Subroutines

Thorne : Chapter 8
(Irvine Edition IV : Section 5.5)

SYSC3006

Subroutines

- A sequence of instructions that can be called from various
places in the program

- Allows the same operation to be performed with different
parameters

- Simplifies the design of a complex program by using the
divide-and-conquer approach

- Simplifies testing and maintenance: separation of concerns

- Data structures handled by different subroutines: information
hiding

-In a high-level language, they are called : function, procedure,

method
-In assembly languages, they are called : subroutine

SYSC3006

Subroutine Processing Subroutines are a form of control flow

 Control is passed to the activity
 The activity iIs executed

program start e Control is returned to the invocation point

|

<call> subroutine x
next instruction <

subroutine X

<return>

Program flow during a subroutine call

SYSC3006 3

Multiple Subroutine Calls

program
first :
: : multiple
invocation :)
o invocation
S S aCt“lty' points ???
second || — < done
Invocation how can the activity
< know which one to
“return” to?

During invocation, the invocation point must be saved.
During return, the invocation point must be restored.
SYSC3006

Machine Level Implementation of Subroutines

CALL target ; Invoke target subroutine
Execution Semantics:

1. Save the return address (address of next instruction) on
run-time stack

< IP value AFTER

fetching CALL
instruction!
2. Transfer control to activity
target
RET : return from subroutine

Execution Semantics:
1. Return control to address currently saved on top of stack

SYSC3006

Subroutine Processing

CALL activity | | Progtam
after fetch .
IP = = Next A activity:
PUSH IP CALL activity
IMP activity | | Next RET
POP IP
after execution
IP == activity after execution
<p Next IP = = Next
W Next <
old top Next
SP |+ old top
Stack
N.B. Only works if Stack

responsibility of
subroutine !!

return address is on top L
of stack when RET is
executed !!! SYSC3006

Nested Subroutine Calls

l program
CALL%»activityl:
Nextl: w
CALL == activity2:
Next2: \ m
irf RET
Next2
Nextl Nextl
old top old top old top

SYSC3006

Runtime Stack

Assembly Support : PROC Directive

, a subroutine Is any sequence of instructions
that end in a return statement

Intel Assembly has additional directives that provide more
structure for encapsulation of the subroutine

Subroutine
.code .code
EXTRN :PROC PROC NEAR
PROC PUBLIC
MOV AX, @data PUSH BP
MOV DS, AX MOV BP, SP
CALL .
. POP BP
MOV AX, 4C00 RET
INT 21h ENDP
ENDP END
END

SYSC3006

Issues in Subroutine Calls

We shall define subroutines using C-like prototypes

Return TYPE ~ name Arg“;}ment list : type name
N _
void display (word number, byte base)

// Display the given number
// base = 0 for binary, =1 for HEX

byte absoluteValue (word number)
// Return the absolute value of the given
number

boolean getSwitches (byte &settings)

// Return the current settings of the
switches and true 1Tt the switches
bounced.

SYSC3006

Issues in Subroutine Calls : Scope and Arguments

unsigned 1Int displayAddress; |Global variable

int main

{
INt number = 5, number2 = 6;

/display (number2, 0); |number2isaPARAMETER

Local number is an ARGUMENT
variable | }

\\\\zijd display (word number, byte base)

int divisor, digit;

IT (base == 0) divisor = 2 ;display i1In bin
else divisoy = 16; display in hex

digit = number / divisor;

displayAddress++;

SYSC3006 10

Issues in Subroutine Calls : Value versus Reference

int main ()

{

int number
displayl (number2, 0);
display2 (&number, 0);

}

number2 = 6;

By Value

void displayl (word number, byte Dbase)

{

number

}

number / divisor;

By Reference

void display2 (word &number, byte base)

{

number

number / divisor;

SYSC3006

Implementing Parameter Passing

Parameters can be passed in various ways :
1. Global Variables

2. Registers

3. On the stack.

Global Variables
— The parameter is a shared (static) memory variable (in DS!)
— Parameters Is passed when

e Caller puts the value in the variable

e Callee reads the value from the variable.

SYSC3006 12

Parameter Passing using Global Variables

-data . - .
value DW 2 C prototype: void activity(word aValue)
Caller MOV Value, 245
CALL activity
Callee activity PROC
MOV AX, Value
RET

activity ENDP

Passing parameters via global variables is NOT widely used in practice
— Consider nested subroutines (eg. a subroutine that calls itself)

— Consider large programs with many subroutines, each with many
parameters;

— However, sometimes it is the only way (eg. interrupts), later!
SYSC3006 13

Parameter Passing using Registers

Parameters can alternatively be passed in registers
— Each parameter is assigned to a particular register
— Caller would load the registers with appropriate values
— Callee would read registers to get the value.

