EIT to become an acceptable clinical device, it is important to address the 

problem of erroneous data due to detached and improperly connected electrodes. In some 

experimental applications, erroneous data can be discarded and reproduced after correctly 

placing/attaching the electrode. However, in long term monitoring applications 

reproducing the data is impossible. In this case, given a set of data containing 

measurements with errors, it is desired to calculate an image based on the remaining good 

data. In order to accomplish this, Adler (2004) developed a methodology to reconstruct 

EIT images in the presence of single electrode errors. One limitation of that work is the 

requirement that the erroneous electrodes be identified to the algorithm by a human 

operator. The ability to automatically identify erroneous electrodes is a potentially 

important capability for clinical and experimental applications of EIT. The goal of this 

thesis is to develop and validate a method that automatically detects the presence and 

location of electrodes producing erroneous data.  

 

Before we present the method for detection of erroneous electrodes, we discuss the 

physics of the problem and relevant mathematical technique in chapter 2. Chapter 3 

covers the work done towards understanding the causes of errors in EIT data, and reviews 

methods developed for reducing those errors. In addition, other applications such as 

electroencephalogram (EEG) and ECG that use electrodes are explored. Chapter 4 covers 

the theory and results of the method developed for erroneous electrode detection for 2D 

EIT. Extensions of this method for 3D EIT and for multiple electrode detection are 

explored in chapter 5 and 6, respectively. Finally, the work is concluded in chapter 7 

along with possible future work. 
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Chapter 2 

2 Background 
This chapter introduces the measurement systems and reconstruction algorithms for EIT. 

In section 2.1 we look at the most commonly used hardware setup. The mathematical 

approach for solving EIT is divided into two parts: the forward problem and the inverse 

problem. The forward problem deals with estimation of the potential distribution in the 

medium. The inverse problem calculates the internal impedance distribution from the 

voltage distribution. Section 2.2 covers a detailed analysis of the forward problem and the 

mathematical principle for estimation of potential inside the human body using finite 

element methods. The inverse problem is based on the principles of inverse theory. The 

concept of inverse theory and regularization is discussed in section 2.3. Section 2.4 and 

2.5 discuss image reconstruction techniques that are non-regularized and regularized, 

respectively.  

2.1 Electrical Impedance Tomography 

EIT is an imaging technique which calculates the electrical conductivity distribution 

within a medium from electrical measurements made at a series of electrodes on the 

medium surface. EIT data are acquired by successively applying a low amplitude audio 

frequency current across each pair of electrodes while measuring the voltage differences 

produced on all other pairs of electrodes. The measurement system usually has 8, 16 or 

32 electrodes; for each current pattern, all electrode pairs, except ones used for current 

injection, are used to measure the voltage. At each pair of electrodes, a difference signal 

is calculated by subtracting one voltage from the other and then amplifying the result. 

Data collected are then sent to the imaging system for analysis. Figure 2.1 shows a block 

diagram of this process. 

 

Inside the data acquisition controller these difference signals are demodulated and read 

by an analog to digital converter. The demodulator reads the amplitude of the measured
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difference signal while removing electrical signals produced by physiological processes 

(such as the ECG) by rejecting contributions to the signal that are not at the current 

injection frequency. After current injection and voltage reading are performed across all 

electrode pairs, data are sent to a computer that calculates the EIT image. This data set 

represents the conductivity distribution of the subject at the time of data acquisition.  

 

EIT poses minimal electrical risk to the patient. Studies of the cutaneous sensitivity of 

humans to electrical simulation as a function of frequency indicates the sensitivity is 

quite high to current at low frequencies, but it decreases significantly with increasing 

frequency (Dalziel, 1956; Geddes, 1971). For the experimental data used in this thesis, 

the current (1mA) used was approximately one tenth of the level required for perception. 

The current levels required to cause muscle contraction for cutaneous current injection 

are more than ten times higher than the perception values (Adler, 1995). 

  

 

Figure 2.1 Common EIT setup 
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2.2 Finite Element method and Electromagnetism 

The electrical potential inside the human body is calculated from Maxwell’s equations 

using the finite element method. Appropriate modelling of the body/electrode interface is 

necessary to define the boundary conditions. This section covers these issues in detail 

starting with the electromagnetic properties of the human body. It is followed by a 

section that explores the various ways the body/electrodes can be modelled. Finally, the 

finite element method is described and the forward problem is formalized. 

 

2.2.1 Electromagnetic properties of the human body 

Different tissues of the human body are shown to have different electrical characteristics. 

Most tissue can be considered isotropic, with the exception of muscles and brain tissue 

which is anisotropic. The cross section of human body cavity in Figure 2.2 shows the 

possible cluster of the different tissues (lungs) and muscles (heart). To simplify the 

mathematical model, the human body is assumed to be homogenous and isotropic, where 

the constitutive parameters such as the conductivity and permittivity are independent of 

position and direction. Thus, the relationship between the current density, electric field 

and potential can be described through Maxwell’s equations. The body (Ω) is modelled 

as a closed and bounded subset of three-dimensional space with smooth boundary (∂ Ω) 

and uniform conductivity (σ).  The electric field (E) enclosed in Ω is expressed in terms 

of the scalar potential φ  

φ−∇=E  (2.1)

The current density (J) is given by the multiplication of the conductivity and electric field 

can be computed as: 

φ∇σ−=J  (2.2)

Because there are no interior current sources at the frequency of EIT stimulation in the 

human body the fields can be described in terms of a scalar voltage potential satisfying 

Kirchoff’s voltage law: 
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0=φ∇σ•∇  (2.3)

The boundary current density (j), which is the normal of the current density (J) is 

expressed as   

nj •φ∇σ=  (2.4)

Based on these relationships the problem of determining the potential inside the body 

from boundary measurement is carried out through the finite element method. 

 

 

Figure 2.2 Cross Section of the Human body cavity (adapted from visible human project: 
http://www.uchsc.edu/sm/chs/browse/browse_m.html) 

2.2.2 Electrode Models 

To be able to completely model the human body, it is also necessary to model the 

interaction of electrodes on the surface. Various methods have been developed (Cheng et 

al, 1989) ranging from the simplest, Point Electrode Model, to the more sophisticated 

Complete Electrode Model. These methods interact with the finite element model to 

incorporate the characteristics of the electrode based on the appropriate boundary 

condition. In the Point Electrode Model the electrode itself is not modeled but the current 

density is arbitrarily set on all points on the boundary of the body. The model assumes 

electrodes are perfect conductors (V|electrode=u) and no current flows away from the 
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electrodes ( u∂ / n∂ =0).  The current under on the boundary of the medium is assumed to 

be: 

∫Ω ∂
∂

σ=
n
uI  (2.5)

Then, the Newman boundary condition is defined as  

nJ
n

•−=
∂
∂

σ
u

 (2.6)

This condition defines conservation of charge on the boundary where the total amount of 

current injected into the body is equal to the multiple of skin conductivity and skin 

surface potential (Borsic, 2002). Even though this is a workable model, it does not fully 

characterize the body/electrode interaction. The Gap Electrode Model improves upon the 

previous model and considers the discreetness of the electrodes on the body’s surface. 

Consequently, the current density is set to zero on the inter-electrode gap and set to a 

constant value underneath the electrode.  

 

The assumption that the current density is constant is not accurate considering that it has 

been shown that electrodes have a higher current density around edges (Tungjitkusolmun, 

2000). Moreover, the shunting effect of electrodes where current does not flow inside the 

body but mostly on the outer edge, is not considered. The Shunt Electrode Model was 

developed to include the shunting effect of electrodes. This model considers the current 

density underneath the electrode over the contact surface to be equal to the current 

injected.  

 

Still, the shunt electrode model does not account for all electrode/body interaction since it 

does not consider the contact impedance of the electrodes. The Complete Electrode 

Model incorporates all model characteristics of the shunt electrode model and the contact 

impedance of the electrodes. The model’s ability to better characterize the electrode/body 

interaction has been proven by Cheng et al (1989) through laboratory phantoms.  
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2.2.3 Forward Model and Finite Element Method  

The forward model of EIT is the estimation of the potential in Ω given the current stimuli 

and the boundary condition described by one of the above electrode models discussed in 

the previous section. The FEM allows an approximate solution to the EIT forward model 

by discretizing the domain. The FEM models Ω as a number of discrete, non-overlapping 

elements connected by nodes. The most common element shape chosen are triangular 

elements and tetrahedral elements for use in 2D and 3D applications, respectively. The 

edges of the elements are known as nodes ( iφ ) representing certain discrete value such as 

nodal potential values in EIT. The voltage on each element is modeled by basis functions 

( iN ) for each triangular element i. These are interpolating functions that have a value one 

at a node and zero on the other nodes, forming a “tent-like” functions, as shown in Figure 

2.3. The region of support for each nodal basis function is restricted to be within the 

elements sharing the common node.  

       

 

Figure 2.3 Nodal Basis functions over a triangle element 

 

The potential over each element is approximated as 
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∑
=

φ=φ
W

1i
ii N

~
 (2.7) 

                                             

where W is the number of nodes and iφ is nodal potential values. The nodal values iφ  are 

calculated through the weighted residual method (Borsic, 2002) or the Rayleigh-Ritz 

method (Huebner, 1974). The weighted residual approach estimates the potential 

distribution that results in the smallest possible residual. Equation (2.3) can be written as: 

0=×=φ∇σ•∇ ∫∫
ΩΩ ii

ii wrw)~(  (2.8) 

Where Ωi is the region of Ω covered by element i. r is the residual resulting from 

calculation of equation (2.3). iw  is the weight factor introduced to minimize the residual. 

The Galerkin Criterion suggests substituting the weight terms with the basis ( iN ) for 

each element.  

0)~( =∇•∇∫
Ω

iN
i

φσ  (2.9) 

The integral of equation (2.9) is carried out over the region (Ωi). Applying Gauss’s 

Theorem and assembling the matrices resulting from (2.9), the electric potential at each 

node is expressed in a form of matrix. The unknown potential is solved through the set of 

linear equations expressed as 

cpσY =)(  (2.10) 

where p is a vector of unknown nodal potentials, voltage electrode potentials, and current 

electrode potentials. The c vector is a collection of the injection current values. Y is the 

Admittance matrix, which is dependent on the conductivity (σ). The assembly of this 

matrix is described in detailed by Borsic (2002). The above equation is the formal setup 

for the forward problem. Equation (2.10) can be solved through such direct method as 

Cholesky factorization if the matrix size is not exceedingly large. Most reconstruction 

algorithms (Section 2.4) use a linearized approach, which leads to expression of the 

forward model as  
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σHu =  (2.11)

where H is a Jacobian matrix expressed with the voltage electrode potentials and 

background conductivity. u is the voltage electrode potentials that are already known 

from the voltage electrode measurements. 





















σ∂
∂

σ∂
∂

σ∂
∂

σ∂
∂

=

m

m

1

m

m

1

1

1

vv

vv

H   (2.12) 

 The format of the forward model as in equation (2.11) becomes apparent when we 

discuss regularized reconstruction algorithms.  

2.2.4 Finite Element Method Meshes 

In 2D Finite Element Method, triangular elements are often used. Triangular elements are 

divided such that the regions experiencing high change in conductivity have smaller 

elements, which results in a much more accurate model. These large changes in 

conductivity mostly occur on the boundary of the object due to the intensity of the current 

injected (see Figure 2.4). These same arguments are extended into 3D EIT, where 

tetrahedral elements are used. The accuracy of the resulting potential values from 

equation (2.10) depends on the shape of the FEM mesh and the total number of elements 

available. A mesh with a large number of elements generally provides more accurate 

potential values. The drawback of having a very fine mesh is the computational time 

spent to generate the forward solution. Consequently, it becomes necessary that the user 

select an appropriate element size for each application. For the purpose this thesis, we 

used meshes with 120, 216 and 256 elements. 
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Figure 2.4 Voltage and Current distribution with electrode pair [8 9]: (a) voltage distribution high 
near the boundary. (b) Current distribution also high close to the injection electrodes. 

It is necessary to design a mesh with element geometry that can fit the boundary of the 

medium appropriately. All real data used in this thesis were from experiments carried out 

on dogs, which have a thorax shape that is an ellipse with low eccentricity. A circular 

mesh that closely approximates a canine thorax was used, see Figure 2.5. For human 

thorax, Borsic (2002) has shown that more accurate results are obtained by using a mesh 

that accounts for the boundary shape. In addition, varying sizes of triangular elements 

were used both on the boundary and inside the mesh. Smaller elements are used in 

regions that are expected to encounter much higher change in conductivity, such as that 

of the heart area.  

 

 

Figure 2.5 Circular mesh for EIT with 256 elements, for a 16 electrode system 
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2.3 Inverse Theory and Regularization 

The previous section discussed the mathematical approach to calculate the potential 

distribution from the current stimuli and medium geometry. In this section, the ill-posed 

nature of the EIT problem is established. The concept of inverse theory and the criterion 

for labelling a problem ill-posed or ill-conditioned is introduced. Finally possible 

solutions for solving ill-posed and ill-conditioned problems based on regularization are 

put forth.   

2.3.1 Inverse Theory 

The generalized form of the measurement process can be expressed as: 

y=Hx+n
 

(2.13) 

Where: x: input signal (N x 1) 

 y: output signal (M x 1) 

 n: additive noise (M x 1) 

H: system matrix (M x N) 

The problem of estimation of unknown input (x) based on measured output (y) is 

common. For example in image restoration, the acquisition of the original image (x) from 

the corrupted image (y) can be calculated given the knowledge of the blurring process 

(H). The process is the inverse problem. An inverse problem can be classified as well-

posed or ill posed. According to Hadamard (Hansen, 1998) an inverse problem is well-

posed if :  

 

1. A solution exists for any data d in the data space 

2. A unique solution f exists in the image space 

3. The inverse mapping d->f is continuous 

 

A problem is ill-posed if one of the above three conditions is not satisfied.  Techniques 

such as model fitting through a least square’s estimate (LSE) using singular value 

decomposition (SVD) were developed with the purpose of finding a solution that closely 

matches the data (Hansen, 1998). But a unique solution can only be acquired when the 
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image space is smaller or equal to the data space. Even though the problem of 

singularities is addressed, the equation is still ill-conditioned when the singular value is 

small, resulting in a badly reconstructed image.  

2.3.2 EIT as ill-posed and ill-conditioned problem 

Analyzing the inverse problem of EIT, we can see that the first Hadamard criterion is 

satisfied since for each voltage measurement data set there is a corresponding 

conductivity distribution. Lionheart (1997) has shown that the uniqueness only applies to 

isotropic systems where there are no infinite or zero conductivities. The second criterion 

of obtaining a unique solution is handled through a reciprocity test, where the data and 

the resulting conductivity are assumed to match with a certain error bound. The third 

criterion of continuous inverse mapping of the voltage measurement data set with the 

resulting conductivity is not satisfied. This is because recovering an unknown 

conductivity from boundary data causes large changes in the conductivity distribution, 

which are undetectable by the boundary voltage measurements at a specific precision. 

The process of finding the proper inverse mapping and unique solution is generally 

termed as image reconstruction. The two major classes of EIT image reconstruction that 

successfully solve the ill-posed and ill-conditioned problem of EIT are discussed in 

section 2.4.  

