F"'} Carleton

UNIVERSITY

Cadmium

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

Cadmium

A tool for DEVS Modeling and

Simulation

User’s Guide

DRAFT - 13/10/2020

Cristina Ruiz Martin
Gabriel A. Wainer

Department of Systems and Computer Engineering
Carleton University
1125 Colonel By Dr. Ottawa, ON. Canada

http://cell-devs.sce.carleton.ca
http://www.sce.carleton.ca/faculty/wainer

gwainer@sce.carleton.ca

Page 1 of 83

M Carleton

UNIVERSITY

Cadmium

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

Table of Contents

CAOIMIUM ettt ettt e et te e sh et e sh bt e e suteeeabee e be e e beeeeane e e abe e et e e e eabeeebee e eateeeanbeesabeeeanbeesaneeeanseesaneeennne 4
Windows - INStallation @and @XamMPIEccceiiee it e e e e e et e e e s e e e e e tae e e e e ertte e e e sraaeeaesnnes 4
Installing CygWin, GCC @and BOOSTuuiiiieiiiieie sttt ettt e eettre e e e et ae e e e e abe e e eeantaee s s saeeeeennteseessnnnenns 4
Downloading and installing the Cadmium SiMUIGtOr........ooociiiiiiiiie e 13
Compiling and Running a Cadmium DEVS MOEIcooeiiiieiiiiie ettt e n e e rae e 14
Ubuntu - INStallation @and @XamMPIE.......uieee et rre e e et te e eeetr e e e s etabe e e e enreaeeenbeaeeesnreeas 17
SYSTEM FEQUITEIMIENTS ...eeieiiiiiiieee ittt teeeeees s s s re e teeteeeessetasebeaeeaeeessaaaaatbaeaeaeeessesssasssnsateaeeesesssasnssssnaaaeeens 17
T T o 11T Y= = 1o Yo 1) APPSR 17
T T o 11T == USSR 18
T T = 11T =4 C | SO UPTRPSPRIN 20
Installing the ‘MaKe’ COMMANGii i e ettt e e et ee e te e st e e s sateesnseeesaraeenseeesnsaens 21
Downloading and installing the Cadmium SiMUIGtor.......ccooiiiiiiiiiie e 22
Compiling and Running a Cadmium DEVS MOEIcoiiiiiiiiiiiiiiei et e e s eae e 22
MacOS - INstallation aNd EXaMIPIE..... e et e e st te e ee et ee e e e et abe e e e e areae e e rrae e e e nraeas 25
N A (=T 0 T =T UL =T g =T o SRR 25
INStalling CoMMAND LiNE TOOIS....uiiiiiiiiiiit ittt sttt e s re e e st e e e s s rabe e e s s sabaeaessantaeessansaeaeanses 25
INStalling HOMEDIEW @Nd BOOSEeeeiiiiiiie et ettt e st e e e areeeee et bee e s seaaeeeeeestaeaessantaeeesansaeeeanses 25
Downloading and installing the Cadmium SiMUIGtOr........coccuiiiir it erae e e 25
Compiling and Running a Cadmium DEVS MOEIcoiiiiiiiiiiiiiieiciee et ssn e e s ae e 26
DEVS Model definition: AN EXAMPIEvveiiiiiiie et e e eee e e stae e e s s aa e e eestaae e e sebeteeeesnnraaeesnssaeeesnnsenas 28
Subnet: an atomic model example implemented in CadmMiUum.......ccoviviiieiiiiiiiiice e 28
Unit testing the Subnet atomic MOAElo.ueiiiiiiie s e e s srae e s s saaeaeannes 35
A SUMMArY ON POt DEFINITION....cciiieicie ettt e et e e et ae e etb e e eatae e snteeasaeesateeesaneesnsaeeansaens 46
Defining the make file 10 COMPIIE ThE TEST...c.viiiiiiieieeceee e s e et e e aae s 48
Simulating the complete ABP MOEL..........uuiiiiiiiie et beae s sbbae e e s naaeas 50
Defining the make file to compile all the test aNd the ABPcoccuveii it eaae e e 51
Cadmium’s Services for AtOMIC MOEIS.......cooui ittt e s nee e 53
BT - [T Yo oo o &3O RSTUPRTRTPUPRIN 54
Implementing atomic MOAEIS: @ CH+ Class ...uuuiiiciiiiiee ettt ee et e e e s s rae e e e e ebaeeeesentaeeesesaeeeannnes 54
Using Atomic Models: Creating Instances from the Class........cccecveeiiiiieie e sreee e evae e e e 57
Cadmium’s Services for CoUPled IMOEIS.........ccuuiiiiee et et ae e e e sar e e sae e e aeaesraeesnaeens 58
DT ol = T T Y= oo 4SRRI 58
DefiniNg COUPIEA MOUEIS......oii e s e et e e et e e e et be e eabaeeate e nteeessseesnseeesasaeenseeesnsanns 59
CadmiUuM’s SEIVICES t0 CrEATE LOES ...vvieiirieeiiieeeieieciee ettt eete e e st e e st e e e tee s st aeeeabaeeeseaeeaseeesnteesnseeesnsesessaeaseeeanseens 62

Page 2 of 83

F‘"‘-’} Carleton

UNIVERSITY

Cadmium

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

Cadmium’s Services to RUN the SIMUIGLION.......coiiiiii i s 64
Services to Export to Coupled Model tO JSONcoiiiiiiiieciiiee e ee et e e e srrere e s e eabre e e e srabeeeesrnneaeesenreaeeeas 64
FAY o] o= g T) A TP RPN 66
FAY o] o 1=Y g T 1) TR PR RPP PR 68
Y o] o= g o G S USR 70
FAY o] o 1=Y g T 1) ql B IR UPP PP 73
AN o] o= T 1 Gl =3RS 77
AN o] o= T Dl S USR 79

Page 3 of 83

F‘"‘-’} Carleton

UNIVERSITY

Cadmium

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

Cadmium

Cadmium is a tool for Discrete-Event modeling and simulation, based on the DEVS formalism. DEVS is a discrete
event paradigm that allows a hierarchical and modular description of the models. Each DEVS model can be
behavioral (atomic) or structural (coupled), consisting of inputs, outputs, state variables, and functions to
compute the next states and outputs.

Cadmium is a cross-platform header-only library implemented in C++. This document is a user's guide to
Cadmium, and we will only focus on tool-related aspects. Readers interested in the underlying theory should
consult:

- G. Wainer. Discrete-Event Modeling and Simulation: a practitioner's approach. Taylor and Francis.
2008.

- B. Zeigler, H. Praehofer, T. G. Kim. “Theory of Modeling and Simulation”. 2nd Edition. Academic Press.
2000.

More references about related topics are available at http://cell-devs.sce.carleton.ca:

From now on, a complete understanding of DEVS models is assumed. Details about the DEVS formalism can
be found in the literature above.

To report errors in this user manual please contact gwainer@sce.carleton.ca.

Windows- Installation and example

NOTE: If we follow these instructions step by step, we will be able to download Cadmium and to
compile and execute models in Cadmium DEVS simulator. If we are an expert C++ programmer,
we can install the tools in your own different way. Cadmium is a C++ header library only that
depends on Boost library. In that case, we can get Cadmium here:

https://qgithub.com/SimulationEverywhere/cadmium

Installing Cygwin, GCC and Boost
1. Create the folder C:\cygwin64

2. Visit http://www.cygwin.com/. Look for the section "Installing Cygwin" and select the appropriate
version (32 bit or 64 bit) for your PC. In this example, we will show how to install the 64-bit version.

Installing Cygwin
Install Cygwin by running setup-x86 64.exe (64-bit installation) or setup-x86 exe (32-bit installation)

Use the setup program to perform a fresh install or to update an existing installation.

Keep in mind that individual packages in the distribution are updated separately from the DLL so the Cygwin DLL version is not useful as a general
Cygwin distribution release number.

Page 4 of 83

Carleton

QY UNIVERSITY

Canada’s Capital University

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Download the setup file chosen in C:\cygwin64. Based on the OS version we will get a file named setup-
x86_64.exe (64-bit installation) or setup-x86.exe (32-bit installation)

3. Execute setup-x86_64.exe (64-bit installation) or setup-x86.exe (32-bit installation) and click on
“Next >”. We will see the following welcome screen.

E Cygwin Setup == O >
Cygwin Net Release Setup Program

This setup program is used for the inttial installation of the
Cygwin environment as well as all subsequent updates. Make
sure to remember where you saved it.

The pages that follow will guide you through the installation.
Please note that Cygwin consists of a large number of
packages spanning a wide variety of purposes, We only
install a base set of packages by default. You can always un
this program at ary time in the future to add, remove, or
upgrade packages as necessary.

Setup version 2.897 (64 bit)
Copyright 2000-2013
hittps:/cvawin.com/

< Hack Neaxt Cancel
4. Select the option "Install from Internet" and click on “Next >”
E Cygwin Setup - Choose Installation Type - O X
Choose A Download Source .
Choose whether to install or download from the intemet, or install from files in Lot
@ local directory.
(®) Install from Intemet
(downloaded files will be kept for future re-use)
() Download Without Installing
() Install from Local Directory
< Back Next > Canicel

5. We need to select the Root Install directory for storage of Cygwin files. Choose the default (c:\cygwin64,
as seen in the screenshot, and “All Users (RECOMMENDED)”. Click on “Next >”

Page 5 of 83

Cadmium Carlet()ﬂ

A tool for DEVS Modeling and Simulation. User’s Guide . UNIVERSITY
Canada’s Capital University

E Cygwin Setup - Choaese Installation Directary - O >

Select Root Install Directory E

Select the directory where you want to install Cygwin. Also choose a few
inztallation parameters.

Roat Directary

|C:\cygwinﬁ-i

Install For

(®) All Users (RECOMMENDED)
Cygwin will be available to all users of the system.

() Just Me

Cygwin will still be available to all users, but Desktop Icons, Cyawin Menu Entries, and important
Installer information are only available to the cumrent user. Cnly select this if you lack
Administrator privileges or f you have specific needs.

< Back Mext = | Cancel

6. Choose your preferred directory for storage of Cygwin local package directory as in the screenshot (i.e.
the folder we just created) and click on “Next >”

E Cygwin Setup - Select Local Package Directory - O X
Select Local Package Directory
Select a directory where you want Setup to store the installation files it L

downloads. The directory will be created f it does not already exist.

Local Package Directory

IC:\cyawin64) | Browse...

<Back [Net> | | Cancel

7. Select the option “Use System Proxy Setting” and click on “Next >”

Page 6 of 83

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

E Cygwin Setup - Select Connection Type
Select Your Intemet Connection

Setup needs to know how you want it to connect to the intemet. Choose
the appropriate settings below.

(®) Lise System Proxy Settings
(") Direct Connection
(7) Use HTTF/FTP Proxy:

Proxy Host

Port

an
U

< Back

8. After a few seconds, the following window will appear. Choose a Download Site as in the screenshot.

Click on “Next >” (in this case, http://cygwin.mirror.constant.com)
E Cygwin Setup - Choose Download Site(s)

Choose A Download Site
Chooze a site from this list, or add your own sites to the list

Available Download Sites:

gwin.mimor.constant .com
http://cygwin.mimors hoobly com
http.//mirmors koehn.com
http://mimors metapeer. com
http://www pirbot com
http://mimor team-cymru.com
ftp://mimors xmission.com
http.//mirmors xmission.com
http..//mimor.clarkson.edu
http://mimor cs vt.edu
http -/ /mirmor koddos net
http -/ /mimor-hk koddos net
ftp://mimors netix net

L A I R

User URL: | _

< Back Next >

Neat >

Add

Carleton

QY UNIVERSITY

Canada’s Capital University

O X

cC

Cancel

Cancel

9. Cygwin will start the installation process. The following window will appear

Page 7 of 83

Carleton

Cadmium
QY UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

E cygwin Setup — O g
This page displays the progress of the download or installation, E
Downloading....

setup xz from hittp://cygwin mimor constant com/«<86_64
1810432 636.8kB/s

Progress:

Bacl Next = Cancel

10. When we get the following window, if we click on “All”, we will see all the existing packages. Do not
choose anything; simply click “Next >” leaving everything as default (as in the screenshot). This will
install the default tools and libraries.

E Cygwin Setup - Select Packages = O X

Select Packages
Select packages to install -

View | Category v Search |:’ Clear @Best (OSmc [JTest

Package Cument New I
Al Defauit

< >
Hide obsolete packages

<Back || Net> | | Cancel

11. The following window will appear. Click on “Next >”

E Cygwin Setup - Review and confirm changes =5 | X
Review and confi
iew irm changes E
Install _autorebase 001007-1 A

Install atematives 1.3.30c-10
Install base-cygwin 3.8-1

Install base-files 4.3-2

Install bash 44.12-3

Install bzip2 1.0.8-1

Install ca-cerficates 2.32-1
Install coreutils 8.26-2

Install crypto-policies 201902181
Install cygutils 1.4.16-2

Install cygwin 3.0.7-1

<Back || Met> | = Cancel

Page 8 of 83

Carleton

Cadmium
QY UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

12. The progress window below will appear.

C 2% - Cygwin Setup - O x
Thig page displays the progress of the download or installation. E
Downloading...

terminfo-6.1-1.20130727 tarxz from http://cygwin mimor.consta....

Connecting....

Progress:

Total: =]

Disk: |]

< Back et

13. Once the installation finishes, select the option “Create icon on Desktop” to easily access the Cygwin
terminal. Click on “Finish”

E Cygwin Setup - Installation Status and Create Icons = O .
Create Icons
Tell setup i you want it to create a few icons for convenient access to the -

Cygwin environment

Create icon on Desktop
[&dd icon to Start Menu

Installation Status
Installation Complete

<Back |f Finish Cancel

14. Once the installation finishes, if we open the cygwin64 folder, it should have the following content.
Make sure you copied setup-x86_64.exe in the cygwin64 folder (or setup-x86.exe for 32bits
installations).

ThisPC » Local Disk (C:) » cygwinb4d

MName Date modified Type Size

bin File folder

dev File folder

etc File folder

home File folder

lib File folder

=hin File folder

tmp Filefolder

usr File folder

var File folder
=] Cygwin.bat Windows Batch File 1KB
E Cygwin.ico lcon 134 KB
E Cygwin-Terminal.ico 8/ 121102 AM |con 33KB
E setup-xB6_64.exe B/8/201%2 10:20 AM Application 1,197 KB

Page 9 of 83

— M Carleton

A tool for DEVS Modeling and Simulation. User’s Guide UNIVERSITY
Canada’s Capital University

15. Open the windows terminal (Command Prompt; type “cmd” on your Windows search).
Type
cd c:\cygwino4

For the 64-bit installation, type:

setup-x86 64.exe —-q -P chere -P wget -P gcc-g++ —-P make -P diffutils
-P libmpfr-devel -P libgmp-devel -P libmpc-devel -P git

(For 32-bit installation, replace by setup-x86.exe)

It will install all the necessary libraries and the last version of gcc/g++ compiler.

E® Command Prempt = m| *

16. A Progress window will pop up while all the required packages along with their dependencies are
downloaded and installed, as in the following screen capture.

E 03 - Cygwin Setup - O *
Progress -
This page displays the progress of the download or installation. L

Downloading

libigl 15-0.16.1-1 tarxz from hitp://cygwin.mimor constant.com/x. ..

87 % (393k/457k) 6134 kB/s

Packece: [

Total:

Dk =

Bach Nex Cancel

The installation process will take several minutes. Once the installation process finishes, the window
will disappear automatically, and we can close the Command Prompt.

17. Run Cygwin on your desktop, in administrator mode (right-click on the desktop icon and select the option

“Run as administrator”; we can also use c:\cygwin64 and run the script “cygwin.bat” in Administrator
mode). The skeleton files will be created:

Copying skeleton files.

These files are for the users to personalise their cygwin experience.
They will never be overwritten nor automatically updated.

'./.bashrc' -> '/YOURDIRECTORY//.bashrc'

'./.bash profile' -> '/YOURDIRECTORY//.bash profile'

'./.inputrc' -> '/YOURDIRECTORY//.inputrc'
'./.profile' -> '/YOURDIRECTORY//.profile'
YOURDIRECTORY~

$

Page 10 of 83

F"'} Carleton

Cadmium
UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

18. Type the following command on the terminal and press “Enter” (in this case, we show an example for
user “User” running Cygwin on the Desktop):

wget rawgit.com/transcode-open/apt-cyg/master/apt-cyg

151.101.124.1:
3]151.10 .

19. Type the following command and press “Enter”
install apt-cyg /bin

"apt-cyg" is a command in Cygwin similar to the "sudo apt-get" command in Linux. It is used to install packages,
update them, list them, etc.

20. Type the following command and press “Enter”
chere -1 -t mintty -s bash

This will allow us to open a Cygwin bash terminal from any folder in your Windows File Explorer or other

applications.

Page 11 of 83

F"'} Carleton

UNIVERSITY

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Canada’s Capital University
21. Type the following command on Cygwin terminal and press “Enter”. This installs the Boost Library. A
progress message will show the installation. Note that this process may take several minutes. It installs
all packages in the boost library. The figure shows the start/end of the process only (and this could vary
depending on your own installation).

apt-cyg install libboost-devel

3|/:80... connected.

HTTP request sent, awaiting response... 200 OK
Length: 8267736 (7.9M) [application/octet-stream]
Saving to: ‘libicu67-67.1-2.tar.xz’

Tibicu67-67.1-2. tar >] 7.88M 593KB/s in 13s

2020-10-13 16:25:57 (620 KB/s) - ‘libicu67-67.1-2.tar.xz’ saved [8267736/8267736
]

T1ibicu67-67.1-2.tar.xz: OK

Unpacking. ..

Package Tibicu67 requires the following packages, installing:

cygwin Tibgccl libstdc++6
cygwin is already installed, skipping
libgccl is already installed, skipping
Tibstdc++6 is already installed, skipping
Tibstdc++6 is already installed, skipping
pkg-config is already installed, skipping
/etc/postinstall/zp_man-db.sh
libboost-devel installed

Page 12 of 83

Cadmium r&j Carlet()ﬂ

A tool for DEVS Modeling and Simulation. User’s Guide UNIVERSITY
Canada’s Capital University

Downloading and installing the Cadmium Simulator
1. Go tothe Cdrive. Inside the C folder, right-click + “Bash Prompt Here”

? & > ThisPC > 0S (C)

4 View >
Apps Sort by >
Yguino Group by >
DELL Refresh
Downloads
Drivers
Intel
PerfLogs Undo Move Ctrl+Z
Program Files Bash Prompt Here
Prograni Files (80) 32 Send with Transfer...

Users
Windows Give access to >
New >3

Properties

This will open the cygwin terminal in the C folder.

Starting /bin/bash.exe

/cygdrive/c

2. Type the following commands:
git clone https://github.com/SimulationEverywhere/Cadmium-Simulation-Environment.git
cd Cadmium-Simulation-Environment/
git submodule update --init --recursive

Note that this may take 15-30 min (or longer, depending on your internet speed).

Page 13 of 83

F"'} Carleton

UNIVERSITY

Cadmium

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

Starting /bin/bash.exe

$ git clone https:/ g1thub com >1mu'|at10n£\ery“herE/Cadmunwﬂmu]amon Environme

nt.git |
Cloning into 'Cadmium-Simulation-Environment’

remote: Enumerating objects: 68, done

remote: Counting objects: 1 (68/68), done.

remote: Compressing objects 0 (53/53), done.

remote: Total 68 (delta 34), reused 41 (delta 15), pack-reused 0
Unpacking objects: 1((68/68), 11.65 KiB | 63.00 KiB/s, done.

$ cd cadmium-Simulation- En\1|onmenn

/ ydr /Cadmium-Simulation-Environment

$ git submodule update --init --recursive
Submodule 'CadmiumModelJSONExporter' (https://github.com/SimulationEverywhere/Ca
dr unNode]JsHhExporter git) registered for path 'CadmiumModelJSONExporter’
Submodule 'DESTimes' (https://github.com/SimulationEverywhere/DESTimes.git) regi
stered for path 'DESTimes'
Submodule 'DEVS dels' (https://github.com/SimulationEverywhere-Models/Cadmium-
DEVS-Models.git) registered for path 'DEVS-Models’
Submodule 'RT-Cadmium-Models' (https://github.com/SimulationEverywhere/RT-Cadmiu
m-Models.git) registered for path 'RT-Cadmium-Models’
Submodule 'cadmium' (https://github.com/SimulationEverywhere/cadmium.git) regist
ered for path 'cadmium'
Cloning into '/cygdrive/c/Cadmium-Simulation-Environment/CadmiumMode]JSONExporte
§ wum
Cloning into /cygd|1\ /c/Cadmium-Simulation-Environment/DESTimes '
Cloning into '/cygdrive/c/Cadmium-Simulation-Environment/DEVS-Models
Cloning into '/cygdrive/c/Cadmium-Simulation-Environment/RT-Cadmium- ode]s

into '/cygdrive/c/Cadmium-Simulation-Environment/cadmium’

Submodule path RT-Cadmium-Models/DISCO-Demo': checked out 'elb358606b4d5712b0f78b82486908272e5a38c7
'mbed-os' (https://github.com/ARMmbed/mbed-o0s.git) registered for path 'RT-Cadmium-Models/

Cloning into '/cygdrive/c/Cadmium-Simulation-Environment/RT-Cadmium-Models/DISCO-Demo/mbed-os".
Submodule path 'RT-Cadmium-Models/DISCO-Demo/mbed-os': checked out 'e7bcl177b20427197763elcd47 761b04bf1bdh64e

Submodule path 'RT-Cadmium-Models/SeeedBot': checked out '05c2690bd8b0f3bd251390fc2f51bbc7f5a4f6cc

'uhmoduTe 'mbed-os' (https://github.com/ARMmbed/mbed-os.git) registered for path 'RT-Cadmium-Models/SeeedBot
/mbed-os "’

Cloning into ','(yqdv ve/c/Cadmium-Simulation-Environment/RT-Cadmium-Models/SeeedBot/mbed-os"’

ubmodule path 'RT-Cadmium-Models ’Seeedsof,mbed os': (hecked out '3801d4alc3a 62211faffd24aa4d1e3795974"
ubmodule path 'RT-Cadmium-Models/SeeedBot-Light-Follower': checked out '18f0 ba249aee5a 045ac2999fd
6c75d"

Submodule 'mbed-os' (https://github.com/ARMmbed/mbed-os.git) registered for path 'RT-Cadmium-Models/SeeedBot
-Light-Follower/mbed-

Cloning into '/cygdrive/c/Cadmium-Simulation-Environment/RT-Cadmium-Models/SeeedBot-Light-Follower/mbed-os'

Submodule path 'RT-Cadmium-Models/SeeedBot-Light-Follower/mbed-os': checked out '3801d4alc3aa62a62211faffd24
aa4dle3795974"

Submodule path 'cadmium': checked out 'b6636f791d3fbff41b6b72el1d9e34cel815 5d’

Submodule 'cmake-modules® (https://github.com/bilke/cmake-modules.git) registered for path
dules’

Cloning into '/cygdrive/c/Cadmium-Simulation-Environment/cadmium/cmake-modules’. ..
Submodule path 'cadmium/cmake-modules': checked out 'fcfc0494c45fc24fae39996db658b9bdeeaasdfds’

cadmium/cmake-mo|

gdrive/c/Cadmium-Simulation-Environment

Now we have Cadmium set up. If we open the folder Cadmium-Simulation-Environment (located in C, if
you followed the instructions in this manual), it has to look as follows:

> ThisPC > OS(C:) > Cadmium-Simulation-Environment

O Name

.git

cadmium
CadmiumModelJSONExporter
DESTimes

DEVS-Models
RT-Cadmium-Models
.DS_Store

.gitmodules

README.md

Compiling and Running a Cadmium DEVS Model

When we download Cadmium, we obtain a Model Library (Folder: DEVS-Models). We will use the
Alternating_Bit_Protocol model found in that directory as an example to show how to compile a Cadmium
model and how to run the tests for that model.

