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Abstract— Estimation of on-off timing of human skeletal mus-
cles during movement based on surface electromyography (EMG)
is an important issue in sport performance and health care
applications. Several methods have been proposed for detecting
the on and off timing of the muscle. However, little is known
about the reliability and accuracy of these methods, which fre-
quently rely on intuitive and heuristic criteria. Some sophisticated
techniques have been proposed, but have a disadvantage of heavy
computational load and therefore not suitable for real-time online
applications. In this study, an improved method is proposed
based on double-threshold method of Bonato et al. (1998). It
provides a higher sensitivity for activation detection. In addition,
the whitening process of the EMG signal is avoided, significantly
reducing the computation time.

Index Terms— EMG, gait analysis, signal detection.

I. I NTRODUCTION

Many clinical applications, such as gait analysis and coor-
dination studies, require accurate detection of when, and for
how long, muscles are active. The primary instrument for this
measurement is the surface electromyogram (EMG), in which
a composite electrical signal is measured of the electrical
activity in the nearby muscle tissue. The early methods for
detecting muscle activation were based on setting a threshold
of EMG envelop amplitude to discriminate the background
noise from the signal generated by active muscle[1], [6]. Nor-
mally, the threshold level is chosen heuristically. This kind of
approach is generally not satisfactory, since measured results
depend strongly on the choice of threshold[7]. Moreover, these
traditional methods do not allow the user to set independently
the detection and false alarm probabilities[2].

More recently, a double-threshold detector has been pro-
posed by Bonato et al. [2] specifically for gait analysis. This
method operates on the raw myoelectric signal and, does not
require any envelope detection. Its performance is controlled
by the values of three parameters, false-alarm probability
(Pfa), detection probability (Pd), and time resolution. This
method is complex and computationally expensive, requiring
a whitening of the signal. It has also been reported to not be
very sensitive.

In this paper, we propose an improved method based on
the double-threshold method. This algorithm is more sensitive,
stable and efficient with decreased computational cost.

Asterisk indicates corresponding author.

II. T HEORETICAL CONSIDERATIONS

In this section, we first derive the equations that describe
the structure of the detector, and then discuss the strategies for
selection of its parameters.

A. Derivation of the Algorithm

A common model for the surface EMG signal recorded dur-
ing voluntary dynamic contractions is a zero-mean Gaussian
processs(t) ∈ N (0, σs) modulated by the muscle activity
and corrupted by an independent zero-mean Gaussian additive
noise n(t) ∈ N (0, σn). These signals are sampled with a
sampling frequencyfs which satisfies Nyquist criterion[2].

We assume that the corrupting noise is stationary and the
signal is a nonstationary Gaussian processes that is inde-
pendent between different trials. Thus the signal and noise
can be further expressed ass(ξ, t) ∈ N (0, σs(t), ξ) and
n(ξ, t) ∈ N (0, σn, ξ), where ξ represents the trial number
of the experiment. In our study, it represents the sequence
number of foot steps on a treadmill. Given a sampled signal
(si(ξ)) and noise (ni(ξ)), the ith measured data value is

xi(ξ) = si(ξ) + ni(ξ), (1)

where si(ξ) and ni(ξ) are s(ξ, i) and n(ξ, i), respectively.
Given the assumed independent and Gaussian processes,s(t)
andn(t), the probability distribution ofxi is given as
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We generate an auxiliary sequence,{zi}, by summing up all
squared measured data values{xi} at the same time instant
of different trials, i.e.
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∑

ξ

x2

i (ξ), (3)

where ξ ∈ [1, . . . , ν], ν is the number of trials.zi has a
probability distribution of
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whereχ2(x, ν) represents Chi-square distribution withν de-
grees of freedom. If there is only noise present in the measured
data values, e.g., when the muscle is at rest,zi would be given
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by (3) without the signal contribution, and the (3) and (4)
become
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and
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The probability that a specific noise sample is above a fixed
thresholdζ is

Pζ = P [z > ζ, x(t) = n(t)]

=

∫
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From (7) we can obtain

ζ = σ2

nχ2

−1
(1 − Pζ , ν) , (8)

whereχ2

−1
(P, ν) is the inverse chi-square cumulative distri-

bution function withν degrees of freedom.
Similarly, when signalsi and noiseni are both present, the

probability density function is given by (4). It follows that the
probability Pdk that thekth sample is above the thresholdζ
is given by

Pdk = P [zi > ζ, xi = si + ni]
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whereγ̄(x, a) is incomplete gamma function.
Bonato et. al. use two thresholds,ζ and r0. The second

threshold,r0, is set up by introducing a detection window,
inside which m successive samples are observed. Muscle
activation is detected if at leastr0 out of m successive
samples are aboveζ. This technique allows more flexibility
in the relationship betweenPfa and probability of detection
by increasing the number of parameters that characterize the
detector.