2.3.3 Regularization Techniques  

Different mathematical techniques are designed to improve the performance of inverse 

solutions for ill-conditioned and ill-posed problems. One such solution is constrained 

Maximum Likelihood (ML) (Hansen, 1998) which relies on the convergence of the 

solution. ML states: find the input data, x, that gives the most likely output data (y), 

which is expressed through conditional probability as: )|Pr( xy . The conditional 

probability expressed using Bayes rule becomes: 

)Pr(
),Pr(

)Pr(
)Pr()|Pr()|Pr(

x
xy

x
yyxxy ==  (2.14) 

Where: 

)Pr( y : Prior probability of output data y 
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)Pr(x : Prior probability of input data x  

)|Pr( xy : Conditional probability of y given x 

)|Pr( yx : Conditional probability of x given y 

),Pr( xy : Joint probability of y and x 

A unique solution can be found by maximizing the probability of the output data(y) given 

input data (x): 

)|Pr(maxarg~ xyx
x

=  (2.15) 

A number of different iterative algorithms such as Expectation Maximization (EM) and 

Image Space Restoration Algorithm (ISRA) (Hansen, 1998) are available for solving the 

equation (2.15). The ML approach for solving inverse problems is based on the 

assumption that the solution is convergent. In addition, this approach does not incorporate 

any known information about the input or output data to solve the problem. Incorporating 

known information into the problem solving allows us to include divergent solutions and 

improve the chances of acquiring the proper solution. This information is termed as a 

priori and is determined by our belief of what the solution should be. The a priori 

information could be based on state of knowledge of the problem described by subjective 

probabilities.  

 

Subjective probability is a mathematical framework that is used to represent degree of 

reasonable belief about a problem (Kreyszig, 1983). Probability densities represent states 

of knowledge over the space of possibilities and it becomes possible to formulate the 

general theory of inverse problems as one of statistical inference. This concept allows the 

prior knowledge to be based on the current state of the problem rather than the overall 

expectations/assumptions. Bayesian statistics, based on joint and conditional probability, 

provides a theory of inference that enables us to relate the results of observation with 

theoretical predictions.  

 

Tikhonov regularization (Hansen, 1998) is one prominent example of regularization with 

a priori information where there is a trade off between the data fitting and certain a priori 

information. For example in image restoration, Tikhonov regularization controls the data 
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fitting while smoothing the resulting image. Maximum a posteriori (MAP) is the 

approach used for image reconstruction of EIT (section 2.5). 

2.4 Image reconstruction in EIT 

Image reconstructions are developed for static and difference imaging techniques. Static 

image reconstruction uses one set of data to carry out the image reconstruction; while 

difference image reconstruction uses two sets of data and calculates a difference in 

conductivity.  

 

Static Image Reconstruction: A modified form of the Newton-Raphson algorithm was 

introduced by Yorkey (1987) to apply for static image reconstruction. This technique 

assumes a homogenous conductivity and initially uses the FEM to simulate the voltage 

measurements. The conductivity is subsequently modified to better approximate the 

voltage measurements in an iterative manner as shown in Figure 2.6. Unfortunately, this 

type of iterative technique can become unstable if the model geometry is not accurate 

(Adler, 1996). Many groups have made improvements to this algorithm, but it still suffers 

from sensitivity to errors (Barber, 1988; Korjenevsky, 1997). The sensitivity is due to 

errors in positioning electrodes on the surface of the body. Variations in electrode 

positioning significantly affects the conductivity distribution in center of the object, since 

EIT is more sensitive to changes on the boundary of the medium than changes within the 

medium (Korjenevsky, 1997). 
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Figure 2.6 Newton Raphson Algorithm (taken from Adler (1995))  

 

Difference Image Reconstruction: This algorithm has the ability to reduce the effect of 

many of the sources of error by calculating the change in conductivity due to the changes 

in measurements. Difference EIT allows the forward problem to be a linear function of 

the conductivity change based on equation (2.11) 

σHu ∆=∆  (2.16)

Where u∆  is the change in voltage measurement and σ∆  is the change in conductivity. 

H  is the Jacobian or sensitivity matrix describing the linear relationship between σ∆  

and u∆ . Barber (1988) has shown that difference imaging is relatively insensitive to 

errors in electrode placements as long as these remain constant during the experiment. 

The linear approximation makes the relationship only valid in a limited range but it is 

applicable for a wide variety of problems.  

 

Barber (1985) developed the Equipotential Backprojection reconstruction algorithm for 

difference imaging based on backprojection in computed tomography. The potential 
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measured by a pair of electrode is projected back across equipotential region that is 

affected by the injection and measurement pair. The above algorithm introduced the 

problem of streaks across the image of the conductivity. In addition, it was limited to 

circular geometry and tends to push reconstructed contrasts toward the center of the 

medium (Adler, 1996).  

2.5 MAP based regularized image reconstruction 

Several groups have proposed maximum a posteriori regularization based difference 

imaging reconstruction algorithm which incorporates prior information based on the 

physics and geometry of the problem. This thesis primarily uses the algorithm of Adler 

(1996), which is described next.  An image reconstruction approach was developed based 

on FEM of the forward problem with a MAP formulation of the image reconstruction. 

The FEM allows a modelling of an arbitrary geometry, and the MAP formulation states 

the problem in terms of probabilistic assertions about the original conductivity 

distribution, measurement system, and measurement noise. This allows a natural 

interpretation of known system information in terms of the model parameters. For 

instance, a defective measurement channel indicates a high probability of error on data 

acquired from that channel. 

The linearized forward model based on the image ( x ) and noise ( n ) is given in equation 

(2.17) 

nHxz +=  (2.17) 

The difference in measurements, z, is defined for the time interval (t1,t2) as  

( )2
i

1
i

2
i

1
i

2
1 vv

vv
z

+

−
=  (2.18) 

where  v1
i and  v 2

i represent the ith voltage measurements at time t1 and t2, respectively. 

The change in conductivity (x) needs to be expressed such that it represents largest 

possible range. Even though zero and infinite conductivity represent opposite effects of 
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the voltage; they are not numerically equidistant from the background conductivity. 

Hence, a parameterization using the log conductivity was introduced  

 )log()log( 21 σσ −=x  (2.19)

where  1σ and  2σ represent the conductivity at time t1 and t2, respectively.  

The MAP approach to image reconstruction defines the solution as the most likely 

estimate x̂  given the measured signal z and certain statistical information about the 

medium. This approach was chosen because it allows an elegant interpretation of the 

image reconstruction algorithm in terms of the statistical properties of the experimental 

situation. To simplify the computations, these statistical properties are modelled as 

Gaussian distribution (mean ∞x and co-variance xR ). Based on this model, the 

distribution function of the image, f(x), is expressed as 
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The a posteriori distribution function of z given a conductivity distribution x is derived 

from the definition of the problem (2.17). 
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The noise covariance, nR , which measures the noise power in each component of the 

signal is expressed as 
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The MAP algorithm estimates x̂  by finding the most likely image for the measurement z. 

Accordingly, Bayes’ rule is applied to equation (2.21)  
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Which when substituting the individual probability density functions becomes  
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The MAP solution is chosen as the most likely image, x , given measurements, z. This 

value of x  will maximize f( x |z). Equation (2.24) is maximized when the exponent in the 

numerator is minimised 
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The estimate can be simplified as 
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In the situation when the noise variance is constant across all measurement channels 

WR 1
n

2
nσ=− . In addition, the expectation of image ( ∞x ) is best modeled as zero, since 

the conductivity change can be equally conductive or non-conductive. xR  represents the 

amplitude of the image and the spatial frequency distribution. The lack of high frequency 

content in EIT images results in high correlation of conductivities elements close to each 

other. Adler (1996) assumed that pixels that are closer to one another are highly 

correlated; while pixels that are further apart are uncorrelated. This assumption allows us 

to regard xR  as a low-pass filter, but the inversion of this matrix is not always possible 

due to singularity. As a consequence, a new regularization matrix Q is reconstructed 

using the high pass filter characteristic of 1
xR − . A filtering matrix F is determined from 

the assumption of Gaussian high-pass filter characteristics. The regularization matrix Q is 

expressed as 

FFQ t
x
2σ=  (2.27)

Substituting (2.27) into (2.26), the regularized inverse can be expressed as 
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Where µ  is the hyper-parameter value that controls the amount of regularization or the 

high-pass filter (Q) introduces into the solution. Too much regularization comes at the 

expense of the amount of detail (resolution) we can retrieve from a given image. The 

matrix B is the reconstruction matrix calculated for a specific hyper-parameter. The 

criterions used to select the hyper-parameter vary from the size of the FEM element to 

the regularization matrices. Adler (1996) incorporated these criteria by choosing to 

control noise amplification. The noise figure (NF), the ratio of the output to input SNR, is 

chosen from knowledge of the signal and noise level present, and the hyper-parameter is 

determined based on the appropriate NF.  

 

An example of a reconstructed image using the above MAP regularization approach is 

shown in Figure 1.1. The figure shows a cross section of a human thorax with certain 

amount of ventilation in both lungs. 
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Chapter 3 

3 Characterization of Electrodes 
The previous chapter introduced the mathematical principles based on the most common 

approach used to solve forward and inverse problem. This chapter focuses on the study of 

error and noise in applications that use electrodes, and approaches used to compensate for 

the errors. We also explore image reconstruction techniques used for compensation of 

EIT errors. The research in electrode errors and noise in EEG, ECG, EMG and 

particularly EIT is discussed. 

3.1 Classification of Electrodes 

Electrodes are metal contacts on a lead through which the electricity travels. The 

electrode material has different levels of conductivity and thus has an effect on the 

transfer of electrical charge. The two major types of electrodes for biomedical 

applications are needle and surface electrode. Since the goal is to analyze electrodes for 

EIT, which is a non-invasive imaging application, the more invasive needle electrode is 

not discussed.  

 

Surface electrodes are classified by size, shape, lead, gel type, and reusability (Ksienski, 

1992, Luo et al, 1992, Kun and Peura, 1995). In addition to the above characteristics, 

performance of the electrode depends on the skin-electrode impedance determined by the 

contact area and conductivity of the surface as shown in Figure 3.1. High electrode, skin 

and tissue conductivity leads to a low skin-electrode impedance and better transfer of 

electrical charge. In most applications, the resistivity as the current flows out radially 

from the center pin is considered, and the voltage drop due to thickness is considered zero 

(Waugaman and Schrader, 1994). The skin-electrode impedance interaction is modelled 
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by a simple resistive circuit where the electrode and the tissue are considered purely 

resistive and the skin is an RC circuit, see Figure 3.2. 

 

 

Figure 3.1 Common surface electrode 

The type of electrode used must reflect the needs of the application. For example the 

operating peak to peak voltage of the electrode to be used should be matched with the 

operating voltage of the device. Furthermore, electrodes used to inject current must 

provide a uniform current density distribution to allow a more accurate analysis such as 

voltage measurement in the case of EIT. The different physical characteristics of 

electrodes and their impact on the conductivity and current density distribution of the 

electrode are analyzed below.  

 

Figure 3.2  Electrode-skin impedance equivalent circuit 

 

Electrode and Gel: The choice of electrode and gel affects the conductivity and current 

density distribution of the electrode. For instance, platinum iridium electrodes have a 

higher conductivity (lower resistance) than nickel alloy electrodes (Luo et al, 1992). ECG 

electrodes are pre-gelled with Ag/AgCl to lessen the impact of the skin-electrode 

impedance that interferes with the actual electrical signal (Seitsonen et al, 2000).  Patriciu 
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et al (2001) conducted investigations of the current densities produced by the gel-type 

surface electrodes. The current density distribution was computed using the finite element 

model with a tissue like gel slab. The result shows that the gel-type electrode has a non-

uniform current density distribution, which can cause electrical skin burns and blood 

coagulation in gel-type surface electrode. In EIT, the risk of getting skin burns or blood 

coagulation is minimal due to the low current level (<1mA). 

 

Shape: The current density distribution depends not only on the type of electrode or gel 

used but also on the shape of the electrode. Tungjitkusolmun et al (2000) conducted a 

study on electrodes for Radio-Frequency Cardiac Ablation where RF current is delivered 

through the tip of the electrode. The non-uniform distribution of the current density is 

demonstrated by the increase of the current density distribution on the edge (conductor/ 

insulator boundary) of a circular gel-type electrode exposing the subjects to risk of skin 

burns. A more uniform current density distribution is achieved by recessing the edge and 

coating the electrode with a resistive material.  

     
Size: The study of the impact of the size of the electrode was carried out on gel-type 

electrode and garment type electrode by Patterson and Lockwood (1993). They looked at 

five different size electrodes to study the impact on the current required to obtain 25% of 

the Maximal Voluntary Contraction (MVC) of the quadriceps.  The total current required 

for the MVC differed from one subject to another, but for each subject the MVC was not 

significantly different from one size to another. The two smaller electrodes registered a 

higher pain rating, which has high correlation to the current density in all subjects. The 

current density in the skin decreased from 2.7 to 1mA/cm2 as the size of the electrode 

increased from 20 to 60 cm2. It is likely that the higher pain rating is due to the increase 

of the current density over the edges as the distribution is not uniform. The findings 

conclude that size does not affect the electrical efficiency but does impact the uniformity 

of the current density distribution. 

 

Reusability:  Patterson and Lockwood (1993) observed that the gel-type electrodes are 

best suited for short term use because they are low cost and do not require any special 



Chapter 3: Characterization of Electrodes     

 

27

fitting. The use of a garment electrode, a conductive cloth type material made into a 

pocket and filled with electrode gel, is suggested as optimal solution for long term 

monitoring due to the ease for rapid application and consistency of results over a long 

period in their research laboratory.  

 

The above properties demonstrate that the electrodes generally do not have uniform 

current density. Knowledge of the accurate current density of the medium allows a proper 

modelling of the potential distribution based on the FEM or Boundary Element Method 

(BEM). Oostendorp and Oosterom (1991) used FEM and BEM, respectively, to estimate 

the potential distribution of the torso from current density of electrodes for cardiac 

defibrillation. The different electrode models of skin-impedance interaction and the type 

of boundary condition applied gave varied results. The results demonstrate that with 

careful selection of the proper electrode and the right modeling approach the impact of 

the non-uniformity of the current density can be minimal.  

 

Apart from the above “software solution” for minimizing skin-electrode impedance, Hua 

et al (1993) developed a special electrode known as compound electrode to decrease 

skin-electrode impedance using a large outer electrode to inject current and small inner 

electrode to measure voltage. The smaller voltage-measuring electrode allows for a drop 

in voltage due to reduction of contact impedance. Their results show that the compound 

electrodes result in reconstructed images that are less sensitive to contact impedance 

value. Thus, proper selection of electrodes along with the appropriate reconstruction 

model for EIT can lead to a better imaging system that is less sensitive to measurement 

errors. 

3.2 Sources of error in applications using electrodes 

Apart from errors introduced by the physical characteristics of electrodes, there are 

external causes for error. Electrodes have been used as part of a measurement device in 

numerous medical applications that precede EIT. Electrocardiogram (ECG), 

Electroencephalogram (EEG) and Electromyography (EMG) are effective and widely 

used monitoring techniques. The vulnerability to noise for each device is dependent on 
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the signal of interest, interference from other electronic devices and the type of electrode 

used. A concise description of the techniques, their intended use, and their signals of 

interest are discussed below.  

