
RISE Manual – S. Wang, G. Wainer

-1-

RISE User Manual (Integrated version)

(DRAFT v2.0 Not for distribution, 2014)

Sixuan Wang, Gabriel A. Wainer

Dept. of Systems and Computer Engineering

Carleton University, Ottawa, Canada

Abstraction

For user’s point of view, RISE is intended to be easy to use. RISE supports different CD++ versions

of DEVS/Cell-DEVS formalism, including DCDpp for normal and distributed simulation and Lopez

with different ports/variables. You do not need to install complicated simulation software, the

only need to choose the right RISE API, upload the model file and run it online with standard

HTTP requests, then retrieve simulation results from the website.

The website (http://vs1.sce.carleton.ca:8080/cdpp/sim/workspaces) is still under construction.

You can always use “test” account if you just want to have a try. If you have any questions and

comments, or if you would use RISE frequently and want to open an account, please contact with

Sixuan swang@sce.carleton.ca.

1. Introduction

Most modeling and simulation methods run on single-user workstations, which normally cost too

much time of installation and configuration of all the software and dependencies needed by the

simulation. It is better to realize a much easy way to remote access of the simulation resources

with web service interfaces, improving data accessibility, interoperability and user experience. In

this way, users can reuse and share simulation resources on site without worrying about the

capability of their local machine CPU or memory. Plus, with the help of advanced distributed

simulation technologies, the simulation can be executed on distributed computers via

communication networks, which can further improve interoperability and speed up the execution

time.

RESTful WS can solve these issues. It is to transfer message representations of Web resources

using a set of uniform stateless operations. The resources here are not only files, but also a query,

a table, or any concepts. Access to RESTful WS is through Web resources (URIs) and XML

messages using HTTP methods (GET, PUT, POST and DELETE). Its strengths of simplicity, efficiency

and scalability make RESTful WS an excellent candidate to perform remote simulation. Based on

these ideas, in [1][2], the authors presented the first existing RESTful Interoperability Simulation

Environment (RISE) middleware. The main objective of RISE is to support interoperability and

RISE Manual – S. Wang, G. Wainer

-2-

mash-ups of distributed simulations regardless of the model formalism, model language or

simulation engine. RISE is accessed through Web resources (URIs) and XML messages using HTTP

methods. Implementations can be hidden in resources, which are represented only via URIs.

Users can run multiple instances as needed, which are persistent and repeatable by specific URIs.

The HTTP methods are typical four types: GET (to read a resource), PUT (to create or update a

resource), POST (to append data to a resource), and DELETE (to remove a resource).

Currently, RISE supports different versions of CD++ (Modeling and Simulation language based on

DEVS formalism). The uniformed API between seems a classic website URL like

“http://vs1.sce.carleton.ca:8080/cdpp/sim/workspaces”, attached by the following services

(detailed RISE API can be seen from [3]):

 ../{userworkspace} contains of all simulation services for a given user.

 ../{userworkspace}/{servicetype} contains of all frameworks for a given user and

simulation service type (e.g., a simulation engine CD++).

 ../{userworkspace}/{servicetype}/{framework} allows interacting with a framework

(including the simulation’s input initial files, the model’s configuration and source code).

 ../{userworkspace}/{servicetype}{framework}/simulation allows interacting with the

simulator execution.

 ../{userworkspace}/{servicetype}/{framework}/results contains of the simulation

outputs.

 ../{userworkspace}/{servicetype}/{framework}/debug contains of the

model-debugging files.

For a specific simulation, we would usually use the bold API mentioned above. We can realize the

remote simulation by using these URIs with HTTP methods. For example, after getting initial

model and configuration files for simulation, we use PUT to create a framework with the

configuration XML file and POST supported initial model files in a ZIP file. Then, this new created

simulation environment can be executed by using PUT to {framework}/simulation, then we wait

the simulation to finish and GET simulation results files from {framework}/results.

