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Abstract— Estimation of on-off timing of human skeletal mus- II. THEORETICAL CONSIDERATIONS

cles during movement based on surface electromyography (EMG) . . i . . .
is an important issue in sport performance and health care I[N this section, we first derive the equations that describe

applications. Several methods have been proposed for detectingthe structure of the detector, and then discuss the stestégy

the on and off timing of the muscle. However, little is known selection of its parameters.

about the reliability and accuracy of these methods, which fre-

quently rely on intuitive and heuristic criteria. Some sophisticated

techniques have been proposed, but have a disadvantage of hgav A Derjvation of the Algorithm

computational load and therefore not suitable for real-time online

applications. In this study, an improved method is proposed A common model for the surface EMG signal recorded dur-

based on double-threshold method of Bonato et al. (1998). It ing voluntary dynamic contractions is a zero-mean Gaussian
prOVide_S a-higher Sensitivity for aCtiV_atiOn -deteCFion. In. addltlon, processs(t) c N(O,O-S) modulated by the muscle act|v|ty
the whitening process of the EMG signal is avoided, significantly o4 oo rrypted by an independent zero-mean Gaussian additiv
reducing the computation time. ) . .
. o . noise n(t) € N(0,0,). These signals are sampled with a
Index Terms—EMG, gait analysis, signal detection. sampling frequencyf, which satisfies Nyquist criterion[2].
We assume that the corrupting noise is stationary and the
signal is a nonstationary Gaussian processes that is inde-
. INTRODUCTION pendent between different trials. Thus the signal and noise

Many clinical applications, such as gait analysis and coord! be flj\r}hoer expresshed a%,t) € '/:/((1’[]05 (tt?’lg) anckj)
dination studies, require accurate detection of when, and fl(g’t) € N(0,04,8), where¢ represents the trial number

how long, muscles are active. The primary instrument fs th?f the experiment. In our study, '.t represents the sequence
I;1|mber of foot steps on a treadmill. Given a sampled signal

measurement is the surface electromyogram (EMG), in Whifé . ) :
a composite electrical signal is measured of the electri F(g)) and noise ¢;(£)), thesth measured data value is

activity in the nearby muscle tissue. The early methods for 2i(€) = 5;(€) + ns(6), 1)
detecting muscle activation were based on setting a thigesho

of EMG envelop amplitude to discriminate the backgroundhere s;(£) and n;(£) are s(¢,¢) and n(,4), respectively.
noise from the signal generated by active muscle[1], [6]--NoGiven the assumed independent and Gaussian processes,
mally, the threshold level is chosen heuristically. Thisckof andn(t), the probability distribution ofz; is given as

approach is generally not satisfactory, since measuradtses .2
depend strongly on the choice of threshold[7]. Moreovesséh Flas) = 1 e*ﬁg(ﬁsilo;@) )
traditional methods do not allow the user to set indeperygent ’ 2m(02 +032) '

the detection and false alarm probabilities[2]. - )
We generate an auxiliary sequenge; }, by summing up all

More recently, a double-threshold detector has been p d dd | h . .
posed by Bonato et al. [2] specifically for gait analysis.sThiSqu?firerr:iﬁdei R ata values} at the same time instant

method operates on the raw myoelectric signal and, does RBF
require any envelope detection. Its performance is cdatfol z = me(& ©)
by the values of three parameters, false-alarm probability p

(Prq), detection probability £;), and time resolution. This

method is complex and computationally expensive, reqgirivvhere & € [1,...,v], v is the number of trialsz; has a
a whitening of the signal. It has also been reported to not brobability distribution of
very sensitive. x 1 2 2 2

In this paper, we propose an improved method based on fz) = o2 + o2 X (zi/ (05, +03),v) (4)

the double-threshold method. This algorithm is more seesit
stable and efficient with decreased computational cost. ~ where x?(x, v) represents Chi-square distribution withde-
grees of freedom. If there is only noise present in the mealsur
Asterisk indicates corresponding author. data values, e.g., when the muscle is at rgstyould be given



by (3) without the signal contribution, and the (3) and (4and similarly the probability of detectiotiy, is the probability

become that signal samples, although corrupted by noise, are atyre
Zz; = an(g) (5) recognized, and it is obtained by substitutifgwith P in
¢ Eq.10, as shown by
and m
m m—
F(z) = 53 (a/a2). (6) Pi=). ( K ) Pie (1= Pu)"™" (12)
On k=ro
The probability that a specific noise sample is above a fixedThe user sets the desired ValuBﬁa and requested time
threshold¢ is resolution. Tuning the statistical detector consists afasfing
P = Plz>Ca(t) =n(t)] the IeS?th of the observation window:j and two thresholds,
oo ro andg.
= / f(z)dz In this study, the sampling rate i&Hz. In order to achieve
COO a time resolution fon0ms, the observation window,, must
_ / X2 (y,v) dy. @ be 10 points. It has been simulated [2] that#%, is fixed the
< ’ P, increases as, decreases. This behavior does not depend