3.2.1 Electrocardiogram 

The ECG is a non-invasive test that records the electrical activity of the heart, and is used 

to determine the heart's rate and rhythm. Depending on the specific test electrodes are 

placed on the chest, arms or legs. The operating frequency of ECG signals ranges from 

0.5 to 200 Hz (Gholam-Hosseini et al, 1998). The strength of the signal is much higher 

on electrodes closer to the heart; hence these electrodes are not significantly affected by 

noise. Conversely, electrodes at the extremities of the body are highly likely to be 

impacted by noise.  Major sources of noise in ECG are from muscle and electrode 

problems (Gritzali et al, 1988).  

 

A variety of techniques have been developed to estimate and remove the noise in an ECG 

signal (Gritzali et al, 1988; Gholam-Hosseini et al, 1998; Ramos and Pallas-Areny, 1996; 

Perz and Kufner, 1995). The methods range from an adaptive signal approach to remove 

signals from muscles to a simple band pass filter to remove signals above and below 0.5-

170 Hz.  

3.2.2 Electroencephalogram 

The EEG records brainwave patterns from the continuous electrical signals coming from 

the brain. The strength of the measured signal ranges from 20 to 100 mV peak to peak 

over 0-100 Hz (Wright and Kydd, 1992).  The operating frequency makes this technique 

susceptible to TV, radio, power line and other common equipment which operates over 

the same frequency. In addition, the skull of the subject is a poor conductor and interferes 

with the transmission of electrical charge from the brain to the skin. The signal strength is 

also affected by the alignment of the brain cells, which if not aligned properly may cancel 

one another (Montreal Neurological Institute, 1998). This method is mostly used to 

diagnose neurological diseases, such as seizures indicated by extreme synchronicity of 

the neurons generating electrical charge. The electrodes are placed in numerous places of 
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interest on the scalp after cleaning the particular regions (see Figure 3.3). A special gel or 

paste helps the electrodes pick up the brain waves more efficiently.  

However, the estimation of the brain’s activity pattern is shown to be a complicated 

mathematical problem which requires knowledge of the electrode locations (Khosla et al, 

1999). As a consequence, the mis-location of scalp electrode leads to estimation errors of 

the current patterns. The results of Khosla et al (1999) and Wang and Gotman (2001) 

demonstrate that the errors introduced by mis-location, based on realistic head models, 

are insignificant compared to errors introduced by noise.  

 

Figure 3.3 Electrode placement on the scalp for EEG measurement 

Ollikainen et al (2000) investigated the trend of increasing the total number of electrodes 

on the scalp to improve the spatial resolution of the voltage distributions. They also 

studied the effects of the electrode size and the contact impedance on the voltage 

distribution through simulations. The studies led them to conclude that increasing the 

number of electrodes does not improve the estimate of the voltage distribution due to the 

shunting effect of electrodes. The optimal number of electrodes vary depending on the 

electrode size and contact impedance of the electrode. Based on discussion of electrode 

size and contact impedance, we can deduce that the increase in size and contact 

impedance heightens the shunting effect.    

There are a number of different approaches for the removal and reduction of noise in 

EEG signals. Methods based on reconstruction theory of phase space for noise removal 

and reductions in epileptic EEG were developed by Ouyang et al (2001). Herrera et al 
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(2000) studied cause and removal of a single event non-white noise from EEG signals 

based on the wavelet transformation with soft thresholding.   

 

Paloniqpan et al (2002) published an interesting approach regarding noise removal in 

evoked potential signals. Evoked potential signal is generated by the nervous system due 

to external stimulus. The stimuli used for the study were electrical signals generated by 

EEG electrodes on the scalp. Consequently, the EEG signals are considered to be noise 

and are to be removed. The proposed approach uses a two level Principal Component 

Analysis (PCA) to remove noise and EEG signal from single trial evoked potential signal.  

3.2.3 Electromyography 

Electromyography is the study of the muscle function through muscle electrical signals. 

The strength of the signal measured ranges from 0-10mV peak to peak over 50-150 Hz 

frequency. The operating frequency makes this technique susceptible to TV, radio, power 

line and other household equipment. The signal strength and its operating frequency vary 

from surface muscle to deep muscle. For this particular reason, most of the devices use 

needle electrodes for measurement of deep muscle and standard electrodes on dry shaved 

skin to reduce the contact impedance.  

 

The causes for noise in EMG range from movement artefact to ECG signal interference.  

A movement artefact as a result of electrode displacement causes errors in EMG signal in 

a form of a spike (Ortolan et al, 2003). The non-stationary nature of the ECG signal 

makes the separation complex (Yacoub et al, 1994). To improve the signal quality the use 

of multi-electrode EMG is suggested by Yacoub et al (1994). One approach for removal 

of random electrode noise uses Orthogonal Projection Theory. Adaptive signal 

processing have been used to remove the ECG signal, and wavelet transformation or non-

adaptive digital filtering techniques have been used to remove noise caused by power line 

interference (Ortolan et al, 2003).  
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3.3 Measurement errors and noise in EIT 

Noise and measurement errors in EIT can be due to a number of different factors but the 

major causes for noise are detached or erroneous electrodes, and electronic interference 

(Al-Hatib, 1998; Meeson et al, 1996; Blott et al, 1998; Lozano et al, 1995). These noise 

sources cause imprecise measurements. However, noise sources are not the only causes 

for imprecise measurements. A number of systematic problems also affect the precision 

of the measurement acquired by the EIT system. We consider factors such as number of 

electrodes, number of FEM elements and electrode models as caused for limitation of 

measurement precision. 

3.3.1 Electronic interference 

The major devices using electrodes, discussed in section 3.2, were affected by a number 

of different types of electronic interference due to the low operating frequency. Most EIT 

systems operate at a much higher frequency (9kHz-1.2MHz) making them less sensitive 

to this type of electronic interference such as power line. But, sensitivity still exists for all 

devices that operate in EIT operating frequency.  Meeson et al (1996) noted a higher 

level of electrical noise in the clinical environment compared to the laboratory 

environment. They characterized the system noise based on a four electrode system and a 

figure of merit for testing EIT systems was created. The figure of merit allows for 

adjustment of the EIT equipment before data acquisition.  

3.3.2 Hardware  

Faulty hardware can be the cause for measurement errors or added noise. For example, in 

the Sheffield APT system, instrumentation amplifiers connected directly to the electrodes 

are the main contributor of added noise to the measured data (Sansen et al, 1992). The 

voltage driven MICAS EIT System uses a switch matrix along with an amplifier to 

minimize the impact of cross talk (Sansen et al, 1992). But the errors from the switch 

matrix due to aging of the unit or causing faulty connections are a possibility. 

Furthermore, Sansen et al (1992) states that in a current driven EIT system, systematic 

errors are introduced due to “parasitic capacitance”. In a single current source, the 

parasitic capacitances involved in multiplexing cause phase and crosstalk problems, 
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while in multiple current source systems, the matching of the sources is important 

(Williams et al, 1992). If the above conditions are not accounted for the quality of the 

image is degraded due to voltage noise (Williams et al, 1992). Noise in the current driver 

has a multiplicative effect in the measured voltage since this noise propagates through the 

imaged impedance distribution. Noise in the voltage detector electronics will have a 

signal-independent additive contribution (Frangi et al, 2002).  

 

Major faults with the unit could prevent the equipment from functioning. However, 

smaller errors are eliminated in difference imaging due to the use of the differential 

voltage. The impact of systematic error common to individual measurement channels is 

more prevalent in static imaging due to the lack of a reference data set.     

3.3.3 Detached and misplaced electrodes 

Measurement error due to detached or misplaced electrodes is a major issue in long term 

monitor using EIT (Lozano et al, 1994). Even though every effort is made to place and 

attach the electrodes properly, an electrode may detach or become poorly connected. The 

cause is mainly due to aging for the electrode contact and gel, patient movement, sweat 

or peripheral edema (Lozano et al, 1994).  Lozano et al (1994) showed that measured 

impedance changes up to 3.6% when one electrode is replaced, and 4.4% when all 

electrodes are replaced.  

 

The effects of incorrect electrode localization were also studied by Barber and Brown 

(1988). They used adjacent current patterns and the equipotential backprojection 

algorithm in the simulations. After randomly misplacing electrodes and collecting the 

measurement data set, they found that the reconstruction of absolute images is very 

sensitive to errors in electrode placement. When they simulated these effects on 

difference imaging, i.e. computed a reference data set with the same misplaced electrode 

positions as the measurement set, the reconstructed image was almost as good as the one 

reconstructed from non-error contaminated data sets.  
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This result demonstrated that difference imaging is quite insensitive to errors in electrode 

localization. The effects of FEM errors in the electrode localization were also studied by 

Hu et al (1987). They found that the modeling errors in the electrode localization are a 

much more important source of measurement errors than the electronics of the 

measurement system and suggested that the precise layout of the electrodes be 

determined. 

3.3.4 Electrode placement patterns and number 

Different placement patterns are available to conduct EIT measurements. Booth and 

Basarab-Horwath (1996) compared three different placement patterns over circular and 

square phantoms using back-projection reconstruction method with the adjacent 

measurement pattern. A peripheral placement of electrodes over the circular and square 

phantom and a distributed placement pattern over square phantom were studied. Their 

results show that the distributed placement of electrodes produced images that are better 

able to resolve anomalies at the center of the phantoms than peripheral placement. In 

addition, distributed placement provides more independent measurements as well as 

proper spatial distribution. However, we have found no literature to measure the validity 

of this result in clinical application. A reference is made by Booth and Basarab-Horwath 

(1996) that the distributed placement is used for EIT imaging for mining.  

 

In addition, the total number of electrodes used affects the accuracy of the measurement. 

The accuracy improvement is dependent on the number of electrodes combined with the 

electrode model, the skin-electrode impedance and the size of the electrodes. When the 

number of electrodes increases, the shunting between electrodes is much greater and the 

current diffusion into the medium is reduced. Hua et al (1993) noted that inter-electrode 

gap and mismatch of electrodes affect results at high spatial frequency current (>50 KHz) 

but found it difficult to measure and specify the impact on the FEM model. Thus, it is 

necessary to conduct a test to determine the optimal number of electrodes and inter- 

electrode gap based on the type, size, electrode model, spatial current frequency and skin-

electrode impedance.   
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3.3.5 FEM mesh elements and electrode models  

In section 2.2.2, we introduced electrode models used for solving the forward problem. 

Measurement error is reduced when a more accurate model such as complete electrode 

model is used. Hua et al (1993) demonstrated that a FEM model using the complete 

electrode model does account for shunting and edge effect of the current density 

distribution. Better matching results were obtained for simple FEM models at low spatial 

frequency than at high spatial frequency. This is due to the uniformity of current density 

at low spatial frequency. Overall, the results were improved by using a finer FEM mesh 

for both boundary and internal FEM elements. According to Hua et al (1993), errors in 

modelling of an electrode are due to the error in determining the contact impedance and 

results in noise throughout the image. Thus, modelling of the contact impedance within 

the FEM model helps improve the result of the reconstruction algorithm and reduce the 

measurement error. They also discovered that high spatial frequency current results in 

measured voltage with low signal to noise ratio (SNR) introducing error in measured 

values.  

3.3.6 Non-Stationary noise and EIT 

This section considers modelling EIT measurement noise. Given a modified generalized 

signal representation of equation (2.13) that is time dependent  

y(t)=Hx(t)+a*n(t) (3.1)

Where a is the amplitude of the noise signal. Noise classified as stationary does not 

change its statistical properties over time. Hence, the observation of the noise at interval 

(t0, t1) is the same as observation at (t0+θ, t1+θ). The parameters of the noise such as 

mean, variance, and amplitude are independent of time. Hence, Gaussian noise with 

constant mean and variance and Poisson noise that has the same photons per pixel 

exposure regardless of time are example of stationary noise.  

 

A non-stationary noise has statistical properties which vary over time. Examples of such 

noise occur in images, where non-stationary noise occurs due to intermittent interference 
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by electronic components, see Figure 3.4. In ECG signals, it can be due to electrode error 

(see Figure 3.5) and in audio and speech due to change in background noise.    

 

Figure 3.4 Example of non-stationary noise in images. Arrow indicates area of the image affected by 

non-stationary noise represented by a line across the image  

 

Figure 3.5 Example of non-stationary signal in ECG varying over time. Notice the High amplitude 

portion of the ECG signal is affected by noise that is time dependent. 

In the previous sections, we have demonstrated that noise in EIT is dependent on various 

factors such as skin movement, sweat, and electronic drift. All these factors are shown to 

differ in time, changing the characteristics of the noise in EIT. This suggests that noise in 

EIT has a non-stationary characteristic.  
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However, the compensation/restoration techniques do not depend on the different 

difference image but on fixed voltage difference data measured within time difference ∆t. 

The compensation and restoration technique are explored in section 3.4. 

3.4 Electrode error compensation in EIT 

We have seen the various causes for noise and measurement error in EIT. These 

problems are usually dealt with by prevention or recovery. The prevention approach deals 

with the reduction of systematic errors where a level of predictability exists. Thus, 

measurement errors due to electrode type, inter-electrode gap, positional variation, skin-

electrode impedance and hardware can be corrected through a preventive approach. On 

the other hand, errors due to electrode movement or detachment can be compensated via 

methods based on recovery approach. 

3.4.1 Compensation for positional variation of electrodes 

Compensation for positional variation of electrodes in EIT was introduced by Blott et al 

(1998). They propose two approaches: image reconstruction algorithm with reduced 

sensitivity to electrode position and modifying the sensitivity matrix during 

measurement. The first approach allows images reconstructed from the voltages for two 

slightly different electrode configurations to be as similar as possible. Hence image from 

voltage difference measurement z1 and voltage difference measurement z2 of a second 

electrode position should be close to zero. Blott et al. note that if the predicted voltage 

difference measurement is equal to the observed voltage difference measurement the 

product of the sensitivity matrix (H) and the reconstruction matrix (B) should equal I, the 

identity matrix. Ideally, the difference of the multiple BH before and after electrode 

repositioning should equal to zero: 

0- 21 =δ= )(HBBHBH r  (3.2)

)(H rδ  is the change in H when electrode r is moved by a small distance. The 

reconstruction matrices are also sensitive to electrode misplacement and reduced 

sensitivity can only be achieved at the expense of data mismatch. Blott et al. adapted a 

weighted approach to allow certain parts of the image, such as the lung area, more 

variation. The resulting image is much smoother with magnitude and artefact reduced.  
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The second approach compensates for small movements in the electrode positions by 

using a modified sensitivity matrix. A regularized reconstruction algorithm that 

minimizes the mean square value of the change in resistivity with a constraint to the data 

fit. The sensitivity matrix is recalculated based on initial 0H  and the change in the 

sensitivity matrix 0H  for electrode r )(H rδ . 

∑ δε+=
r

r
r

)(HHH 0  (3.3)

rε  is the fraction of )(H rδ  needed to model a small electrode displacement. They propose 

an iterative solution to solve for the values of rε . The sensitivity estimation is repeated 

until the relative change in mean square value of the change in resistivity is less than 1%. 