Page 14 of 83

F"'} Carleton

UNIVERSITY

Cadmium

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

1. Compile the project and the tests

a. Open a Bash Prompt inside the folder Alternating_Bit_Protocol:
Inside the Alternating_Bit_Protocol folder, right-click + “Bash Prompt Here”

b. To compile the project and the tests, type in the Bash Prompt:
make clean; make all

cy e/c/Cadmium-Simulation-Environment/DEVS-Models
$ cd Alternating_Bit_Prot

cygdrive/c/Cadmium-Simulation-Environment/DEV Alternating_Bit_Protocol

./cadmium/include -I ../../DESTimes/include -I ../../CadmiumModelJSONExporter/i
/ D .

P
/../cadmium/include -I ../../DESTimes/include data_structures sage.cpp -o bui

p.0 builc
dmi i /DESTimes/include test/main_subnet_test.cpp -o build/

admium/include -I . STimes/include test/ma sender_test.cpp -o build/|
../cadmium/include -I . S es/include test/main_receiver_test.cpp -o buil

o

Alternating_Bit_Prc

2. Run tests

a. Asubfolder, called bin, has been created. The simulation examples we will execute are in that
directory (cd bin) .

b. To run the subnet test, type in the Bash Prompt:
./SUBNET TEST.exe

c. Torun the receiver test, type in the Bash Prompt:
./RECEIVERﬁTEST.exe

d. To run the sender test, type in the Bash Prompt:
./SENDER_TEST.exe

cygdrive/c/Cadmium-Simulation-Environment/DEVS dels/Alternating_Bit_Protoco
$ cd bin

cygdriv admium-Simulation-Environment/DEVS-Models/Alternating_Bit_Protocol/bin
$./SUBNET_TEST.exe

cygdriv admium-Simulation-Environment/DEVS-Models/Alternating_Bit_Protocol/bin
. /RECEIVER_TEST.exe

cygdrive Cadmium-Simulation-Environment/DEVS-Models/Alternating_Bit_Protocol/bin
. /SENDER_TEST. exe

cygdrive/c/Cadmium-Simulation-Environment/DEVS-Models/Alternating_Bit_Protocol/bin

e. To check the output of the tests, go to the folder “../simulation_results” and open the
respective files.

3. Run the top model

a. Inside the subfolder “bin”, type
./ABP.exe ../input data/input abp 1.txt

/cygdrive/c/Cadmium-Simulation-Environment/DEVS-Models/Alternating_Bit_Protocol/bin

$./ABP.exe ../input_data/input_abp_1.txt

Page 15 of 83

Cadmium M Carlet()ﬂ

A tool for DEVS Modeling and Simulation. User’s Guide UNIVERSITY

Canada’s Capital University

b. To check the output of the model, go to the folder simulation_results and open
"ABP_output_messages.txt" and "ABP_output_state.txt"

4. To run the model with different inputs

a. Create new .txt files with the same structure as input_abp_0.txt or input_abp_1.txt in the
folder input_data

b. Run the model using the instructions in step 3

If we want to keep the output, rename abp_output.txt. Otherwise, it will be overwritten when
we run the next simulation.

Page 16 of 83

F‘"‘-’} Carleton

UNIVERSITY

Cadmium

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

Ubuntu- Installation and example

System requirements

1. Ubuntu 16.04 or higher
2. RAM 16GB (we will be able to run small models with 4GB ram)

Installing Boost

1. Open the Ubuntu terminal. To open Ubuntu terminal press: "Ctrl + Alt + t".

Type the following command in the Ubuntu terminal screen that appears, and press ENTER

sudo apt-get install libboost-all-dev

3. Type the administrative password, i.e. the password we use for signing in into your Ubuntu account

and press ENTER.

user@ars-lab: ~

File Edit View Search Terminal Help

user@ars-lab:~$ sudo apt-get install libboost-all-dev
[sudo] password for user:

4. Theinstallation begins. After a while, the installation is temporarily paused, and the following question
appears: "Do we want to continue?", type: y and then press ENTER to resume the installation process.

user@ars-lab: ~

File Edit View Search Terminal Help

libboost-type-erasurel.65.1 libboost-wave-dev libboost-wavel.65-dev
libboost-wave1.65.1 libboost1.65-dev libboost1.65-tools-dev libc-dev-bin
1libc6-dev libcilkrts5 libexpati-dev libfabric1i libfakeroot libgcc-4.8-dev
libgcc-7-dev libglib2.06-dev libglib2.0-dev-bin libgraphite2-dev
libharfbuzz-dev libharfbuzz-gobject® libhwloc-dev libhwloc-plugins libhwloc5
libibverbs-dev libibverbsi libicu-dev libicu-le-hb-dev libicu-le-hbo
1libiculx66 libitm1 liblsan® libltdl-dev 1libmpx2 1libnl-route-3-200
libnuma-dev libopenmpi-dev libopenmpi2 libpcre16-3 libpcre3-dev libpcre32-3
libpcrecppOv5 libpsm-infinipath1l libpython-dev libpython-stdlib
libpython2.7-dev libpython3-dev libpython3.6-dev libquadmath® librdmacmi
libstdc++-4.8-dev libstdc++-7-dev libtool libtsan® libubsan® linux-1libc-dev
make manpages-dev mpi-default-bin mpi-default-dev ocl-icd-libopencli
openmpi-bin openmpi-common pkg-config python python-dev python-minimal
python2.7 python2.7-dev python2.7-minimal python3-dev python3-distutils
python3-1ib2to3 python3.6-dev zlibig-dev

The following packages will be upgraded:
cpp cpp-7 gcc-7-base gcc-8-base libcc1-06 libexpatl libgccil libglib2.06-0
libglib2.0-bin libgomp1 libnumal libpython2.7 libpython2.7-minimal
libpython2.7-stdlib libpython3.6 libpython3.6-minimal libpython3.6-stdlib
libssl1.1 libstdc++6 python3.6 python3.6-minimal

21 upgraded, 177 newly installed, 0 to remove and 395 not upgraded.

Need to get 154 MB/156 MB of archives.

After this operation, 523 MB of additional disk space will be used.

Do you want to continue? [Y/n] l

Page 17 of 83

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Carleton

UNIVERSITY

Canada’s Capital University

5. Wait until the installation is finished.

user@ars-lab: ~

File Edit View Search Terminal Help
libgcc-7-dev libglib2.0-dev libglib2.0-dev-bin libgraphite2-dev
libharfbuzz-dev libharfbuzz-gobject® libhwloc-dev libhwloc-plugins libhwloc5
libibverbs-dev libibverbs1 libicu-dev libicu-le-hb-dev libicu-le-hbo
libiculx66 libitm1 1iblsan® libltdl-dev libmpx2 libnl-route-3-200
libnuma-dev libopenmpi-dev libopenmpi2 libpcre16-3 libpcre3-dev libpcre32-3
libpcrecppOvs libpsm-infinipathil libpython-dev libpython-stdlib
libpython2.7-dev libpython3-dev libpython3.6-dev libquadmath® librdmacmi
libstdc++-4.8-dev libstdc++-7-dev libtool libtsan® libubsan® linux-libc-dev
make manpages-dev mpi-default-bin mpi-default-dev ocl-icd-libopencli
openmpi-bin openmpi-common pkg-config python python-dev python-minimal
python2.7 python2.7-dev python2.7-minimal python3-dev python3-distutils
python3-1ib2to3 python3.6-dev zlibig-dev

The following packages will be upgraded:

cpp cpp-7 gcc-7-base gcc-8-base libcc1-0 libexpatl libgccl 1libglib2.6-0
1libglib2.0-bin libgomp1 libnumail libpython2.7 1libpython2.7-minimal
libpython2.7-stdlib libpython3.6 libpython3.6-minimal libpython3.6-stdlib
libssl1.1 libstdc++6 python3.6 python3.6-minimal

21 upgraded, 177 newly installed, 0 to remove and 395 not upgraded.
Need to get 154 MB/156 MB of archives.
After this operation, 523 MB of additional disk space will be used.

File Edit View Search Terminal Help

up libboost-graph-parallel1.65-dev (1.65.1+dfsg-0Oubuntu5)

up python3-dev (3.6.7-1~18.04)

up libboost-wavel.65-dev:amd64 (1.65.1+dfsg-0ubuntus)

up libboost-filesystem-dev:amd64 (1.65.1.0ubuntul)

up libboost-log1.65-dev (1.65.1+dfsg-0Oubuntus)

up libboost-python1.65-dev (1.65.1+dfsg-0Oubuntu5)

up libboost-wave-dev:amd64 (1.65.1.0ubuntul)
libboost-graph-parallel-dev (1.65.1.0ubuntul)
libboost-mpi-dev (1.65.1.0ubuntul) ..
libboost-mpi-python1.65.1 (1.65.1+dfsg-0Oubuntus5)
libboost-python-dev (1.65.1.0ubuntul)
libboost-mpi-python1.65-dev (1.65.1+dfsg-0ubuntus)
libboost-log-dev (1.65.1.0ubuntul)
libboost-mpi-python-dev (1.65.1.0ubuntul)
libharfbuzz-dev:amd64 (1.7.2-1ubuntul)
libicu-le-hb-dev:amd64 (1.0.3+git161113-4)
libicu-dev (60.2-3ubuntu3) 5
libboost-regex1.65-dev:amd64 (1.65.1+dfsg-0ubuntus)
libboost-iostreams1.65-dev:amd64 (1.65.1+dfsg-0Oubuntu5)
libboost-iostreams-dev:amd64 (1.65.1.0ubuntul)
libboost-regex-dev:amd64 (1.65.1.0ubuntul)
libboost-all-dev (1.65.1.0ubuntul)

Processing triggers for libc-bin (2.27-3ubuntul)
user@ars-lab:~$

Installing g++

Cadmium is tested using g++7.2 compiler. Previous versions of g++ do not work because they cannot compile

C++17 code. We recommend using the latest version of the compiler.

Instructions to install the last version of gcc and g++

3.

Open Ubuntu terminal. To open Ubuntu terminal press: “Ctrl + Alt + t”. Do not close the terminal until
the installation process is complete.

Type the following command on the terminal and press ENTER:

sudo apt update

Enter the administrative password if we are asked. Wait until the installation is finished

Page 18 of 83

Carleton

Cadmium
Y UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

user@ars-lab: ~

File Edit View Search Terminal Help

1 Metadata [7,920 B]
Reading package lists... Done
E: The repository 'http://ppa.launchpad.net/jonathonf/gcc-7.1/ubuntu bionic Rele
ase' does not have a Release file.
N: Updating from such a repository can't be done securely, and is therefore disa
bled by default.
N: See apt-secure(8) manpage for repository creation and user configuration deta
ils.
user@ars-lab:~$ sudo apt-get update
it:1 http://in.archive.ubuntu.com/ubuntu bionic InRelease

2 http://ppa.launchpad.net/jonathonf/gcc-7.1/ubuntu bionic InRelease

3 http://in.archive.ubuntu.com/ubuntu bionic-updates InRelease

:4 http://security.ubuntu.com/ubuntu bionic-security InRelease

5 http://in.archive.ubuntu.com/ubuntu bionic-backports InRelease

:6 http://ppa.launchpad.net/jonathonf/gcc-7.1/ubuntu bionic Release

Not Found [IP: 91.189.95.83 80]

Reading package lists... Done
E: The repository 'http://ppa.launchpad.net/jonathonf/gcc-7.1/ubuntu bionic Rele
ase' does not have a Release file.
N: Updating from such a repository can't be done securely, and is therefore disa
bled by default.
N: See apt-secure(8) manpage for repository creation and user configuration deta
LSt
user@ars-lab:~$ I

4. Type the following command in the Ubuntu terminal and press ENTER:
sudo apt install build-essential

®

S 3
=~%
:~$ sudo apt install build-essential
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following NEW packages will be installed:
build-essential
@ upgraded, 1 newly installed, @ to remove and 187 not upgraded.
Need to get 4624 B of archives.
After this operation, 20.5 kB of additional disk space will be used.
Get:1 http://archive.ubuntu.com/ubuntu focal/main amd64 build-essential amd64 12.8ubuntul [4624 B]
Fetched 4624 B in 1s (7141 B/s)
Selecting previously unselected package build-essential.
(Reading database ... 57410 files and directories currently installed.)
Preparing to unpack .../build-essential_12.8ubuntul_amd64.deb ...
Unpacking build-essential (12.8ubuntul)
Setting up build-essential (12.8ubuntul)
:~$

5. To verify that the latest version has been installed on your computer, type the following command in

the terminal and press ENTER: (You must see a version of g++ that is 7.2 or higher).
g++ —--version

®
:~$ g++ --version
g++ (Ubuntu 9.3.0-10ubuntu2) 9.3.0
Copyright (C) 2019 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO

warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

~$

Page 19 of 83

Cadmium M Carlet()ﬂ

A tool for DEVS Modeling and Simulation. User’s Guide UNIVERSITY
Canada’s Capital University

Installing Git

1. To check if your computer has Git installed in, open Ubuntu terminal by pressing: “Ctrl + Alt + t”. Do
not close the terminal until the installation process is complete.

2. Type the following command and press ENTER:
git
If git is not installed, the terminal looks like this.

user@ars-lab: ~

File Edit View Search Terminal Help
user@ars-lab:~$ git

Command 'git' not found, but can be installed with:

sudo apt install git

If git is already installed, the terminal looks as follows and we can skip the rest of this section.

user@ars-lab: ~

File Edit View Search Terminal Help

user@ars-lab:~$ git

usage: git [--version] [--help] [-C <path>] [-c <name>=<value>]
[--exec-path[=<path>]] [--html-path] [--man-path] [--info-path]
[-p | --paginate | --no-pager] [--no-replace-objects] [--bare]
[--git-dir=<path>] [--work-tree=<path>] [--namespace=<name>]
<command> [<args>]

These are common Git commands used in various situations:

start a working area (see also: git help tutorial)
clone Clone a repository into a new directory
init Create an empty Git repository or reinitialize an existing one

work on the current change (see also: git help everyday)
add Add file contents to the index
mv Move or rename a file, a directory, or a symlink
reset Reset current HEAD to the specified state
rm Remove files from the working tree and from the index

examine the history and state (see also: git help revisions)
bisect Use binary search to find the commit that introduced a bug
grep Print lines matching a pattern
log Show commit logs
show Show various types of objects

3. Toinstall git on your computer, type the following command
sudo apt-get install git

4. Enter the administrative password, i.e. the password we use for signing in into your Ubuntu account
and press ENTER. The installation process begins.

user@ars-lab: ~

File Edit View Search Terminal Help
user@ars-lab:~$ sudo apt-get install git
[sudo] password for user:
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following additional packages will be installed:
git-man liberror-perl
Suggested packages:
git-daemon-run | git-daemon-sysvinit git-doc git-el git-email git-gui gitk
gitweb git-cvs git-mediawiki git-svn
The following NEW packages will be installed:
git git-man liberror-perl
© upgraded, 3 newly installed, © to remove and 400 not upgraded.
Need to get 3,907 kB/4,733 kB of archives.
After this operation, 33.9 MB of additional disk space will be used.
Do you want to continue? [Y/n] I

Page 20 of 83

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Carleton

UNIVERSITY

Canada’s Capital University

5. After awhile, the installation is temporarily paused, and the following question appears on the Ubuntu
terminal "Do we want to continue?", type: y and then press ENTER to resume the installation process.
Wait until the installation process is finished.

user@ars-lab: ~

File Edit View Search Terminal Help

user@ars-lab:~$ sudo apt-get install git
[sudo] password for user:
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following additional packages will be installed:
git-man liberror-perl
Suggested packages:
git-daemon-run | git-daemon-sysvinit git-doc git-el git-email git-gui gitk
gitweb git-cvs git-mediawiki git-svn
The following NEW packages will be installed:
git git-man liberror-perl
0 upgraded, 3 newly installed, 0 to remove and 400 not upgraded.
Need to get 3,907 kB/4,733 kB of archives.
After this operation, 33.9 MB of additional disk space will be used.
Do you want to continue? [Y/n] y
Get:1 http://in.archive.ubuntu.com/ubuntu bionic-updates/main amd64 git amd64 1:
2.17.1-1ubuntu6.4 [3,907 kB]
88% [1 git 3,614 kB/3,907 kB 92%]D
The following NEW packages will be installed:
git git-man liberror-perl
0 upgraded, 3 newly installed, © to remove and 400 not upgraded.
Need to get 3,907 kB/4,733 kB of archives.
After this operation, 33.9 MB of additional disk space will be used.
Do you want to continue? [Y/n] vy
Get:1 http://in.archive.ubuntu.com/ubuntu bionic-updates/main amd64 git amd64 1:
2.17.1-1ubuntue.4 [3,907 kB]
Fetched 582 kB in 7s (79.0 kB/s)
Selecting previously unselected package liberror-perl.
(Reading database ... 184045 files and directories currently installed.)
Preparing to unpack .../liberror-perl_0.17025-1_all.deb ...
Unpacking liberror-perl (0.17025-1)
Selecting previously unselected package git-man.
Preparing to unpack .../git-man_1%332.17.1-1ubuntu®6.4_all.deb ...
Unpacking git-man (1:2.17.1-1ubuntu6.4)
Selecting previously unselected package git.
Preparing to unpack .../git_1%3a32.17.1-1ubuntu6.4_amd64.deb ...
Unpacking git (1:2.17.1-1ubuntu0.4)
Setting up git-man (1:2.17.1-1ubuntu6.4)
Setting up liberror-perl (0.17025-1)
Processing triggers for man-db (2.8.3-2ubuntu6.1)
Setting up git (1:2.17.1-1ubuntu06.4)
user@ars-lab:~$

Installing the ‘make’ command
1. Open the terminal (Press CTRL + Alt + t) and the type following command:
sudo apt-get install make
2. Enter the administrative password if we are asked. Wait until the installation is finished

user@ars-lab: ~

File Edit View Search Terminal Help

ser@ars-lab:~$ sudo apt-get install make
Reading package lists... Done

Building dependency tree

Reading state information... Done

ake is already the newest version (4.1-9.1ubuntul).

P upgraded, 0 newly installed, 0 to remove and 398 not upgraded.
ser@ars-lab:~$

Page 21 of 83

Cadmium M Carlet()ﬂ

A tool for DEVS Modeling and Simulation. User’s Guide UNIVERSITY
Canada’s Capital University

Downloading and installing the Cadmium Simulator

1. Create a new folder in the Home directory and name it as “CADMIUM”.

¢ 1 Home Pictures

| @

"B -l -. i h(j

Desktop Documents Downloads Music Pictures Public
Desktop
Documents W] ol =8
Templates Videos Examples

Downloads

Music

Pictures

2. Open Ubuntu terminal by pressing: “Ctrl + Alt + t”. Type the following commands:
cd CADMIUM/

git clone https://github.com/SimulationEverywhere/Cadmium-Simulation-Environment.git
cd Cadmium-Simulation-Environment
git submodule update --init --recursive

This may take 15-30 min (or more, depending on your internet speed). It downloads more modules than
the ones shown in the figure.

user@ars-lab: ~/CADMIUM/Cadmium-Simulation-Environment
File Edit View Search Terminal Help
~$ cd CADMIUM/
1IUMS git clone https: //g\thub com/SimulationEverywhere/Cadmium-Simulation-Environment.git
um-Simulation-Environment'

: Enumerating objects: 10, done.

: Counting objects: 100% (10/10), done.

: Compressing objects: 100% (8/8), done.

: Total 10 (delta 2), reused 10 (delta 2), pack-reused ©
Unpa(k1ng objects: 100% (10/10) done.

o -Simul nment$ git submodule update --init --recursive
m-DEVS- Models (https /9 ub. com/Smulat\onEverywhere/Cadmum DEVS-Models. glt) registered for path 'Cadmium-DEVS-Models'
'DESTimes' (https://github.com/SimulationEverywhere/DESTimes.git) registered for path 'DESTimes'
Submodule 'cadmium' (https://github.com/SimulationEverywhere/cadmium.git) registered for path 'cadmium’'
[Cloning into '/home/user/CADMIUM/Cadmium-Simulation-Environment/Cadmium-DEVS-Models'...
[Cloning into '/home/user/CADMIUM/Cadmium-Simulation-Environment/DESTimes'...
[Cloning into '/home/user/CADMIUM/Cadmium-Simulation-Environment/cadmium’...
Submodule path 'Cadmium-DEVS-Models': checked out 'af7564a528f616894bff9933096d4eba263c9bco’
Submodule 'ABP' (https://github.com/SimulationEverywhere/Cadmium-ABP.git) registered for path 'Cadmium-DEVS-Models/ABP'
[Cloning into '/home/user/CADMIUM/Cadmium-Simulation-Environment/Cadmium-DEVS-Models/ABP'. ..
Submodule path 'Cadmium-DEVS-Models/ABP': checked out 'b5ff8993ebea2969ec86e405b1053c76133c91fd’
Submodule path 'DESTimes': checked out 'd9b1d9fa44fb2847f95bc10b84815238b0cf6826'
Submodule path 'cadmium': checked out '2e37041b10d659b434caf6ff2876ebea3a313357"
Submodule 'cmake-modules' (https://github.com/bilke/cmake-modules.git) registered for path 'cadmium/cmake-modules'
' /home /user /CADMIUM/Cadmium-Simulation-Environment/cadmium/cmake-modules'...
dules': checked o ‘fcice494c4Sfcz4fae39996db658b9bdeeaa4fd8'
imul Environment$

Now we have Cadmium set up.

Compiling and Running a Cadmium DEVS Model

As we could see, when we download the Cadmium Simulation Environment it comes with a Model Library
(Folder: DEVS-Models). We will use the Alternating_Bit_Protocol model as an example to show how to compile
a Cadmium model and how to run the tests and the model.