o

From (7) we can obtain on the values assumed by and SNR and, hence, may be

considered as general. It follows that to reach the higigst
C=02x2,(1—-P.v), (8) thery should be set to its minimum value of
n 1 ¢
where 2, (P,v) is the inverse chi-square cumulative distri- After selection ofry and time resolution, the last step is the
bution er%cti(;n withv degrees of freedom selection of¢. Given the user selecteld,,, Eq. (11) is solved
Similarly, when signak; and noisen; are both present, theWIth respect toF. By substitutingP; into Eq. (8), we then

probability density function is given by (4). It follows ththe obtain the first threshold.

probability Py that thekth sample is above the threshajd . EXPERIMENTAL PROCEDURES ANDRESULTS

is given by .
A. Measurement of EMG signal
P = P [Off > G i = si+ il The three male volunteers (aged 22-30) were required to run
= / f(zi)dzi on a treadmill and EMG data were acquired from six different
¢ muscle groups of the leg. Also, a sensor was put under the heel
_ /°°  (y,v) dy inside the shoe to provide a synchronization signal for & h
S ’ strike. The EMG signals were amplified, with gain 21000,
8 ton and sampled with an A/D card with the synchronizing signal
= 1-3(¢/(aF, +0n),v/2), (9)  at 1,000 samples per second, after filtering with an appatepri
where5(z, a) is incomplete gamma function. antialiasing filter. Fig. 1 shows representative EMG daganfr

Bonato et. al. use two thresholds,and r,. The second & subject. The raw EMG signals were divided into segments
threshold, o, is set up by introducing a detection windowof @ single stride (between two consecutive heel strikesgtha
inside which m successive samples are observed. Muscf@ the synchronization signal.
activation is detected if at least, out of m successive The detection algorithm was implemented in Matlab (Math-
samples are abové. This technique allows more flexibility Works Inc., Natick, MA) on an 1.8 GHz AMD Athlon proces-
in the relationship betwee;, and probability of detection SOr IBM-compatible PC. Software was written to incorporate
by increasing the number of parameters that characterize th Graphical User Interface so that users can monitor the

detector. procedures and results visually. Results were calculated f
Bonato et. al's method and the proposed method using for
B. Selection of Detector Parameters measurements frol subjects for the biceps femoris (BF) and

we now calculate the Corresponosemitendinosus (STP;, was set td).05 for both method and

Given a user-selectelly,, YV
¢ the results are shown in Figs.3 and 4.

¢. The probabilityP,, (r > ro;m) that at least, samples ou
of m exceed the threshold is given by )
m B. Computation Steps used for Bonato's method
P, (r>rg;m) = Z ( 7}? ) PE1—P)" %, (10) The steps for Bonatos’s detection is as follows:

1) the raw EMG signal{z;}, of one stride is loaded
where P is the probability that a single sample crosses the 2) the raw signal is whitened to make the sample$of;
threshold. uncorrelated with each other

Then the false-alarm probabilitf;, is the probability that ~ 3) the squared values of two successive samples of whiten-
noise samples are incorrectly interpreted as signal, and is ing output are summed and the auxiliary sequengés

k=ro

obtained from (10) by posing = F, i.e. generated using Eq.3
m 4) a user identifies a segment of background noise using the
Py, = Z < 7: ) pck (1— pc)m—k ) (11) GUI windows and then the averaged standard deviation
k—ro of the noiseo,,, is obtained
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Fig. 1. The raw EMG signals detected from six muscles from gestb ) ) )
on a treadmill. The muscles are the vastus lateralis (VL), Hetus medialis Fig- 3. The detecting results of two different methods Vestus Laterales
(VM), the biceps femoris (BF), the semi tendinosis (ST), thetigenemius Muscle group; (a) the original raw EMG signal, (b) the resilBonato’s
lateralis (GSL) and the gastrocnemius medialis (GSM); the rias shows Method, (c) the result of present method.

the pressure signal from the heel, which is used for time symiration

(@)