The major advantage of the second approach is the ability to control noise in the images 

by selection of basis images that are least sensitive to electrode positions.   

3.4.2 Image reconstruction with missing data 

Errors due to detached, loosely connected, or misplaced electrodes cannot be handled in a 

preventive manner. In clinical situations, it may be a tedious task to monitor and correct 

these errors. In the absence of a method for recovery of data, experiments need to be 

repeated. For EIT applications used to monitor patients, repeating the experiments is 

impossible and recovery method is necessary. Adler (2004) introduced two methods to 

compensate for missing data based on image reconstruction with missing data. The 

methods perform image reconstruction after removal of data from the erroneous 

electrode.  

 

The first method removes affected measurements by zeroing all values in the 

reconstruction matrix (B). However, the removal of the affected data can introduce 

artefacts into the reconstructed images. The second method deals with erroneous data by 

introducing a weight factor, based on the variance of measured data, into the 

regularization scheme. The affected measurement is weighted by its variance, where 
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infinite noise is considered to have infinite variance and zero weight. Thus, W of 

equation (2.28) is modified as follows: 

i tsmeasuremen affected Set 2
ii,

ii, ∀
σ

= ,
W

W
n

 (3.4)

This method clearly demonstrates the possibility of recovering the result from corrupted 

data. Hence, it is important that there should be a detection method that can work under 

different measurement patterns, and different number of electrodes. The next chapter 

introduces one such detection method. 
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Chapter 4 

4 Electrode Error detection 
Various heuristic techniques have been used to detect the presence of erroneous 

electrodes. For example, a test for the presence of faulty electrodes could be based on 

analysis of images for artefacts, or a test of the measured voltages for unusually large 

changes. The disadvantage of such heuristic approaches is the difficulty in defining an 

image artefact, in relation to an unusual, but accurate, measurement. Specifically, it is 

difficult to define a threshold for changes that could be applied across different systems 

and injection patterns.  

 

In order to systematically detect such erroneous electrodes, we propose a method based 

on comparing the measurements obtained on all electrodes to each other. Since all 

electrodes measure the same medium, it is reasonable to expect that “good” electrodes 

will produce measurements consistent with each other. The consistency of a set of 

electrodes can be verified by estimating the measured data at each electrode in the set, 

and then comparing the estimate to the actual data measured. A set of electrodes with 

consistent measurements must contain all “good” electrodes. In order to test an N 

electrode EIT system, we test all possible sets of N-1 electrodes; if only one of the 

subsets contains all “good” electrodes, then the electrode excluded from that set must be 

erroneous. 
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4.1 Heuristic detection 
An attempt was made to approach the erroneous electrode detection heuristically. The 

idea stems from the concept that erroneous electrodes exhibit large changes in 

measurement data. Based on the drive pattern and threshold, it is possible to tally the total 

number occurrences of electrodes that result in above threshold measurement. The 

electrode that has the largest number of occurrence is expected to be the erroneous 

electrode. Even though the idea is straightforward, the difficulty is in finding a reliable 

way to select the threshold for a particular data set. One way of selecting a threshold is by 

developing a measure for “good data”. The data set considered to be good can be 

acquired at the calibration stage of EIT for each measurement session. The average value 

of the measurement from the good data can then be considered as the threshold.  
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Figure 4.1 Upper threshold and lower threshold  

 

As we can see from Figure 4.1, upper and lower thresholds are selected to isolate data 

points that are unusually large or small, respectively. The threshold values are the 

average value of the positive values for the upper threshold and average value of negative 
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values for lower threshold. Data points above the upper threshold and below the lower 

threshold are mapped to their respective measurement and injection pair. Electrodes that 

make up the measurement pair and injection pair are tallied, and the electrode with the 

maximum tally is labelled as erroneous.   

 

This method functions effectively only in cases where the noise from the erroneous 

electrode dominates. The lack of an effective way to pick a threshold value, in addition to 

lack of proper definition for “good data” makes it impossible to rely on this method for 

consistent detection of electrodes. A more formal heuristic approach is introduced in 

Appendix 1, where electrode detection is carried out through analysis of certain statistical 

characteristics of each electrode’s data.      

4.2 Detection through image reconstruction  

This section proposes a formal approach to detect erroneous electrodes. This work has 

been accepted for publication in the Journal of Physiological Measurement (Asfaw and 

Adler, 2005). 

 

We consider EIT difference imaging based on the formulation of Adler and Guardo 

(1996). The forward model estimates the vector of the change in log conductivity (x) 

from a vector of change in difference measurements (z) and with additive noise (n). For 

small changes in x, the relationship is linearized as in equation (2.17) repeated for 

convenience:                                

nHxz +=  (2.17) R 

Based on these parameters, the SNR of a measurement is nzlog20 . 

The sensitivity matrix (H) relates the change in conductivity to change in difference 

measurements: 
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∂
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z

H  (4.1)

The EIT image reconstruction algorithm estimates the change in conductivity ( x̂ ) from 

measurements z using a MAP regularization framework. x̂  is estimated by maximizing 

the a posteriori probability distribution f(x|z)=f(z|x)f(x)/f(z), which simplifies to: 

[ ] zBzRHRHR(Hx =+= −− 1
n

t
x

-1
n

t 1)ˆ  (4.2)

The terms in equation (4.2) can be consolidated into a single reconstruction matrix B. In 

order to estimate x̂  using a subset of the available measurements, the noise variance term 

nR  on all unused measurements in (4.2) is set to ∞  (Adler, 2004). This has the effect of 

introducing zeros into Rn
-1 at positions on the diagonal corresponding to the unused 

measurements. We introduce the notation ( )ji ,eeB  for the reconstruction matrix designed 

not to use measurements made with electrodes ie  and je . 

4.2.1 Methodology for detection  

In order to detect erroneous electrodes, we rephrase the problem to instead detect sets of 

good (not erroneous) electrodes, from which the erroneous electrodes are excluded. As 

mentioned previously, a set of good electrodes produces internally consistent data. Such 

consistency can be verified by estimating the measured data at each electrode in the set, 

using only measurements on other electrodes, and then comparing the estimate to the 

actual data measured. Thus, our method analyses difference EIT data from a set of 

electrodes S, in order to detect the presence of a single erroneous electrode. The above 

approach is termed as cross-validation of data in statistics (Efron, 1982). Figure 4.2 

outlines the basic steps of the method. 
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Define set S = { ie  | i = 1....N} 

For all ie  in S 

 Define set, S′, without electrode ei: S′= { je : j = 1....N, j≠i}   

 For all je  in S′  

  Calculate image:  ( )zBx ji ee ,ˆ =  

 Estimate measurements on je :  xHz ˆˆ jj =  

  Calculate: 
2

2
ˆ jjj zzE −=  

 Calculate:  ET
N

i,jj
ji   

1
∑

≠=
=  

If iT  is less than other values of T, detect ie  as erroneous electrode 

Figure 4.2 Pseudo code for detection of an erroneous electrode. 

 

 

Figure 4.3 Illustration of electrode sets S and S’. To test electrode 4, the estimation error Ej is 
calculated for each electrode in set S’. 

 

We iterate over each electrode ie  in S, forming a set S′ of all electrodes not including ie . 

S′ is then tested to calculate a parameter iT  which reflects the consistency of 

measurements among electrodes in S′, and is the sum of estimation errors for all 

electrodes not including i (Figure 4.3). The estimation error for an electrode j is defined 

as: 
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2

2
ˆE jjj zz −=  (4.3)

Figure 4.4 shows a block diagram of steps for calculating Ej. jz  is the vector of 

normalized differential measurements made using je , and jẑ  is the estimate of jz  based 

on all electrodes in S′ except je  (Figure 4.3), which is calculated by: 

xHz ˆˆ jj =  (4.4)

where jH  represents the rows of the sensitivity matrix H which correspond to 

measurements on je . x̂  is then calculated from (4.5), without data from electrodes ie  

and je  as 

( )zBx ji ee ,ˆ =  (4.5)

It is necessary to calculate (4.5) without electrodes ie  and je because ie  is not part of S′, 

and je  is the electrode being estimated. 

 

 

Figure 4.4 Block diagram of calculation for estimation error Ej 

 

In order to efficiently compute Ej in S’, we define a selector matrix, jS , such that 

zSz jj =  to isolate the data from electrode je . Thus, (4.3) becomes 

[ ] 2

2
ẑzSE −= jj  (4.6)

Substituting ẑ  with (4.4)and (4.5) 

  B (ei,ej)         Hj        z 
x 

zj 

2

2
ˆ jjjE zz −=

Selector 

jẑ
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[ ] 2

2
),( zHBzSE jijj ee−=  (4.7)

This can be written as 

zHBISSHBIzE )),(()),(( jij
T

j
TT

ji
T

j eeee −−=  (4.8)

The term )),(()),(( jij
T

j
TT

ji eeee HBISSHBI −−  may be pre-computed, since it does not 

depend on the data. The iT  value for each ie  is determined by adding all Ej of the set S’. 

If all values of iT  are low, S′ contains all “good” electrodes, otherwise it contains at least 

one erroneous electrode. iT  values are tested against each other to detect if any are 

significantly less than the others. We have developed a simple heuristic measure known 

as prediction error ratio (PER) to measure this property. Initially, we define a parameter 

D  

∑
=

−=
N

j
jii TT

1
D  (4.9)

Data with no error will have comparable T values, small variation in D, and a ratio of 

maximum to minimum D close to one. We express this ratio in dB and call it the PER: 









=

)max(
)min(log

D
D20PER  (4.10)

A high PER indicates that the T values are close to one another and the data is consistent, 

while a low PER value indicates an erroneous electrode. PER is used to detect the 

presence of an erroneous electrode, and subsequently, T is used to identify it.  

4.3  Electrode Error Detection in Static Imaging 

The image reconstruction approach used in static imaging uses one set of data to 

implement the reconstruction. Consequently, it does not reduce systematic errors in static 

imaging. However, the detection of erroneous electrodes can be carried out by 

interpreting the data for difference imaging. A reference data set is selected and 

difference conductivity is calculated. After a match between the reconstruction image and 

real data, erroneous electrode detection can be applied as described in section 4.2. The 
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drawback of the above approach is the increased computation time necessary to carry out 

the forward and inverse problem for the detection method in addition to the static image 

reconstruction.   

4.4  Drive Patterns and Detection  

The method is applicable to adjacent and opposite current drive patterns and could 

possibly be applied to interleaved current drive patterns (Eyüboğlu, 1996). In adjacent 

current drive pattern, two adjacent electrodes are used for current injection and the 

remaining electrodes are used to make voltage measurements as shown in Figure 4.5. 

Overall, there are N×(N-3) measurements available when all electrodes give good data. 

However, when there is one erroneous electrode, the total number of measurements 

available is reduced to (N-3)×(N-4). Typically, with sixteen electrodes the remaining 

“good” data are sufficient to reconstruct a reasonable image (Adler, 2004). 

 

In opposite current drive pattern, two opposite electrodes are used for current injection 

and the remaining electrodes are used to make voltage measurements as shown in Figure 

4.5. There are N×(N-4) measurements available when all electrodes give good data. 

When there is one erroneous electrode, the total number of measurements available is 

reduced to (N-4)×(N-4). 

01 X X   ∗ ∗     X
12 X X X ∗ ∗       
23   X X X ∗       
34 ∗ ∗ X X X ∗ ∗ ∗ 
45 ∗ ∗ ∗ X X X ∗ ∗ 
56       ∗ X X X   
67       ∗ ∗ X X X
 70 X     ∗ ∗   X X

 01 12 23 34 45 56 67 70
 
                                     (a)                                                          (b) 
 Figure 4.5 Data available for an eight electrode EIT system using (a) adjacent drive and (b) opposite 

drive with one erroneous electrode. The vertical axis represents electrode pairs used for current 
injection and the horizontal axis those used for voltage measurement. ˝X˝ represents data not 

available from electrodes used for current injection. ˝∗˝ represents data lost when electrode 4 is 
erroneous. 

04 X ∗ ∗ X X ∗ ∗ X 
15 X X  ∗ X X   
26   X X ∗ ∗ X X  
37   X X ∗  X X 
40 X ∗ ∗ X X ∗ ∗ X 
51  X X  ∗ X X   
62   X X ∗ ∗ X X  
73   X X ∗  X X 
  01 12 23 34 45 56 67 70 
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The approach to detection of erroneous electrode does not change depending on the 

current pattern used. However, the performance is affected by the total number of 

independent measurement available to estimate the data from the candidate electrode. 

Looking at an eight electrode system, an adjacent current drive pattern has 40 

measurements available while opposite drive pattern has only 32 data points. With one 

erroneous electrode, available data points for adjacent current drive pattern are reduced to 

20, by 50%. The opposite current drive pattern has only 16 data points, which is also 

reduced by 50%. As the number of electrode increases the impact of the removed 

electrode is diminished. For example, in a 16 electrode system available data points are 

only reduced 25% by one erroneous electrode. 

                                                                                                                                                                             

Overall, as the number of independent measurements increases we expect a more 

accurate estimation data from an electrode. In opposite current drive pattern only four 

independent current drive pairs are available and only half of the measurements are 

unique. On the other hand, an adjacent current drive pattern has measurements the eight 

independent pairs. Hence, an adjacent current drive pattern could result in a better 

estimation vis-a-vis a more robust detection of erroneous electrode than opposite current 

drive pattern. 

4.5 Implementation  

This method was implemented in Matlab, using a FEM mesh of 256 elements on an 

Athlon 1.8GHz computer, which requires approximately 74 s to pre-compute the values 

in equation (4.9) and a further 3 s to calculate the PER and T for each EIT difference data 

set. The major code base for the forward and inverse solver was implemented by Adler 

(1996), while the code to implement error detection was written by this author. The 

forward solver uses a finite element mesh generator able to produce mesh of 64, 120, 

216, 256, 576, and 352 with shapes of basic circle, human thorax, and dog thorax. The 

inverse solver uses the one step MAP image re-constructor formulated in Chapter 2. The 

Matlab code for the detection algorithm is provided in the Appendices.  



Chapter 4: Electrode Error detection     

 

48

4.6 Data 

EIT data were obtained from previous experiments (Adler et al, 1997). Mechanically 

ventilated mongrel dogs had sixteen ECG-style electrodes spaced evenly around the 

shaved thorax 10 cm above the base of the rib cage, and adjacent drive EIT 

measurements were acquired. Four animals, of ten, showed some level of electrode 

errors. Images were calculated corresponding to data measured at each inspiration. To 

avoid contribution from ECG signals the measurements were taken 100ms after the QRS 

peak.  

4.6.1 Simulated Erroneous Data  

The characteristic of noise in EIT was considered in Chapter 3; the noise may come from 

different sources, and it could display different statistical characteristics. Since the focus 

of this thesis is detection of erroneous electrodes a generalized Gaussian noise model is 

used, however the methods are applicable to general noise. We have also shown that 

noise in EIT is non-stationary with varying statistics, such as mean and variance, over 

time. However, detection is performed on a single difference measurement over a time 

difference ∆t. The noise characteristics over ∆t are treated as non-stationary Gaussian. 