1. Compile the project and the tests

1. Open terminal inside the folder Alternating_Bit_Protocol:
Inside the Alternating_Bit_Protocol folder, (Press CTRL + Alt + t).

Page 22 of 83

F"'} Carleton

UNIVERSITY

Cadmium

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

2. To compile the project and the tests, type:
make clean; make all

$ make clean; make |

-f bin/* build/*
-¢ -std=c++17 -I ../../cadmium/include -I ../../DESTimes/include -I ../../CadmiumModel]SONExporter/include
top_model/main.cpp -o build/main_top.o
-g -¢ -std=c++17 -I ../../cadmium/include -I ../../DESTimes/include data_structures/message.cpp -o build/messa

-0 bin/ABP build/main_top.o build/message.o
-c -std=c++17 -I ../../cadmium/include -I ../../DESTimes/include test/main_subnet_test.cpp -o build/main_su

-std=c++17 -I ../../cadmium/include -I ../../DESTimes/include test/main_sender_test.cpp -o build/main_se
nder_test.o
g++ -g -c -std=c++17 -I ../../cadmium/include -I ../../DESTimes/include test/main_receiver_test.cpp -o build/main_
receiver_test.o
-g -0 bin/SUBNET_TEST build/main_subnet_test.o build/message.o
-g -0 bin/SENDER_TEST build/main_sender_test.o build/message.o
-g -0 bin/RECEIVER_TEST build/main_receiver_test.o build/message.o

2. Run tests
1. Open a terminal inside the subfolder bin:
Inside the bin folder, (Press CTRL + Alt + t) to open the terminal.
2. To run the subnet test, type:
./SUBNET TEST
3. Torun the receiver test, type:
./RECEIVERﬁTEST
4. To run the sender test, type:

./SENDER TEST
- i $ cd bin
$./SUBNET_TEST
$./RECEIVER_TEST

$./SENDER_TEST
$

5. To check the output of the tests, go to the folder simulation_results and open the respective
files

3. Run the top model
1. Open a terminal inside the subfolder bin:
Inside the bin folder, (Press CTRL + Alt + t) to open the terminal.

2. To runthe model, type:
./ABP ../input data/input abp 1.txt

./ABP ../input_data/input_abp_1.txt

3. To check the output of the model, go to the folder simulation_results and open
"ABP_output_messages.txt" and "ABP_output_state.txt"

4. To run the model with different inputs

1. Create new .txt files with the same structure as input_abp_0.txt or input_abp_1.txt in the
folder input_data

2. Runthe model using the instructions in step 3

Page 23 of 83

F‘-’} Carleton

UNIVERSITY

Cadmium

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

3. If we want to keep the output, rename "ABP_output_messages.txt" and
"ABP_output_state.txt". Otherwise, it will be overwritten when we run the next simulation.

Page 24 of 83

F‘-’} Carleton

UNIVERSITY

Cadmium

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

MacOS- Installation and example

System requirements
1. MacOS 10.11 or higher
2. RAM 16GB (we will be able to run small models with 4GB RAM)

Installing Command Line Tools

In order to run Cadmium, we need to install different tools, such as make, git, or g++. To do so, follow the next
steps:

1. Open aterminal:
a. Use the keyboard shortcut “Command + Space” to open Spotlight Search.
b. Typein “terminal”.
c. You should see the Terminal application under Top Hit at the top of your results. Double-click
it and Terminal will open.
2. Type the following command in the terminal screen, and press ENTER
xcode-select —-install
3. A software update popup window will appear asking for permission to install the command line
developer tools. Click “Install” to download them and agree to the Terms of Service (after reading

them, of course).

Installing Homebrew and Boost

Cadmium uses different C++ source libraries provided by Boost. We have to install first Homebrew, a package
manager for MacOS.

1. Open aterminal:

a. Use the keyboard shortcut “Command + Space” to open Spotlight Search.

b. Typein “terminal”.

c. You should see the Terminal application under Top Hit at the top of your results. Double-click

it and Terminal will open.
2. Type the following command and press ENTER: /usr/bin/ruby -e “$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install /master/install)”

3. Install Boost typing the following command: brew install boost

Downloading and installing the Cadmium Simulator

1. Create a new folder in the Home directory and name it as “CADMIUM”.

Favorites
(2 Recents] ﬁ
A\ Applications _— L

{0} reardenas CADMIUM Applications Desktop Documents
GreenLS|

|’ Documents

() Desktop

esp Public iCloud Drive

Page 25 of 83

F‘-’} Carleton

Cadmium
UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

2. Open aterminal:
a. Use the keyboard shortcut “Command + Space” to open Spotlight Search.
b. Typein “terminal”.
c. You should see the Terminal application under Top Hit at the top of your results. Double-click
it and Terminal will open.

3. Type the following commands:
cd CADMIUM/
g‘it clone https://github.com/SimulationEverywhere/Cadmium-Simulation-Environment.git
cd Cadmium-Simulation-Environment/
git submodule update --init --recursive

This may take 15-30 min or longer based on your internet connection. It downloads more modules than
the ones shown in the figure.

B Cadmium-Simulation-Environment — -bash — 124 x27
as@| i~ > cd CADMIUM/
@ :CADMIWM > git clone https://github.com/SimulationEverywhere/Cadmium-Simulation-Environment.git
Clomng into 'Cadmium-Simulation-Environment'...
remote: Enumerating objects: 31, done.
remote: Counting objects: 100% (31/31), done.
remote: Compressing objects: 100% (26/26), done.
remote: Total 31 (delta 13), reused 18 (delta 5), pack-reused @
Unpackmg objects: 100% (31/31), done.
:CADMIWM > cd Cadmium-Simulation-Environment/
card : Cadmium-Simulation-Environment > git submodule update --init --recursive
Submodule 'DESTimes' (https://github.com/SimulationEverywhere/DESTimes.git) registered for path 'DESTimes'
Submodule 'DEVS-Models' (https://github.com/SimulationEverywhere/Cadmium-DEVS-Models.git) registered for path 'DEVS-Models'
Submodule 'cadmium' (https://github.com/SimulationEverywhere/cadmium.git) registered for path 'cadmium’
Cloning into '/Users/rcardenas/CADMIUM/Cadmium-Simulation-Environment/DESTimes'...
Cloning into '/Users/rcardenas/CADMIUM/Cadmium-Simulation-Environment/DEVS-Models’...
Cloning into '/Users/rcardenas/CADMIUM/Cadmium-Simulation-Environment/cadmium’. ..
Submodule path 'DESTimes': checked out 'd9bld9fa44fb2847f95bc10b84815238b0cf6826"
Submodule path 'DEVS-Models': checked out 'f3a29dladabfed666769f26ba2c227ae3a76ef39"
Submodule 'ABP' (https://github.com/SimulationEverywhere/Cadmium-ABP.git) registered for path 'DEVS-Models/ABP'
Cloning into '/Users/rcardenas/CADMIUM/Cadmium-Simulation-Environment/DEVS-Models/ABP'...
Submodule path 'DEVS-Models/ABP': checked out '42b59474135de9b20e86608dacade8b@2f@01b8b’
Submodule path 'cadmium': checked out 'b6636f791d3fbff41b6b72e1ld9e34ce18152065d"
Submodule 'cmake-modules' (https://github.com/bilke/cmake-modules.git) registered for path 'cadmium/cmake-modules’
Cloning into '/Users/rcardenas/CADMIlM/Cudmium-Simulation-Envi ronment/cadmium/cmake-modules’. ..
Submodule path 'cadmium/cmake-modules': checked out 'fcfc@494c45fc24fae39996db658b9bdeeaasfd8’
card @ : Cadmium-Simulation- [nv1mnment >

Now we have Cadmium set up.

Compiling and Running a Cadmium DEVS Model

As we could see, when we download the Cadmium Simulation Environment it comes with a Model Library
(Folder: DEVS-Models). We will use the Alternating_Bit_Protocol model as an example to show how to compile
a Cadmium model and how to run the tests and the model.

1. Compile the project and the tests
1. Open aterminal:
i. Use the keyboard shortcut “Command + Space” to open Spotlight Search.
ii. Typein “terminal”
iii. You should see the Terminal application under Top Hit at the top of your results.

Double-click it and Terminal will open

2. Type the following to change the working directory to Cadmium-DEVS-Models/ABP folder:

cd CADMIUM/Cadmium-Simulation-Environment/DEVS-Models/Alternating Bit_Protocol

Page 26 of 83

F‘*’-} Carleton

UNIVERSITY

Cadmium

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

3. To compile the project and the tests, type:
make clean; make all

2. Run tests
1. Open aterminal:
i. Use the keyboard shortcut “Command + Space” to open Spotlight Search.
ii. Typein “terminal”
iii. You should see the Terminal application under Top Hit at the top of your results.
Double-click it and Terminal will open

2. Type the following to change the working directory to Cadmium-DEVS-Models/

Alternating_Bit_Protocol/bin folder:
cd CADMIUM/Cadmium-Simulation-Environment/DEVS-Models/Alternating Bit Protocol/bin

3. To run the subnet test, type:
./SUBNET TEST

4. To run the receiver test, type:
./RECEIVER_TEST

5. Torun the sender test, type:
./SENDER_TEST

6. To check the output of the tests, go to the folder simulation_results and open the respective

files

3. Run the top model
1. Open aterminal:
i. Use the keyboard shortcut “Command + Space” to open Spotlight Search.
ii. Typein “terminal”
iii. You should see the Terminal application under Top Hit at the top of your results.
Double-click it and Terminal will open

2. Type the following to change the working directory to

Cadmium-DEVS-Models/Alternating_Bit_Protocol /bin folder:
cd CADMIUM/Cadmium-Simulation-Environment/DEVS-Models/ Alternating Bit_ Protocol/bin

3. To run the model, type:
./ABP ../input data/input abp 1.txt
4. To check the output of the model, go to the folder simulation_results and open
"ABP_output_messages.txt" and "ABP_output_state.txt"

4. To run the model with different inputs

1. Create new .txt files with the same structure as input_abp_0.txt or input_abp_1.txt in the

folder input_data

2. Runthe model using the instructions in step 3

If we want to keep the output, rename "ABP_output_messages.txt" and "ABP_output_state.txt". Otherwise,

it will be overwritten when we run the next simulation.

Page 27 of 83

M Carleton

UNIVERSITY

Cadmium

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

DEVS Model definition: An Example

This section describes the mechanism to define and incorporate new atomic models into Cadmium. These
models can be used to interact directly with other models or to be part of a DEVS coupled model.

Atomic models have to be defined in an .hpp file and coded in C++. These .hpp files can be created with our
preferred text editor. We will start defining a simple example of an atomic model. We use this example to
explain how to define an atomic model. In the following sections, we will continue using this example to
explain how to define a coupled model, how to define simulation loggers and how to call the simulator.

Subnet: an atomic model example implemented in Cadmium

When we download Cadmium following the instructions in this Manual, a library of models will be
downloaded. These models are available in the folder called DEVS-Models. One of them is an Alternate Bit
Protocol (ABP) model, and it is stored in the folder Alternating_Bit_Protocol. Repository available at:
https://github.com/SimulationEverywhere/Cadmium-Simulation-Environment. We will use this
Alternating_Bit_Protocol example to explain how to implement models in Cadmium.

Figure 1 shows the ABP model coupled model. The Alternating Bit communication protocol tries to provide
reliable transmission on an unreliable network. The ABP model consists of 3 components: A sender, which
transmits messages; a network, and a receiver, which receives the messages transmitted by the sender and
returns acknowledgement messages (positive or negative). The network is decomposed further to two subnets
corresponding to the sending and receiving channels, respectively. The sender and the receiver communicate
with each other through the network component.

ABP Simulator

| i T B D A T s D e A T a
i i
controlln i Network i
- 1 !
i |
dataQut ! inl ol oo o
| dataOut_ o subnetl > »
_ ackReceived sender ! i recerver
<+ H i
1 1
_ vpacketSent =ackIn i=0ut2 subnet? | in? :_out
| |
i i
1 1

Figure 1 ABP Simulator coupled model

In this section, we will discuss the definition of the subnet atomic model, as an example to introduce the
definition of atomic models in Cadmium. The remaining models are available in the simulator package.

The Subnet atomic model uses one input port and one output port, and the model passes the data it receives
after a time delay. To model the unreliability of the network, only approximately 95% of the data will be
transferred (i.e. 5% of the data will be lost through the subnet).

Figure 2 shows the subnet model implementation in Cadmium.

Page 28 of 83

Cadmium w Carlet()ﬂ

A tool for DEVS Modeling and Simulation. User’s Guide UNIVERSITY
Canada’s Capital University

#ifndef SUBNET HPP
#define SUBNET HPP

#include <cadmium/modeling/ports.hpp>
#include <cadmium/modeling/message bag.hpp>

#include <limits>
#include <assert.h>
#include <string>
#include <random>

#include "../data structures/message.hpp"

using namespace cadmium;
using namespace std;

/***** (l) *****/
//Port definition
struct Subnet defs{
struct in : public in port<Message t> {};
struct out : public out port<Message t> {};
}i

/***** (2) *****/

template<typename TIME> class Subnet{

public:
using input ports=tuple<typename Subnet defs::in>;
using output ports=tuple<typename Subnet defs::out>;

/***** (3) *****/

// state definition

struct state type({
bool transmitting;
Message t packet;
int index;

}i

state type state;

/***** (4) *****/

// default constructor

Subnet () {
state.transmitting = false;
state.index = 0;

}

/**k*k*k* (5) *****/

// internal transition
void internal transition() {
state.transmitting = false;

}

/***** (6) *****/
// external transition
void external transition(TIME e, typename
make message bags<input ports>::type mbs) {

vector<Message_ t> bag port in;

bag port in = get messages<typename Subnet defs::in>(mbs);
state.index++;

Page 29 of 83

F‘&’} Carleton

Cadmium
UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

if ((double)rand() / (double) RAND MAX < 0.95) {
state.packet = bag port in[0];

state.transmitting = true;
}else(
state.transmitting = false;

}
}

/***** (7) *****/

// confluent transition
void confluence transition(TIME e, typename
make message bags<input ports>::type mbs) {
internal transition();
external transition(TIME (), move (mbs));

}

/***** (8) *****/

// output function
typename make message bags<output ports>::type output() const ({

typename make message bags<output ports>::type bags;
vector<Message t> bag port out;

bag port out.push back(state.packet);
get messages<typename Subnet defs::out>(bags) = bag port out;

return bags;

}

/***** (9) *****/

// time_advance function
TIME time advance () const {

TIME next internal;

if (state.transmitting) {
next internal = TIME("00:00:03:000");

lelse {
next internal = numeric limits<TIME>::infinity();

}

return next internal;

}

/***** (10) *****/
friend ostringstreamé& operator<<(ostringstreamé& os,
const typename Subnet<TIME>::state type& 1) {
0s << "index: " << i.index << " & transmitting: " << i.transaitting;
return os;
}
}i
#endif // SUBNET HPP
Figure 2. Cadmium implementation of the Subnet atomic model

Creating the hpp where the atomic model is defined
We first create the subnet.hpp file, using the structure provided in Appendix A.

It is important to notice that we cannot have two atomic models with the same name. We use a macro to
avoid multiple “includes” in the atomic model (in this case, we callit SUBNET HPP).

Page 30 of 83

Cadmium M Carlet()ﬂ

A tool for DEVS Modeling and Simulation. User’s Guide UNIVERSITY

Canada’s Capital University
Then, we need to include the simulator libraries that provide services to define new ports
(<cadmium/modeling/ports.hpp>) and to handle bags of messages
(<cadmium/modeling/message_bag.hpp>) . We theninclude any C++ library needed to implement
the model. In this example, we use the 1imits library to set the time advance value to infinity (when we
need to passivate the model). We also use assert.h, which is useful to stop the simulation and check for
errors for non-desired behavior. For example, let us assume that the DEVS atomic model definition states that
the inputs to the model are only integers between 0 and 9. When the model is implemented, we can use a
conditional statement and the methods provided in assert . h to check that the condition is satisfied. If the
condition is not satisfied, the simulation stops, and an error message is displayed. The rest of the libraries
provides some services we use in this specific C++ implementation. In this example, we use String as we
need to manipulate strings, and random to generate random numbers. We use those functions to generate
different delays in message transmission.

In Cadmium, we can transmit messages containing built-in C++ types (integer, float, string, double, bool, etc.)
or we can define our own types. In this case, we define the message as a structure. In this example, we include
the path to the hpp file where the structure is defined (e.g., #include

./data structures/message.hpp"). If we define more than one type of message (i.e. structure),
we will need to include all the ones used in the model. We will explain the content of message.hpp in the next
section.

Finally, we declare the namespaces we are using, in this case: cadmium and std (otherwise, every time we
use a method/service from the standard C++ library (std), we have to write std::; the same for
cadmiums: :).

Declaring ports

As seen in Figure 1, the Subnet uses one input port called “in” and one output port called “out”; both ports
carry the same type of message, in this case, a C++ structure called Message t, which is declared in
message. hpp.

As shown in Figure 3, Message t uses two integer variables: packet andbit.

struct Message t{
Message t () {}

Message t(int i packet, int i bit)
:packet (i _packet), bit (i bit) {}

int packet;
int bit;
}i

istreamé& operator>> (istreamé& is, Message té& msqg);

ostreamé& operator<<(ostream& os, const Message t& msg);

Figure 3. Message_t data type declaration

The struct Message t shown here is defined inmessage . hpp. It is a C++ structure with two components:
packet (which contains the packet number sent through the network), and bit (which contains an
alternating bit used to identify two consecutive packets to provide reliability in the transmission). Inside the
structure, we also have two constructors. The default one (without parameters) generates a variable of type
Message t filled with “garbage”. The second one also generates a variable of type Message t, butitis
filled with the values used to call the constructor.

Page 31 of 83

F‘*’-} Carleton

UNIVERSITY

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Canada’s Capital University
Inside message . hpp we also declare operators << and >>. We use >> to read data from a file and fill the
structure — optional if you do not have input data coming from a file — and << to save the content of the
structure in a file — needed by the simulator to log the messages.

The two operators are implemented inside a new file called message.cpp (Figure 4) . For the output
operator, we need to specify how we want to output the content of the struct. In this case, we output “the
packet space the bit”. For the input operator, we need to specify in which order the data we read
comes. In this case, we will have two elements, the first one will be assigned to the packet and the second
onetothe bit.

It is important to define the >> operator when we are not using built-in data types for messages and we need
to read inputs for the model from a text file. Considering the current definition of the operator, we need to
define the inputs in the input file as “TIME packet_value bit_value”. If we define the inputs in another order,
for example, “TIME bit_value packet_value, packet will not contain “bit_value” and bit will contain
“packet_value”.

//0utput the content of the structure
ostreamé& operator<<(ostream& os, const Message t& msg) {
0s << msg.packet << " " << msg.bit;
return os;
}
//Fill the structure
istream& operator>> (istream& is, Message t& msg) {
is >> msg.packet;
is >> msg.bit;
return is;

Figure 4. Implementation of the << and >> operators

Under “//Port definition” (/***** (1) *****/) we define the ports used by the atomic
model. We define them as a structure that contains all the input and output ports of the atomic model (in this
case called Subnet defs). We use a structure (named using the convention
“AtomicModelName defs”;inthis example, Subnet defs) to avoid compilation problems (multiple
declaration errors). For example, if we have two different atomic models with a port called in and we declare
the ports outside the structure, we will get a compilation error stating ambiguous definition for type “in”. We
avoid this issue declaring the ports inside a structure with a unique name.

Each port is defined as a structure that inherits from the template structures out port and in port
defined in the simulator, specifying the type of message handled by the port. In this case, we defined an output
port called out that handles messages of type Message t and an input port called in that also handles
messages of type Message t.

Declaring the atomic model
Under “/**xx* (2) **xxxx /7 e define the atomic model as a C++ class that implements the model
state and all the DEVS functions following the template in Appendix A.

The models are implemented following a template-based C++ programming style. This style allows us to use
different time classes without changing the model implementation. For experienced users, it also allows
implementing models that can be instantiated with different messages types. For example, we could

implement a subnet model that can transmit any type of message and not just messages of type
Message t.

We give a name to the class used to represent the model; in this case, we call it Subnet and we define the
input and output ports in the class. Everything inside the class is public, asthe simulator has to access the

Page 32 of 83

F‘*’-} Carleton

UNIVERSITY

Cadmium

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

methods of the class to execute the simulation. As discussed earlier, the ports were declared inside the

structure Subnet defs. To access the input port, we would need to use Subnet defs::inandtouse

the output port Subnet defs::out.

Once we have declared the types of ports we have (i.e. Subnet defs), we need to assign those ports to the
corresponding atomic model (in this case, defined by the class subnet). We assign them as follows:

using input ports=tuple<typename Subnet defs::in>;
using output ports=tuple<typename Subnet defs::out >;

The C++ keyword using that allows us to rename a data type. Each atomic model must define their input
and output ports as a data type called “input ports” and “output ports”, respectively. We need to
use these specific names because the simulator will use them to check that the atomic model has all the
needed components and that the ports are properly defined (e.g. there are not two input ports with the same
name). Both the input and out ports are defined as a tuple (tuple<>), a C++ object that packs elements of
possibly different types together in a single object. We can see it as a vector with elements of different types.
Because of this, we need to specify the type of each of the elements in the tuple. In this example, both tuples
use only one element. Subnet defs::in isthe type of the input port tuple and Subnet defs::out
is the type of the output port type. The typename specifies that Subnet defs::in and
Subnet defs::out are datatypes that will overwrite the template class in the simulator.

Under “/***** (3) ***x*xx /7 we declare the state variables of the model inside a structure called
state_ type. All the state variables of the model must be declared inside a structure called state type,
and a single state variable of type state type name state must be defined. We need to use these specific
names because they are explicitly used by the simulator to check that the model is implemented according to
the DEVS formalism. The simulator verifies if this structure (which represents the model’s state) is updated
inside the output function or the time advance function (two invalid operations according to DEVS
specifications).

In this example, the state comprises three variables: transmitting, packet, and index.
Transmitting is a Boolean used to define that the model has something to output. Packet stores the
packet to be sent. Index counts the packets that went through the network. Once the state structure has
been declared, we create an instance of the structure called state.

Under “/***** (4) x*x*xxx/7 e define the constructor for the model, including the initial state. We
must define a default constructor (i.e. without parameters).

We define the default constructor Subnet (). Weset indexto0Oand transmittingto false. The content
of “packet” is “garbage”, as we do not care about the content of packet until an input message arrives at
the atomic model.

We then define the behavior of all the DEVS functions.

- Internal transition function (/***** (5) *#****/):defined by internal transition (), here
the model sets the state variable t ransmitting to false.