2 ; | width are less thaB0 samples.
0 N e ‘VJ‘U“V 1
C. Computation Seps Used for Present Method
’ The steps for present method are similar to those of Bon-
- ato’s, with some differences:
15 ® 1) instead of load one stride of these EMG signalstrides
ol | of EMG signals are loaded, and are time aligned with
heel strike synchronization signal
5k 1 2) the auxilliary sequencéz;} is obtained via Eq.3
o . 3) solving Eq.11 by settingn = 10 (its time width is the
© same asn = 5 in Bonato’s methd), = 1 and P, =
18 ! 0.05; selecting the reasonable root Bs
. J 4) substituting the values ef, and P, into Eq. 8 and the
first threshold¢ is obtained
osr | 5) following steps are the same as steps 7) to 8) in Bonato's
0 : : : : : : : method.
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time (s) Two muscle activation parameters are frequently used im cli

ical applications: théctivation Interval defined as activation

analysed to reject spurious transitions (or pulses) whose

Fig. 2. Representative output from the detection algorittethe overlay time of the muscle in one stride normalized with respect

plot of 9 steps raw of EMG signals from Vastus Lateralis muscle, (b) thg, . P ~ ; ; ;
auxiliary sequencez;, of the raw EMG signal for a strides to be analyzed:gtrlde duration; ané®n-set time, the time instant when muscle

(c) the detector output. Is activated normalized to stride duration. In Table | the
parameters of activation interval, on-set time and corntjmrta

time of this study are shown. The activation interval and on-
5) the width of the detecting windowy, is set to5, the Set time are normalized as the percentage of time of a stride

second thresholdr, is set to1 and the false-alarm (from heel strike to heel strike) and the computation time is
probability, P,, is set t00.05 and the value ofP, N unit of second. Thefsual Detection is the average value

calculated for a real root betweénand 1 in (11) obtained with visual inspection by four trained observers.
6) values ofo, and P are substituted into (8) with the
v = 2 to calculatel IV. DiscussiON ANDCONCLUSION

7) the detection window is slid along the auxiliary se- The detection of muscle activation intervals (muscle on

quence{z; }. The muscle is considered active, wherevesr muscle off) provides important clinical information s
more thanry, samples in the detection window have d@ allows the investigation of temporal activation pattesh
value greater thag muscle groups, for example during gait. Because of thisequit

8) the detection sequence obtained in step 7, is furtherfew methods have been proposed and compared[3], [5].



TABLE |

COMPARISON THE RESULTS OF THE TWO DETECTION METHODS WITH THEABIE FALSE-ALARM PROBABILITY

Muscle Parameters Bonato Method Present method Visual Detect

Activation Interval 40.2% 69.0% 64.7 £ 4%

Vastus Lateralis On-set Times 66.5% 71.7% 74.3 2%
Computation Time ~ 17s < 0.1s -
Activation Interval 49.8% 72.0% 68.8 £ 5%

Biceps Femoris On-set Time 72.0% 72.7% 70.6 + 2%
Computation Time ~ 17s < 0.1s -

05 @ requirement to have multiple samples from repetitions of

0 4

05 1 The methods proposed in this study provides a fast and more
. reliable muscle on-off detection. It may be a useful tool for
® the analysis of surface EMG signal recorded during movement
2 ‘ especially for human kinematics study.
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0 100 200 300 400 500 600 700 800 gait”, Proc. IEEE, vol. 65, pp. 674-681, 1985.

) . . . [2] P. Bonato, T. D’Alessio and M. Knaflitz, “A statistical ntetd for the
Fig. 4. The detecting results of the two methods Boreps Femoris muscle measurement of muscle activation intervals from surface mgbe
group; (a) the original raw EMG signal, (b) the result of Bw® method, signal during gait’,|EEE Trans. Biomed. Eng., vol. 45, pp. 287-299,
(c) the result of present method. 1998.

[3] A. Merlo, D. Farina, and R. Merletti, “A fast and reliablechnique
for muscle activity detection from surface EMG signallZEE Trans.

activity; however, for studies such as gait analysis sample
from multiple steps are uniformly available.
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Bonato et al. [2] is that in order for the detection probayili
(P;) to be maximum wherPy, is fixed, the second threshold
has to be chosen as equal to one. This implies that the second
threshold is fixed during detection, which implies that the
double-threshold detector actually becomes single tiotdsh
detector.

The method proposed in this study does not require the
signal whitening step which is needed previously. The digna
whitening precess takes a lot of computational time as shown
in Table I. Moreover the whitening process reduces the signa
to noise ratio and consequently reduce the detection pilebab
ity of the signal, especially when the muscle is activated at
low contraction level. This feature will causes the detetbo
miss a part of activation interval as can be seen in Table I.
The detector results (Activation Interval and On-set time)
of present method are closer to the visual detection values.
One possible disadvantage of the proposed method is the