Thus, simulated erroneous data are generated using representative non-erroneous data 

and additive Gaussian noise. Elements of the measured difference data vector, z, vary 

significantly in magnitude from each other, by up to four orders of magnitude. The low 

level signal of the difference measurement is dominated by noise significantly unless the 

additive noise also reflects this difference. Therefore, the signal power is measured and 

the additive noise data will have relative magnitude for each data point.  

 

A simulated erroneous data are assumed to have one erroneous electrode from either 

adjacent or opposite drive pattern measurement. Gaussian noise is added to all data 

related to the electrode selected to be erroneous. Simulated erroneous data for an adjacent 

drive pattern are generated from representative clean data. For the opposite drive pattern, 

we do not have access to experimental data; therefore simulated data were used.  The 

ability to manipulate the data set gives us the opportunity to test the performance of the 

method and its sensitivity to noise. However, there are important issues in using 
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simulated data to validate inverse solutions. These issues have been called the “inverse 

crime” (Lionheart, 2004). The next section explains the concept of “inverse crime” and 

its implications in validation of methods that use forward and inverse model approach. 

4.6.1.1 Inverse Crime 

The term "inverse crime” is used when the forward and inverse model geometry are 

identical, and thus data simulation and reconstruction use the same model (Wirgin, 2004). 

This means that any inadequacies in the model may be masked. For this reason, results 

from a study in which simulation data are generated via an “inverse crime” are regarded 

with scepticism. In order to avoid this problem, the synthetic data should be modelled 

through a separate forward solver that is geometrically different from the inverse solver. 

In this work, this is accomplished by simulating data using the forward solver of 

EIDORS 3D, while the inverse calculations are based on the work of Adler and Guardo 

(1996). EIDORS 3D provides us with a toolbox to simulate and obtain the estimated 

measured difference voltage measurements, and is discussed in chapter 5. The block 

diagram of Figure 4.6 demonstrates the steps taken to generate and create simulated 

erroneous data. 

 

Figure 4.6 Block Diagram for generating simulated data 

 

The data generated by EIDORS 3D are based on a three dimensional model and the MAP 

inverse solver in works two dimensions, and only requires data from only one ring of 

electrodes. The expected image through the synthesis in EIDORS3D is shown in Figure 

4.7. Comparing it to the reconstruction using the MAP solver we see that we have 

obtained the expected results.  
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Figure 4.7 Reconstructed images of EIDORS3D inverse solver and MAP inverse solver (Adler and 
Guardo, 1996) 

 

4.6.2 Real Erroneous Data 

The gold standard for erroneous electrode data was based on human assessment. A 

graphic user interface was developed to evaluate test images by five experienced users, 

who were asked to classify each image as either: no error, possible error, or definite 

error. Identification of images with no error was consistent, but there were varying 

assessments of images considered to have possible error and definite error. For each 

experimental session, the reconstructed differential images were converted into a frame 

of a movie to allow for better identification major changes in conductivity caused by 

erroneous electrodes. The users reviewed a hundred images and classified each one to a 

particular category using the GUI shown in Figure 4.8. We used majority opinion to 

classify images. 
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Figure 4.8 GUI used for classification of selected data by expert users 

4.7 Results 

Tests were carried out on both simulated erroneous data and real erroneous data 

described in the previous section. In addition, tests were performed to measure the level 

of accuracy/robustness of the method, such as SNR vs. PER (± std dev). The impact of 

multiple erroneous electrodes on the method developed for single electrode detection is 

also investigated.  

4.7.1 Experimental data with simulated error  

Figure 4.9 shows EIT data classified as no error. The original image was generated from 

data acquired from ventilated dog (of tidal volume 800ml) after the electrode had been 

attached for one hour. The graph of T vs. electrodes (Figure 4.9 (a)) shows consistent 

values of T corresponding to a PER of -13dB, which was found to indicate good 

electrodes. Figure 4.9 (b) shows the reconstructed image of data from Figure 4.9 (a) with 

additive white Gaussian noise (SNR= -10dB) to the data of electrode 5. The resulting 

reconstructed image is poor with large artefacts. When the detection method is applied to 

these data, T values from all electrodes except electrode 5 are consistent (Figure 4.9 (b), 

bottom), which suggests that electrode 5 is erroneous.  
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Figure 4.9 T vs. Erroneous electrode for experimental data with simulated error 

4.7.2 Erroneous experimental data 

Three sets of representative EIT data of ventilated dogs were used: data with no error 

(Figure 4.10 (a)), a small error (Figure 4.10 (b)), and major error (Figure 4.10 (c)) (based 

on our experience of EIT errors). The data set with no error was acquired from 100ml 

saline installation and 500ml ventilation into the lungs after approximately three hours of 

attaching the electrodes. Data with small error were acquired from a separate experiment 

where the electrodes have been attached for more than three hours with 500ml 

ventilation. The data set with major error (Figure 4.10 (c)) was taken from an experiment 

where the electrodes have been attached for more than seven hours and with ventilation 

of 500ml. 

 

The reconstructed images and graphs of T  vs. electrode number are shown. Data with 

errors (Figure 4.10 (b) and (c)) show higher overall values of iT , compared to error free 

data (Figure 4.10 (a)). In the case of Figure 4.10 (c), two adjacent electrodes are detected. 

We have noted that this is not uncommon result for this method with larger data errors. 
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Based on our experience with this data set, we believe that the adjacent electrodes are 

both erroneous. To test this result, a data set with no errors was selected and varying 

levels of white Gaussian noise were added to two adjacent electrodes. Result shows that 

the two adjacent electrodes have a low T value compared to the remaining electrodes.  

 

Figure 4.10 Electrode detection in real data: Upper row: (a), (b) and (c): images of tidal ventilation in 
a dog. Electrodes are numbered clockwise with electrode zero at the top centre. Images are 
individually normalized to the colourscale (arbitrary units) at right. Bottom row: parameter T for 
each electrode (a) no erroneous electrode (b) data with erroneous electrode with small error signal. 
(c) data with erroneous electrode with typical error signal.  Arrows show the location of the 
erroneous electrode(s).  
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4.7.3 Simulated data with error 

SNR vs. PER (±std dev): To determine the effectiveness of the method data for adjacent 

and opposite drive pattern was acquired from EIDORS3D. These calculations were made 

with simulated data in order to be sure to control the level of erroneous electrode data. 

The PER value is then calculated for varying levels of additive noise applied to the data 

from one particular electrode. For results shown in Figure 4.12, PER was calculated for 

SNR values (-60 dB to 60 dB). Each SNR simulation was repeated 100 times in order to 

calculate the estimation error. The noise introduced to the data was generated using the 

awgn function of Matlab, which uses the randn function to generate the white Gaussian 

noise values. The generator of the randn produces different values for each trials with a 

fixed SNR value, which gives varied results for the PER value.   

 

Figure 4.12 shows SNR vs. PER (± std dev) and indicates that this method can reliably 

detect an erroneous electrode when the SNR less than 0 dB. Such a level of SNR has an 

little perceptible visual impact on the reconstructed image (Figure 4.11). The detection 

method works for each injection pattern. The detection threshold in both patterns is 

between -22 to -23 dB.   

                                

Figure 4.11 WGN to clean data: 0dB noise has a visually little imperceptible impact 

 
 

**
Add WGN to electrode 5 (*) 

data 
(SNR = 0 dB) 
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                                                        (a)                                                                                                      (b) 
 

Figure 4.12 SNR vs. PER (± std dev)   on simulated data: (a) Opposite Drive Pattern (b) Adjacent Drive Pattern 
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4.7.4 Multiple erroneous electrodes  

When the method is applied to multiple erroneous electrodes the resulting T vs electrode 

graph appears like that of Figure 4.13. The data set was taken from one particular 

experiment where the dog had a skin condition that made it difficult to attach electrodes. 

The result shown in Figure 4.13 (a) was data acquired with 700ml ventilation after the 

electrode had been attached for an hour and twenty minutes. The second image (Figure 

4.13 (b)) was from data acquired after one hour and forty minutes with 100ml saline 

instillation. The third image was with 700ml ventilation with 100ml saline instillation 

after one hour and fifty minutes of attaching the electrodes. Looking at the graph we can 

deduce that there are multiple erroneous electrodes on 3, 5, 12, and 13. 

 

 
Figure 4.13 T vs. Erroneous electrode for real erroneous data. Note there are multiple erroneous 

electrodes near the arrows. 
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4.7.5 Compensation of erroneous data  

Correction and compensation of data from erroneous electrode was implemented using 

the method introduced by Adler (2004). The result of the compensation is demonstrated 

in Figure 4.14(a) shows the original image of the experiment from the ventilated dog 

(700ml ventilated and 100ml saline installation). After applying the compensation 

scheme described in chapter 3, the resulting image is shown in Figure 4.14 (b). It is clear 

that the artefacts have disappeared and the result looks much like what we would expect 

if there was no erroneous electrode.  

 

 
 
 
Figure 4.14 Compensation of Erroneous electrodes: Left (A): difference image of 700ml inspiration 
and 100ml right lung fluid installation in a dog. Electrodes are numbered clockwise with electrode 
zero at the top centre. Both images normalized to same colourscale. (B): Image of data from (A) 
using the method of Adler (2004) to compensate for the erroneous electrodes identified below. Right: 
T for each electrode in (A). Based on these data, electrodes 3, 5, 12, 13 were identified as erroneous.  
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4.8 Discussion  

The chapter presented a method to automatically detect an erroneous electrode in EIT. It 

presents a formal approach for detection of erroneous electrodes compared to the 

heuristic method discussed in section 4.1. The method is based on testing that an 

erroneous electrode produces measurements inconsistent with those from other good 

electrodes. Results show that the method is able to correctly detect the presence and 

identify the location of erroneous electrodes in experimental and simulation data. 

 

The recommended detection threshold PER is -22dB determined from Figure 4.12. In 

comparing the results obtained from the method to the user classification, both the 

method and the user classification generated a comparable percentage of definite error 

data, 28% and 25%, respectively. The method detected 57% of the images as no error, 

while the user classification provided 67%, probably due to some errors not being visible 

in the reconstructed image as demonstrated in Figure 4.11. After detection of an 

erroneous electrode it would be possible, in a real time measurement scenario, to identify 

and correct the underlying problem. If data collection is already complete, it would be 

possible to compensate for the erroneous electrode using a technique such as that of 

Adler (2004). Figure 4.14 shows an example of such compensation for data that has large 

number of errors due to the animal’s poor skin condition.  

 

This method was also evaluated using simulated data for an opposite drive pattern and 

shows similar results to those in Figure 4.12. Unfortunately, we do not have experimental 

data to confirm the results of the opposite drive pattern. However, looking at the 

detection threshold and SNR vs. PER (± std dev) graph for opposite and adjacent drive 

pattern, we conclude that the method works well irrespective of the drive pattern. 

 

Tests were carried out to evaluate the performance using different size finite element 

meshes, other than the 256 element mesh used for the results in this thesis. A finer mesh 

grid (>256 elements) results in longer execution time with a slight increase in separation 

of T values for erroneous electrodes. The finer mesh results in better estimate of the 

potential distribution of the forward model and more accurate estimate of the voltages. 
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Even though this method was not developed to detect multiple electrode errors, the 

results (Figure 4.13) appear to show the ability to detect two adjacent erroneous 

electrodes. The T value decreases at an erroneous electrode position because the error 

contribution from that electrode is eliminated. In the case of multiple erroneous 

electrodes, part of the error contribution is removed even though contribution from other 

electrodes remains. Thus, the technique can detect multiple erroneous electrodes, 

although with reduced sensitivity.  To test this result, a data set with no errors was 

selected and varying levels of white Gaussian noise added to two adjacent electrodes. 

Results show that the two adjacent electrodes have a significantly lower T value than the 

remaining electrodes. A better approach to detect two erroneous electrodes would be 

selecting two or more candidate electrodes in the set S, and calculating the respective Ej 

for all je in S’(Chapter 6). 

 

This method for detection of erroneous electrodes could also be used for static EIT 

applications. Static EIT is more sensitive than difference EIT to measurement errors 

(Korjenevsky, 1997), and management of these errors is important for algorithm stability. 

Since an electrode error should be present whether measurements are interpreted as static 

or difference data, we propose that the method described here could be applied in static 

EIT by performing the test for errors on sets of EIT difference measurements, while the 

actual reconstruction is done statically.  

 

Automatic detection of electrode errors in EIT has several possible applications. In 

offline processing, such a technique could identify and correct for such errors. More 

usefully, if implemented in EIT monitoring equipment, it would be possible to alert staff 

who could then attend to the problem. However, for such online applications, the 

algorithm is not real-time (3s per data set with a pre-processing time of one minute), but 

would permit erroneous error detection as a separate process. 
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Chapter 5 

5 Error Detection in 3D EIT 
Most industrial and medical electrical imaging problems are inherently three dimensional 

(Polydorides and Lionheart, 1999). Hence, the data collection and forward modelling 

would be most accurately carried out three dimensions. The Electrical Impedance and 

Diffuse Optical Reconstruction Software (EIDORS3D) is freely available software that 

can be used to reconstruct electrical or optical material properties from boundary 

measurements in 3D. As discussed previously, non-linear and ill-posed problems such as 

electrical impedance and optical tomography are typically approached using a finite 

element model for the forward calculation and a regularized non-linear solver for 

obtaining a unique and stable inverse solution.  

 

In 3D EIT, various electrode configurations are possible. Typically, electrodes are placed 

in equally spaced rings on several parallel planes where each ring may have 8, 16, or 32 

electrodes. A measurement is done using electrodes in the same plane as well as in 

electrodes in the lateral direction. The current pattern is selected so as it efficiently 

utilizes the electrode configuration. EIDORS3D provides the option of using opposite 

and adjacent current injection pairs that follow similar convention as in the two 

dimensional case.  Figure 5.1 shows a finite element mesh used in EIDORS3D with two 

electrode rings, each ring with 16 electrodes.  
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Figure 5.1 Finite Element mesh in EIDORS3D with two electrode rings 

 

5.1 Finite Element Model and forward problem in EIDORS3D 

EIDORS3D finite element solver uses the complete electrode model to compute 

approximate solutions to boundary value problems involving models with first order 

tetrahedral elements (Polydorides and Lionheart, 1999). Meshing is performed according 

to some preset meshing parameters such as the mesh granularity, maximum number of 

elements and maximum edge size. As in the two dimensional case it is important that the 

elements near the boundary and especially near the electrodes are small enough to 

preserve the accuracy of measurements.  