- External transition function (/***** (6) *****/):defined in external transition, ittakes
two parameters: the elapsed time (e) and a bag of message (mbs) . The declaration of the bag of messages
is as follows: typename make message bags<input ports>::type mbs. As we already
mentioned, typename indicates that the expression that follows is a data type.
make message bags<> is a template data type declared in the simulator in
<cadmium/modeling/message bag.hpp>, used to declare a bag of messages for input or output

Page 33 of 83

F‘*’-} Carleton

UNIVERSITY

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

ports. We need to instantiate the template with the word input ports to define the input bag, using
: :type. The parameter declaration, in this case, declares mbs as a tuple whose elements are the
message bags on the input ports. Here, mbs is a tuple of one bag: the message bag in port in. The
messages inside the set of messages in the bag are stored in a C++ vector.
We use get messages<typename Subnet defs::in>(mbs) to getthe message bag from the
input port in. The method get_messages uses a template parameter for the port we want to access,
in this case, the in port, defined by typename Subnet defs::in. The function parameter is the
bag of messages we want to access, in this case mbs.
In this example, the bag of the input port in has a vector of elements of type Message t. We define
the auxiliary variable bag port in (of type vectorof Message t)to store the bagin the port called
in. We use the method get_messages to retrieve the bag. When a message is received, it is stored in
the state variable packet. Because we are assuming that we receive a single message, we retrieve the
first element of the bagin the in port and we assign it the state variable packet (state.packet
= bag port in[0]). Then, we set transmitting to true with a 95% probability. With a 5%
probability, the message received is lost and therefore the model is not transmitting anything
(transmitting = false).

- Confluent transition function (/***** (7) **x**/). |n this example, we use the default
implementation for the confluence function, which is executing the model’s internal transition first, and
the external transition after that, with an elapsed time equal to zero.

- Output function (/***** (8) *****/): output uses a bag of messages declared as follows:
typename make message bags<output ports>::type bags,where typename indicates
that the expression that follows is a data type; make message bags<> is a template data type that
the simulator needs (found in <cadmium/modeling/message_bag.hpp>), which is instantiated as
output ports to define the output bag. Therefore, bags is a tuple whose elements are the message
bags available on the different output ports.

We then declare an auxiliary variable (bag port out) of type vector<Message t> to build the
message bag for the output port out.

We add the packet stored in the state variable state.packet to bag port out. We use the C++
method push back (), which takes as parameter the element that we want to append to the vector, in
this case, state.packet.

Finally, we copy the content of bag port out to the bagof the port out. To access the content of the
bag of the output port out, we use the method get messages< >. As we already explained
get messages uses a template parameter for the port we want to access, in this case, the port out,
defined as typename Subnet defs::out.The function parameter is the bag of messages we want
to access, in this case bags.

- Time advance function (/***** (9) *****/): time advance is used to implement the time
advance function of the model. In this case, if we are t ransmitting, the time advance is 3 seconds. If
we do not transmit, the model passivates. The model uses next internal to store the next time
advance. If the state of the model is transmitting, we define the next time advance by updating the
variable next internal. TIME(“00:00:03:000") Iisthe timein hours, minutes, seconds, and
milliseconds. If the model is not transmitting, we passivate the model, by making next internal
infinity using the statement numeric limits<TIME>::infinity () (amethodinthe limits
library).

Page 34 of 83

F‘*’-} Carleton

UNIVERSITY

Cadmium

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

IMPORTANT: According to ST-DEVS, only the transition functions (i.e. external,
internal and confluence) can be stochastic. The time advance function and the output
function MUST be deterministic.

Once all the DEVS functions are defined, we specify how we want to output the state of the model in the state
log (/***** (10) *****/) In this case, we only display two of the state variables: index and
transmitting.

To declare how to log the state of the model, we need to define the << operator for the structure
state type. The operator takes as input parameters the address of the stream where we want to log (i.e.
os) and the state of the model (i.e. i) We use the keyword const before specifying the type of the state
to assure that it will not be modified inside the operator. It is important to notice that we need to use
typename Subnet<TIME>::state type to specify the type of the state. That sentence means that
we are accessing the structure state type inside the template class Subnet<TIME>. We need to
declare the operator using the keyword friend to specify that the function can access the private members
of the structure state type. In this example, the output of our state looks as follows: “index:
index value & transmitting: transmiting value”.

Unit testing the Subnet atomic model

To test the subnet atomic model, we will define a coupled model that contains a generator of test cases
connected to the model, in order to generate simulations scenarios to verify the execution of the model:

out in out top_out
input_reader subnetl >

Figure 5. Coupled model for testing the subnet atomic model

The coupled model includes two atomic components: input_reader and subnetl. The input_reader reads a list
of input events stored in a text file that we use to test the Subnet model; the entries in this file have the format
“TIME Message”, and it includes one entrance per line. Cadmium provides a template version of this model
(iestream.hpp) that need to be instantiated with the type of message we want to read.

In Cadmium, all the coupled models are defined in a cpp file (in this case, the file is named
main subnet test.cpp). Thelogger definition and the call to the simulator runner are also implemented
inside this file.

Figure 6 shows the subnet test coupled model implementation in Cadmium.

//Cadmium Simulator headers

#include <cadmium/modeling/ports.hpp>

#include <cadmium/modeling/dynamic model.hpp>

#include <cadmium/modeling/dynamic coupled.hpp>

#include <cadmium/modeling/dynamic model translator.hpp>
#include <cadmium/engine/pdevs dynamic runner.hpp>
#include <cadmium/logger/common loggers.hpp>

//Time class header

Page 35 of 83

Carleton

Cadmium
QY UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

#include <NDTime.hpp>

//Messages structures
#include "../data structures/message.hpp"

//Atomic model headers
#include "../atomics/subnet.hpp"
#include <cadmium/basic model/pdevs/iestream.hpp> //Atomic model for inputs

//C++ libraries
#include <iostream>
#include <string>

using namespace std;
using namespace cadmium;
using namespace cadmium::basic models::pdevs;

using TIME = NDTime;

/***** (1) *****/

/***** Define input port for coupled models ****x/

/***** Define output ports for coupled model *****/
struct top_out: public out_ port<Message t>{};

/***** (2) *****/

/**xx*xx* Input Reader atomic model declaration *****x*&&k&kdkokddsrx/

template<typename T>
class InputReader Message t : public iestream input<Message t, T> {

public:
InputReader Message t () = default;
InputReader Message t (const char* file path)
iestream input<Message t,T> (file path) {}
}i

/***** (3) *****/

int main () {

/***xxx Input Reader atomic model instantiation ****x*xxkkskkdkoksidsx/
const char * i input data = "../input data/subnet input test.txt";

shared ptr<dynamic::modeling::model> input reader;

input reader = dynamic::translate::make_ dynamic_atomic_model
<InputReader Message t, TIME, const char*>("input reader", move (i input data));

/***** (4) *****/

/***xxx Subnet atomic model instantiation *****xxxxxxxxxAxxAA/

shared ptr<dynamic::modeling: :model> subnetl;

subnetl = dynamic::translate::make_dynamic_atomic_model<Subnet, TIME> ("subnetl");

/***** (5) *****/

/*******TOP MODEL********/

dynamic: :modeling::Ports iports TOP;
iports TOP = {};

dynamic: :modeling: :Ports oports TOP;
oports TOP = {typeid(top out)};

dynamic: :modeling: :Models submodels TOP;
submodels TOP = {input reader, subnetl};

Page 36 of 83

Carleton

Cadmium
QY UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

dynamic: :modeling::EICs eics TOP;
eics TOP = {}; // _EIC WOULD GO HERE ; NOT NEEDED BECAUSE IT IS EMTPY IN THIS EXAMPLE

dynamic: :modeling::EOCs eocs TOP;
eocs TOP = {

dynamic: :translate: :make_EOC<Subnet defs::out,top_out>("subnetl")
}i

dynamic: :modeling::ICs ics_ TOP;
ics TOP = {
dynamic::translate: :make_IC<iestream input defs<Message t>::out,Subnet defs::in>(
"input reader","subnetl")

bi
shared ptr<dynamic::modeling::coupled<TIME>> TOP;

TOP = make shared<dynamic::modeling: :coupled<TIME>> (
"TOP", submodels TOP, iports TOP, oports TOP, eics TOP, eocs TOP, ics_ TOP
)7

/*‘k‘k** (6) ***‘k*/

/*************** Loggers *******************/

static ofstream out messages("../simulation results/subnet test output messages.txt");

struct oss_sink messages{
static ostreamé& sink () {
return out messages;

}i
static ofstream out state("../simulation results/subnet test output state.txt");

struct oss_sink state{
static ostreamé& sink () {
return out_ state;

bi

using state = logger::logger<logger::logger_state, dynamic::logger::formatter<TIME>,
oss_sink state>;

using log messages = logger: :logger<logger::logger messages,
dynamic: :logger: :formatter<TIME>, oss sink messages>;

using global time mes = logger: :logger<logger: :logger_global_ time,
dynamic: :logger: :formatter<TIME>, oss sink messages>;

using global time sta = logger: :logger<logger::logger_global_ time,
dynamic: :logger: :formatter<TIME>, oss sink state>;

using logger top = logger: :multilogger<state, log messages, global time mes,
global time sta>;

/***** (7) *****/

/************** Runner Call ************************/
dynamic: :engine: :runner<NDTime, logger top> r(TOP, {0});
r.run_until (NDTime ("04:00:00:000"));

return 0;

Figure 6. Subnet test coupled model implementation

Page 37 of 83

Cadmium M Carlet()ﬂ

A tool for DEVS Modeling and Simulation. User’s Guide UNIVERSITY
Canada’s Capital University

We first include the simulator libraries that provide the different services needed to build and run the
simulation. We need to be able to:

- Define new ports (<cadmium/modeling/ports.hpp>)

- Create every element of a coupled model definition: input ports, output ports, submodels, external
input couplings, external output couplings and internal couplings
(<cadmium/modeling/dynamic model.hpp>)

- Define the data types for coupled models <cadmium/modeling/dynamic coupled.hpp>

- Create new instances of atomic models and make EIC, EOC and IC
(<cadmium/modeling/dynamic model translator.hpp>)

- Build coupled models (<cadmium/modeling/dynamic_ coupled.hpp>)

- Usethe Runner <cadmium/engine/pdevs dynamic runner.hpp>

- Define the loggers we are using (state, message, debug, etc.)
<cadmium/logger/common loggers.hpp>

We then include the header of the Time class we are using, in this case <NDTime.hpp>. NDTime isa C++
class that implements time operations and allows defining the time as in digital clock format (“hh:mm:ss:mss”)
or as a list of integer elements ({ hh, mm, ss, mss}).

As we already mentioned, in Cadmium, we can transmit messages containing built-in C++ types (integer, float,
string, double, bool, etc.) or we can define our own types. In this case, we need to transmit our own message,
which is defined as a structure. Therefore, we include the path to the hpp file where such structure is defined
("../data structures/message.hpp"). If we need to define more than one message type, we need
to include all the ones used in the model.

The content of message . hpp is the one explained in the previous section (i.e. it contains the definition of
the message structure Messageit).

We then need to include the headers of all the atomic models we are using as components of our coupled
model. In this case, " .. /atomics/subnet.hpp", where the Subnet atomic model class is defined.
We will use it to create the instance subnetl. We also include
<cadmium/basic model/pdevs/iestream.hpp>, wherethetemplateclass iestream input
is defined. We will instantiate this general class to create the instance of our atomic model input reader.

We also need to include the headers of any C++ library needed to implement the model. In this example, we
use the ioestream library to generate simulation logs in files, and St ring to manipulate strings.

We then declare the namespaces we are using, in this case: cadmium ,
cadmium: :basic models: :pdevs and std (otherwise, every time we use a method/service from the
standard C++ library (std), we have to write std::; the same for cadmium:: and

cadmium: :basic models: :pdevs). Then, we define that the template parameter TIME is instantiated
with the type NDTime.

Cadmium provides different methods and data types to create instances of atomic models, define, and create
instances of coupled models. It also uses one advanced C++ data type, shared ptr<>, andone advanced
C++ method, make shared<> (), both of them defined in the standard library. shared ptr<>isa
smart pointer that allows shared ownership of an object through a pointer. make shared<> () isamethod
that allows creatinga shared ptr<>. It usesasatemplate parameter the data type that will be stored
in the pointer, and as function parameters the constructor parameters for the data type. We will show a few
examples later.

Page 38 of 83

M Carleton

UNIVERSITY

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

The data types and methods defined in Cadmium are as follows:

- out_portisastructure used to declare the output ports of a model. It is the same structure we used
to declare the output ports of an atomic model. Each port is defined as a structure that inherits from
the template structure out_port specifying the type of message handled by the port. It is defined
in <cadmium/modeling/ports.hpp>.

- in_port is atemplated structure similar to out_port, but for input ports.

- model is an empty class defined in <cadmium/modeling/dynamic model.hpp> under the
namespace dynamic: :modeling. Itallows pointer-based polymorphism between classes derived
from atomic and coupled models. This means, that it is an abstract class that encapsulates both atomic
and coupled models in such a way that they can be elements in a vector of models.

- make dynamic_atomic_model<> () is a template method defined in
<cadmium/modeling/dynamic model translator.hpp>.|tisused to create an instance
of an atomic model. It takes the class type of the atomic model, TIME (because all atomic models
are templated classes that need to be instantiated with a TIME data type), and all the types of the
parameters for the model constructor. The parameters of the method are the name of the atomic
model (a string) and the parameters we need to pass to the constructor. If a parameter in the
constructor is a pointer, we need to use the C++ method move () to pass the pointer to the
constructor.

- Ports is a data type used to defined input and output ports. It is defined in
<cadmium/modeling/dynamic model.hpp> under the namespace
dynamic: :modeling. It is a vector that takes as elements the typeid of the port structure
declaration. To provide the type of a port, we use the method typeid () defined in the std C++
library (typeid () takes a data type as input).

- Models is a data type used to define the components of a coupled model. It is defined in
<cadmium/modeling/dynamic model.hpp> under the namespace
dynamic::modeling. It is a vector that takes as elements pointers to models
(shared ptr<dynamic::modeling::model>>)

- EICs is a data type used to define the set of external input couplings. The set is stored as a vector
with elements of type EIC, which is another data type to define each external input. It is
implemented as a structure with two elements: the name of the submodel connected to the external
input (implemented as a string), and a link that represents the external input (implemented as a
shared ptr<>). Both EICs and EIC are defined in
<cadmium/modeling/dynamic model.hpp> under the namespace
dynamic: :modeling.

- make EIC<>() is used to create an EIC structure. It is defined in
<cadmium/modeling/dynamic model translator.hpp>, and it returns an element of
type EIC. It takes template parameters of the types of the input ports of the coupled model and the
submodel inside the coupled model, in this specific order (i.e. from —to). It uses a parameter that is a
string with the name of the submodel.

- EOCs is a data type similar to EICs above, but for the External Output Couplings.

- make EOC<>() is a method similar to make EIC<>() above, but for the External Output
Couplings. It returns an element of type EOC, using the types of the output port of the submodel in
the coupled model, and the output port of the coupled model, in this specific order (i.e. form — to).
The parameter of the method is a string with the name of the submodel.

- ICsisadatatype to define internal couplings. It is stored as a vector that takes elements of type IC,
used to define each internal connection. It is implemented as a structure with three elements: (1) the

Page 39 of 83

M Carleton

UNIVERSITY

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Canada’s Capital University
name of the “from” component (i.e. a string), (2) the name of the “to” component (i.e. a string), and
(3) a link to connect the output port of one component with the input port of the other component.
They are defined in <cadmium/modeling/dynamic model.hpp> under the namespace
dynamic: :modeling.

- make_ IC<>() is used to create the internal couplings, i.e., elements of type IC. It is defined in
<cadmium/modeling/dynamic model translator.hpp>. It uses the type of the output
port of the submodel “from” and the type of the input port of the submodel “to”, in this specific order
(i.e. from output port—to input port). The parameters of the method are two strings, the first one with
the name of the “from” submodel and the second one with the name of the “to” submodel (i.e. from
submodel name — to submodel name).

- coupled<TIME> is a class that defines a coupled model. We use it to create coupled models’
instances. It is defined in <cadmium/modeling/dynamic coupled.hpp> under the
namespace dynamic: :modeling. The class uses seven variables: (1) a string with the model
name, (2) a variable of type Models representing the subcomponents, (3) a variable of type Ports
for the input ports, (4) a variable of type Ports for the output ports, (5) a variable of type EICs
for external input couplings, (6) a variable of type EOCs for external output couplings and (7) a
variable of type ICs for internal couplings. The constructor of this class takes all these parameters
in this specific order.

Using these services, under /***** (1) *****/ we declare the input and output ports of the coupled
model. In this example, we have a coupled model with two atomic components. If there are two different
coupled models using the same port type (i.e., with the same name and message type), we declare the port
type once and we use it for both models. However, the same coupled model cannot have two ports with the
same name (i.e. in our C++ implementation, they cannot be the same type).

In our example, we only need one output port called top out, as seen in Figure 5. This port handles the
same type of message that the output port out from the Subnet model: messages of type Message t.

As we can see in Figure 6, we only define one output port, as there are no inputs in the coupled model.

Under /***** (2) ***x*/ we instantiate the template model iestream input (defined in
<cadmium/basic model/pdevs/iestream.hpp> to parseinput messagesincluded in a text file. In
this case, the text file will contain messages of type Message t.

We define an atomic model class called InputReader Message t that inherits all the methods of
iestream input. Weinstantiate iestream input with Message t and we leave the time as a
template parameter (iestream input<Message t, T>). In brief, this creates a new atomic class
that can read text input files that contains messages of type Message _t as inputs.

We then need to override the constructors of the model to instantiate the template using Message t asa
parameter. In this case, we define the default constructor (marking with the keyword default) . We define
a second constructor that takes the path to the text file where the model inputs are defined
(InputReader Message t (const char* file path)).We use a const parameter because
the input parameter file path cannot be modified inside the constructor. The definition inherits from the
atomic class; we need to instantiate the parameter that represents the type of message
(lestream input<Message t, T> (file path) {}).Insummary, this definition instantiates
the class constructors for the new atomic class we created.

Under /***x* (3) ***xx*/we definethe mainfunction. We create atomic and coupled models’ instances,
loggers and we finally call the simulator runner to start the simulation cycle.

Page 40 of 83

F‘*’-} Carleton

UNIVERSITY

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Canada’s Capital University
In this example, we first have a hardcoded path to the input file and save itin i input data (a pointerto
a string).

We then create an instance of InputReader Message_ t (i.e. input reader). We define a variable
of type shared ptr<dynamic::modeling: :model> to store a pointer to the instance, in this case,
input reader. As discussed earlier, we use make dynamic_ atomic model<> () to create the
instance. In this case, the method uses (1) InputReader Message t,(2) TIME and(3)const
char* as template parameters. The method parameters are “input reader” and

move(i input data). We will use this instance as the atomic model inside our coupled model.

Under /*x***xx (4) **xx*/we create an instance of Subnet (i.e. subnet1). We define a variable of type
shared ptr<dynamic::modeling: :model> to store a pointer to the instance subnetl. Then,
make dynamic atomic model<> () creates the instance. It uses the class type of the atomic model
(Subnet), (2) TIME and (3) the parameters in the model constructor (in this case, there are no
parameters). The parameter string of the method is, in this case, "subnet1", and the constructor takes
no parameters. In brief, this declaration creates an instance of the atomic Subnet. We will use this
instance as the atomic model inside our coupled model.

Under /***** (5) **x*x*/we define the top-level coupled model. In this particular case, the top coupled
model uses two atomic components. We first must define the input ports, the output ports, the components,
the external input couplings (EICs), the external output couplings (EOCs) and the internal couplings (ICs).

Input ports: We first create a variable of type Ports to store the input ports (in this case, iports TOP).
Because our top model has no input ports, we define the variable iports TOP asan empty vector ({ }).

Output ports: We then create a variable of type Ports to store the output ports (in this case, oports TOP).
Our top model has one output port: top out. We already declared it under /**** (1) ****/. Now, we need
to assign it to our top model. Therefore, we define a vector with one element: the type of the output port
({typeid(top out)}).

Submodels: We then create a variable of type Mode1s to store the components of the coupled model (in this
case, submodels TOP). It contains the instances of submodels inside the coupled model. In this case,
subnetl and input reader. It does not matter the order we use to specify the components of the top
model.

External Input Couplings (EICs): We then create a variable of type EICs to store the external input couplings
(in this case, eics TOP). In our coupled model, we do not have EICs, therefore, we assign an empty vector
to the variable eics TOP ({}).

External Output Couplings (EOCs): To define the external output couplings, we create a variable of type EOCs
(in this case, eocs TOP). In our coupled model, we just have one external coupling connecting the atomic
model subnet1 to the output port top out. The external coupling is defined with the simulator method
make EOC<> () instantiated with the names of the output ports as template parameters (in this case,
Subnet defs::out, top out) andthe name of the submodel as the parameter of the method (in this
case, “subnetl1”).

Internal Couplings (ICs): To define the internal couplings, we create a variable of type ICs (in this case,
ics TOP). Our coupled modeljust has one internal coupling connecting the output port of the atomic model
input reader to the input port of the atomic model subnet1. The internal coupling is defined with the
simulator method make IC<> () instantiated with the names of the output and input ports as template

Page 41 of 83

Cadmium M Carlet()ﬂ

A tool for DEVS Modeling and Simulation. User’s Guide UNIVERSITY
Canada’s Capital University

parameters (in thiscase, iestream input defs<Message t>::out,Subnet defs::in) andthe
name of the submodel as the parameter of the method (in this case, “input reader” and “subnetl”).

Once all the components of the coupled model are defined, we can create the instance of the coupled model.
We first declare the variable where the coupled model will be stored, in this case, TOP. TOP is a variable of
the datatype shared ptr<dynamic::modeling::coupled<TIME>> defined inthe simulator. We
create the instance our top model using the C++ method make shared<> (). The parameters of the
method are the name of the coupled model (i.e. *“TOP”), and all the components we have defined in the

following order: submodels TOP, iports TOP, oports TOP, eics TOP, eocs TOP,
ics TOP

Once we define all the coupled models and the top model (in this case, we just have the top model), we need
to define the loggers for the simulation.

To run a test, we need to define the inputs for the top model. These inputs are stored in a text file (called
subnet input test.txt) thatthe model input reader will parse and use to generate messages.
Each line of the file is an external input, coded as follows: an event time, a packet number, and the alternating
bit. We need to specify the packet before the bit, exactly as defined by the >> operator we discussed
earlierin Message t.

If we look at the input file (Figure 7), we can see, for example, that at time 10s, we are generating a packet
with id 1 and alternate bit 1; at time 20s, we are generating a packet with id 2 and alternate bit 0; etc. It is the
responsibility of the modeler to define the input file properly.