In each HTTP response (no matter from which URI), the Response Status is very informative.

Normally, it means the request is successful if you see 200 (OK) and 201 (Created); otherwise,

some error or unexpected things would have happened, such as 400(bad request),

401(unauthorized), 403(forbidden), 404(not found), 406(not acceptable), 501(not implemented).

2. Use APIs

DEVS is a Modeling and Simulation formalism that has been widely used to study the dynamics of

discrete event systems. Cell-DEVS is a DEVS-based formalism that defines spatial models as a cell

space assembled of a group of DEVS models connected together. CD++ is a modeling and

simulation language/toolkit capable of executing DEVS and Cell-DEVS models that has proven to

be useful tools for executing complex models.

RISE Manual – S. Wang, G. Wainer

-3-

In RISE, there are various CD++ versions available, including DCDpp for normal and distributed

simulation and Lopez with different port/variable values. The use of DCDpp and Lopez are very

similar, the differences are only represented in {ServerType} in URI and some XML configuration

format (different version needs different configuration and files).

For GET HTTP request, you just need simply access particular website under the URI

http://vs1.sce.carleton.ca:8080/cdpp/sim/workspaces. For PUT/POST/DELET HTTP request, you

need a client program to encapsulate your request and forward to related URI. We provide this

kind of client program in RISE_Test.zip for your convenience (of course you can build your own

client program by yourself for specific client requirement).

2.1 DCDpp

DCDpp is the default and normally used version. DCD++ extends the CD++ simulation engine to

perform distributed simulation among various geographically distributed machines. Normally, we

usually use its one machine version (the distributed machine version is for special purpose).

Preparation:

1. Unzip RISE_Test.zip, assume “E:\RISE_Test”(make sure there are /lib and RESTful_CDppTest.jar)

2. Put your XML and ZIP files under “E:\RISE_Test”, or simply copy “life.xml” and “life.zip” from

“E:\RISE_Test\models\dcdpp\life” to “E:\RISE_Test”. (please construct XML and ZIP following the

instructions in examples below)

3. open command line (cmd in windows or terminal in linux), go to “E:\RISE_Test”.

Use API:

Step 1) Create your workspace, DCD++ service and a framework. This can be done in one request,

“LifeModel” is the framework defined by you:

>> java -jar RESTful_CDppTest.jar PutXMLFile test test test/dcdpp/LifeModel life.xml

Then see http://vs1.sce.carleton.ca:8080/cdpp/sim/workspaces/test/dcdpp/LifeModel

Step 2) Submit the life model files to your framework URI, as follows:

>> java -jar RESTful_CDppTest.jar PostZipFile test test test/dcdpp/LifeModel?zdir=life life.zip

Then see http://vs1.sce.carleton.ca:8080/cdpp/sim/workspaces/test/dcdpp/LifeModel

Step 3) Run/Re-run Simulation, as follows:

>> java -jar RESTful_CDppTest.jar PutFramework test test test/dcdpp/LifeModel/simulation

Then see http://vs1.sce.carleton.ca:8080/cdpp/sim/workspaces/test/dcdpp/LifeModel

Step 4) Retrieve Simulation results, click “Download Last Simulation Results” or

http://vs1.sce.carleton.ca:8080/cdpp/sim/workspaces/test/dcdpp/LifeModel/results

Check Error

If error happened, see “Download Model Debugging/Statistics Logs” or

RISE Manual – S. Wang, G. Wainer

-4-

http://vs1.sce.carleton.ca:8080/cdpp/sim/workspaces/test/dcdpp/LifeModel/debug

If you want to delete the framework

>> java -jar RESTful_CDppTest.jar DeleteFramework test test test/dcdpp/LifeModel

It is suggested that you delete the framework that is not working, because it takes space in

Server.

2.2 Lopez

Lopez is an extended version of CD++ for allowing the cells to use multiple state variables and to

use multiple ports for inter-cell communications. Detail specification could be seen in [5].