 

Similar to the two dimensional case the forward problem deals with the construction of 

an admittance matrix (P) and estimating the distribution of the electric field (U). The 

electric field distribution is used to calculate the sensitivity matrix (H). The assembly of 

the admittance matrix differs significantly due to the increased complexity caused by the 

increase in dimension and electrodes involved. A common ground is selected to be able 

to calculate a unique forward solution. EIDORS3D uses the Cholesky method or 

preconditioned conjugate gradients for real admittivity vector. Alternatively, LU method 

or biconjugate gradients are used when the admittivity vector is complex valued.    
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5.2 Regularization in EIDORS3D 

EIDORS3D adopted a Tikhonov type regularization approach where a variable 

regularization parameter is employed. The idea is based on minimizing the residual error 

for a specific admittivity ( ξ ) 

2

22
1

2
1 V)()V)(()V)(()( * −ξ=−ξ−ξ=ξ FFFf  (5.1)

The difference is to be expressed as follows 

)V)(()( −ξ=ξ FD  (5.2)

Where: )(ξF  is the non-linear forward operator, )(ξf  is the residual error and V is the 

vector of voltage measurements. The Taylor series expansion of )(ξD  is 

2

2
1 hDhDDhD )()()()( ''' ξ+ξ+ξ=+ξ  (5.3)

 h is a small step of increments. Simple minimization based on Newton-Raphson iteration 

can be accomplished using a step h where 0)( =+ hD ξ . But the ill-posed and ill-

conditioned nature of the problem does not change from two dimensions to three 

dimensions. Consequently, it is necessary to apply a regularized approach to the inverse 

problem. The Tikhonov regularization expressed as 

2

2

2

2
)()()( kLFf ξξλξξ −+−= V  (5.4)

The first term favours matching the measured data and the second term favours 

smoothing based on some prior assumptions about ξ . The hyper parameter 

value λ controls the amount of smoothing that is to be applied.  
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5.3 Electrode error detection in EIDORS3D 

As in 2D, the linearized form of the forward and inverse solution is set up for 3D EIT in 

EIDORS3D. Both the sensitivity matrix (H) and the reconstruction matrix (B) are 

extracted to apply the method described in chapter 4. The toolbox for EIDORS3D 

provides us with the sensitivity matrix (Jacobian) using the Jacobian_3D function. 

The estimate of the conductivity distribution without je  is calculated using the same 

MAP regularized scheme shown in equation (5.5).  

ji
TT

ji
T

,, WJ\)RegRegJWJ(x̂ λ+=  (5.5)

Where J  is the sensitivity matrix, λ  is the hyperparameter and Reg  is the first order 

smoothing prior. ji ,W  is the weighting matrix used to remove contribution from electrode 

je  and ie . The data are estimated back by applying the forward model: 

x̂Jz =j  (5.6)

The equations (5.5) and (5.6) are combined to into one matrix, which needs to be 

recalculated for each pair of electrodes. The step for detection and identification of 

erroneous electrode is similar to that of the case in 2D. However, due to increased 

number of electrodes and elements the matrices are much bigger and the execution time 

is considerably longer. 

5.4 Data 

We do not have 3D EIT data other than from EIDORS3D simulations. We used FEM 

mesh with simulated conductivity difference shown in Figure 5.2. As discussed in chapter 

4, validation of the detection method through simulated data needs careful consideration 

due to the possibility of committing the inverse crime (Wirgin, 2004). To avoid the 

inverse crime, we have to use a forward model that is mathematically distinct from the 

inverse model. For the result shown in Figure 5.2, the forward model uses the 

preconditioned conjugate gradients and the inverse model uses the regularized Tikhonov 

approach. The simulated voltage measurements were generated based on the forward 

model, after which a measured simulated noise is added. The sensitivity matrix 
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(Jacobian) used in the Tikhonov regularization is constructed based on the same forward 

solver of the preconditioned conjugate gradients. Figure 5.2 shows the performance of the 

EIDORS3D inverse solver. The result shows the reconstructed image along different 

slices. Based on the above simulated result, we are able to test the detection algorithm for 

3D EIT. 

      

z=2.63 z=2.10 z=1.72

z=1.10 z=0.83 z=0.10

 

Figure 5.2 Simulated conductivity difference and its reconstruction at different positions 

 

An adjacent drive pattern protocol was selected, where measurements are carried out 

using adjacent electrodes regardless of plane they are located in. Hence, measurements 

are carried out between electrodes of the same plane as well as electrodes of different 

planes. 

5.5 Result 

The forward model of the EIDORS3D provides us with simulated voltage measurements. 

Following a similar procedure as in 2D EIT, the data from a specific electrode are 

selected and white Gaussian noise is added. When adding noise to the simulated 

difference measurement, the detection method consistently identifies the erroneous 

electrode for SNR below 10 dB. Figure 5.3 (a) is the result of the detection method when 
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simulated white Gaussian noise was added to data of electrode 8. The corresponding SNR 

vs. PER (±std dev) graph shows that the detection threshold is approximately PER=-22.5 

dB. 
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Figure 5.3 SNR vs. PER (±std dev): (a) -20 dB noise on data from electrode 8.  (b)Corresponding 
PER value for different SNR values. 

5.6 Discussion 

The detection method described in chapter 4 appears to be independent of measurement 

process or dimensionality of the problem. The one essential requirement is that the 

measurement from an electrode be related to the measurements from the other electrodes. 

In both 3D and 2D EIT, these measurements are related via the sensitivity matrix and 

reconstruction matrix. Thus, it is expected that the method would work for 3D EIT under 

EIDORS3D. However, a number of questions were raised by the EIDORS3D results. The 

most important one was: by using simulated data from EIDORS3D and running detection 

algorithm using EIDORS3D are we committing an inverse crime? Lionheart (2004) 

suggests using a much finer mesh for the inverse problem, if finite element based forward 

solver is used. The issue of inverse crime was handled based on the suggestion of 

Lionheart (2004). We use conjugate gradient method for the forward model and 

Tikhonov regularization approach for the inverse model. The two methods do have 
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mathematical connectivity and we cannot confidently say that inverse crime is not 

committed as defined by Wirgin (2004). 

This method cannot be used as real time detection method due to the considerable amount 

of computation that needs to be done. On an Athlon 1.8 GHz, 384 MB system, one run 

for detection an electrode takes approximately 5 minutes for a 32 electrode system. This 

5 minute compares to 3s for the 2D results of chapter 4. The primary reason for this long 

computation time is the memory limitation, and the requirement to load and unload 

Jacobian matrices on demand. Most of the computation time takes place when 

combined/modified sensitivity and reconstruction matrix is multiplied by the original 

voltage measurement to calculate the estimated voltage measurement for electrode je  per 

each candidate electrode ie . The combined sensitivity and reconstruction matrix is pre-

calculated for each possible  je  and ie  pair. 
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Chapter 6 

6 Detection of Multiple Erroneous Electrodes 
The method described in chapter 4 only explored the possibility of error detection of a 

single erroneous electrode. But in long term applications of EIT, it is likely that multiple 

erroneous electrodes will occur. This chapter explores the manner in which the single 

electrode error detection method can be modified to allow for detection of multiple 

erroneous electrodes. The approach to detection of two erroneous electrodes is provided 

along with results based on simulation and experimental data.  

6.1 Identification of Multiple erroneous electrodes 

Poor electrode contact can occur due to patient movement (Blott et al, 1998), or sweat 

and peripheral edema, especially in long term monitoring applications (Lozano et al, 

1995). For the above reasons it is possible to have more than one electrode having poor 

contact. Experience has shown that it is not possible to judge the number of erroneous 

electrodes based on the resulting reconstructed image, but simply the presence of at least 

one erroneous electrode.  

 

While testing the method developed for a single erroneous electrode, some of the data 

sets that have been clearly identified as having an erroneous electrode exhibited unusual 

results. One possible example is the data set shown in Figure 6.1 (a); the image shows 

that there is a possible erroneous electrode around electrode 0 or 15. When the method 

for detection of single erroneous electrode was applied the result suggested that both 

electrode 0 and 15 were erroneous with reduced sensitivity. The existence of multiple 

erroneous electrodes had to be confirmed through simulated results. Simulated erroneous 

data were generated from representative clean data by applying white Gaussian noise on 

data sets contributed by the candidate electrodes. 
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(b) 

Figure 6.1 Two erroneous electrodes from both simulated noise and experimental noise: (a) 
simulated noise added to representative non-erroneous experimental data for electrodes 0 and 15 (b) 

experimental noise observed on electrode 0 and 15  

 

The T vs. electrodes for both simulated and experimental erroneous data show similar 

results. In both cases, electrodes 0 and 15 have the lowest T values qualifying them as 

erroneous electrodes.  In addition, the result gives reason to develop a method for 

detection of multiple erroneous electrodes.   

T T



Chapter 6: Detection of Multiple Erroneous Electrodes   

 

69

6.2 Multiple erroneous electrodes detection method 

Chapter 4 illustrates the success at detection of a single erroneous electrode. In addition, 

it showed a measure of success in detection of multiple erroneous electrodes. This 

prospect leads us to consider a formal approach for multiple erroneous electrodes. The 

core idea for detection of single erroneous electrode is based on an accurate estimation of 

measurements from all good electrodes through the reconstruction algorithm. Moreover, 

significant discrepancy exists between actual and estimated data for erroneous electrode 

due low signal level of EIT and dominant nature of noise. The same concept is extended 

to the detection of multiple erroneous electrodes.  

 

Generally, the extension of the original method is based on removing all electrodes 

suspected to be erroneous. Hence, if two electrodes are suspected to be erroneous, a set S 

is defined such that all possible combinations of two electrodes are listed. Each possible 

pair is removed and an estimation of measurements is carried out on the remaining 

electrodes, see Figure 6.3. A reconstruction matrix (B) is generated such that all 

contributions from ie , je  and ke  are removed, expressed as ( )kji eee ,,B . Based on the 

modified reconstruction matrix, the estimated conductivity distribution ( x̂ ) is calculated 

for ke . The estimation error is determined for all electrodes defined in S’ (Figure 6.2)  

and T is determined for each pair of electrodes defined in S. If the T value of a specific 

pair stands out the two electrodes are labelled as erroneous.  

 

Figure 6.2 Estimation error scheme for two erroneous electrodes 
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In the event that no conclusive result is obtained, the method should continue the search 

for the possibility of three or more erroneous electrodes. Obviously, as the number of 

possible erroneous electrodes increases the percentage of data available for cross-

validation decreases. In addition, the total execution time is extended significantly, 

rendering the method ineffective.   

 
Define set S = {( ie , je ) | i = 1....N and j = 1….N, j≠i } 

For all ( ie , je ) in S 

            Define set, S′, without electrode ( ie , je ): S′= { ke : k = 1....N, k≠i, k≠j }   

 For all ke  in S′  

  Calculate image:  ( )zBx kji eee ,,ˆ =  

 Estimate measurements on ke :  xHz ˆˆ kk =  

  Calculate: 2

2
ˆE kkk zz −=  

 Calculate:  ET
N

jki,kk
kji   

,1
, ∑

≠≠=
=  

If jiT ,  is less than other values of T, detect ( ie , je ) as erroneous electrodes 

Figure 6.3 Pseudo code for detection of two erroneous electrodes. 

The pseudo code shown in Figure 6.3 is implemented using Matlab. The computation 

time for each T value is significantly longer due to the total number of electrodes and the 

increase in the number of ( )kji eee ,,B  matrices to pre calculated. Data used to validate 

the method and the subsequent result are covered in the sections to follow. 
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6.3 Data 

Data used for validation of multiple erroneous electrodes are data acquired by Adler et al 

(1997) from ventilated dogs. This data set was used to validate the detection for single 

erroneous electrode. We have demonstrated in chapter 4 that the single erroneous 

electrode detection method is capable of detecting erroneous electrodes but at a much 

reduced sensitivity. To validate the results for two erroneous electrodes, we select data 

sets that have been shown to have multiple erroneous electrodes.  

 

Simulated data are used to validate the PER threshold for detection. The amount of noise 

used is regulated by awgn function of Matlab. Since the signal level is very low, the 

awgn is in calculates the power of signal so as to not completely dominate the very low 

signal that are measured with electrode far away from the injection pair.     

6.4 Result 

Tests were carried out on both simulated erroneous data and real erroneous data. The test 

procedures are similar to the ones for single erroneous electrode detection.  

6.4.1 Simulated Erroneous Data 

Before testing on real multiple erroneous electrodes, tests were performed using 

simulated erroneous data. Similar to the procedure followed in chapter 4, we select 

erroneous electrode pairs and add either the same or a different level of white Gaussian 

noise to all data from those pairs. As expected, the reconstructed image with added noise 

to a pair of electrodes shows artefacts.  

 

To demonstrate the effectiveness of the method we added -10dB of noise to electrodes 0 

and 15; where the corresponding T values are shown in Figure 6.4(a) for all pairs 

involving electrode 0 and Figure 6.4(b) for all pair involving electrode 5. Comparing 

Figure 6.4(a) and Figure 6.4(b) we can see that the overall T value is much less when one 

of the erroneous electrode is removed. We can see that the combination involving 

electrode 5 has the lowest value at pair [0,5]. Therefore, when either one of the erroneous 

electrodes are removed the T value is significantly lower than when none are removed, 
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however it is not as low as when both erroneous electrodes are removed. The lowest 

value out of all possible combinations is with pair [0, 15], where the white Gaussian 

noise was added, see Figure 6.4(a).  
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                                 (a)                                                                                (b) 

Figure 6.4 Detection of two erroneous electrodes using simulated noise of -10dB: (a) T values for all 
pairs involving electrode 0 (b) TValue for all pairs involving electrode 5 

 

6.4.2 Erroneous experimental data 

As demonstrated in Figure 6.1, some of the real data acquired from ventilated dogs do 

have multiple erroneous electrodes. These data sets are used to carry out detection of two 

electrodes. Applying the method for detection of two erroneous electrodes to the data set 

for Figure 4.13 (a), the T values of non-erroneous electrode pairs are very high compared 

to pairs that have either one or two erroneous electrodes. Interestingly, electrode 14 

which did not exhibit erroneous electrode behaviour with the single electrode detector is 

erroneous electrode along with 4, 5, and 13. Additionally, electrode 12 is detected to be 

erroneous electrode by the single erroneous electrode detector is not detected here. 

However, the electrode pair [12,13] does provide one of the lowest T values out of all 

possible pairs.  
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(a)                                                                                (b) 

Figure 6.5: T graph for two erroneous electrode detection: (a) A low T value when both electrode 12 
and 13 are removed. (b) T values when a non-erroneous electrode 2 is removed. Note the low T values 

for electrodes that are erroneous. 

 

The data set explored in Figure 6.5 is by no means a benchmark for two erroneous 

electrodes detection. As we have explained previously, the data set was acquired from a 

dog with some skin conditions which may have caused numerous electrodes to register 

faulty measurements. For a more representative data, we have selected a different data set 

from a separate experiment on another ventilated dog. Applying the single electrode 

detection method, the electrodes 13 and 14 are shown to be erroneous, see Figure 6.6. In 

addition, electrode 4, 6 and 15 do have a certain degree of error to their measurements.  
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(b) 

Figure 6.6 Single electrode detection method applied to data with two erroneous electrodes 

 

To verify this finding the same data set was applied using two electrode detection 

method. We have shown results for pairs involving 10, 11, 13 and 14. According to the 

single electrode detection method, electrodes 10 and 11 are non-erroneous. The result for 

two erroneous detection method also shows that these two electrodes do have a higher 

overall T value when paired with other electrodes other than electrode 14. Examining the 

result for pairings involving electrode 13, we can see than electrode 13 does have a 

similar overall T value to electrodes 10, and 11. However, the smallest possible T value 

occurs when electrode 13 is paired up with 14. T value for all pairs involving electrode 14 

is much smaller than T values involving electrodes 10, 11 or 13, which suggests that 

electrode 14 is the most dominant erroneous electrode. We do not have a good 

explanation for the T value for [1, 14] pair and a low T value for [15, 14]. 
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Figure 6.7 Two electrode detection method: (a) pairs involving non-erroneous electrode 10 (b) pairs 
invloving non-erroneous electrode 11 (c) pairs involving erroneous electrode 13 (d) pairs involving 

erroneous electrode 14 
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6.5 Discussion  

In this chapter, the estimation scheme of chapter 4 is expanded to detect two erroneous 

electrodes. The modified version of the estimation method removes a pair of electrodes 

and estimates a third independent electrode. The sensitivity matrix is reconstructed 

without contributions from the three eliminated electrodes. In a 16 electrode system using 

adjacent measurement pattern, a total of 208 data points are available; when three of the 

electrodes out of 16 are removed only 176 data points remain. Hence, the prediction of 

data from 84% of the remaining is valid. However, we need to be careful while extending 

this method for more than two erroneous electrodes. Analysis of prediction accuracy vs. 

percentage of remaining data with different measurement patterns needs to be carried out.  