00:00:10 1 1
00:00:20 2 0

00:02:30 15 1
00:02:40 16 O

00:03:20 20 O

Figure 7. Test input file (subnet_input_test.txt)

Figure 8 shows a message log of the simulation for the subnet test coupled model we discussed earlier using
the input file in Figure 7. The log includes the global simulation time followed by the messages generated by
each atomic model on each port at that simulation time.

00:00:10:000

[iestream input defs<Message t>::out: {1 1}] generated by model input reader
00:00:13:000

[Subnet defs::out: {1 1}] generated by model subnetl

00:02:30:000

[iestream input defs<Message t>::out: {15 1}] generated by model input reader
00:02:40:000

[iestream input defs<Message t>::out: {16 0}] generated by model input reader
00:02:43:000

[Subnet defs::out: {16 0}] generated by model subnetl

Page 42 of 83

Cadmium M Carlet()ﬂ

A tool for DEVS Modeling and Simulation. User’s Guide UNIVERSITY
Canada’s Capital University

00:03:20:000
[iestream input defs<Message t>::out: {20 0}] generated by model input reader

00:03:23:000
[Subnet defs::out: {20 0}] generated by model subnetl

Figure 8. Message log of the simulation for the subnet test coupled model

When the simulation starts, the atomic models are initialized. The input reader model is initialized in a
state with time advance zero, so it can start by reading the input event file. Similarly, if we recall our definition
of subnet, we can see that it was initialized in a passive state.

The log shows all the message bags generated by the atomic models every time the simulator collects the
outputs.

Attime 10s, input reader generates a message withvalue {1 1}. This message is the first input event
retrieved from the input file subnet input test.txt.If werecall the operator << we defined for
the structure Message t, the message we get has the format {packet bit}.

At time 13s, the subnetl generatesthe message {1 1}.The message hasthe same meaning as before. If
we recall the subnet1 implementation, the model resends the message received with a 95% probability to
simulate failures in a network. In this case, there was no failure.

This pattern is repeated through the simulation every time there is an event on the input file. However, as we
mentioned, the subnet model has a 5% probability of not transmitting a packet. This is what happened at time
2min 30s. In the log, we can see that input reader generates an output message that is not transmitted
by subnetl. At time 2min 30s, input reader generatesthemessage {15 1} andthe subnetl does
not generate any message at time 2min 33s.

The simulation process continues until the simulation finishes at time 3min23s. At that time, there are no more
events in the input files and both atomic models are passivated.

We can also generate a log of the state of each atomic model (Figure 9) (we will explain later on how we define
and change the logs). The log of the state is generated base on the operator << we defined for each atomic
model class. The state log generates the global time when a state on the top model changes, and the states of
all the atomic models at that time. For the atomic model input reader, the stateisthe time of the next
internal event. For example, at time 10s, the state is “next time: 00:00:00:000" The state log for the
atomic model subnet1 is the index (i.e. the number of packets the network has received so far) and if the
model is transmitting a message (i.e. 1) or not (i.e. 0). For example, at time 10s, the state is “index: 1 &
transmitting: 1”.

00:00:10:000

State for model input reader is next time: 00:00:10:000
State for model subnetl is index: 1 & transmitting: 1
00:00:13:000

State for model input reader is next time: 00:00:10:000
State for model subnetl is index: 1 & transmitting: O

00:02:30:000
State for model input reader is next time: 00:00:10:000
State for model subnetl is index: 15 & transmitting: O
00:02:40:000
State for model input reader is next time: 00:00:10:000

Page 43 of 83

F‘*"’-} Carleton

UNIVERSITY

Cadmium

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

State for model subnetl is index: 16 & transmitting: 1
00:02:43:000

State for model input reader is next time: 00:00:10:000
State for model subnetl is index: 16 & transmitting: O

00:03:20:000

State for model input reader is next time: inf

State for model subnetl is index: 20 & transmitting: 1
00:03:23:000

State for model input reader is next time: inf

State for model subnetl is index: 20 & transmitting: O

Figure 9. Log of the state of each atomic model

Looking in more detail, at time 10s, input reader generated the message {1 1}. After executing the
internal transition, the next event is in 10s, which is the state of the model. At time 10s, subnetl executed
the external transition with the input message {1 1}. After the external transition, the state of the model is
as follows: (1) the number of packets the network has received so faris 1 (index: 1) and (2) the network
has something to transmit (transmitting: 1).Once the elapsed time of the atomic model subnet1 is
over (in this case 3s), the internal transition is triggered in the subnet1 atomic model. As we can see in the
message log, the message {1 1 }is transmitted and the model state changes from transmitting equal true
(i.e. 1) to transmitting equal false (i.e. 0). As we can see, the state of the input reader atomic model does
not change because it was not imminent. This pattern is repeated through the whole simulation every time
there is an event on the input file.

We need to notice, that when a packet is lost (e.g. time 2min30sec), the state variable index increases
because the network has received a new packet. However, the state variable transmittingis set to false
because that packet will not be transmitted to the output of the model.

We define the loggers under /***** (g) **x**/ inour cpp file above (Figure 6).

First, we need to define the file where we will output the message log. To do so, we create a variable
(out messages)opreofstream We initialize out messages with the path to the output file for
the messagelog ("../simulation results/subnet test output messages.txt").

We then define the structure oss sink messages to tell the simulator where we will save the output log.
The structure uses a method (sink) that returns a pointer to out messages. We use
oss_sink messages to declare the message logger.

We need to do the same for the state variable log. To do so, we define a variable (out state) of type

ofstream. We initialize out state with the path to the output file for the state log (in this case,
./simulation results/subnet test output state.txt").

Finally, we define the structure (oss_sink state) to tell the simulator where to save the state log. The
structure has a method (sink) that returns a pointer to out state. We will use oss_sink state to
declare the state logger.

To define the logger, we need to include the following declarations:

using state = logger: :logger<logger: :logger_ state,
dynamic: :logger: :formatter<TIME>, oss_sink_state>;

Page 44 of 83

F"'} Carleton

UNIVERSITY

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Canada’s Capital University
It defines the state logger. We instantiate the logger with: (1) the logger we are using, in this case
logger_state (defined in <cadmium/logger/logger.hpp>), (2) the formatter (defined in <cadmium/logger/
dynamic_common_loggers.hpp>), and (3) the sink we just defined (i.e. oss sink state).

All logs are defined in the same way. Only the first and third template parameters changes because they are
the ones that specify which log we are using and where we generate the log.

using log_messages = logger: :logger<logger: :logger messages,
dynamic: :logger: :formatter<TIME>, oss_sink_messages>;

It defines the message logger. As in the previous case, we instantiate (1) the logger we are using, in this case,
logger _messages (defined in <cadmium/logger/logger.hpp>), (2) the formatter (defined in
<cadmium/logger/ dynamic_common_loggers.hpp>), and (3) the sink just defined (0ss_sink messages).

In order to include the global time of the simulation inside the state and message log, we need to declare a
new logger: global_time. In this specific case, we need two: one for the messages and one for the states
because the logs are generated on different files.

using global_ time mes = logger: :logger<logger::logger global time,
dynamic: :logger: :formatter<TIME>, oss_sink_messages>;

It defines the global time for the message logger. As in the previous case, we instantiate with (1) the logger
we are using, in this case logger_global_ time (defined in <cadmium/logger/logger.hpp>), (2) the
formatter (defined in <cadmium/logger/ dynamic_common_loggers.hpp>), and (3) the sink
(oss_sink messages).

using global_ time_ sta = logger: :logger<logger::logger_global time,
dynamic: :logger: :formatter<TIME>, oss_sink_state>;

It defines the global time for the state logger as in the previous cases.

Once we have declared all the loggers we need, we have to combine them, so our simulation generates all the
logs at the same time. For this purpose, we use the multilogger structure defined in
<cadmium/logger/logger.hpp> instantiated with the above log definitions (i.e. state, log _messages,
global time mes, global time_ sta) astemplate parameters:

using logger_top = logger: :multilogger<state, log_messages,
global_ time mes, global_ time sta>;

After defining the loggers, we need to call the runner to be able to execute the simulation (Figure 7 /** *x**
(7) *****/)'

We first create an instance of the runner for our top model, in this case, r. It is an instance of the runner
class defined in <cadmium/engine/ pdevs dynamic runner.hpp> under the namespace
dynamic: :engine::

The runner class takes two parameters: the class used for the time (in this case, NDT ime) and a logger (in this
case, logger top). The parameters for the class constructor are the name of the top model (TOP in our
case) and the initial time for the simulation (0 in this case).

Then, we define the end time of the simulation. We have two options: (1) run the simulation until a specific
time or (2) run the simulation until all models are passivated.

Page 45 of 83

M Carleton

UNIVERSITY

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Canada’s Capital University
To run the simulation until a specific time we use the runner method run until(). This method takes as
parameter the end time of the simulation.

To run the simulation wuntil all models are passivated, we use the runner method
run_until passivate (). This method does not take any parameter.

In our example, we run the simulation until the time is 4h.

A Summary on Port Definition

When we define a DEVS model, we assign them set of input and output ports. Each port can be defined with
a name and a set of values that it can carry. In the example above (Figure 10), we define an input port called
“in” and an output port called “out”. Both of them use the same types, and in Cadmium, this is represented
as messages of type Message t, which represents a bag of values.

in<Message_t> Subnet out <Message_;c>

»

»

Figure 10. Atomic model Subnet with the ports and the message type on each port
To define this port in Cadmium, we must do the following:

1- DECLARATION OF PORTS (this was done in /***** (1) *****/ in Figure 2). In the declaration, we inform
the simulator which ports we are defining. In our example, we need two ports that are associated to
the Subnet model. The first one is called “in”, and it receives input messages of type Message t
(struct in : public in _port<Message t>{}). Here, in_port<> is a templated
structure (struct) defined in the simulator, which is used to define input ports with templates. It is
mandatory that each input port (in this case, in) is defined as a structure that inherits from
in _port<> and uses a given type of message (in this case Message t). The output port called
“out” is defined in a similar fashion, but using out_port<>, atemplated structure (st ruct) defined
in the simulator to define output ports. In summary, we declare a new data type for each port in the
atomic model, and they are declared as in_port (or out port) that can only receive a
Message t. Therefore, they can only be used within the Subnet model (and we can have other
types called using the same name in other atomic submodels). We name the data type with the name
of the port (in this case in and out) and they inherit from in_port<> and out_port<> based on the
type of port.

2- ASSIGNMENT OF PORTS TO THE ATOMIC MODEL: (this was done in /***** (2) *****/ in Figure 2). Once
we have declared the ports types we are using (in this case, in and out), we need to assign them to
the model that will use them, in this case, the Subnet atomic model. We assign the input ports with
using input ports=tuple<typename Subnet defs::in>. We must define the data
type input_ports, which is a tuple of the input ports declared in /****(1)****/_In this specific
example, we only have one input port named in. If we needed, for instance, two input ports, the
tuple will need to define the names of the two ports as elements (e.g. using
input_ports=tuple<typename Subnet defs::inl, typename Subnet defs::
in2>), which should have been previously declared in ***(1)***, The input ports must be assigned
under the name input_ports because thisis a mandatory simulation service (used to check port
types; the simulator generates compilation errors if a data type assigned to the input_ports tuple

Page 46 of 83

M Carleton

UNIVERSITY

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

does not inherit from in_port<> or if the data types inside the tuple have duplicated names). Output
ports are assigned similarly.
The input parameter mbs in the external transition is a bag that contains the input messages classified
by port. make message_ bags<input ports>:: type mbs takes the tuple
input_ports we defined earlier, and it generates the mbs tuple, whose elements are vectors of
messages. mbs has the same number of elements as input_ports (here, it is a tuple of one
element: a vector of Message t abaginport in;if we needed to use two ports, e.g. inl and
in2, make message bags<input ports>::type would define mbs as a tuple with two
elements: the first, a vector representing the bag of messages in port inl; the second, a vector
representing the bag of messages in port in2) . To retrieve the bag of messages in a specific port of
mbs, we use get messages<>, which takes the port name Subnet defs::in. The bag
retrieved is a vector, which we store in an auxiliary variable (bag port in).The bagof messagesin
for a specific port is a vector, so, to access the first element of the bag stored in bag port in we
usebag port in[0].

Similarly, in the output function we return a bag of messages in the output ports (i.e. bags).
make message_bags<output ports>::type takes the tuple output ports and it
generates the tuple bags; whose elements are vectors of messages. We use an auxiliary variable
to generate each message bag (in this example, we use bag port out). To place a bag in bags,
we use the method get_messages<>, which takes the port name as template parameter (in this
case, Subnet defs::out).

The declaration of ports for coupled models is similar to the one for atomic models. For our example (Figure
5), the coupled model only has one output port named top out (Figure 6 /***** (1) *****/) that handles
the same type of message that the output port out from the Subnet model (i.e. messages of type
Message t).Asin the case of atomic models, the port is declared as a struct named top out that inherits
from out_port<>and uses a given type of message (in this case Message t).

In coupled models, we assign input and out ports differently. We use a data type named
dynamic: :modeling: : Ports, a vector of ports as defined in the previous paragraph (Figure 6 /xx*xx
(5) *x*xx/). We need to define two variables, one for input ports and one for output ports. In this specific
example, the input ports variable (i.e. iports TOP) is an empty vector because the coupled model has no
ports. The output ports (i.e. oports TOP) is a vector with one element: the top out port declared above.
If we need, for instance, two output ports, we need to define a vector with the names of the two ports as
elements (e.g. oports TOP={ typeid(top outl), typeid(top outl)}, whichshould have been
previously declared.

The names of the data types that declare the ports of both the atomic models and coupled models are used
as template parameters in the methods that the simulator provides to define the EOC, IC, and EIC. In this
specific example, we will need to use the ports from the subnet atomic model (Subnet defs::in and
Subnet defs::out), the ports from the Input reader atomic model
(iestream input defs<Message t>::out)and the ports of the top model (cop out).

PORTS FOR EICs: EICs are defined using dynamic: : translate: :make EIC<>(). The template
parameters of the method are: (1) the name of the data type of the input port of the coupled model and (2)
the name of the data type of the port from the submodel inside the coupled model, in this specific order (i.e.
form —to). In our example, the coupled does not have EICs, therefore we do not use this method.

PORTS FOR EOCs: EOCs are defined using dynamic: : translate: :make EOC<> (). The parameters
are (1) the name of the data type of the port from the submodel (Subnet defs::out)and (2) the name

Page 47 of 83

Cadmium M Carlet()ﬂ

A tool for DEVS Modeling and Simulation. User’s Guide UNIVERSITY

Canada’s Capital University
of the data type of the output port of the coupled model (top out), in this specific order (i.e. form —to). In
our example, we connect the out port from Subnetl with top out of the coupled model.

PORTS FOR ICs: ICs are defined using dynamic: : translate: :make IC<>(). The parameters are (1)
the name of the data type of the output port of the submodel “from”
(iestream input defs<Message t>::out)and (2)the name of the data type of the input port of
the submodel “to” (Subnet defs: :in), in this specific order (i.e. from output port—to input port). In our
example, we are connecting the out port from input_reader with in port of Subnet1.

Defining the make file to compile the test

The model we have defined along with the simulator is a regular C++ program. Here, we will explain how to
compile the program with a make file.

We first need to create a file called “makefile”. The file will have the statements defined in Figure 11:

CC=g++
CFLAGS=-std=c++17

INCLUDECADMIUM=-I ../../cadmium/include
INCLUDEDESTIMES=-I ../../DESTimes/include

#CREATE BIN AND BUILD FOLDERS TO SAVE THE COMPILED FILES DURING RUNTIME

bin folder := $(shell mkdir -p bin)
build folder := $(shell mkdir -p build)
results folder := $(shell mkdir -p simulation results)

#TARGET TO COMPILE SUBNET TEST
message.o: data_structures/message.cpp

$(CC) -g -C $ (CFLAGS) $ (INCLUDECADMIUM) $ (INCLUDEDESTIMES)
data structures/message.cpp -o build/message.o

main subnet test.o: test/main subnet test.cpp
$(CC) -g e $ (CFLAGS) $ (INCLUDECADMIUM) $ (INCLUDEDESTIMES)
test/main subnet test.cpp -o build/main subnet test.o

tests: main subnet test.o message.o
$(CC) -g -o bin/SUBNET TEST build/main subnet test.o build/message.o

#TARGET TO COMPILE EVERYTHING
all: tests

#CLEAN COMMANDS
clean:
rm -f bin/* build/*

Figure 11. Make file to compile the subnet test
First, we define the compiler we are using, in this case, g++.
Then we need to define the C++ standard we are using, in this case, C++17.

We also need to define the paths to Cadmium and DESTimes libraries, so the compiler can find the files we
specified in the #includes <>. We define the paths in the INCLUDECADMIUM and INCLUDEDESTIMES
variables. Ina makefile, a pathis preceded by -TI. The paths are relative from the location of the make
file. If we download the simulator as explained at the beginning of the manual and we create new models

Page 48 of 83

F‘*’-} Carleton

UNIVERSITY

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Canada’s Capital University
inside the folder “DEVS-Models” following the same structure as in the ABP, we will not need to modify these
paths.

We store intermediate built files in a folder called build; the executables in a folder called bin and the
simulation results in a folder called simulation results.Todo so, we need to be sure that these folders
exist, and if they do not exist, we need to create them. We can do this in the makefile as follows:

command name := $(shell mkdir -p folder name)

We need to assign a name to the make file command, in this generic case command name, we then write a
shell command to create the directory if it does not exist. mkdir creates a directory with the name
folder name. The -p option specifies create the directory only if it does not already exist. In our case, we
create the folders: build, bin and simulation_results.

We then specify how to create the executable to run the subnet test. To create the executable, we first need
to create the object files (.0) of all the cpp files involved in our program, in this case, message. cpp and
main subnet test.cpp. The object files contain the compiled code.

To generate an object file in the context of our simulator, we need to use the following statements:

file name.o: relative path to cpp file
$(CC) -g -c $ (CFLAGS) $ (INCLUDECADMIUM) S (INCLUDEDESTIMES)
relative path to cpp file -o build/file name.o

Where file name isthe name we give to the object file (we usually use the same one we gave to the cpp
file)and relative path to cpp file isthe relative path to the cpp file from where the make file is
located. $ () is used to include the variables we defined at the beginning of the make file. -g is used to include
debugging information, -c is an instruction to the preprocessor to keep comments, and -o is used to specify
the name of the output file.

For the subnet test, we need to create the object files of message.cppandmain subnet test.cpp.

Once we have the object files, we need to link them together to create the executable. We need to use the
following line of code:

tests: main subnet test.o message.o
$(CC) -g -o bin/SUBNET TEST build/main_ subnet test.o build/message.o

tests is the name we give to the make file command that performs the linking. We then need to specify all
the other make file commands we need to execute before this one. In this case, main subnet test.o and
message.o to generate the build objects. We then tell the compiler to perform the linkage of the .o files to
generate the executable. We give the name SUBNET TEST to our executable.

To be able to use the command “make all” to compile, we need to define what all means. In this case, all
means execute the command tests.

We all need to define a “clean” command that deletes all the object and executable files in the bin and build
folders before compiling (i.e. rm -f bin/* build/*).

Once the make file is ready, to compile the test we open the bash terminal inside the folder ABP. To compile
the project, type: make clean; make all.

To run the test, open a bash terminal inside the subfolder bin and type the command: . /SUBNET TEST.
The simulation results will be in the folder simulation results.

Page 49 of 83

F‘*’-} Carleton

UNIVERSITY

Cadmium

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

Simulating the complete ABP model

Figure 2 presented the structure of the ABP model coupled model discussing throughout this document. The
Alternating Bit communication protocol tries to provide reliable transmission on an unreliable network. The
ABP model consists of 3 components: A sender, which transmits messages; a network, and a receiver, which
receives the messages transmitted by the sender and returns acknowledgement messages (positive or
negative). The network is decomposed further to two subnets corresponding to the sending and receiving
channels, respectively. The sender and the receiver communicate with each other through the network
component.

As we already mentioned, the Subnet atomic model uses one input port and one output port, and the model
passes the data it receives after a time delay of 3 seconds. To model the unreliability of the network, only
approximately 95% of the data will be transferred (i.e. 5% of the data will be lost through the subnet).

The behavior of the receiver is to receive the data and send back an acknowledgment extracted from the
received data after a time period. The implementation of the receiver atomic class is available in Appendix B.

The sender sends data packets and waits for an acknowledgment. If the acknowledgment is not received after
a period of time, it sends the same packet again. If the acknowledgment is received, the sender sends the next
packet. The implementation of the sender atomic class is available in Appendix C.

The implementation of the ABP coupled model is available in Appendix D.

The full logs of the simulation are available in Appendix E (message log) and Appendix F (state log). Here we
explain the most relevant aspects of the logs.

The input data we use for our simulation is as follows: at time 10s, we tell the sender that it will need to send
a message that is 5 packets long and at time 15min, we tell it to send a message that is 3 packets long.

00:00:10 5
00:15:00 3

In the next snippet, we can see the message generated when the sender transmits a packet until it
receives the confirmation that the packet was received and starts sending a new packet.

At time 10s, we generate a message (coming from the input file) that tells the sender that it will need to
send a message that is 5 packets long. The message is generated by the model input reader (i.e. the one
in charge of transforming the input files in DEVS messages).

At time 20s, the sender sends the first packet with the alternate bit ({1 0}) through the port dataOut and the
packet number (i.e. 1) through the packetSentOut port (the output of the top model). The port dataOut
is connected to the subnet model. After a 3s delay, the subnet transmits the packet with the alternate bit
i.e. it generates the message {1 0} in the port out. The out port of the subnet is connected to the
receiver. Once the receiver receives the packet, after a 10s delay, it sends an acknowledgment ({0 0}).
For the acknowledgment, the second element represents the alternate bit. The acknowledgment is
transmitted through the network (i.e. at time 36s, subnet?2 generates {0 0} on its out port). The out port
of subnet?2 is connected to the sender. As soon as the sender receives the acknowledgement (i.e. time
advance 0), it generates a message in the ackReceivedOut. The message is the alternate bit (i.e. 0). After
a 10s delay, i.e. at time 46s, the process starts again with the second packet.