Additionally, for Cell-DEVS, we can have option to see only Y message and see 2D visualization of

simulation result by DrawLog. Now, this version is integrated in RISE.

Preparation:

1. Unzip RISE_Test.zip, assume “E:\RISE_Test” (make sure there are /lib and

RESTful_CDppTest.jar)

2. Put your XML and ZIP files under “E:\RISE_Test”, or simply copy “life.xml” and “life.zip” from

“E:\RISE_Test\models\lopez\life-ori” to “E:\RISE_Test”. (please construct XML and ZIP following

the instruction in examples)

3. open command line (cmd in windows or terminal in linux), go to “E:\RISE_Test”.

Use API:

Step 1) Create your workspace, DCD++ service and a framework. This can be done in one request:

>> java -jar RESTful_CDppTest.jar PutXMLFile test test test/lopez/LifeModel life.xml

Then see http://vs1.sce.carleton.ca:8080/cdpp/sim/workspaces/test/lopez/LifeModel

Step 2) Submit the life model files to your framework URI, as follows:

>> java -jar RESTful_CDppTest.jar PostZipFile test test test/lopez/LifeModel?zdir=life life.zip

Then see http://vs1.sce.carleton.ca:8080/cdpp/sim/workspaces/test/lopez/LifeModel

Step 3) Run/Re-run Simulation, as follows:

>> java -jar RESTful_CDppTest.jar PutFramework test test test/lopez/LifeModel/simulation

Then see http://vs1.sce.carleton.ca:8080/cdpp/sim/workspaces/test/lopez/LifeModel

Step 4) Retrieve Simulation results, click “Download Last Simulation Results” or

http://vs1.sce.carleton.ca:8080/cdpp/sim/workspaces/test/lopez/LifeModel/results

Check Error

If error happened, see “Download Model Debugging/Statistics Logs” or

http://vs1.sce.carleton.ca:8080/cdpp/sim/workspaces/test/lopez/LifeModel/debug

If you want to delete the framework

RISE Manual – S. Wang, G. Wainer

-5-

>> java -jar RESTful_CDppTest.jar DeleteFramework test test test/lopez/LifeModel

It is suggested that you delete the framework that is not working, because it takes space in

Server.

3. Examples

3.1 DCDpp

3.1.1 Cell-DEVS

Here we show a simple example of “Life” in “/models/dcdpp/life”, you can see other examples in

“/models/dcdpp/batter”, “/models/dcdpp/cancer” or “/models/dcdpp/fire”.

XML configuration like this:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<ConfigFramework>

 <Doc> This model Simulates Life using Cell-Devs. </Doc> //description

 <Files>

 <File ftype="ma">life.ma</File> //list all model files in ZIP file

 //(ma,ev,val,inc… ftype is the extension of the file)

 …

</Files>

 <Options> //options, not necessary

 <TimeOp>00:00:02:000</TimeOp> //stop time, “NULL” if you do not want to specify

 <ParsingOp>false</ParsingOp> //print extra info when the parsing occurs

 </Options>

 <DCDpp>

 <Servers> //distributed machines, usually one machine of the

server

 <Server IP="localhost" PORT="8080"> //server

 <Zone>life(0,0)..(19,19)</Zone> //partition, put whole cells here, this model has 20X20

 </Server>

 </Servers>

 </DCDpp>

</ConfigFramework>

Model Definition

Detail MA definition could be found in [4], here give some description based on life.ma. You can

use the same MA file in your project that works in CD++.