 

Detection of two erroneous electrodes with simulated erroneous data is clearly 

demonstrated in Figure 6.4 (a) and (b). The T value for both electrode 0 and 15 is much 

less than all other possible pairs. Even though both electrodes have the same amount of 

Gaussian noise, results from Figure 6.4 (b) suggest that removing electrode 0 with 

electrode 5 provide much lower T value rather than electrode 15 with electrode 5. The 

result suggests certain electrode position dependence on the estimation scheme. This 

dependence needs to be analyzed through a controlled experiment that we are not able to 

carry out at this time.  

 

In applying the method to real data, results were somewhat unclear for the data acquired 

from a ventilated dog with a skin condition. The single electrode detection method result 

shown in Figure 4.13 (a) suggests the existence of more than two erroneous electrodes. 

The result of Figure 6.5 also suggests the data set contains more than two erroneous 

electrodes. Several pairs have significantly lower T value; especially ones that involve all 

electrodes that had low T value in single electrode detection method (Figure 4.13).    

 

In analyzing another set of data classified as having multiple erroneous electrodes, we 

noticed a result more in agreement with the prediction of the single erroneous detection 

method. The electrode pair [13, 14] has the lowest T value. Figure 6.7 shows electrode 14 
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is much more erroneous than any of the other electrodes, since the overall T value is 

much less. Electrode pair [15, 14] has T value much less than expected.  

 

The results from real data of multiple electrode error detection suggest that the problem is 

much more complex than with single electrode detection. The robustness of the method 

depends on the total number of independent voltage measurements that are available, the 

electrode layout, and the measurement pair applied. Nevertheless, we have shown that it 

is possible to detect two erroneous electrodes using the same mathematical framework as 

in Chapter 4.  

 

On the 16 electrode system, two erroneous electrodes detection method has a total of 120 

pairs. For each individual pair we pre-calculate equation (4.8) in order speed up the 

execution time. The calculation of each T value for a pair takes approximately 1s, and 

overall one data set takes approximately 2 minutes on 1.8GHz Athlon processor. The 

approach is not suitable for real time processing in its current state. 
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Chapter 7 

7 Conclusion 
 
The objective of this thesis was to provide a systematic and robust detection method for 

erroneous electrode data in EIT. The idea of cross validating electrode measurements 

based on the remaining electrode data was applied. The method was applied to 2D and 

3D EIT on simulated and experimental data. Results from simulated data suggest the 

method can consistently detect erroneous electrodes with SNR below 10dB additive 

Gaussian noise in both 3D and 2D EIT. For detection of a single erroneous electrode in 

2D EIT, we have demonstrated that the method achieves the same PER detection 

threshold of -22dB for both opposite and adjacent drive pattern (Figure 4.12). In 3D EIT, 

the detection method was tested exclusively on simulated data. The results we observe 

(Figure 5.3) are similar to the 2D EIT even though we may have committed the inverse 

crime as defined Wirgin (2004).  

 

Results based on experimental data for 2D EIT show consistent detection results as 

classified by the expert users. As we have demonstrated in Figure 4.11, a 0dB noise level 

has little perceptual impact on the reconstructed image. Analyzing the results based on 

experimental data, we encountered data sets with multiple erroneous electrodes. The 

single electrode detection method was able to detect the electrodes at a reduced 

sensitivity for several of the data sets (Figure 4.13).   

 

Encountering multiple erroneous electrodes prompted us to look at ways of extending the 

single erroneous electrode detection method into multiple erroneous electrode detection. 

The approach for extension of the original method was through cross validation of data 

from the remaining electrodes after removing all electrodes suspected to have been 
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erroneous. The method was applied to the same experimental data used in single 

erroneous electrode detection and simulated data. Tests for the case of detecting a pair of 

erroneous electrodes in simulated data provided accurate results (Figure 6.4). 

Experimental data provided mixed results depending on the number of erroneous 

electrodes present in the data set as determined by the single erroneous detection method 

(Figure 6.5). Nevertheless, data sets shown to have only two erroneous electrodes gave 

accurate results when applied to two erroneous electrodes detection method (Figure 6.6 

and Figure 6.7).  

 

The method in general shows an interesting potential for use in EIT clinical and 

experimental applications. In real-time application it would be possible for single 

electrode error detection method through increases in computing power or parallel 

processing. Currently, single electrode detection requires 74s pre-calculation and 3s for 

each data set. For 3D EIT and multiple erroneous electrode detection, the application of 

the method becomes cumbersome in its current form due to the increase number of 

electrodes for 3D EIT and increase in possible pairs in multiple erroneous electrodes 

detection. Even so, the performance results for both 3D EIT and multiple erroneous 

electrodes detection are in line single erroneous electrode detection.  

 

8 Future Work 
Detection of erroneous electrodes in EIT is an important aspect to making the technology 

viable for clinical use; this thesis has contributed the possibility of detection of single or 

multiple erroneous electrodes. The methods were applied under the premise of all noise 

characteristics is Gaussian, similar to the probability distribution function of the 

conductivity distributions. However, we have shown in section 3.3 that the noise has a 

variety of sources and characteristics, especially being non-stationary. Further 

understanding and modelling of these noise characteristics would improve the ability of 

the detection algorithm. For example, error propagation due to an erroneous electrode 

used for current injection is far greater than when that same electrode is used for voltage 

measurement. Careful study of this fact and its impact on detection of erroneous 
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electrodes needs to be studied. Hence, distinguishing between the noise characteristics 

when an electrode is used for measurement and when it is used for injection would allow 

us to modify the detection scheme. Study of the noise characteristics could be done 

through analysis of the impact of electrode type, reusability, and skin-electrode 

interaction. 

 

Apart from modelling of electrode error and exploiting the knowledge for detection, the 

impact of removing electrodes positioned near regions of high conductivity change has to 

be carefully looked at. These electrodes represent the majority of the information and 

removing them leaves only electrodes with the least amount of inter-dependence. Thus, it 

is necessary to investigate the accuracy of the voltage difference estimation for electrodes 

that carry a higher percentage of the change in conductivity. If indeed there is significant 

dependence, equation (4.8) can be modified by introducing a weight factor to account for 

the bias of the estimator.  

 

For multiple erroneous electrode detection the estimation scheme removes certain 

percentage of data and image estimation is then made with the remaining data. 

Intuitively, we can guess that as the number of erroneous electrodes increases detection 

using multiple erroneous electrodes will becomes more difficult. Hence, a study of the 

limits for the multiple erroneous electrodes needs to be investigated. One drawback of a 

multiple erroneous electrode detection method is the amount of time it takes to do the 

computation. The computation time can be reduced using a more powerful computer 

and/or through parallel processing. Still this solution may not be suitable for a real time 

application which is one of the methods’ intended use. Hence, a more compact method 

such as Jackknife method (Efron, 1982) is worth exploring (see Appendix 1). The 

Jackknife method, cross validates certain statistical characteristics of a data set (in our 

case statistical characteristics of individual electrodes), such as the mean or standard 

deviation rather than cross-validating the actual data. To be able to apply this method, a 

statistical parameter that reflects the presence of an erroneous electrode needs to be 

identified.  
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The current detection method is applied on a single difference measurement based on two 

data sets at two time instances. However, sources of error such as detached electrode and 

sweat are major contributors, which are dependent on time. It may be possible to carry 

out time based detection method that incorporates our approach. Preliminary analysis of 

estimation error vs. time shown in Appendix 2 demonstrates that the estimation error 

does change over time. 

 

Application of this method to verify the goodness of data is not constrained to EIT but 

may also be used to for other multi-sensor systems. However, it can only be applied if 

there is certain inter-dependence of data from different sensors. Therefore for systems 

such as Positron Emission Tomography (PET), it is necessary to first prove that data from 

one sensor can be cross-validated based on data from other sensors. Furthermore, it is 

essential to justify the need for a detection scheme by showing that the failure of a sensor 

or sensors affects the overall performance of the system. If a system fulfills the above two 

criteria the method can be applied and its detection threshold can be determined.  
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10 Appendix 1: Using Jackknife method for detection 
We have introduced a detection method that uses the cross-validation concept (Efron, 

1982). The drawback to this approach is the amount of time required to complete the 

cross validation. Another approach is known as the Jackknife estimate, where some 

statistical characteristic is cross validated instead of the actual data points. Hence 

assuming a set of electrodes, S, we compute some statistics of interest (θ) such as the 

mean. The Jackknife method is based on sequentially deleting an element from S and re-

computing the statistics of interest. Efron (1982) has shown that the recomputed 

statistical characteristic is averaged and it is used to calculate the bias from the overall 

statistical characteristics: 

)ˆˆ)(( (.) θ−θ−= 1nBIAS  (10.1)

Where (.)θ̂ the mean of the statistic of interest is calculated by eliminating each element of 

S and θ̂  is the overall estimate. The bias corrected jackknife estimate of θ is 

(.)
ˆ)(ˆ~
θ−−θ=θ 1nn  (10.2)

The Jackknife statistics can be potentially exploited for detection of erroneous electrode 

considering that the data from an erroneous electrode is different in magnitude. For 

example, if we calculate the mean of the data for the each electrode the erroneous 

electrode will have a higher value than non-erroneous ones. However, simple statistical 

characteristic such as the mean is not reliable unless the noise is considerably high. 

Figure A1.2 shows the difference in average magnitude of difference voltage 

measurements per electrode when Gaussian noise of -10 dB, -5 dB and 0 dB is added to 

electrode 5. The average magnitude of electrode 5 has much higher value than the rest of 

the data points at -10 dB and -5 dB but it becomes increasingly difficult to distinguish as 

the noise decreases. With careful modelling of error and knowledge of the noise 

characteristics it would be possible to detect erroneous electrodes. 
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Figure A1.2 Detection using the Jackknife method: electrode 5 is erroneous 
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11 Appendix 2: Analysis of Electrode error with time  
In this section, we offer analysis of a specific experimental data and the estimation error 

of a certain candidate electrodes. The graph shows the change in estimation error for 4 

electrodes within a data set over a period of one hour and ten minutes. This particular 

data set has no erroneous electrodes. A reference data of similar ventilation and 

instillation was selected for each session of the experiment. The result shows a gradual 

increase of the estimation error which is consistent with the understanding that electrode 

error increases with time. The drop in estimation error takes place just after 45 minutes 

during the instillation procedure, which may have caused electrode movement. The 

estimation error decreases after the instillation procedure and gradually starts to increase. 

It is interesting to note that all the electrodes exhibit the same pattern of estimation error, 

suggesting that the cause for error is of the global nature and is not confined to a specific 

electrode.  
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Figure A2.2 Average change of estimation error with time for electrodes 1, 5, 15, 10 
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12 Appendix 3: 2D erroneous electrode detection code 
Appendix 3 lists the Matlab code used for detection of erroneous electrode in 2D EIT. 

The main function is elec_detect which implements the method described in chapter 

4. In addition, the values in equation (4.8) are calculated only once using the function 

prep_predictor. The function add_noise is used to add simulated noise to a 

particular electrode’s data. 

 
function [err,PER]=elec_detect(e,vi,ve,repeat,snr1,elec) 
% ELEC_Detect: runs the erroneous electrode detection method on selected   
% samples data from ventilated dog data of 1994. User must select the data 
% set. The result shows the graph of the estimation for each electrode. The 
% electrode with the lowest total erms is assumed to the erroneous 
% electrode 
% 
% e:      Experimental data number 
% vi:     Measurement during inspiration or at time t1 
% ve:     Measurement during expiration or at time t2, where t2>t1 
% repeat: Number of times to repeat experiment 
% snr1:   Signal to noise ratio specifying the noise to be added if any 
% elec:   Noise is added to data from elec, elec=-2 if there is no noise  
%         to be added 
% err:    estimation error for each electrode in the EIT system 
% PER:    Prediction error of experimental data e or if simulation PER for  
%         different snr values for each iteration 
% 
% (C) 2004 Yednek Asfaw 
% $Id: elec_detect.m,v 1.3 2004/11/03 22:57:01 yasfaw Exp $ 
 
%clear all;  
DEBUGM=0;    
%constructor is the set matrices generated by prep_predictor.m 
load constructor 
 
%index of all valid measurements 
global ELS 
n=1; 
for r=1:repeat 
    k=1; 
    for snr=snr1 
        j=1; 
  
        %calculate the voltage difference 
        if (e==59 | e==60 | e==61)  
            z=(vi(:,1) - ve(:,1)); %simulated data already normalized 
         else 
            z=(vi(:,1) - ve(:,1))./(0.5*(vi(:,1)+ve(:,1))); 
        end 
         
        %add noise to data from elec, if none elec=-2 
        zn=add_noise(elec,z,snr); 
         
        if DEBUGM==1 
             
            %show the amplitude of voltage difference for each pair 
            %without noise 
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            figure,plot(z(ELS),'.') 
            xlabel('Index for measurement and injection pair'); 
            ylabel('amplitude of the voltage difference'); 
             
            %with noise 
            figure,plot(zn(ELS),'.') 
            xlabel('Index for measurement and injection pair'); 
            ylabel('amplitude of the voltage difference'); 
             
            %calculate the conductivity distribution 
            exp_image=imgr(irec(-zn,zeros(256,1),'filt',2)); 
            filename=['e', num2str(e),'.png']; 
            cmap=[flipud(fliplr(hot(33)));hot(33);1,1,1];cmap(33,:)=[]; 
            colormap(cmap) 
             
            %save the reconstructed image into png format 
            imwrite(exp_image,cmap,filename);  %bmpwrite 
            image(exp_image); 
            figure,mesh(exp_image); pause; 
        end 
         
        %start the detection method 
        for remapped=zn %for each individual data set 
            for i=1:16 %select a candidate electrode ei 
                err(i)=0; %initialize the total erms 
                for j=1:16 %select an electrode ej different from ei 
                    if i~=j;  
                        %determine the estimation error 
                        err(i)=err(i)+ remapped'*IM{i,j}*remapped; 
                    end 
                end 
                err(i)=err(i)/15; %normalize 
                 
                if DEBUGM==1 
                    disp([i, err(i)]); %show estimation error for each ei 
                end 
            end 
             
            j=j+1; 
            if DEBUGM==1        
                std_err=std(err); 
                mean_err=mean(err); 
                erf_val=( mean_err- min(err))/ std_err; 
                erf_array=(mean_err-err)/std_err; 
                z=1-erf(erf_val); 
                z_array=1-erf(erf_array); 
                fprintf('estimation accuracy is %d\n',z); 
            end 
        end 
        if (DEBUGM==1) %T vs. electrode ei 
            figure,plot(0:15,err,'*') 
            axis([-1 16 0 0.04]) 
            xlabel('electrode #') 
            ylabel('T_e_r_m_s'); 
        end  
 