00:00:10:000
[iestream input defs<int>::out: {5}] generated by model input reader
00:00:20:000

Page 50 of 83

F‘"‘-’} Carleton

UNIVERSITY

Cadmium

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

[Sender defs::packetSentOut: {1}, Sender defs::ackReceivedOut: {},
Sender defs::dataCut: {1 0}] generated by model senderl

00:00:23:000

[Subnet defs::out: {1 0}] generated by model subnetl

00:00:33:000

[Receiver defs::out: {0 0}] generated by model receiverl

00:00:36:000

[Subnet defs::out: {0 0}] generated by model subnet2

00:00:36:000

[Sender defs::packetSentOut: {1}, Sender defs::ackReceivedOut: {0},
Sender defs::dataOut: {}] generated by model senderl

00:00:46:000

[Sender defs::packetSentOut: {2}, Sender defs::ackReceivedOut: {},
Sender defs::datalOut: {2 1}] generated by model senderl

In the next snippet, we can see some states of the atomic models. For example, at time 10s, after the external
transition of the senderl atomic model is executed, the state of the model is packetNum: 1 &
totalPacketNum: 5 (i.e.the modelissending the first packet and it has to send 5 packets in total). At
time 23s, once the subnet model has transmitted the packet, the state of subnetl is index: 1 &
transmitting: 0 (i.e. the subnet has received one packet so far and it does not need to transmit
anything). After the receiver sends the acknowledgement (i.e. at time 33s), the state of the receiveris
ackNum: O (i.e. the last alternate bit received is 0) and the state of subnet2 is index: 1 &
transmitting: 1 (i.e.it hasreceived a packet so far and it has something to transmit). At time 36s, once
the sender receives the acknowledgment, it updates its state to packetNum: 2 & totalPacketNum:
5 (i.e. the next packet it has to send is 2 and the total number is 5, which means the full message is not sent

yet).

00:00:10:000
State for model senderl is packetNum: 1 & totalPacketNum: 5

00:00:23:000
State for model subnetl is index: 1 & transmitting: O

00:00:33:000
State for model receiverl is ackNum: O
State for model subnet2 is index: 1 & transmitting: 1

00:00:36:000
State for model senderl is packetNum: 2 & totalPacketNum: 5

Defining the make file to compile all the test and the ABP

As per good programming practices, a project should have a single makefile. Therefore, we modify the
makefile we already create to include the generation of the executable for the unit tests of the receiver
and subnet and the ABP simulator.

We need to generate an object file as we did for message.cpp and main_subnet_test.cpp for the following
files: main_sender_test.cpp, main_receiver_test.cpp and main.cpp.

Page 51 of 83

F‘-’} Carleton

UNIVERSITY

Cadmium

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

Once we have all the object files, we need to generate the executables. We generate the executables for the
tests under the make command tests. To generate the ABP simulator executable, we create a new command,
simulator, and we write the instructions to link the necessary object files.

Finally, we add simulator tothe all command.

CC=g++
CFLAGS=-std=c++17

INCLUDECADMIUM=-I ../../cadmium/include
INCLUDEDESTIMES=-I ../../DESTimes/include

#CREATE BIN AND BUILD FOLDERS TO SAVE THE COMPILED FILES DURING RUNTIME

bin folder := $(shell mkdir -p bin)
build folder := $(shell mkdir -p build)
results folder := $(shell mkdir -p simulation results)

#TARGET TO COMPILE ALL TESTS
message.o: data_structures/message.cpp

S (CC) -g -C $ (CFLAGS) $ (INCLUDECADMIUM) $ (INCLUDEDESTIMES)
data structures/message.cpp -o build/message.o

main subnet test.o: test/main subnet test.cpp
$(CC) -g -C $ (CFLAGS) $ (INCLUDECADMIUM) S (INCLUDEDESTIMES)
test/main subnet test.cpp -o build/main subnet test.o

main sender test.o: test/main sender test.cpp
$(CC) -g -C $ (CFLAGS) $ (INCLUDECADMIUM) S (INCLUDEDESTIMES)
test/main sender test.cpp -o build/main sender test.o

main receiver test.o: test/main receiver test.cpp
$(CC) -g -C $ (CFLAGS) $ (INCLUDECADMIUM) S (INCLUDEDESTIMES)
test/main receiver test.cpp -o build/main receiver test.o

tests: main subnet test.o main sender test.o main receiver test.o message.o
$(CC) -g -o bin/SUBNET TEST build/main_ subnet test.o build/message.o
$(CC) -g -o bin/SENDER TEST build/main sender test.o build/message.o
$(CC) -g -o bin/RECEIVER TEST build/main receiver test.o build/message.o

#TARGET TO COMPILE ONLY ABP SIMULATOR
main top.o: top model/main.cpp

$(CC) -g -C $ (CFLAGS) $ (INCLUDECADMIUM) $ (INCLUDEDESTIMES)
top model/main.cpp -o build/main top.o

simulator: main top.o message.o
$(CC) -g -o bin/ABP build/main top.o build/message.o

#TARGET TO COMPILE EVERYTHING (ABP SIMULATOR + TESTS TOGETHER)
all: simulator tests

#CLEAN COMMANDS
clean:
rm —-f bin/* build/*

Page 52 of 83

F‘*’-} Carleton

UNIVERSITY

Cadmium

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

Cadmium’s Services for Atomic Models

The atomic models are defined in an hpp file following the template provided in Appendix A.

Each atomic model implementation must include the following headers:

#ifndef ATOMIC MODEL NAME HPP
#define ATOMIC MODEL NAME HPP

//Include simulator headers
#include <cadmium/modeling/ports.hpp>
#include <cadmium/modeling/message_bag.hpp>

//Include other headers needed for the C++ implementation of the model

#include <limits>

#include <assert.h>

//Include the relative path to message types for not built-in C++ types such as

float, int, string, etc.

#include "../data structures/message.hpp"

using namespace cadmium;
using namespace std;

//Here goes the port declaration
//Here goes the atomic model class implementation

#endif //ATOMIC MODEL NAME HPP

First, we need to include the libraries of the simulator that provide the services to define new ports
(<cadmium/modeling/ports.hpp>) and to handle bags of messages
(<cadmium/modeling/message_bag.hpp>) . Then, we need to include any C++ library that we use
in the model implementation. The library 1imits is used when we need to passivate a model (i.e. set the
time advance to infinity). The rest of the libraries are optional and the ones to be included depends on the
specific model implementation. Assert . h is useful to stop the simulation and generate an error if we have
non-desired behavior. For example, the model definition states that the inputs to the model are integers
between 0 and 9. When we implement our model, we can use a conditional statement and the methods
provided in assert .h to check that the condition is satisfied. If not, the simulation is stopped and an error
explaining the reason is displayed. Other libraries may be needed based on the model implementation.

In Cadmium, we can use built-in C++ types as messages (integer, float, string, double, bool, etc.) or we can
define our own ones as C++ structures. In that case, we need to include the path to the hpp file where the
structure is defined (e.g. #include "../data structures/message.hpp").

Finally, before starting with the model implementation (port and atomic model definition), we declare the
namespaces we are using, in this case: cadmium and std. If we do not declare them, every time we use a
method/service from the standard C++ library (std), we have to write std: : followed by the name of the
service. The same occurs with cadmium (cadmium: :).

Page 53 of 83

F‘"‘-’} Carleton

UNIVERSITY

Cadmium

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

Declaring ports

We define the ports as a structure (in this general implementation, we called it
model name ports defs) that contains all the input and output ports of the atomic/coupled model.
Two ports cannot have the same name. Different ports can handle the same message type.

In this general implementation, each port is defined as a structure that inherits from the template structures
out portand in port defined in the simulator, specifying the type of message handled by the port. In
this case, we define two output ports, the first one is called out port namel and it handles messages of
type message type 1; the second oneis called out port name2 and it handles messages of type
message type 2. Wealso define two input ports, the first one is called in port namel and it handles
messages of type message type 3; thesecondoneiscalled in port name2 and it handles messages
of typemessage type 4.

//Port definition

struct model name ports defs {
struct out port namel : public out_port<message type 1> {};
struct out port name? : public out_port<message type 2> {};
struct in port namel : public in_port<message type 3> {};
struct in port name? : public in_port<message type 4> {};

}i

Implementing atomic models: a C++ class

Atomic models are implemented as a templated C++ class (atomic model name) in the hpp file we
mentioned at the beginning of the section (//Here goes the atomic model class
implementation). The template parameter of the class represents the type of time (TIME)

Each class representing an atomic model MUST contains the following variables, methods, and constructors.
Everything inside the class is public as the simulator has to access the methods of the class to execute the
simulation.

Port definition

As discussed earlier, the ports were declared inside the structure model name ports defs.To access the
input port 1, we would need to use model name ports defs::in port namel and to use the output
port 1 model name ports defs::out port namel.

The ports are assigned to the corresponding atomic model as follows:

using input ports=tuple<typename model name ports defs::in port namel , typename
model name ports defs::in port name2>;

using output ports=tuple< typename model name ports defs::out port namel ’
typename model name ports defs::out port name2>;

The C++ keyword using allows us to rename a data type. Each atomic model must define their input and
output ports as a data type called “input ports” and “output ports”, respectively. We need to use
these specific names because the simulator will use them to check that the atomic model has all the needed
components and that the ports are properly defined (e.g. there are not two input ports with the same name).
Both the input and out ports are defined as a tuple (tuple<>), a C++ object that packs elements of possibly
different types together in a single object. We can see it as a vector with elements of different types. Because
of this, we need to specify the type of each of the elements in the tuple. The typename specifies that

Page 54 of 83

F‘*"’-} Carleton

UNIVERSITY

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Canada’s Capital University
model name ports defs::out port namel, etc. are data types that will overwrite the template
class in the simulator.

Model parameters
If we want to define a parameterized model, the parameters are defined as variables inside the class. The
value of these variables will be overwritten inside the constructor of the class. See Appendix C for an example.

State definition

The state variables of the model are declared in a structure called state type. All the state variables of the
model must be declared inside the structure, and a single state variable of type state type name state
must be defined. We need to use these specific names because they are explicitly used by the simulator to
check that the model is implemented according to the DEVS formalism. The simulator verifies if this structure
(which represents the model’s state) is updated inside the output function or the time advance function
(remember that these two operations are not valid according to DEVS specifications).

struct state_type {

//Declare the state variables here
}i
state_type state;

Class Constructor

Each class must have at least one default constructor (i.e. without parameters): atomic model name().
Inside the constructor, both the parameters (if we defined a parameterized model) and the state of the model
are initialized. As in any C++ class, we can have more than one constructor as long as they take different
parameters.

Having a constructor that takes the model parameters as inputs is useful if we want to create instances of the
class with different parameters.

Internal Transition Function

The internal transition function is defined as a void method called internal transition(), andit
takes no parameters (because the method can access the state variable of the class).

void internal_ transition() {
//Define internal transition here

}

External Transition Function

The external transition function is called when an external event arrives in one of the model’s output ports. It
is defined as a void method called external transition. The method takes two parameters, the
elapsed time (e) and a bag of input messages (mbs). There is one bag of messages per input port.

void external transition(TIME e, typename make message bags<input ports>::type
mbs) {
//Define external transition here

}

There are some primitives devoted to handling the messages:

Page 55 of 83

F‘*’-} Carleton

UNIVERSITY

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University
- typename make message bags<input ports>::type mbs —Itcreatesaninput message bag
called mbs. As we already mentioned, typename indicates that the expression that follows is a data

type. make message bags<> is a template data type declared in
<cadmium/modeling/message bag.hpp>, used to declare a bag of messages for input or output
ports. We need to instantiate the template with the word input ports to define the input bag, using
::type. The parameter declaration, in this case, declares mbs as a tuple whose elements are the
message bags on the input ports. The messages inside the set of messages in the bag are stored in a C++
vector.

- get messages<typename model name ports defs::in port namel>(mbs) — It gets the

message bag from the input port in port name stored in the tuple mbs. The method
get messages uses a template parameter for the port we want to access, in this case, the
in port namel port, defined by typename model name ports defs::in port namel.
The function parameter is the bag of messages we want to access, in this case mbs. The retrieved bag is a
C++ vector. The data type of the elements inside the vector is the one handled by the port.

Confluent Transition Function

- The confluent transition function is called when an internal transition is scheduled at the same time as an
external event arrives. The method to define this void function, called confluence transition,
takes two parameters: the elapsed time (e) and a bag of messages (mbs) The default implementation for
the confluent function is to execute the model’s internal transition first, and the external transition after
that, with an elapsed time equal to zero.

- All the primitives useful for handling messages in the external transition can also be used here.

void confluence_ transition(TIME e, typename make_ message_bags<input_ports>::type
mbs) {

internal transition();

external transition(TIME (), std::move (mbs)):;

}

Output Function

The output function is called when a model is imminent, and before calling the internal transition function (or
the confluent function). It is defined as a constant method (i.e. we are not allowed to change the state of the
model) that returns a bag of messages in the output ports. It does not take any parameter because the method
can access the state variable of the class. It is called output ()

typename make message_bags<output_ports>::type output() const {
typename make message_bags<output_ports>::type bags;
//Define output function here
return bags;

}

To handle messages, we use the same primitives as in the external transition function but instantiated for the
output ports instead of the input ports.

Time Advance Function
The time advance function is defined as a constant method (i.e. we are not allowed to modify the state of the

model) that returns the time of the next internal transition and takes no parameters. It is called
time_advance.

Page 56 of 83

F‘*’-} Carleton

UNIVERSITY

Cadmium

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

TIME time_advance() const {
TIME next_internal;
//Define time advance function here
return next_internal;

}

There are two useful primitives to set the time advance of the model to zero and infinity

- numeric limits<TIME>::infinity() (amethodinthe 1imits library). Itis used to passivate
the model.
- TIME () - Itsetsthetime advance to zero.

IMPORTANT: According to ST-DEVS, only the transition functions (i.e. external,
internal and confluence) can be stochastic. The time advance function and the output
function MUST be deterministic.

State the Logs

Once all the DEVS functions are defined, we specify how we want to output the state of the model in the state
log. To declare how to log the state of the model, we define the << operator for the structure state type.
The following method shows how to do this.

friend ostringstreamé& operator << (ostringstreamé& os, const typename
atomic model name<TIME>::state_type& state) {

//Define how to log the state here

return os;

}

The operator takes a pointer to the stream where we want to log (i.e. os) and the memory address of the
state variable of the model (i.e. state)

We use a const type to ensure that it will not be modified inside the operator. It is important to notice that
we need to use typename atomic model name<TIME>::state type to specify the type of the
state. That expression is used to access the structure state type inside the template class
atomic model name<TIME>. We need to declare the operator using the keyword friend to specify
that the function can access the private members of the structure state type.

Using Atomic Models: Creating Instances from the Class

To be able to use the atomic models we have defined or the ones available in the libraries, we need to create
an instance. To create instances of atomic models, Cadmium provides a data type and a method:

- model is an empty class defined in <cadmium/modeling/dynamic model.hpp> under the
namespace dynamic: :modeling. Itallows pointer-based polymorphism between classes derived
from atomic and coupled models. It is an abstract class that encapsulates both atomic and coupled
models in such a way that they can be elements in a vector of models.

- make dynamic_atomic_model<> () is a template method defined in
<cadmium/modeling/dynamic model translator.hpp>.|tisused to create an instance
of an atomic model. It takes the class type of the atomic model, TIME (because all atomic models
are templated classes that need to be instantiated with a TIME data type), and all the types of the
parameters for the model constructor. The parameters of the method are the name of the atomic
model (a string) and the parameters we need to pass to the constructor. If a parameter in the

Page 57 of 83

Cadmium M Carlet()ﬂ

A tool for DEVS Modeling and Simulation. User’s Guide UNIVERSITY
Canada’s Capital University

constructor is a pointer, we need to use the C++ method move () to pass the pointer to the
constructor.

The instances of the atomic models are created (along with the coupled models, the logger and the runner)
inside the main function defined in a cpp file. At the top of the cpp, we MUST include the headers of all the
atomic classes we are using.

An atomic instance is created as follows:

shared ptr<dynamic::modeling: :model> name atomic _model instance =
dynamic::translate: :make dynamic_atomic_model< atomic model name, TIME>
("instance name");

To store the instances of atomic models, Cadmium uses one advanced C++ data type: shared ptr<>,
defined in the standard library. shared ptr<>isa smart pointer that allows shared ownership of an object
through a pointer.

Cadmium’s Services for Coupled Models

Coupled models are defined inside the main function in a cpp file (along with the instances of the atomic
models, the logger and the runner).

Coupled models are defined using C++ functions and data types defined in the simulator. The functions were
built following the formal definitions for DEVS coupled models. Therefore, each of the components defined
formally for DEVS coupled models can be included.

Declaring ports

Port declaration for coupled models is done using the same method as for atomic models.

//Port definition

struct model name ports defs{
struct out port namel : public out_port<message type 1> {};
struct out port name? : public out_port<message type 2> {};
struct in port namel : public in_port<message type 3> {};
struct in port name? : public in_port<message type 4> {};

}i

In coupled models, we can omit grouping all the ports in a single structure and declare them as follows:

struct out port namel : public out_port<message type 1> {};
struct out port name? : public out_port<message type 2> {};
struct in port namel : public in port<message type 3> {};
struct in port name? : public in_port<message type 4> {};

If there are two different coupled models using the same port type (i.e., with the same name and message
type), we declare the port type once and we use it for both models. However, the same coupled model cannot
have two ports with the same name (i.e. in our C++ implementation, they cannot be the same type).

Page 58 of 83

F‘-’} Carleton

UNIVERSITY

Cadmium

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

Defining coupled models

Coupled model ports

To assign the input and output ports we already declared to a coupled model, Cadmium use the data type
Ports. Ports is a data type used to define input and output ports. It is defined in
<cadmium/modeling/dynamic model.hpp> under the namespace dynamic: :modeling. Itis a
vector that takes as elements the t ypeid of the port structure declaration. To provide the type of a port, we
use the method typeid () defined in the std C++ library (typeid () takes a data type as input).

Input ports

We need to create a variable of type Ports (in this generic example, iports coupled name) to store
all the input ports as follows:

dynamic: :modeling: :Ports iports coupled name = {
typeid(model name ports defs::in port namel),
typeid(model name ports defs::in port name?2)
};

Output ports

The output ports are also stored inside a variable of type Ports in the same way.

dynamic: :modeling: :Ports oports coupled name = ({
typeid(model name ports defs::out port namel),
typeid(model name ports defs::out port name2)
}i

Submodels

Submodels are stored inside a variable of type Models. As already explained, Models is used to define
the components of a coupled model. It is defined in <cadmium/modeling/dynamic model.hpp>
under the namespace dynamic: :modeling. It is a vector that takes as elements pointers to models
(shared ptr<dynamic::modeling::model>>)

In this generic case, the name of the variable is submodels coupled name. It contains the instances of
submodels inside the coupled model. In this generic case, name component instancel and
name component instance?2. It doesnot matter the order we use to specify the components of the top
model.

dynamic: :modeling: :Models submodels coupled name =
{ name component instancel,
name_component_instanceZ};

name component instance x are the names given to the variables that store the instance of the
components of the coupled model. They can be instances of atomic models or coupled models.

External Input Couplings (EICs)

Cadmium provides a data type and a method to define EICs.

The EICs data type is used to define the set of external input couplings. The set is stored as a vector with
elements of type EIC, another data type to define each external input. It isimplemented as a structure with

Page 59 of 83

F‘"‘-’} Carleton

UNIVERSITY

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Canada’s Capital University
two elements: the name of the submodel connected to the external input (a string), and a link that represents
the external input (a shared ptr<>). Both EICs and EIC are defined in
<cadmium/modeling/dynamic model.hpp> under the namespace dynamic: :modeling

make EIC<>() is used to create an EIC structure. It is defined in
<cadmium/modeling/dynamic model translator.hpp>, and it returns an element of type
EIC. It takes template parameters of the types of the input ports of the coupled model and the submodel
inside the coupled model, in this specific order (i.e. form —to). It uses as parameter a string with the name of
the submodel.

dynamic: :modeling: :EICs eics_ coupled name = {
dynamic: :translate: :make EIC<model name ports defs::in port namel,
component port name>("instance name"),
dynamic: :translate: :make EIC< model name ports defs::in port name?2,
component port name2>("instance name2")

};

In this generic case, the name of the variable is eics coupled name. It contains two EICs: (1) the input
port “in port namel” of the coupled modelis connected to the input port “component port name”
of the subcomponent “instance name”; (2)theinputport“in port name2” of the coupled modelis
connected to the input port “component port name2” of the subcomponent “instance name2”.

instance namel (and 2) are unique names given to each instance of the components of the coupled
model. They can be instances of atomic models or coupled models.

External Output Couplings (EOCs)

Cadmium provides a data type and a method to define EOCs.
EOCs is a data type similar to EICs above, but for the External Output Couplings.

make EOC<>() is a method similar to make EIC<>() above, but for the External Output Couplings. It
returns an element of type EOC, using the types of the output port of the submodel in the coupled model,
and the output port of the coupled model, in this specific order (i.e. form — to). The parameter of the method
is a string with the name of the submodel.

dynamic: :modeling: :EOCs eocs_ coupled name = {
dynamic::translate: :make EOC<component port name, model name ports defs::
out port namel>("instance name"),
dynamic::translate: :make EOC<component port name2, model name ports defs::
in port name2>("instance name2")

};

In this generic case, the name of the variable is eocs coupled name. It contains two EOCs: (1) the output
port “component port name” of the subcomponent “instance name” is connected to the output port
“out port namel” of the coupled model; (2) the output port “component port name2” of the
subcomponent “instance name2” is connected to the output port “out port name2” of the coupled
model.

instance namel (and 2) are unique names given to each instance of the components of the coupled
model. They can be instances of atomic models or coupled models.

Page 60 of 83

Cadmium M Carlet()ﬂ

A tool for DEVS Modeling and Simulation. User’s Guide UNIVERSITY
Canada’s Capital University

Internal Couplings (ICs)

Cadmium provides a data type and a method to define the ICs.

ICs is a data type to define internal couplings. It is stored as a vector that takes elements of type IC, used
to define each internal connection. It is implemented as a structure with three elements: (1) the name of the
“from” component (i.e. a string), (2) the name of the “to” component (i.e. a string), and (3) a link to connect
the output port of one component with the input port of the other component. They are defined in
<cadmium/modeling/dynamic model.hpp> under the namespace dynamic: :modeling.

make IC<>() is used to create the internal couplings, i.e., elements of type IC. It is defined in
<cadmium/modeling/dynamic model translator.hpp>. It uses the type of the output port of
the submodel “from” and the type of the input port of the submodel “to”, in this specific order (i.e. from
output port—to input port). The parameters of the method are two strings, the first one with the name of the
“from” submodel and the second one with the name of the “to” submodel (i.e. from submodel name — to
submodel name).

dynamic: :modeling::ICs ics_ coupled name = {
dynamic::translate: :make EIC<component port name outl,
component port name inl>("instance name outl","instance name inl"),
dynamic::translate: :make EIC<component port name outZ2,
component port name in2>("instance name out2","instance name in2")

};

In this generic case, the name of the variable is ics coupled name. It contains two ICs: (1) the output
port “component port name outl” ofthesubcomponent “instance name outl” isconnected to the
input port “component port name inl” ofthesubcomponent“instance name inl”; (2)the output
port “component port name out2” ofthesubcomponent “instance name out2” isconnected tothe
input port “component port name in2” of the subcomponent “instance name in2”.

instance name in/out 1 (and 2)are unique names given to each instance of the components of the
coupled model. They can be instances of atomic models or coupled models.