B. Selection of Detector Parameters

Given a user-selectedPfa, we now calculate the correspond
ζ. The probabilityPr0

(r ≥ r0;m) that at leastr0 samples out
of m exceed the threshold is given by

Pr0
(r ≥ r0;m) =

m
∑
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m
k

)

P k (1 − P )
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, (10)

where P is the probability that a single sample crosses the
threshold.

Then the false-alarm probabilityPfa is the probability that
noise samples are incorrectly interpreted as signal, and is
obtained from (10) by posingP = Pζ , i.e.

Pfa =

m
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and similarly the probability of detection,Pd, is the probability
that signal samples, although corrupted by noise, are correctly
recognized, and it is obtained by substitutingP with Pdk in
Eq.10, as shown by

Pd =

m
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k

)

P k
dk (1 − Pdk)

m−k
. (12)

The user sets the desired valuesPfa and requested time
resolution. Tuning the statistical detector consists of choosing
the length of the observation window (m) and two thresholds,
r0 andζ.

In this study, the sampling rate is1kHz. In order to achieve
a time resolution for10ms, the observation window,m, must
be10 points. It has been simulated [2] that ifPfa is fixed the
Pd increases asr0 decreases. This behavior does not depend
on the values assumed bym and SNR and, hence, may be
considered as general. It follows that to reach the highestPd,
the r0 should be set to its minimum value of1.

After selection ofr0 and time resolution, the last step is the
selection ofζ. Given the user selectedPfa, Eq. (11) is solved
with respect toPζ . By substitutingPζ into Eq. (8), we then
obtain the first thresholdζ.

III. E XPERIMENTAL PROCEDURES ANDRESULTS

A. Measurement of EMG signal

The three male volunteers (aged 22-30) were required to run
on a treadmill and EMG data were acquired from six different
muscle groups of the leg. Also, a sensor was put under the heel
inside the shoe to provide a synchronization signal for the heel
strike. The EMG signals were amplified, with gain of2, 000,
and sampled with an A/D card with the synchronizing signal
at 1,000 samples per second, after filtering with an appropriate
antialiasing filter. Fig. 1 shows representative EMG data from
a subject. The raw EMG signals were divided into segments
of a single stride (between two consecutive heel strikes) based
on the synchronization signal.

The detection algorithm was implemented in Matlab (Math-
works Inc., Natick, MA) on an 1.8 GHz AMD Athlon proces-
sor IBM-compatible PC. Software was written to incorporate
a Graphical User Interface so that users can monitor the
procedures and results visually. Results were calculated for
Bonato et. al.’s method and the proposed method using for9
measurements from3 subjects for the biceps femoris (BF) and
semitendinosus (ST).Pfa was set to0.05 for both method and
the results are shown in Figs.3 and 4.

B. Computation Steps used for Bonato’s method

The steps for Bonatos’s detection is as follows:
1) the raw EMG signal,{xi}, of one stride is loaded
2) the raw signal is whitened to make the samples of{xi}

uncorrelated with each other
3) the squared values of two successive samples of whiten-

ing output are summed and the auxiliary sequence,zi is
generated using Eq.3

4) a user identifies a segment of background noise using the
GUI windows and then the averaged standard deviation
of the noise,σn, is obtained
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Fig. 1. The raw EMG signals detected from six muscles from a subject
on a treadmill. The muscles are the vastus lateralis (VL), the vastus medialis
(VM), the biceps femoris (BF), the semi tendinosis (ST), the gastrocnemius
lateralis (GSL) and the gastrocnemius medialis (GSM); the last row shows
the pressure signal from the heel, which is used for time synchronization
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Fig. 2. Representative output from the detection algorithm;(a) the overlay
plot of 9 steps raw of EMG signals from Vastus Lateralis muscle, (b) the
auxiliary sequence,zi, of the raw EMG signal for a strides to be analyzed,
(c) the detector output.