        %determine if there is an erroneous electrode in this data set 
        norm_sample=(err-mean(err))/var(err); 
        %calculate the distance of each T value for electrode ei from the 
        %other T values 
        for i=1:16 
            if norm_sample(i)>=0 val=0; else val=norm_sample(i); end 
            dist(i)=sum(abs(norm_sample-val));  
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        end 
         
        %determine the min to max distance ratio and PER 
        maxdist_ratio(n,k)=min(dist)/max(dist); 
        PER(n,k)=20*log(maxdist_ratio(n,k)); 
         
        disp([r snr e maxdist_ratio(n,k) 20*log(maxdist_ratio(n,k))]); 
        k=k+1; 
    end 
    n=n+1; 
end 
 
 
function innerM=prep_predictor(dpos,dvv,j,elec) 
% prep_predictor: calculates the overall matrix of equation 4.9 
% dpos: The difference between first pair ie. [0 2] injection pair-> dpos:2 
% dvv:  Senstivity matrix (H) 
% j:    Electrode ej for which data is to be estimated 
% elec: Pre_removed electrodes (use [] for none) 
% 
% (C) 2004 Yednek Asfaw 
% $Id: prep_predictor.m,v 1.1 2004/11/03 23:03:43 yasfaw Exp $ 
 
%Prepare the index of data that is already removed (els), eg. data of electrode 
%ei for single erroneous electrode estimation 
els=rem(rem(0:255,16)-floor((0:255)/16)+16,16)'; 
els=~any(rem( [15 16 [15 16]+dpos ] ,16)' ... 
    *ones(1,256)==ones(4,1)*els')'; 
els= reshape(els,16,16); 
for i=1:length(elec) 
    ee=elec(i)+16; 
    els(rem(ee,16)+1,:)=zeros(1,16); 
    els(rem(ee-1,16)+1,:)=zeros(1,16); 
    els(:,rem(ee,16)+1)=zeros(16,1); 
    els(:,rem(ee-dpos,16)+1)=zeros(16,1); 
end %for i 
els_preremoved= els(:); 
 
global ELS E; 
 
 
ELS= els_preremoved; 
%remove data of electrode ej 
kill_el(j); 
 
%isolate the data from electrode ej 
el_data= els_preremoved & (~ELS); 
 
%prepare equation 4.9 
S=diag(double(el_data)); %selector 
I=diag(ones(1,256));     %identity matrix 
prog='mkfilt'; param=[1 0 .1 0]; 
 
%recalculate the reconstruction matrix 
B=feval(prog,param(1:3)); 
B_full=zeros(256); 
B_full(:,ELS)=B; 
 
%calculate matrix the estimation error for pair ei and ej 
innerM= ((I'-B_full'*dvv')*S')*(S*(I-dvv*B_full)); 
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function zn=add_noise(elec,z,snr) 
% add_noise: introduces gaussian to the data related to electrode elec 
% elec: Gaussian noise is added to data that comes from elec 
% z:    Original Difference measurement 
% snr:  The signal to noise ratio snr=20*log(signal power/noise power) 
% 
% (C) 2004 Yednek Asfaw 
% $Id: add_noise.m,v 1.2 2004/11/03 22:58:04 yasfaw Exp $ 
 
if(elec>=0) 
    global ELS ChoiX 
 
    %find out the configuration 
    dpos= rem(16+ChoiX(3:4)*[-1;1] + (ChoiX(3:4)>='a')*[1;-1] ... 
        *('0a'*[-1;1]-10),16); 
 
    %find the index of data related to elec 
    els= reshape(ELS,16,16); 
    for i=1:length(elec) 
        ee=elec(i)+16; 
        els(rem(ee,16)+1,:)=zeros(1,16); 
        els(rem(ee-1,16)+1,:)=zeros(1,16); 
        els(:,rem(ee,16)+1)=zeros(16,1); 
        els(:,rem(ee-dpos,16)+1)=zeros(16,1); 
    end %for i 
    new_index=find((els(:) ~= ELS)); 
 
    %add noise, awgn needs to be in measured mode 
    zn=z; 
    zn(new_index) = awgn(z(new_index),snr,'measured'); 
else 
    %no noise 
    zn=z; 
end 
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13 Appendix 4: 3D erroneous electrode detection code 

Appendix 4 lists the Matlab code used for detection of erroneous electrode in 3D EIT. 

The main function is elec_detect_3D which implements the method described in 

chapter 4 and 5. The matrices ( )ji ,eeB  are calculated by err_jacobian function after 

which the values are saved for future use. The function awgn is used to add simulated 

noise to a particular electrode’s data. 
 
function [err, PER]=elec_detect_3D () 
 
% ELEC_Detect_3D: runs the erroneous electrode detection method simulated  
% data. The result shows the graph of the estimation for each electrode. The 
% electrode with the lowest total erms is assumed to the errorneous 
% electrode 
% 
% err:    estimation error for each electrode in the EIT system 
% PER:    Prediction error of experimental data e or if simulation PER for  
%         different snr values for each iteration 
% 
% (C) 2004 Yednek Asfaw 
% $Id: elec_detect_3D.m,v 1.1 2004/11/05 14:00:00 yasfaw Exp $ 
 
%clear all;  
errelec=input('Choose Erroneous electrode (1:32):'); 
disp(sprintf('\n')) 
 
snr1=input('Noise level in dB to add to data from that electrode (-200:200):'); 
disp(sprintf('\n')) 
 
rep=input('Number of times to repeat simulations (1:100):'); 
disp(sprintf('\n')) 
 
%calculate the simulated difference measurements 
%and the corresponding measurement pair 
[dvaG, indH]=prep_elec_detect_3D;  
dvaGn=dvaG; 
 
%determine the index of data contributed by errelec 
W=diag(Mod_Jacobian(errelec,indH)); 
err=zeros(32,1); %initalize the T values for each electrode 
n=1; 
for repeat=1:rep %repeat the simulation rep times 
    k=1; 
    for snr=snr1 %with a range of certain snr 
        %add noise to data that comes errelec 
        dvaGn(find(W==0)) = awgn(dvaG(find(W==0)),snr,'measured'); 
        for i=1:32 
            err(i)=0; %initialize the T value for ei 
            for j=1:32 %for each electrode not including ei 
                if(i~=j) 
                    v=genvarname(['B',num2str(i),num2str(j)]); 
                    v1=genvarname(['W',num2str(i),num2str(j)]); 
                    eval(['load ','B',num2str(i),num2str(j)]); 
                    eval(['load ','W',num2str(i),num2str(j)]); 
                    %calculate the estimate 



 

 

97

                    Est_dva=eval([v '* dvaGn']); 
                    err(i)=err(i)+(norm(Est_dva(find(eval(v1)==0)) ... 
                           -dvaGn(find(eval(v1)==0)))); 
                    eval(['clear ','B',num2str(i),num2str(j)]); 
                    eval(['clear ','W',num2str(i),num2str(j)]);                     
                end 
            end 
             
        end 
        %remove the added noise 
        dvaGn=dvaG; 
 
        %show the result of the estimation 
        figure,plot(1:32,err(:),'*'); 
        title('T value for errenous electrode 1'); 
        xlabel('electrodes'); 
        ylabel('T value'); 
         
        %determine if there is an error 
        norm_sample=(err-mean(err))/var(err); 
        for i=1:32 
            if norm_sample(i)>=0 val=0; else val=norm_sample(i); end 
            dist(i)=sum(abs(norm_sample-val)); 
        end 
         
        ratio1(n,k)=min(dist)/max(dist); 
        PER(n,k)=20*log(ratio1(n,k)); 
        format short e; 
        disp([repeat snr ratio1(n,k) PER(n,k)]); 
        save PER_3D PER; 
        k=k+1; 
    end 
    n=n+1; 
end 
return;  
 
 
function err_jacobian () 
%err_Jacobian: This function is run once to calculate the modified  
%jacobians for all possible pairs ei and ej. If the values exist for 
%the particular setup this should not be executed 
% (C) 2004 Yednek Asfaw 
% $Id: err_jacobian.m,v 1.1 2004/11/06 9:00:00 yasfaw Exp $ 
[dvaG, indH, Reg, J]=prep_elec_detect_3D; 
 
%add noise to data coming from electrode 1 
W=diag(Mod_Jacobian(1,indH)); 
for i=1:32 
    fprintf('%d',i); 
    for j=1:32 
        if(i~=j) 
            W=Mod_Jacobian([i j],indH); 
            JJ=W*J; 
            v=genvarname(['B',num2str(i),num2str(j)]); 
            eval([v '=J*((transpose(JJ)*JJ  
            ...+tfac*transpose(Reg)*Reg)\transpose(JJ));']); 
            cd Jacobians;  
            eval(['save ','B',num2str(i),num2str(j),' B' ... 
            ,num2str(i),num2str(j)]); 
            cd .. 
            clear(['B',num2str(i),num2str(j)]); 
            v1=genvarname(['W',num2str(i),num2str(j)]); 
            eval([v1 '= diag(Mod_Jacobian(j,indH));']); 
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            cd Jacobians;  
            eval(['save ','W',num2str(i),num2str(j),' W', ...  
            num2str(i), num2str(j)]); cd .. 
            clear(['W',num2str(i),num2str(j)]); 
            fprintf('.'); 
        end 
    end 
    fprintf('\n'); 
end 
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14 Appendix 5: Multiple erroneous electrode detection 
code  
Appendix 4 lists the Matlab code used for detection of multiple erroneous electrode in 2D 

EIT. The main function is elec_multi_detect which implements the method 

described in chapter 6. The matrices ( )kji e,ee ,B  are calculated by 

prep_multi_predictor function after which the values are saved for future use. 

The function add_noise is used to add simulated noise to selected electrode pair data. 
 

function [err,PER]=elec_multi_detect(e,vi,ve,repeat,snr1,elec) 
% ELEC_Detect: runs a two erroneous electrode detection method on  
% simulated data. The result shows the graph of the estimation for each 
electrode. The electrode with the lowest total erms is assumed to the 
errorneous electrode 
% 
% e:      Experimental data number 
% vi:     Measurement during inspiration or at time t1 
% ve:     Measurement during expiration or at time t2, where t2>t1 
% repeat: Number of times to repeat experiment 
% snr1:   Signal to noise ratio specifying the noise to be added if any 
% elec:   Noise is added to data from elec, elec=-2 if there is no  
%         noise to be added 
% err:    estimation error for each electrode in the EIT system 
% PER:    Prediction error of experimental data e or if simulation PER 
%         for different snr values for each iteration 
% 
% (C) 2004 Yednek Asfaw 
% $Id$ 
 
clear all; 
 
DEBUGM=0; 
 
global ELS 
n=1; 
for r=1:repeat 
    p=1; 
    for snr=snr1 
 
        %calculate the voltage difference 
        if (e==59 | e==60 | e==61) 
            z=(vi(:,1) - ve(:,1)); %simulated data already normalized 
        else 
            z=(vi(:,1) - ve(:,1))./(0.5*(vi(:,1)+ve(:,1))); 
        end 
 
        zn=add_noise(elec,z,snr); 
 
        if DEBUGM==1 
 
            %show the amplitude of voltage difference for each pair 
            %without noise 
            figure,plot(z(ELS),'.') 
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            xlabel('Index for measurement and injection pair'); 
            ylabel('amplitude of the voltage difference'); 
 
            %with noise 
            figure,plot(zn(ELS),'.') 
            xlabel('Index for measurement and injection pair'); 
            ylabel('amplitude of the voltage difference'); 
 
            %calculate the conductivity distribution 
            exp_image=imgr(irec(-zn,zeros(256,1),'filt',2)); 
            filename=['e', num2str(e),'.png']; 
            cmap=[flipud(fliplr(hot(33)));hot(33);1,1,1];cmap(33,:)=[]; 
            colormap(cmap) 
            imwrite(exp_image,cmap,filename);  %bmpwrite 
            image(exp_image); 
            figure,mesh(exp_image) 
            pause; 
        end 
 
        %start the detection method 
        for remapped=zn 
            cd Constructors; 
            for j=0:15 %for each individual data set 
                for k=j:15 %select a candidate electrode ei 
                    err(j+1,k+1)=0; %initialize the total erms 
                    for i=0:15 %select an electrode ej, and ek  
                        if i~=j & i~=k & j~=k; 
             v=genvarname(['B',num2str(i),num2str(j), ... 
                           num2str(k)]); 
                           eval(['load' ... 
                           ,'B',num2str(i),num2str(j),num2str(k)]); 
                           %determine the estimation error 
                          err(j+1,k+1)=err(j+1,k+1) ...   
                           +eval(['transpose(remapped)*' v ... 
                           '*remapped;']); 

   clear(['B',num2str(i),num2str(j) ...  
   ,num2str(k)]); 

                        end 
                    end 
                    if DEBUGM==1 
                        if j~=k 
        %show estimation error for each ej and ek 

disp([j, k, err(j+1,k+1)]);                        
end 

                    end 
                end 
            end 
            cd .. 
        end 
        %determine if there is an erroneous electrode in this data set 
        norm_sample=(err(:)-mean(err(:)))/var(err(:)); 
        for i=1:16 
            if norm_sample(i)>=0 val=0; else val=norm_sample(i); end 
            dist(i)=sum(abs(norm_sample-val)); 
        end 
 
        %determine the min to max distance ratio and PER 
        maxdist_ratio(n,p)=min(dist)/max(dist); 
        PER(n,p)=20*log(maxdist_ratio(n,p)); 
        disp([r snr e maxdist_ratio(n,p) 20*log(maxdist_ratio(n,p))]); 
        p=p+1; 
    end 
    n=n+1; 
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end 
 
 
function prep_multi_predictor(dpos,dvv) 
% prep_multi_predictor: calculates the total erms value of all possible  
% pair electrodes. This function is run only once. The Constructors are 
% save in a folder named Constructor. The result is used by 
% elec_multi_detect.m 
% dpos: The difference between a pair ie. [0 2] injection pair-> dpos:2 
% dvv:  Senstivity matrix (H) 
% $Id$ 
 
 
for i=0:15 %estimate electrode ei's data    
    for j=0:15 
        for k=0:15 %[ej ek] pre-removed electrodes 
            if i~=j & i~=k & j~=k; 
                %construct the name for the reconstruction matrix 
                v=genvarname(['B',num2str(i),num2str(j),num2str(k)]); 
                %calculate the reconstruction matrix using             
                %prep_predictor 
                innerM=prep_predictor(dpos,dvv, i,[j k]); 
                eval([v '= innerM;']); 
                %save it 
                cd Constructors;  
                eval(['save ','B',num2str(i),num2str(j) ... 
                ,num2str(k),' B',num2str(i),num2str(j),num2str(k)]);  
                cd .. 
                clear(['B',num2str(i),num2str(j),num2str(k)]); 
            end 
        end 
    end 
    fprintf('\n'); 
end 