Coupled model variable

Cadmium defines the class coupled<TIME> to define coupled models. We use it to create coupled models’
instances. It is defined in <cadmium/modeling/dynamic coupled.hpp> under the namespace
dynamic: :modeling. The class uses seven variables: (1) a string with the model name, (2) a variable of
type Models representing the subcomponents, (3) a variable of type Ports for the input ports, (4) a
variable of type Ports for the output ports, (5) a variable of type EICs for external input couplings, (6)
avariable of type EOCs for external output couplings and (7) a variable of type ICs forinternal couplings.
The constructor of this class takes all these parameters in this specific order.

To create the coupled model, we need to define all the elements explained in this section (i.e. input ports,
output ports, submodels, EICs, EOCs, and ICs).

We declare the variable where the coupled model will be stored, in this generic case,
coupled name variable. The variable where the coupled model is stored is of the data type
shared ptr<dynamic::modeling::coupled<TIME>> defined in the simulator.

Page 61 of 83

F‘"‘-’} Carleton

UNIVERSITY

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

To create an instance of the coupled model, we use the C++ method make shared<> ().
make shared<> () isamethod thatallowscreatinga shared ptr<>. Itusesasatemplate parameter
the data type that will be stored in the pointer, and as function parameters the constructor parameters for
the data type. In Cadmium, to create coupled models, the function parameters are the ones used in the
constructor of the class coupled<TIME>: (1) model name, (2) components, (3) input ports, (4) output
ports, (5) EICs, (6) EOCs and (7) ICs in this specific order as in the following general example:

shared ptr<dynamic: :modeling: :coupled<TIME>> coupled name variable =
make_shared<dynamic: :modeling: : coupled<TIME>> (
"coupled name", submodels_coupled name, iports_coupled name,
oports_coupled name, eics_coupled name, eocs_coupled name, ies_coupled name

)

coupled name isaunique name given to the coupled model.

The resulting coupled model can be used inside other coupled models.

Cadmium’s Services to create Logs

Cadmium also provides services for generating logs of the simulation. There are two basic logs: (1) messages
generated on the output ports and (2) state of the atomic model.

The logs are defined as follows:

/*************** Loggers *******************/

static ofstream out messages ("../simulation results/messages log.txt");
struct oss_sink messages({
static ostreamé& sink() {
return out messages;

}i

static ofstream out state("../simulation results/output state log.txt");
struct oss_sink state(
static ostreamé& sink() {
return out state;

}i

using state=logger: :logger<logger::logger state,
dynamic::logger::formatter<TIME>, oss sink state>;

using log messages=logger: :logger<logger::logger messages,
dynamic::logger::formatter<TIME>, oss sink messages>;

using global time mes=logger::logger<logger::logger global time,
dynamic::logger::formatter<TIME>, oss_sink messages>;

using global time sta=logger::logger<logger::logger global time,
dynamic::logger: :formatter<TIME>, oss sink state>;

using logger top=logger::multilogger<state, log messages, global time mes,
global time sta>;

Page 62 of 83

M Carleton

UNIVERSITY

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

Canada’s Capital University
First, we need to define the file where we will output the message log. To do so, we create a variable
(out messages)oftype ofstream. We initialize out messages with the path to the output file for
the message log ("../simulation results/messages log.txt").

We then define the structure oss sink messages to tell the simulator where we will save the output log.
The structure uses a method (sink) that returns a pointer to out messages. We use
oss_sink messages to declare the message logger.

We need to do the same for the state variable log. To do so, we define a variable (out state) of type

ofstream. We initialize out state with the path to the output file for the state log (
./simulation results/state log.txt").

Finally, we define the structure (oss_sink state) to tell the simulator where to save the state log. The
structure has a method (sink) that returns a pointer to out state. We will use oss_sink state to
declare the state logger.

To define the logger, we need to include the following declarations:

using state = logger: :logger<logger: :logger_state,
dynamic: :logger: : formatter<TIME>, oss_sink state>;

It defines the state logger. We instantiate the logger with: (1) the logger we are using, in this case
logger_state (defined in <cadmium/logger/logger.hpp>), (2) the formatter (defined in <cadmium/logger/
dynamic_common_loggers.hpp>), and (3) the sink we just defined (i.e. oss sink state).

All logs are defined in the same way. Only the first and third template parameters changes because they are
the ones that specify which log we are using and where we generate the log.

using log_messages = logger: :logger<logger: :logger messages,
dynamic: :logger: :formatter<TIME>, oss_sink_messages>;

It defines the message logger. As in the previous case, we instantiate (1) the logger we are using, in this case,
logger_messages (defined in <cadmium/logger/logger.hpp>), (2) the formatter (defined in
<cadmium/logger/ dynamic_common_loggers.hpp>), and (3) the sink just defined (0ss sink messages).

In order to include the global time of the simulation inside the state and message log, we need to declare a
new logger: global_time. In this specific case, we need two: one for the messages and one for the states
because the logs are generated on different files.

using global_ time mes = logger: :logger<logger: :logger global time,
dynamic: :logger: :formatter<TIME>, oss_sink_messages>;

It defines the global time for the message logger. As in the previous case, we instantiate with (1) the logger
we are using, in this case logger_global_ time (defined in <cadmium/logger/logger.hpp>), (2) the
formatter (defined in <cadmium/logger/ dynamic_common_loggers.hpp>), and (3) the sink
(oss_sink messages).

using global_ time_sta = logger: :logger<logger::logger global time,
dynamic: :logger: : formatter<TIME>, oss_sink state>;

It defines the global time for the state logger as in the previous cases.

Once we have declared all the loggers we need, we have to combine them, so our simulation generates all the
logs at the same time. For this purpose, we use the multilogger structure defined in

Page 63 of 83

Cadmium M Carlet()ﬂ

A tool for DEVS Modeling and Simulation. User’s Guide UNIVERSITY
Canada’s Capital University

<cadmium/logger/logger.hpp> instantiated with the above log definitions (i.e. state, log _messages,
global time mes, global time sta) astemplate parameters:

using logger_top = logger: :multilogger<state, log_messages,
global_ time mes, global_ time sta>;

Cadmium’s Services to Run the Simulation

Cadmium provides a templated class to execute the model: runner. The runner class defined in
<cadmium/engine/pdevs_dynamic_runner.hpp> under the namespace dynamic::engine:: takes two
template parameters: the class used for the time (in this example, NDTime) and a logger (in this case,
logger_ top). The parameters for the class constructor are the name of the top model (ToP in this generic
case) and the initial time for the simulation (usually 0).

dynamic: :engine: :runner<NDTime, logger top> r (TOP, {0});

To define the end time of the simulation, we have two options: (1) run the simulation until a specific time or
(2) run the simulation until all models are passivated.

To run the simulation until a specific time we use the runner method run_untii(). This method takes as
parameter the end time of the simulation.

r.run_until (TIME ("04:00:00:000"));

To run the simulation until all models are passivated, we use the runner method run until passivate().
This method does not take any parameter.

r.run_until passivate();

Services to Export Coupled Models to JSON

In order to visualize the simulation results using DEVS Viewer, (https://staubibr.github.io/arslab-prd/app-
simple/index.html), you need to write a DEVS coupled model using JSON.

The library “Cadmium Model JSON Exporter" automatically generates this JSON file from the implementation
of the model in Cadmium. “Cadmium Model JSON Exporter" is included as a submodule when you download
“Cadmium-Simulation-Environment” following the instructions provided at the beginning of this manual.

It is not necessary to understand the content of the JSON file generated. You do not even need to open it,
just keep it handy if you are going to use DEVS Viewer to visualize your simulation results.

How do we generate the JSON file?

To use the services defined in “Cadmium Model JSON Exporter" to generate the JSON file, you need to follow
these steps:

1. Locate your main file (i.e. the one you used to define the coupled model) and place the following include
statement at the top of the file (see Appendix D). This will allow you to use the functions defined in

Page 64 of 83

F‘"‘-’} Carleton

UNIVERSITY

Cadmium

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

“Cadmium Model JSON Exporter" library:

//Json exporter header
#include <dynamic_ json exporter.hpp>

2. You need to call the function dynamic export model to json (), which transforms a DEVS coupled
model implemented in Cadmium to JSON and stores it in the specified file. To do so, you just need to add the
following code at the end of your main file (see Appendix D). In the Appendix D, we called the function after
calling the runner, just before the return statement.

static ofstream out JSON("ABP json.json'");
dynamic_export model to json (out JSON, TOP);

In the first line, we define out JSON variable that stores the location of the JSON file where the output will
be stored. "ABP json.json" isthe relative path and the name for the json output file. Make sure to use
.json as extension.

In the second line, we call the function dynamic export model to json. The function takes two input
parameters. The fist parameter is the out JSON variable we defined above. The second parameter is the
variable where you stored your top coupled model, usually TOP. This is the same variable you use in the

runner.

Additional requirements to use the viewer

To use the DEVS viewer, the logs for the state and messages must be defined using a specific format.

Specific format for state output.
The definition of the << operator for the structure state type in atomic must follow the following
format:

< state.varl, state.var2, ..., state.varN>

This will be generically implemented as follows:

friend ostringstreamé& operator << (ostringstreamé& os, const typename
atomic model name<TIME>::state_type& state) {
0s << "<" << state.varl << ", " << state.var2 << ">";

return os;

}

For a specific example for the ABP protocol, check Appendix B.

Specific format for messages output.
The message output (see figure 4 in section “DEVS Model definition: An Example”) should follow the same

format as the state.

< msg.varl, msg.var2, ..., msg.varN>

The following code snippet represents how to implement this format for the for the ABP model.

//0utput the content of the structure

ostreamé& operator<<(ostream& os, const Message t& msg) {
0s << "<" << msg.packet << ", " << msg.bit << "
return os;

Page 65 of 83

Cadmium w Carlet()ﬂ

A tool for DEVS Modeling and Simulation. User’s Guide

UNIVERSITY

Canada’s Capital University

Appendix A

Template for the definition of an atomic model.

#ifndef ATOMIC MODEL NAME HPP
#define ATOMIC MODEL NAME HPP

//Include simulator headers
#tinclude <cadmium/modeling/ports.hpp>
#tinclude <cadmium/modeling/message_bag.hpp>

//Include other headers needed for the C++ implementation of the model
#include <limits>

#include <math.h>

#include <assert.h>

//Include the relative path to the message types
#include "../data_structures/message.hpp"

using namespace cadmium;
using namespace std;

//Port definition
struct model name ports defs{
struct out_port_namel : public out_port<message_type 1> {};
struct out port name2 : public out_port<message type 2> {};
struct in_port_namel : public in_port<message_type 3> {};
struct in _port name2 : public in_port<message type 4> {};

1

//Atomic model class

template<typename TIME> class model name {
public:

//Ports definition

using input_ports

typename model_name_ports_defs:: in_port_name2>;

using output_ports
typename model_name_ports_defs:: out_port_name2>;

//Model parameters to be overwritten during instantiation

struct state_type{

//Declare the state variables here
}s
state_type state;

//Default constructor without parameters
model_name () noexcept{
//Define the default constructor here

}

//Constructor with parameters if needed

void internal_transition() {

Page 66 of 83

tuple<typename model_name_ports_defs:: in_port_namel,

tuple<typename model_name_ports_defs:: out_port_namel,

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

//Define internal transition here

}

F‘"‘-’} Carleton

UNIVERSITY

Canada’s Capital University

void external_transition(TIME e, typename make_message_bags<input_ports>::type mbs){

//Define external transition here

}

void confluence_transition(TIME e,typename make_message_bags<input_ports>::type mbs){

//Define confluence transition here
//Default definition

internal_transition();
external_transition(TIME(), std::move(mbs));

}

typename make_message_bags<output_ports>::type output() const {

typename make_message_bags<output_ports>::type bags;
//Define output function here
return bags;
}
TIME time_advance() const {
TIME next_internal;
//Define time advance function here
return next_internal;

}

friend ostringstream& operator<<(ostringstream&
Subnet<TIME>::state_type& state) {
//Define how to log the state here
return os;
}
}s
#tendif //ATOMIC_MODEL_NAME_HPP

os,

const typename

Page 67 of 83

F‘-’} Carleton

UNIVERSITY

Cadmium

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

Appendix B

Implementation of the receiver atomic class

#ifndef RECEIVER _HPP
#define RECEIVER HPP

#include <cadmium/modeling/ports.hpp>
#include <cadmium/modeling/message bag.hpp>

#include <limits>
#include <assert.h>
#include <string>

#include "../data structures/message.hpp"

using namespace cadmium;
using namespace std;

//Port definition

struct Receiver defs/{
struct out : public out port<Message t> { };
struct in : public in port<Message t> { };

b

template<typename TIME> class Receiver({
public:
//Parameters to be overwritten when instantiating the atomic model
TIME preparationTime;
// default constructor
Receiver () noexcept(

preparationTime = TIME("00:00:10");
state.ackNum = 0;
state.sending = false;

// state definition
struct state type{
int ackNum;
bool sending;
bi
state type state;
// ports definition
using input ports=std::tuple<typename Receiver defs::in>;
using output ports=std::tuple<typename Receiver defs::out>;

// internal transition
void internal transition() {
state.sending = false;

// external transition
void external transition (TIME e, typename
make message bags<input ports>::type mbs) {

Page 68 of 83

Cadmium w Carlet()ﬂ

A tool for DEVS Modeling and Simulation. User’s Guide UNIVERSITY
Canada’s Capital University

f (get _messages<typename Receiver defs::in>(mbs).size()>1)
assert (false && "one message per time unit");
vector<Message_ t> message port in;
message _port in = get messages<typename Receiver defs::in>(mbs);
state.ackNum = message port in[0].bit;
state.sending = true;

// confluence transition
void confluence transition(TIME e, typename
make message bags<input ports>::type mbs) {
internal transition();
external transition(TIME (), std::move (mbs));

// output function

typename make message bags<output ports>::type output() const ({
typename make message bags<output ports>::type bags;
Message t out aux;
out _aux = Message_t (0, state.ackNum);

get messages<typename Receiver defs::out>(bags) .push back(out aux);
return bags;

// time advance function
TIME time advance() const {
TIME next internal;
if (state.sending) {
next internal = preparationTime;
lelse {
next internal = std::numeric limits<TIME>::infinity();
}

return next internal;

friend std::ostringstream& operator<<(std::ostringstream& os, const
typename Receiver<TIME>::state type& i) {

0s << "< " << i.ackNum << "> ";
return os;

b

#endif // RECEIVER HPP

Page 69 of 83

Cadmium w Carlet()ﬂ

A tool for DEVS Modeling and Simulation. User’s Guide

UNIVERSITY

Canada’s Capital University

Appendix C

Implementation of the sender atomic class

#ifndef _ SENDER _HPP__
#define SENDER HPP

#include <cadmium/modeling/ports.hpp>
#include <cadmium/modeling/message bag.hpp>

#include <limits>
#include <assert.h>
#include <string>
#include <random>

#include "../data structures/message.hpp"

using namespace cadmium;
using namespace std;

//Port definition

struct Sender defs/{
struct packetSentOut : public out port<int> { };
struct ackReceivedOut : public out port<int> {};
struct dataOut : public out port<Message t> { };
struct controllIn : public in port<int> { };
struct ackIn : public in port<Message t> { };

b

template<typename TIME> class Sender{
public:

//Parameters to be overwritten when instantiating the atomic model

TIME preparationTime;
TIME timeout;

// default constructor
Sender () noexcept{

preparationTime = TIME("00:00:10");

timeout = TIME("00:00:20");

state.alt bit = 0;

state.next internal = std::numeric_ limits<TIME>:

state.model active false;

// state definition
struct state type{
bool ack;
int packetNum;
int totalPacketNum;
int alt bit;
bool sending;
bool model active;
TIME next internal;
}i
state type state;

Page 70 of 83

rinfinity ()

F&’i Carleton

UNIVERSITY

Cadmium

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

// ports definition

using input ports=std::tuple<typename Sender defs::controlln, typename
Sender defs::ackIn>;

using output ports=std::tuple<typename Sender defs::packetSentOut,
typename Sender defs::ackReceivedOut, typename Sender defs::datalut>;

// internal transition
void internal transition() {
if (state.ack) {
if (state.packetNum < state.totalPacketNum) {
state.packetNum ++;
state.ack = false;
state.alt bit = (state.alt bit + 1) % 2;
state.sending = true;
state.model active = true;
state.next internal = preparationTime;

} else {
state.model active = false;
state.next internal = std::numeric limits<TIME>::infinity();
}
} else{

if (state.sending) {
state.sending = false;
state.model active = true;
state.next internal = timeout;
} else {
state.sending = true;
state.model active = true;
state.next internal = preparationTime;

// external transition
void external transition (TIME e, typename
make message bags<input ports>::type mbs) {
if ((get messages<typename
Sender defs::controlIn>(mbs) .size()+get messages<typename

Sender defs::ackIn>(mbs).size())>1)
assert (false && "one message per time unit");
for (const auto &x : get messages<typename
Sender defs::controlIn>(mbs)) {
if (state.model active == false) {

state.totalPacketNum = x;

if (state.totalPacketNum > 0) {
state.packetNum = 1;
state.ack = false;
state.sending = true;
state.alt bit = 0; //set initial alt bit
state.model active = true;
state.next internal = preparationTime;

lelse(
if (state.next internal =
std::numeric limits<TIME>::infinity()) {

state.next internal = state.next internal - e;

Page 71 of 83

F&’i Carleton

Cadmium
UNIVERSITY

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

}
for (const auto &x : get messages<typename Sender defs::ackIn>(mbs)) {
if (state.model active == true) {
if (state.alt bit == x.bit) {
state.ack = true;
state.sending = false;
state.next internal = TIME("00:00:00");
lelse(
if (state.next internal I=
std::numeric limits<TIME>::infinity()) {
state.next internal = state.next internal - e;

// confluence transition
void confluence transition (TIME e, typename
make message bags<input ports>::type mbs) {
internal transition();
external transition(TIME (), std::move (mbs)):;

// output function
typename make message bags<output ports>::type output () const {
typename make message bags<output ports>::type bags;
Message t out;
if (state.sending) {
out.packet = state.packetNum;
out.bit = state.alt bit;
get messages<typename Sender defs::dataOut>(bags) .push back(out);
get messages<typename
Sender defs::packetSentOut> (bags) .push back (state.packetNum) ;
}else(
if (state.ack) {
get messages<typename
Sender defs::ackReceivedOut> (bags) .push back(state.alt bit);
}
}

return bags;

// time advance function
TIME time advance () const {
return state.next internal;

friend std::ostringstreamé& operator<<(std::ostringstreamé& os, const
typename Sender<TIME>::state type& i) {
os << '"packetNum: " << i.packetNum << " & totalPacketNum: " <<

i.totalPacketNum;
return os;
}
}i
#endif // _ SENDER_HPP__

Page 72 of 83

Cadmium w Carlet()ﬂ

A tool for DEVS Modeling and Simulation. User’s Guide

UNIVERSITY

Canada’s Capital University

Appendix D

Implementation of the ABP coupled model

//Cadmium Simulator headers

#include <cadmium/modeling/ports.hpp>

#include <cadmium/modeling/dynamic model.hpp>

#include <cadmium/modeling/dynamic model translator.hpp>
#include <cadmium/engine/pdevs dynamic_ runner.hpp>
#include <cadmium/logger/common loggers.hpp>

//Json exporter header
#include <dynamic_ json_exporter.hpp>

//Time class header
#include <NDTime.hpp>

//Messages structures
#include "../data structures/message.hpp"

//Atomic model headers

#include <cadmium/basic model/pdevs/iestream.hpp> //Atomic model for inputs

finclude "../atomics/subnet.hpp"
finclude "../atomics/sender.hpp"
finclude "../atomics/receiver.hpp"

//C++ headers
#include <iostream>
#include <chrono>
#include <algorithm>
#include <string>

using namespace std;
using namespace cadmium;
using namespace cadmium:: and cadmium::basic _models::pdevs;

using TIME = NDTime;

/***** Define input port for coupled models *****/
struct inp control : public in port<int>{};

struct inp 1 : public in port<Message t>{};

struct inp 2 : public in port<Message t>{};

/***** Define output ports for coupled model *****/
struct outp ack : public out port<int>{};

struct outp 1 : public out port<Message t>{};
struct outp 2 : public out port<Message t>{};
struct outp pack : public out port<int>{};

/****** Tnput Reader atomic model declaration ****xxkxxkkxkkkxkkxk /

template<typename T>
class InputReader Int : public iestream input<int,T> {
public:

InputReader Int() = default;

Page 73 of 83

F&’i Carleton

UNIVERSITY

Cadmium

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

InputReader Int (const char* file path) : iestream input<int,T>(file path) {}
i

int main(int argc, char ** argv) {

if (argc < 2) {
cout << "Program used with wrong parameters. The program must be invoked
as follow:";
cout << argv|[0] << " path to the input file " << endl;
return 1;

}

/***x*x% Input Reader atomic model instantiation ****xx&kxxddxsdkxsi/

string input = argv[l];

const char * i input = input.c str();

shared ptr<dynamic::modeling::model> input reader =
dynamic::translate::make dynamic_atomic _model<InputReader Int, TIME, const char*
>("input reader" , move (i input));

/****%% Sender atomic model instantiation **xxxxxxikxkxixkxrx/
shared ptr<dynamic::modeling: :model> senderl =
dynamic::translate::make dynamic atomic model<Sender, TIME>("senderl");

/****x** Receiver atomic model instantiation *****xxkkxkkxkkkxk* /
shared ptr<dynamic::modeling::model> receiverl =

dynamic::translate::make dynamic_atomic model<Receiver, TIME>("receiverl");

/****%% Subnet atomic models instantiation ****xxxxxxxxxxxxxxx/

shared ptr<dynamic::modeling: :model> subnetl =
dynamic::translate::make dynamic atomic model<Subnet, TIME>("subnetl");
shared ptr<dynamic::modeling::model> subnet?2 =

dynamic::translate::make dynamic atomic model<Subnet, TIME>("subnet2");

[***xx***NETWORKS COUPLED MODEL* * ** %% %% /

dynamic::modeling::Ports iports Network = {typeid(inp 1), typeid(inp_ 2)};

dynamic::modeling::Ports oports Network = {typeid(outp 1),typeid(outp 2)};

dynamic::modeling: :Models submodels Network = {subnetl, subnet2};

dynamic::modeling::EICs eics Network = {
dynamic::translate::make EIC<inp 1, Subnet defs::in>("subnetl"),
dynamic::translate::make EIC<inp 2, Subnet defs::in>("subnet2")

}i

dynamic::modeling: :EOCs eocs Network = {
dynamic::translate::make EOC<Subnet defs::out,outp 1>("subnetl"),
dynamic::translate::make EOC<Subnet defs::out,outp 2>("subnet2")