[top] //top

components : life //lists of components, if more than one, needs Links

[life] //life component

type : cell

RISE Manual – S. Wang, G. Wainer

-6-

width : 20 //width size

height : 20 //height size

delay : transport //transport / inertial

defaultDelayTime : 100

border : wrapped //wrapped / nowrapped

neighbors : life(-1,-1) life(-1,0) life(-1,1) //neighbors

neighbors : life(0,-1) life(0,0) life(0,1)

neighbors : life(1,-1) life(1,0) life(1,1)

initialvalue : 0 //initial values, can be a initial file

initialrowvalue : 0 01111000111100011110

initialrowvalue : 1 00010001111000000000

…

initialrowvalue : 13 00110000011110000010

initialrowvalue : 14 00101111000111100011

localtransition : life-rule

[life-rule] //rules to obey

rule : 1 100 { (0,0) = 1 and (truecount = 3 or truecount = 4) } //value to be/delay/conditions

rule : 1 100 { (0,0) = 0 and truecount = 3 }

rule : 0 100 { t }

3.1.2 DEVS

Here we show a simple example of “barber” in “/models/dcdpp/barber”

XML configuration

DEVS models contains src C++ files. Other configuration are similar with the one in Cell-DEVS.

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

- <ConfigFramework>

 <Doc>This DEVS model simulates Barber shop .</Doc>

- <Files> //list all model files in ZIP file

 //(ftype is the extension of the file)

 <File ftype="ev">barber.ev</File>

 <File ftype="ma">barber.ma</File>

 <File ftype="src">Reception.cpp</File>

 <File ftype="hdr" class="Reception">Reception.h</File>

 <File ftype="src">Checkhair.cpp</File>

 <File ftype="hdr" class="Checkhair">Checkhair.h</File>

 <File ftype="src">Cuthair.cpp</File>

 <File ftype="hdr" class="Cuthair">Cuthair.h</File>

 </Files>

- <Options>

 <TimeOp>null</TimeOp>

 <ParsingOp>false</ParsingOp>

 </Options>

RISE Manual – S. Wang, G. Wainer

-7-

- <DCDpp>

- <Servers>

- <Server IP="localhost" PORT="8080"> //list all model name in the server

 <MODEL>reception</MODEL>

 <MODEL>cuthair</MODEL>

 <MODEL>checkhair</MODEL>

 </Server>

 </Servers>

 </DCDpp>

 </ConfigFramework>

Coupled Model

Zip file contains all src files list in XML configuration, each file is an atomic model and would

specify Exteral/Interal/Output functions with time advancing. You can use the same MA file in

your project that works in CD++.

[top] //list all components and links

components : reception@Reception Barber

in : newcust next

out : cust finished

Link : newcust newcust@reception

Link : out@Barber next@reception

Link : out@Barber finished

Link : cust@reception in@Barber

[reception] //list variables used in the model

numberofChairs : 8

preparationTime : 00:00:01:000

openingTime : 09:00:00:000

closingTime : 16:00:00:000

[Barber]

components : checkhair@Checkhair cuthair@Cuthair

in : in

out : out

Link : in cust@checkhair

Link : finished@checkhair out

Link : cutcontinue@checkhair cutcontinue@cuthair

Link : progress@cuthair progress@checkhair

[checkhair]

preparationTime : 00:00:09:000

[cuthair]

preparationTime : 00:00:11:000

Atomic Model

For the models that work in CD++, only one change is needed. In the XXX.h and XXX.cpp, the

message of outputFuncition should be “CollectMessage” instead of “InternalMessage”. Please do

RISE Manual – S. Wang, G. Wainer

-8-

the changes for both the .h and .cpp files in your models. For instance,

Model &outputFunction(const InternalMessage &); // in CD++, changes to:

Model &outputFunction(const CollectMessage &); // in RISE

3.2 Lopez

3.2.1 Cell-DEVS with multiple variables

Here shows a simple example of “Life” in “/models/lopez/life-val”.

XML configuration

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<ConfigFramework>

 <Doc> This model simulates Life using Cell-Devs. It uses Lopez linux version with multiple

neighbor ports (value). </Doc>

 <Files>

 <File ftype="ma">life.ma</File> //ftype is the extension of the file

<File ftype="stvalues">life.stvalues</File> //the initial file for new value, see[5] for details

 // <File ftype="val">life.val</File> //you can also use the “val” in the original version.