5) the width of the detecting window,m, is set to5, the
second threshold,r0 is set to 1 and the false-alarm
probability, Pfa, is set to 0.05 and the value ofPζ

calculated for a real root between0 and1 in (11)
6) values ofσn and Pζ are substituted into (8) with the

ν = 2 to calculateζ
7) the detection window is slid along the auxiliary se-

quence,{zi}. The muscle is considered active, wherever
more thanr0 samples in the detection window have a
value greater thanζ

8) the detection sequence obtained in step 7, is further
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Fig. 3. The detecting results of two different methods forVastus Lateralis
muscle group; (a) the original raw EMG signal, (b) the result of Bonato’s
method, (c) the result of present method.

analysed to reject spurious transitions (or pulses) whose
width are less than30 samples.

C. Computation Steps Used for Present Method

The steps for present method are similar to those of Bon-
ato’s, with some differences:

1) instead of load one stride of these EMG signals,ν strides
of EMG signals are loaded, and are time aligned with
heel strike synchronization signal

2) the auxilliary sequence{zi} is obtained via Eq.3
3) solving Eq.11 by settingm = 10 (its time width is the

same asm = 5 in Bonato’s methd)r0 = 1 andPfa =
0.05; selecting the reasonable root asPζ

4) substituting the values ofσn andPζ into Eq. 8 and the
first thresholdζ is obtained

5) following steps are the same as steps 7) to 8) in Bonato’s
method.

Two muscle activation parameters are frequently used in clin-
ical applications: theActivation Interval defined as activation
time of the muscle in one stride normalized with respect
stride duration; andOn-set time, the time instant when muscle
is activated normalized to stride duration. In Table I the
parameters of activation interval, on-set time and computation
time of this study are shown. The activation interval and on-
set time are normalized as the percentage of time of a stride
(from heel strike to heel strike) and the computation time is
in unit of second. TheVisual Detection is the average value
obtained with visual inspection by four trained observers.

IV. D ISCUSSION ANDCONCLUSION

The detection of muscle activation intervals (muscle on
or muscle off) provides important clinical information since
it allows the investigation of temporal activation patternof
muscle groups, for example during gait. Because of this quite
a few methods have been proposed and compared[3], [5].
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TABLE I

COMPARISON THE RESULTS OF THE TWO DETECTION METHODS WITH THE SAME FALSE-ALARM PROBABILITY

Muscle Parameters Bonato Method Present method Visual Detection

Vastus Lateralis
Activation Interval 40.2% 69.0% 64.7 ± 4%

On-set Times 66.5% 71.7% 74.3 ± 2%

Computation Time ∼ 17s < 0.1s -

Biceps Femoris
Activation Interval 49.8% 72.0% 68.8 ± 5%

On-set Time 72.0% 72.7% 70.6 ± 2%

Computation Time ∼ 17s < 0.1s -
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Fig. 4. The detecting results of the two methods forBiceps Femoris muscle
group; (a) the original raw EMG signal, (b) the result of Bonato’s method,
(c) the result of present method.

The challenge is how to perform signal estimation from noise
contaminated EMG. Generally, visual inspection is considered
to provide highly accurate event detection, because all details
of the signal can be assessed by the expertise of expert. For
specific applications, besides the accuracy in the detection, the
speed of the algorithm can be an important consideration [3].
Algorithms which with high computational time are unsuitable
for online detection. One specific drawback to the method of
Bonato et al. [2] is that in order for the detection probability
(Pd) to be maximum whenPfa is fixed, the second threshold
has to be chosen as equal to one. This implies that the second
threshold is fixed during detection, which implies that the
double-threshold detector actually becomes single threshold
detector.

The method proposed in this study does not require the
signal whitening step which is needed previously. The signal
whitening precess takes a lot of computational time as shown
in Table I. Moreover the whitening process reduces the signal
to noise ratio and consequently reduce the detection probabil-
ity of the signal, especially when the muscle is activated at
low contraction level. This feature will causes the detector to
miss a part of activation interval as can be seen in Table I.
The detector results (Activation Interval and On-set time)
of present method are closer to the visual detection values.
One possible disadvantage of the proposed method is the

requirement to have multiple samples from repetitions of
activity; however, for studies such as gait analysis samples
from multiple steps are uniformly available.

The methods proposed in this study provides a fast and more
reliable muscle on-off detection. It may be a useful tool for
the analysis of surface EMG signal recorded during movement,
especially for human kinematics study.
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