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Notation is used as follows. Note that since, multiplication of Fourier
transforms (eg. Z = XY ) is element-by-element, we can’t directly interpret
this as a matrix. Instead, we can interpret X, Y , and Z as column vectors,
and write this multiplication using matrix multiplication notation as Z =
diag(X)Y .

• vectors: bold lowercase (eg. x)

• matrices: bold uppercase (eg. H)

• Fourier transform: F{} and F−1{}
• Fourier transforms: uppercase non-bold (eg. X = F{x})
• convolution: x ? y = F−1{XY }
• conjugate transpose: x∗; for Fourier transforms, interpret as conjugate

only.

The term “Fourier transform” is not, strictly speaking, correct, since the
signals are discrete for a finite time. We thus use “Fourier transform” and
“Fourier series” interchangably.

We begin with a basic linear model in which measurements (y) are made
from an ideal image (x) via a degradation process (H) and independant noise,
n.

y = Hx + n (1)

The linear restoration process calculates an estimate of the ideal image (x̂)
from y via the restoration process

x̂ = Ly (2)

The Wiener filter calculates the optimal linear restoration filter (L) to
minimize the error, ε:

ε2 = E
[
‖x− x̂‖2

]
(3)
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Matrix Formulation

Thus, we calculate

ε2 = E
[
‖x− x̂‖2

]
ε2 = E [trace(x− x̂)(x− x̂)∗]

ε2 = trace E [(x− x̂)(x− x̂)∗]

ε2 = trace E [xx∗ − xx̂∗ − x̂x∗ + x̂x̂∗]

ε2 = trace (E [xx∗] − E [xx̂∗] − E [x̂x∗] + E [x̂x̂∗])

E[xx∗] = Σx is the a priori covariance of image pixels. It is called a
priori because it describes images x in general, not the specific image of
this problem. Conceptually, Σx is calculated from sampling and averaging
the effect a large number of possible images before we arrive at the current
problem. Along the diagonal, Σx it represents the power in each image pixel;
the off diagonal elements represent the covariance between image pixels.

E[x̂x∗] is calculated as follows

E[x̂x∗] = E [(Ly)x∗]

= E [L(Hx + n)x∗]

= E [(LHx + Ln)x∗]

= E [LHxx∗] + E [Lnx∗]

= LHE [xx∗] + LE [nx∗]

= LHΣx

E[nx∗] = 0 because the noise is statistically independant from the image (by
our assumption).

E[x̂x̂∗] is calculated as follows

E[x̂x̂∗] = E [(Ly)(Ly)∗]

E[x̂x̂∗] = E [Lyy∗L∗]

E[x̂x̂∗] = LE [yy∗]L∗

E[x̂x̂∗] = LE [(Hx + n)(Hx + n)∗]L∗

E[x̂x̂∗] = LE [(Hx + n)(x∗H∗x + n∗)]L∗

E[x̂x̂∗] = LE [Hxx∗H∗ + Hxn∗ + nx∗H∗ + nn∗]L∗

E[x̂x̂∗] = LHE [xx∗]H∗L∗ + LHE [xn∗]L∗
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+ LE [nx∗]H∗L∗ + LE [nn∗]L∗

E[x̂x̂∗] = LHΣxH
∗L∗ + LΣnL

∗

Using statistically independant noise, E[nx∗] = E[xn∗] = 0. The noise co-
variance is E[nn∗] = Σn. It is a priori because it describes noise n in general,
not the specific noise of this problem. Conceptually, Σn is calculated from
sampling and averaging the effect a large number of noise measurements be-
fore we arrive at the current problem. Along the diagonal, Σn it represents
the power in each noise channel; the off diagonal elements represent the co-
variance between noise channels; these will normally be close to zero in most
measurement instruments problems.

Thus, we can write an expression for ε,

ε2 = trace (E [xx∗] − E [xx̂∗] − E [x̂x∗] + E [x̂x̂∗])

= trace (Σx − (LHΣx)
∗ − LHΣx + LHΣxH

∗L∗ + LΣnL
∗)

= trace (Σx − LHΣx + LHΣxH
∗L∗ + LΣnL

∗)

= trace (Σx − 2ΣxH
∗L∗ + L (HΣxH

∗ + Σn)L∗)

Since the traceA = traceA∗, and Σ = Σ∗. We choose ΣxH
∗L∗, rather than

LHΣx, because the matrix sizes are compatible in the next step when we
take the derivative.

We minimize ε2 by setting its derivative to zero

0 =
∂ε2

∂L
0 = trace (−2ΣxH

∗ + 2L (HΣxH
∗ + Σn))

The element in the trace() will be zero if ΣxH
∗ = L (HΣxH

∗ + Σn). Thus,
we calculate:

L (HΣxH
∗ + Σn) = ΣxH

∗

L (HΣxH
∗ + Σn) (HΣxH

∗ + Σn)−1 = ΣxH
∗ (HΣxH

∗ + Σn)−1

L = ΣxH
∗ (HΣxH

∗ + Σn)−1

This is the matrix formulation of the Wiener filter.