}i

dynamic::modeling::ICs ics Network = {};

shared ptr<dynamic::modeling::coupled<TIME>> NETWORK;

NETWORK = make shared<dynamic::modeling::coupled<TIME>> (
"Network", submodels Network, iports Network, oports Network,

eics_ Network, eocs Network, ics Network

)7

[***xxxx*ABP SIMULATOR COUPLED MODEL*******%/

dynamic::modeling::Ports iports ABP = {typeid(inp_ control) };
dynamic::modeling::Ports oports ABP {typeid(outp ack), typeid(outp pack)};
dynamic::modeling: :Models submodels ABP = {senderl, receiverl, NETWORK};
dynamic::modeling::EICs eics ABP = {

Page 74 of 83

F‘-’} Carleton

UNIVERSITY

Cadmium

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

cadmium: :dynamic::translate::make EIC<inp control, Sender defs::controlIn>
("senderl")
i
dynamic::modeling::EOCs eocs ABP = {

dynamic::translate::make EOC<Sender defs::packetSentOut,outp pack>("senderl"),
dynamic::translate::make EOC<Sender defs::ackReceivedOut,outp ack>("senderl")

}i
dynamic::modeling::ICs ics ABP = {

dynamic::translate::make IC<Sender defs::datalut, inp 1>
("senderl", "Network"),

dynamic::translate::make IC<outp 2, Sender defs::ackIn>
("Network", "senderl"),

dynamic::translate::make IC<Receiver defs::out, inp 2>
("receiverl", "Network"),

dynamic::translate::make IC<outp 1, Receiver defs::in>

("Network", "receiverl")
}i
shared ptr<dynamic::modeling::coupled<TIME>> ABP;
ABP = make shared<dynamic::modeling: :coupled<TIME>> (
"ABP", submodels ABP, iports ABP, oports ABP, eics ABP, eocs ABP, ics ABP
)

/*******TOP COUPLED MODEL********/
dynamic::modeling::Ports iports TOP = {};
dynamic::modeling::Ports oports TOP = {typeid(outp_pack),typeid(outp ack)};
dynamic::modeling: :Models submodels TOP = {input reader, ABP};
dynamic::modeling::EICs eics TOP = {};
dynamic::modeling: :EOCs eocs TOP = {
dynamic::translate::make EOC<outp pack,outp pack>("ABP"),
dynamic::translate::make EOC<outp ack,outp ack>("ABP")
}i
dynamic::modeling::ICs ics TOP = ({
dynamic::translate::make IC<iestream input defs<int>::out, inp control>
("input reader", "ABP")
}i
shared ptr<cadmium::dynamic::modeling: :coupled<TIME>> TOP;
TOP = make shared<dynamic::modeling::coupled<TIME>> (
"TOP", submodels TOP, iports TOP, oports TOP, eics TOP, eocs TOP, ics TOP
)i

/*************** Loggers *******************/

static ofstream
out messages("../simulation results/ABP output messages.txt");
struct ossislnkimessages{
static ostreamé& sink () {
return out messages;

i
static ofstream out state("../simulation results/ABP_output state.txt");
struct oss_sink state({
static ostreamé& sink () {
return out state;

}i

Page 75 of 83

Cadmium
A tool for DEVS Modeling and Simulation. User’s Guide

F&’i Carleton

UNIVERSITY
Canada’s Capital University

using state=logger: :logger<logger::logger state,
dynamic::logger::formatter<TIME>, oss_sink state>;

using log messages=logger::logger<logger::logger messages,
dynamic::logger::formatter<TIME>, oss sink messages>;

using global time mes=logger::logger<logger::logger global time,
dynamic::logger::formatter<TIME>, oss sink messages>;

using global time sta=logger::logger<logger::logger global time,
dynamic::logger: :formatter<TIME>, oss sink state>;

using logger top=logger::multilogger<state, log messages, global time mes,

global time sta>;

/************** Runner Call ************************/
dynamic::engine: :runner<NDTime, {0

r.run_until passivate();

logger top> r (TOP,

/***********‘k** JSON Exporter Call khkkhkkhAkAkk Ak khkkhk kKA Kk k k) %k
static ofstream out JSON("ABP_ json.json");
dynamic_export model to json(out JSON, TOP);

return 0;

})

******/

Page 76 of 83

Cadmium

A tool for DEVS Modeling and Simulation. User’s Guide

F‘-’} Carleton

UNIVERSITY

Canada’s Capital University

Appendix E

Message log for the ABP simulation

00:00:00:000

[iestream input defs<int>::out: {}] generated by model input reader

00:00:10:000

[iestream input_defs<int>::out:

00:00:20:000

[Sender defs:

Sender defs:
00:00:23:000

[Subnet defs:

00:00:33:000

[Receiver defs::out:

00:00:36:000

[Subnet defs:

00:00:36:000

[Sender defs:

Sender defs:
00:00:46:000

[Sender defs:

Sender defs:
00:00:49:000

[Subnet defs:

00:00:59:000

[Receiver defs::out:

00:01:02:000

[Subnet defs:

00:01:02:000

[Sender defs:

Sender defs:
00:01:12:000

[Sender defs:

Sender defs:
00:01:15:000

[Subnet defs:

00:01:25:000

[Receiver defs::out:

00:01:28:000

[Subnet defs:

00:01:28:000

[Sender defs:

Sender defs:
00:01:38:000

[Sender defs:

Sender defs:
00:01:41:000

[Subnet defs:

00:01:51:000

[Receiver defs::out:

00:01:54:000

[Subnet defs:

00:01:54:000

[Sender defs:
:dataOut: {}] generated by model senderl

Sender defs:
00:02:04:000

Page 77 of 83

{5}] generated by model input_reader

:packetSentOut: {1}, Sender defs::ackReceivedOut:
:dataOut: {1 0}] generated by model senderl
cout: {1 0}] generated by model subnetl
{0 0}] generated by model receiverl
cout: {0 0}] generated by model subnet2
:packetSentOut: {}, Sender defs::ackReceivedOut:
:dataOut: {}] generated by model senderl
:packetSentOut: {2}, Sender defs::ackReceivedOut:
:dataOut: {2 1}] generated by model senderl
:out: {2 1}] generated by model subnetl
{0 1}] generated by model receiverl
:out: {0 1}] generated by model subnet2
:packetSentOut: {}, Sender defs::ackReceivedOut:
:dataOut: {}] generated by model senderl
:packetSentOut: {3}, Sender defs::ackReceivedOut:
:dataOut: {3 0}] generated by model senderl
:out: {3 0}] generated by model subnetl
{0 0}] generated by model receiverl
:out: {0 0}] generated by model subnet2
:packetSentOut: {}, Sender defs::ackReceivedOut:
:dataOut: {}] generated by model senderl
:packetSentOut: {4}, Sender defs::ackReceivedOut:
:dataOut: {4 1}] generated by model senderl
:out: {4 1}] generated by model subnetl
{0 1}] generated by model receiverl
:out: {0 1}] generated by model subnet2
:packetSentOut: {}, Sender defs::ackReceivedOut:

{0},

{1},

{0},

{1},

Cadmium

A tool for DEVS Modeling and Simulation. User’s Guide

[Sender defs:
:datalOut:

Sender defs:
00:02:07:000

[Subnet defs:

00:02:17:000

[Receiver defs::out:

00:02:20:000

[Subnet defs:

00:02:20:000

[Sender defs:
:datalOut:

Sender defs:
00:15:00:000

[iestream_input_ defs<int>::out:

00:15:10:000

[Sender defs:
:datalOut:

Sender defs:
00:15:13:000

[Subnet defs:

00:15:23:000

[Receiver defs::out:

00:15:26:000

[Subnet defs:

00:15:26:000

[Sender defs:
:dataOut: {}] generated by model senderl

Sender defs:
00:15:36:000

[Sender defs:
:datalOut:

Sender defs:
00:15:39:000

[Subnet defs:

00:15:49:000

[Receiver defs::out:

00:15:52:000

[Subnet defs:

00:15:52:000

[Sender defs:

Sender defs:
00:16:02:000

[Sender defs:

Sender defs:
00:16:22:000

[Sender defs:

Sender defs:
00:16:32:000

[Sender defs:

Sender defs:
00:16:35:000

[Subnet defs:

00:16:45:000

[Receiver defs::out:

00:16:48:000

[Subnet defs:

00:16:48:000

[Sender defs:
:datalOut:

Sender defs:

F&’i Carleton

UNIVERSITY

Canada’s Capital University

:packetSentOut: {5},
{5 0}] generated by model senderl

:out: {5 0}] generated by model subnetl
{0 0}] generated by model receiverl
:out: {0 0}] generated by model subnet2

:packetSentOut: {}, Sender defs::ackReceivedOut:
{}] generated by model senderl

{3}] generated by model input reader

:packetSentOut: {1},
{1 0}] generated by model senderl

:out: {1 0}] generated by model subnetl
{0 0}] generated by model receiverl
:out: {0 0}] generated by model subnet2

:packetSentOut: {}, Sender defs::ackReceivedOut:

:packetSentOut:
{2 1}] generated by model senderl
:out: {2 1}] generated by model subnetl

{0 1}] generated by model receiverl

:out: {0 1}] generated by model subnet2

:packetSentOut: {1, Sender defs::ackReceivedOut:
:dataOut: {}] generated by model senderl

:packetSentOut: {3}, Sender defs::ackReceivedOut:
:dataOut: {3 0}] generated by model senderl

:packetSentOut: {1, Sender defs::ackReceivedOut:
:dataOut: {}] generated by model senderl

:packetSentOut: {3}, Sender defs::ackReceivedOut:
:dataOut: {3 0}] generated by model senderl

:out: {3 0}] generated by model subnetl
{0 0}] generated by model receiverl
cout: {0 0}] generated by model subnet2

:packetSentOut: {}, Sender defs::ackReceivedOut:
{}] generated by model senderl

Sender defs::ackReceivedOut:

Sender defs::ackReceivedOut:

{2}, Sender defs::ackReceivedOut:

{1,

{0},

{0},

{1},

{0},

Page 78 of 83

F‘-’} Carleton

UNIVERSITY

Cadmium

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

Appendix F

State log for the ABP simulation

00:00:00:000

State for model input reader is next time: 00:00:00:000
State for model senderl is packetNum: 0 & totalPacketNum: 0O
State for model receiverl is ackNum: O

State for model subnetl is index: 0 & transmitting: O

State for model subnet2 is index: 0 & transmitting: O
00:00:00:000

State for model input reader is next time: 00:00:10:000
State for model senderl is packetNum: 0 & totalPacketNum: O
State for model receiverl is ackNum: O

State for model subnetl is index: 0 & transmitting: O

State for model subnet2 is index: 0 & transmitting: O
00:00:10:000

State for model input reader is next time: 00:14:50:000
State for model senderl is packetNum: 1 & totalPacketNum: 5
State for model receiverl is ackNum: O

State for model subnetl is index: 0 & transmitting: O

State for model subnet?2 is index: 0 & transmitting: O
00:00:20:000

State for model input reader is next time: 00:14:50:000
State for model senderl is packetNum: 1 & totalPacketNum: 5
State for model receiverl is ackNum: O

State for model subnetl is index: 1 & transmitting: 1

State for model subnet2 is index: 0 & transmitting: O
00:00:23:000

State for model input reader is next time: 00:14:50:000
State for model senderl is packetNum: 1 & totalPacketNum: 5
State for model receiverl is ackNum: O

State for model subnetl is index: 1 & transmitting: O

State for model subnet2 is index: 0 & transmitting: O
00:00:33:000

State for model input reader is next time: 00:14:50:000
State for model senderl is packetNum: 1 & totalPacketNum: 5
State for model receiverl is ackNum: O

State for model subnetl is index: 1 & transmitting: O

State for model subnet2 is index: 1 & transmitting: 1
00:00:36:000

State for model input reader is next time: 00:14:50:000
State for model senderl is packetNum: 1 & totalPacketNum: 5
State for model receiverl is ackNum: O

State for model subnetl is index: 1 & transmitting: O

State for model subnet2 is index: 1 & transmitting: O
00:00:36:000

State for model input reader is next time: 00:14:50:000
State for model senderl is packetNum: 2 & totalPacketNum: 5
State for model receiverl is ackNum: O

State for model subnetl is index: 1 & transmitting: O

State for model subnet2 is index: 1 & transmitting: O
00:00:46:000

State for model input reader is next time: 00:14:50:000

Page 79 of 83

F&’i Carleton

UNIVERSITY

Cadmium

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

State for model senderl is packetNum: 2 & totalPacketNum: 5
State for model receiverl is ackNum: O

State for model subnetl is index: 2 & transmitting: 1

State for model subnet?2 is index: 1 & transmitting: O
00:00:49:000

State for model input reader is next time: 00:14:50:000
State for model senderl is packetNum: 2 & totalPacketNum: 5
State for model receiverl is ackNum: 1

State for model subnetl is index: 2 & transmitting: O

State for model subnet?2 is index: 1 & transmitting: O
00:00:59:000

State for model input reader is next time: 00:14:50:000
State for model senderl is packetNum: 2 & totalPacketNum: 5
State for model receiverl is ackNum: 1

State for model subnetl is index: 2 & transmitting: O

State for model subnet2 is index: 2 & transmitting: 1
00:01:02:000

State for model input reader is next time: 00:14:50:000
State for model senderl is packetNum: 2 & totalPacketNum: 5
State for model receiverl is ackNum: 1

State for model subnetl is index: 2 & transmitting: O

State for model subnet2 is index: 2 & transmitting: O
00:01:02:000

State for model input reader is next time: 00:14:50:000
State for model senderl is packetNum: 3 & totalPacketNum: 5
State for model receiverl is ackNum: 1

State for model subnetl is index: 2 & transmitting: O

State for model subnet?2 is index: 2 & transmitting: O
00:01:12:000

State for model input reader is next time: 00:14:50:000
State for model senderl is packetNum: 3 & totalPacketNum: 5
State for model receiverl is ackNum: 1

State for model subnetl is index: 3 & transmitting: 1

State for model subnet2 is index: 2 & transmitting: O
00:01:15:000

State for model input reader is next time: 00:14:50:000
State for model senderl is packetNum: 3 & totalPacketNum: 5
State for model receiverl is ackNum: O

State for model subnetl is index: 3 & transmitting: O

State for model subnet2 is index: 2 & transmitting: O
00:01:25:000

State for model input reader is next time: 00:14:50:000
State for model senderl is packetNum: 3 & totalPacketNum: 5
State for model receiverl is ackNum: O

State for model subnetl is index: 3 & transmitting: O

State for model subnet2 is index: 3 & transmitting: 1
00:01:28:000

State for model input reader is next time: 00:14:50:000
State for model senderl is packetNum: 3 & totalPacketNum: 5
State for model receiverl is ackNum: O

State for model subnetl is index: 3 & transmitting: O

State for model subnet2 is index: 3 & transmitting: O
00:01:28:000

State for model input reader is next time: 00:14:50:000
State for model senderl is packetNum: 4 & totalPacketNum: 5
State for model receiverl is ackNum: O

State for model subnetl is index: 3 & transmitting: O

Page 80 of 83

F&’i Carleton

UNIVERSITY

Cadmium

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

State for model subnet2 is index: 3 & transmitting: O
00:01:38:000

State for model input reader is next time: 00:14:50:000
State for model senderl is packetNum: 4 & totalPacketNum: 5
State for model receiverl is ackNum: O

State for model subnetl is index: 4 & transmitting: 1

State for model subnet2 is index: 3 & transmitting: O
00:01:41:000

State for model input reader is next time: 00:14:50:000
State for model senderl is packetNum: 4 & totalPacketNum: 5
State for model receiverl is ackNum: 1

State for model subnetl is index: 4 & transmitting: O

State for model subnet2 is index: 3 & transmitting: O
00:01:51:000

State for model input reader is next time: 00:14:50:000
State for model senderl is packetNum: 4 & totalPacketNum: 5
State for model receiverl is ackNum: 1

State for model subnetl is index: 4 & transmitting: O

State for model subnet2 is index: 4 & transmitting: 1
00:01:54:000

State for model input reader is next time: 00:14:50:000
State for model senderl is packetNum: 4 & totalPacketNum: 5
State for model receiverl is ackNum: 1

State for model subnetl is index: 4 & transmitting: O

State for model subnet2 is index: 4 & transmitting: O
00:01:54:000

State for model input reader is next time: 00:14:50:000
State for model senderl is packetNum: 5 & totalPacketNum: 5
State for model receiverl is ackNum: 1

State for model subnetl is index: 4 & transmitting: O

State for model subnet2 is index: 4 & transmitting: O
00:02:04:000

State for model input reader is next time: 00:14:50:000
State for model senderl is packetNum: 5 & totalPacketNum: 5
State for model receiverl is ackNum: 1

State for model subnetl is index: 5 & transmitting: 1

State for model subnet2 is index: 4 & transmitting: O
00:02:07:000

State for model input reader is next time: 00:14:50:000
State for model senderl is packetNum: 5 & totalPacketNum: 5
State for model receiverl is ackNum: O

State for model subnetl is index: 5 & transmitting: O

State for model subnet2 is index: 4 & transmitting: O
00:02:17:000

State for model input reader is next time: 00:14:50:000
State for model senderl is packetNum: 5 & totalPacketNum: 5
State for model receiverl is ackNum: O

State for model subnetl is index: 5 & transmitting: O

State for model subnet2 is index: 5 & transmitting: 1
00:02:20:000

State for model input reader is next time: 00:14:50:000
State for model senderl is packetNum: 5 & totalPacketNum: 5
State for model receiverl is ackNum: O

State for model subnetl is index: 5 & transmitting: O

State for model subnet2 is index: 5 & transmitting: O
00:02:20:000

State for model input reader is next time: 00:14:50:000

Page 81 of 83

F&’i Carleton

UNIVERSITY

Cadmium

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

State for model senderl is packetNum: 5 & totalPacketNum: 5
State for model receiverl is ackNum: O

State for model subnetl is index: 5 & transmitting: O

State for model subnet?2 is index: 5 & transmitting: O
00:15:00:000

State for model input reader is next time: inf

State for model senderl is packetNum: 1 & totalPacketNum: 3
State for model receiverl is ackNum: O

State for model subnetl is index: 5 & transmitting: O

State for model subnet?2 is index: 5 & transmitting: O
00:15:10:000

State for model input reader is next time: inf

State for model senderl is packetNum: 1 & totalPacketNum: 3
State for model receiverl is ackNum: O

State for model subnetl is index: 6 & transmitting: 1

State for model subnet2 is index: 5 & transmitting: O
00:15:13:000

State for model input reader is next time: inf

State for model senderl is packetNum: 1 & totalPacketNum: 3
State for model receiverl is ackNum: O

State for model subnetl is index: 6 & transmitting: O

State for model subnet2 is index: 5 & transmitting: O
00:15:23:000

State for model input reader is next time: inf

State for model senderl is packetNum: 1 & totalPacketNum: 3
State for model receiverl is ackNum: O

State for model subnetl is index: 6 & transmitting: O

State for model subnet2 is index: 6 & transmitting: 1
00:15:26:000

State for model input reader is next time: inf

State for model senderl is packetNum: 1 & totalPacketNum: 3
State for model receiverl is ackNum: O

State for model subnetl is index: 6 & transmitting: O

State for model subnet?2 is index: 6 & transmitting: O
00:15:26:000

State for model input reader is next time: inf

State for model senderl is packetNum: 2 & totalPacketNum: 3
State for model receiverl is ackNum: O

State for model subnetl is index: 6 & transmitting: O

State for model subnet2 is index: 6 & transmitting: O
00:15:36:000

State for model input reader is next time: inf

State for model senderl is packetNum: 2 & totalPacketNum: 3
State for model receiverl is ackNum: O

State for model subnetl is index: 7 & transmitting: 1

State for model subnet2 is index: 6 & transmitting: O
00:15:39:000

State for model input reader is next time: inf

State for model senderl is packetNum: 2 & totalPacketNum: 3
State for model receiverl is ackNum: 1

State for model subnetl is index: 7 & transmitting: O

State for model subnet2 is index: 6 & transmitting: O
00:15:49:000

State for model input reader is next time: inf

State for model senderl is packetNum: 2 & totalPacketNum: 3
State for model receiverl is ackNum: 1

State for model subnetl is index: 7 & transmitting: O

Page 82 of 83

F&’i Carleton

UNIVERSITY

Cadmium

A tool for DEVS Modeling and Simulation. User’s Guide
Canada’s Capital University

State for model subnet2 is index: 7 & transmitting: 1
00:15:52:000

State for model input reader is next time: inf

State for model senderl is packetNum: 2 & totalPacketNum: 3
State for model receiverl is ackNum: 1

State for model subnetl is index: 7 & transmitting: O

State for model subnet2 is index: 7 & transmitting: O
00:15:52:000

State for model input reader is next time: inf

State for model senderl is packetNum: 3 & totalPacketNum: 3
State for model receiverl is ackNum: 1

State for model subnetl is index: 7 & transmitting: O

State for model subnet2 is index: 7 & transmitting: O
00:16:02:000

State for model input reader is next time: inf

State for model senderl is packetNum: 3 & totalPacketNum: 3
State for model receiverl is ackNum: 1

State for model subnetl is index: 8 & transmitting: O

State for model subnet?2 is index: 7 & transmitting: O
00:16:22:000

State for model input reader is next time: inf

State for model senderl is packetNum: 3 & totalPacketNum: 3
State for model receiverl is ackNum: 1

State for model subnetl is index: 8 & transmitting: O

State for model subnet2 is index: 7 & transmitting: O
00:16:32:000

State for model input reader is next time: inf

State for model senderl is packetNum: 3 & totalPacketNum: 3
State for model receiverl is ackNum: 1

State for model subnetl is index: 9 & transmitting: 1

State for model subnet2 is index: 7 & transmitting: O
00:16:35:000

State for model input reader is next time: inf

State for model senderl is packetNum: 3 & totalPacketNum: 3
State for model receiverl is ackNum: O

State for model subnetl is index: 9 & transmitting: O

State for model subnet2 is index: 7 & transmitting: O
00:16:45:000

State for model input reader is next time: inf

State for model senderl is packetNum: 3 & totalPacketNum: 3
State for model receiverl is ackNum: O

State for model subnetl is index: 9 & transmitting: O

State for model subnet2 is index: 8 & transmitting: 1
00:16:48:000

State for model input reader is next time: inf

State for model senderl is packetNum: 3 & totalPacketNum: 3
State for model receiverl is ackNum: O

State for model subnetl is index: 9 & transmitting: O

State for model subnet2 is index: 8 & transmitting: O
00:16:48:000

State for model input reader is next time: inf

State for model senderl is packetNum: 3 & totalPacketNum: 3
State for model receiverl is ackNum: O

State for model subnetl is index: 9 & transmitting: O

State for model subnet?2 is index: 8 & transmitting: O

Page 83 of 83