 </Files>

 <Options>

 <TimeOp>00:00:02:000</TimeOp>

 <OnlyYMsgOP>true</OnlyYMsgOP> //only show Y message in log files, optional

 <ParsingOp>false</ParsingOp>

 </Options>

 <DrawLog> //for Cell-DEVS only, see 2D visualization in *.drw file, same

directory of log files; if you don’t want the drw file, just omit this part

 <CoupledModel>life</CoupledModel> //the model wanted to draw

 <Width>3</Width> // Width used to represent numeric

values

 <Precision>0</Precision> //Precision used to represent numeric values

 <NotPrintZero>true</NotPrintZero> // Don't print the zero value

 <TimeInterval>00:00:00:100</TimeInterval> // Interval time between each two

 </DrawLog>

</ConfigFramework>

MA file

[top]

components : life

[life]

type : cell

width : 21

height : 21

delay : transport

RISE Manual – S. Wang, G. Wainer

-9-

defaultDelayTime : 100

border : wrapped

neighbors : life(-1,-1) life(-1,0) life(-1,1)

neighbors : life(0,-1) life(0,0) life(0,1)

neighbors : life(1,-1) life(1,0) life(1,1)

initialvalue : 0

initialrowvalue : 4 000011100000000000000

initialrowvalue : 5 000011100010000000000

…

initialrowvalue : 15 000000000000001110001

initialrowvalue : 16 000000000000001110011

localtransition : conrad-rule

statevariables: value //new state

initialvariablesvalue: life.stvalues //state initial values

[conrad-rule]

rule : { $value } { $value := 1; } 100 { $value =1 and (truecount = 3 or truecount = 4) }

rule : { $value } { $value := 0; } 100 { $value =1 and (truecount < 3 or truecount > 4) }

rule : { $value } { $value := 1; } 100 { $value =0 and truecount = 3 }

rule : { $value } { $value := 0; } 100 { $value =0 and truecount != 3 }

3.2.2 Cell-DEVS with multiple ports

Here we show a simple example of “Life” in “/models/lopez/life-port”.

XML configuration

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<ConfigFramework>

 <Doc> This model simulates Life using Cell-Devs. It uses Lopez linux version with multiple

neighbor ports (value). </Doc>

 <Files>

 <File ftype="ma">life.ma</File> //(ftype is the extension of the file, can be

val, inc, ev)

 </Files>

 <Options>

 <TimeOp>00:00:02:000</TimeOp>

 <OnlyYMsgOP>true</OnlyYMsgOP> //only show Y message in log files, optional

 <ParsingOp>false</ParsingOp>

 </Options>

 <DrawLog> //for Cell-DEVS only, see 2D visualization in *.drw file, same

directory of log files; if you don’t want the drw file, just omit this part

 <CoupledModel>life</CoupledModel> //the model wanted to draw

 <Width>3</Width> // Width used to represent numeric

values

RISE Manual – S. Wang, G. Wainer

-10-

 <Precision>0</Precision> //Precision used to represent numeric values

 <NotPrintZero>true</NotPrintZero> // Don't print the zero value

 <TimeInterval>00:00:00:100</TimeInterval> // Interval time between each two

 <NeighborPort>value</NeighborPort> //the special port to see, none if normal model

 </DrawLog>

</ConfigFramework>

MA file

[top]

components : life

[life]

type : cell

width : 21

height : 21

delay : transport

defaultDelayTime : 100

border : wrapped

neighbors : life(-1,-1) life(-1,0) life(-1,1)

neighbors : life(0,-1) life(0,0) life(0,1)

neighbors : life(1,-1) life(1,0) life(1,1)

initialvalue : 0

initialrowvalue : 4 000011100000000000000

initialrowvalue : 5 000011100010000000000

…

initialrowvalue : 15 000000000000001110001

initialrowvalue : 16 000000000000001110011

localtransition : conrad-rule

neighborports : value //new neighborport, (value1 value2) if more than one

[conrad-rule]

rule : { ~value := 1; } 100 { (0,0)~value = 1 and (statecount(1, ~value) = 3 or statecount(1, ~value)