L = ΣxH
∗ (HΣxH

∗ + Σn)−1 (4)

L is the optimal linear filter, or filter which minimizes the expected error
E [‖x− x̂‖2]. Note that much modern work on signal reconstruction seeks to
work either on non-linear systems, or to minimize different representations
of the expected error, such as the absolute error E [‖x− x̂‖1].
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Fourier transform representation of the Wiener

Filter

Expressed as a matrix, the Wiener filter applies to any linear system. For
example, a camera system with the lens at an angle will have a spatial blur
which differs at each point. This can be represented by the degradation
matrix H. However, an important class of linear systems are time, or space
invariant, called LTI (linear time invariant) or LSI (lienar space invariant).

For these systems, the degradation process H can be represented as a
convolution kernel h, where

y = h ? x (5)

The degradation matrix H corresponding to this convolution may be repre-
sented (for a 1D signal h with three elements [h−1, h0, h1]) as:

H =


h0 h1 0 0 h−1

h−1 h0 h1 0 0
0 h−1 h0 h1 0
0 0 h−1 h0 h1

h1 0 0 h−1 h0


The edge effect is shown by “circulating” h−1 and h1 around to the other
side of the matrix. A matrix of this form is known as a circulant matrix, and
has properties for the Fourier transform. Other edge effects are possible, the
most common is to place zeros to give the “zero padding” edge effect.

The Fourier transform is a linear operation and can be represented as a
matrix F, such that

X = F{x} = Fx, and

x = F−1{x} = F−1x

Since the Fourier transform (Fourier series in this context) is an orthonormal
basis, F−1 = F∗.

The Fourier transform of a filter can be calculated, we begin with y =
h ? x which corresponds to a matrix representation y = Hx and a Fourier
representation Y = HX.

y = Hx

Y = F{y} = Fy
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Y = FHx

Y = FH(F∗F)x = F(HF∗)(Fx)

Y = (FHF∗)X = HX

Here, we use a “trick” of inserting the identity matrix (as I = F−1F).
Thus the Fourier transform representation of a linear operator represented

as a Matrix H is FHF∗. This applies to all linear operators represented as
a square matrix (ie. the size of x and y are equal).

For circulant matrices H, the Fourtier transform has an additional impor-
tant property — it is diagonal: FHF∗ = diag(H). This means that the effect
of the filter on each frequency component in the operator acts alone on each
frequency component in the signal x. This is what we expect of the Fourier
transform – and it applies only to LTI (LSI) systems. For other systems, the
appropriate transform is obtained from the singular value decomposition.

Based on this, we calculate the Fourier transform representation of the
Wiener filter.

x̂ = Ly

X̂ = F{x̂} = Fx̂

= FLy = FL(F−1Y )

= FΣxH
∗ (HΣxH

∗ + Σn)−1 F∗Y = LY

Thus, L = FLF∗, and

L = FΣxH
∗ (HΣxH

∗ + Σn)−1 F∗

= FΣx(F
∗F)H∗(F∗F) (HΣxH

∗ + Σn)−1 F∗

= (FΣxF
∗)(FH∗F∗)F (HΣxH

∗ + Σn)−1 F∗

= SxH
∗F (HΣxH

∗ + Σn)−1 F∗

where H∗ = (FHF∗)∗ = (FB∗)∗H∗(F)∗ = FH∗F∗, and Sx = FΣxF
∗ =

F{Σx}. Sx thus represents the power spectrial density in the signal x.
Using the identity (ABC)−1 = C−1B−1A−1,

F (HΣxH
∗ + Σn)−1 F∗

= (F∗)−1 (HΣxH
∗ + Σn)−1 (F)−1

= ((F)(HΣxH
∗ + Σn)(F∗))−1

= (FHΣxH
∗F∗ + FΣnF

∗)−1
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= (FH(F∗F)Σx(F
∗F)H∗F∗ + FΣnF

∗)−1

= ((FHF∗)(FΣxF
∗)(FH∗F∗) + FΣnF

∗)−1

= (HSxH
∗ + Sn)−1

where Sn = FΣnF
∗ = F{Σn}. Sn thus represents the power spectrial density

in the noise n.
Thus, the Wiener filter in the Fourier transform domain is L = SxH

∗ (HSxH
∗ + Sn)−1.

However, we are able to use the property that matrices are diagonal to ex-
change the order of multiplication.

L = SxH
∗ (HSxH

∗ + Sn)−1

L = H∗(S−1
x )−1 (HH∗Sx + Sn)−1

L = H∗
(
S−1

x SxHH∗ + S−1
x Sn

)−1

L = H∗
(
HH∗ + SnS

−1
x

)−1

This is equivalent to the classic Wiener representation in the Fourier domain:

L =
H∗

HH∗ + Sn

Sx

(6)
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