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ABSTRACT - Reconstruction of images in electrical
impedance tomogr aphy requiresthe solution of an inverse
problem which is typically ill-conditioned due to the
effects of noise and therefore requires regularisation
based on a priori knowledge. This paper presents a linear
reconstruction technique using neural networks which
adapts the solution to the noise level used during the
training phase. Results show a significantly improved
resolution compared to the weighted equipotential
backpr oj ection method.

INTRODUCTION

Eledricd Impedance Tomography estimates the
conductivity distribution of a medium from potential
measurements produced by injeded currents on the medium
boundary. We ae interested in dynamic imaging, which
estimates conductivity changes in the medium from changes
in these measurements, becaise these danges in
measurements are much more stable than the measurements
themselves to variations in eledrode position, resistance, and
amplifier gain.

The best image reconstruction techniques are based on
fitting the measured voltages to finite dement models (FEMs)
of tissue mnductivity. This inverse problem, however, is ill -
posed for any reasonable number of elements (>50) in noisy
data. Regularization, based on a priori knowledge of the
problem is typicdly necessary. The neura network approach,
however, can be used to cdculate alinea inverse to the
problem without any need of a priori knowledge.

FORWARD PROBLEM

Using the FEM, we simulate the voltage
measurement vector by
V=F(r,+r)= 1 F(r)
exp(ry) (1)

where rp, is the uniform homogenous log conductivity, r is a
vedor of the M element log conductivity changes, and F is a
linea function of the injeded current and a non-linea
function of r. The voltage measurements are obtained from a
16 eledrode system, using 16 current injedion patterns,
resulting in N=256 dfferential voltage readings. From (1) we
calculate our dynamic measurement vettoy

g = Dimomli "WVhomli - POy g1 ey
[Vhomli F(0); ()

where [Vhgmli and [Viphomli represent the ith element of the
voltage measurement vedor before and after, respedively, a
conductivity change.

We look for alinea approximation to this problem, in
order to simplify the design and reduce the training time of
the neural network. Linearizing about r = 0 results in:

f=wr Y = L &

where Y F(0) ar
I

®3)

INVERSE PROBLEM

This inverse problem may be stated as finding the
matrix Z which, in the presence of noisgbest approximates,

r=Z(f+n) (4)

in the least squared error sense. The neural network model
considered here is the "adaptive linea element", or
ADALINE[2]. One ADALINE corresponds to ead value of r
and sums eat value of f by the corresponding row in Z. The
values of Z are caculated or "trained" by the Widrow-Hoff
leaning rule, using a set of input vedors fi, and their (known)
desired responses from the network di. Training ams to
reduce the errag for all training sets..

Q= (dk _ka)t(dk ‘ka)
Z (5)

We coose the desired responses to be individual
objedsin ead element, i.e. the wlumn vedors of I« , and
we obtain the input vedors from the dired problem, f = Y1 =
Y. In order to train the network to ded with noise, we must
include the expeced noise in the input. Using this training set
we carry out the following algorithm:

« Initially, all weights are set to zero.

e The training vedors are presented to the aurrent network
weights, outputtingO = Zy(Y + n)

The aror E= O - D isdefined as the diff erence between the
output,O, and the desired respon8ss | yxpy

» Network weights are updated by the learning rule:
Zy1=Z - @EO! (6)

* Iteration is continued urtil the eror is below an acceptable
limit.



The parameter a controls the leaning rate; for
stahility, it's value must be less than the redprocd of the
maximum eigenvector oYY ‘.

Once training is completed, Z can be used as a
recnstruction operator which cdculates the log element
conductivities from the voltages measured by:

— Vinh ~ Vhom )
rre(:onst - Z( v
hom

EXPERIMENTAL RESULTS

The &ove procedure was used to train neural networks
N1 and N2 on a two dmensional circular geometry for no
noise and 15 signa to noise ratio (SNR) respedively.
Training encompassed 5000iterations, during which time the
least mean sgquared error (the reconstructed output minus the
desired output) decreased by 50 percent.

While this technique works well on red data obtained
from our tomographic system, the performance ompromises
involved are most clealy seen on simulated data. Figure 1A
shows the pattern to be imaged: two small non-conductive
objeds in a drcular milieu separated by one third o the
diameter. This pattern was smulated on a much finer finite
element mesh than was used for the training of the neural
networks. Figures 1B to 1D were remnstructed using the
voltage measurements from 1A with no noise alded, using
remnstruction based on weighted badprojedion (1B),
network N1 (1C), and network N2 (1D). Figures 1E to 1G
were recnstructed using measurements with a SNR of 15dB,
again uwsing badkprojedion (1E), network N1 (1F) and
networkN2 (1G).

We define the SNR asff) / (ntn).

DiscussiON AND CONCLUSIONS

The results $ow that the neural network produces
significantly better resolution images than weighted
equipotential badkprojedion, and also dffers the alvantage of
being adaptable to the noise level present in the
measurements. The network trained for no noise displays the
best resolution, but has little &ility to rejed noise. The
network trained with noise, while having dightly degraded
resolution, has better ability to rejed noise. Although the
training is a long process image reconstruction times with a
trained neural network and with the badkprojedion method
are similar, as both processes require only one matrix
multiplication.

This neural network approach seams to show promise
as a reamnstruction techniqgue which can control the
compromise between the noise performance ad the
resolution of the image.
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Figure 1: Images Produced by Neural Network
A: Theoretical Object
B: Backprojectionno noise
C: Image:no noise Training: no noise
D: Image:no noise Training15dB SNR
E: Backprojection15dB SNR
F: Image:15dB SNR Trainingno noise
G: Image:15dB SNR Training15dB SNR
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