= 4) }

rule : { ~value := 0; } 100 { (0,0)~value = 1 and (statecount(1, ~value) < 3 or statecount(1, ~value) >

4) }

rule : { ~value := 1; } 100 { (0,0)~value = 0 and statecount(1, ~value) = 3 }

rule : { ~value := 0; } 100 { (0,0)~value = 0 and statecount(1, ~value) != 3 }

3.2.3 DEVS

Here we show a simple example of “Life” in “/models/lopez/barber”. You can find another

example in “models/lopez/queue”

XML configuration

<ConfigFramework>

 <Doc> This DEVS model simulates Barber shop . </Doc>

RISE Manual – S. Wang, G. Wainer

-11-

 <Files> //(ftype is the extension of the file)

 <File ftype="ev">barber.ev</File>

 <File ftype="ma">barber.ma</File>

 <File ftype="src">Reception.cpp</File>

 <File ftype="hdr" class="Reception">Reception.h</File>

 <File ftype="src">Checkhair.cpp</File>

 <File ftype="hdr" class="Checkhair">Checkhair.h</File>

 <File ftype="src">Cuthair.cpp</File>

 <File ftype="hdr" class="Cuthair">Cuthair.h</File>

 </Files>

 <Options>

 <TimeOp>null</TimeOp>

 <ParsingOp>false</ParsingOp>

 </Options>

</ConfigFramework>

Coupled Model - The same as the one used in CD++.

[top]

components : reception@Reception Barber

in : newcust next

out : cust finished

Link : newcust newcust@reception

Link : out@Barber next@reception

Link : out@Barber finished

Link : cust@reception in@Barber

[reception]

numberofChairs : 8

preparationTime : 00:00:01:000

openingTime : 09:00:00:000

closingTime : 16:00:00:000

[Barber]

components : checkhair@Checkhair cuthair@Cuthair

in : in

out : out

Link : in cust@checkhair

Link : finished@checkhair out

Link : cutcontinue@checkhair cutcontinue@cuthair

Link : progress@cuthair progress@checkhair

[checkhair]

preparationTime : 00:00:09:000

RISE Manual – S. Wang, G. Wainer

-12-

[cuthair]

preparationTime : 00:00:11:000

Atomic Model

 In order to run the DEVS models that work in CD++, in lopez, we need to change as follows

(please see the example of “model/lopez/barber” for details):

1. in XXX.h:

a. add #include "VTime.hh"

b. Model &outputFunction(const CollectMessage &); // (not InternalMessage&)

c. Change all the attributes that are “Time” to “VTime”.

2. In XXX.cpp:

a. Change #include "mainsimu.h" to #include "parsimu.h"

b. Model &outputFunction(const CollectMessage &); // (not InternalMessage&)

c. If you use active in your code, please specify as “AtomicState::active”

References

[1] K. Al-Zoubi and G. Wainer. 2009. Using REST Web Services Architecture for Distributed

Simulation. In: Proceedings of Principles of Advanced and Distributed Simulation (PADS 2009). pp.

114-121. Lake Placid, New York, USA.

[2] K. Al-Zoubi and G. Wainer. 2010. Distributed Simulation using RESTful Interoperability

Simulation Environment (RISE) Middleware. Intelligence-Based Systems Engineering, pages

129–157.

[3] K. Al-Zoubi and G. Wainer. 2010. RESTful Interoperability Simulation Environment (RISE)

Middleware Manual.

[4] G. Wainer. 2001. CD++ parallel version User’s Guide.

[5] A López, G. Wainer. 2003. Extending CD++ Specification Language for Cell-DEVS Model

Definition.