Register Parameters are used in DOS function call

MOV AH,9 ; AH = OS Function (9=Print)
MOV DX, OFFSET message ; DX = Address of msg
INT 21h ; “Call” DOS function

Advantage : Little overhead since values are in registers
Disadvantage : There is a finite number of registers
— What to do if more parameters than registers?

SYSC3006 14

POLICY for SYSC-3006

Parameter Passing using the Runtime Stack

» Parameters can alternatively be passed on the runtime stack
— Caller pushes the parameters onto the stack
— Callee indexes into stack to access arguments

C prototype: void activity(word aValue)

Caller MOV DX, 245
PUSH DX
CALL activity

Callee activity PROC
MOV BP, SP
MOV AX, [BP + ? 7] |Indirectaddressing!

RET
activity ENDP

SYSC3006

15

Why does SYSC-3006 use Parameter Passing via Stack ?

« Let’s look at nested subroutine calls again ...

void main ()

{

sub1(245)

}

Stack frame

void subl(word value)

{

sub2(value*2)

}

void sub2(word x)

{

sub1(3):
}

Return to main

245

Return to subl
490
Return to main
245

SYSC3006

Return to sub2

3

Return to subl

490

Return to main

245

16

SYSC-3006 Subroutine Policies — Register Save/Restore

e Problem : Subroutines need to use registers. What if the registers
contain values that are needed by the caller upon return?

* Solutions: Assign responsibility to either caller or callee

1. Caller has the responsibility to save all useful values before
calling the subroutine.

« The callee is then free to use any register
e Upon return, the caller restores the useful values

2. Callee (subroutine) must save any register before it uses it and
restore it to its original value before returning.

o (Caller is guaranteed that its registers are the same before
and after the subroutine call.

* More efficient because subroutine knows what registers it
uses.

* 3006 Policy : Solution 2 with one exception : The register(s) used

to pass out return TYPE cannot be preserved
SYSC3006 17

SYSC-3006 Subroutine Policies — Local VVariables

* Problem : Subroutines often have local variables that exist only for the
duration of the subroutine.

— Example
double average (double array[], int number)
{
double total = 0;
for (int i=0; i< number; i++)
{ Local Variables
total += array[l];

}

double result = total / number;
return result;

}

 SYSC-3006 Policy : Local variables are maintained as register
variables or by using the stack as a temporary storage buffer.

SYSC3006 18

SYSC-3006 Subroutine Policies — Parameter Passing

e 3006 Policy : Parameters shall be passed on the stack.
— The caller must push the parameters on the stack before

calling

o With multiple parameters, parameters are pushed from

— The caller must remove the parameters from the stack upon

return.

base is in AL

Example: void\display (word number, byte base)
Byte parameters are passed

Caller: MOV AL, O ; binary |[iyLSB ofaword
PUSH AX

PUSH [BX+Sl]
CALL display
ADD SP, 4

number is at address (BX+SI)

Parameters can be cleared by

POPIng or by simply adjusting the

SP. Why ADD ? Why 4 ?

SYSC3006

19

SYSC-3006 Subroutine Policies — Parameter Passing

— The callee must index into the stack to access the parameter
values, using a

- A IS a consistent view of the stack upon
beginning the of the subroutine.

e It provides a uniform method for accessing parameters
passed on the stack using BP based indirect addressing
regardless of the number of arguments and/or the
number of registers saved/restored by the subroutine

SYSC3006 20

SYSC-3006 Subroutine Policies — Stack Frame

anySub proc
PUSH BP
MOV BP, SP
; PUSH any registers used

}

Standard Entry Code

- Core code of the subroutine where the work

1S done

; POP all registers that were saved

; (In reverse orderl)
POP BP
RET

anySub endp

SYSC3006

Standard Exit Code

¥

21

SYSC-3006 Subroutine Policies — Stack Frame

 The stack frame associated with the subroutine skeleton

Stack Frame is another policy

After saving registers

SP | saved registers | +—— BP — constant
PUSH BP
> «— +
ey SP} BP old BP BP + 0
Callee return address «— BP+2
Caller arguments «— BP + 4 or more

After PUSH BP

BP+4 is always the
leftmost argument

SYSC3006 22

SYSC-3006 Subroutine Policies — Stack Frame

« Example : Recall our previous example
void display(word Value, byte Base);

Call set up: (By the caller)

MOV AL,O0 ; Base = binary
PUSH AX 5
PUSH [BX + Sl] ; Value to display 2
CALL Displayl6 After CALL | SP > return address
ADD SP, 4 _
After PUSH [BX + SI] (& after RET in sub)| SP »| Value = mem[BX+3]
After PUSHAX |Sp Base =0
At the beginning (& After ADD SP, 4) | gp " |

SYSC3006 23

SYSC-3006 Subroutine Policies — Stack Frame

Subroutine Implementation (In body of Display)

display PROC

\ 4

saved value of BX

saved value of AX

~ PUSH BP

) MOV BP, SP p
PUSH Ax////////////”

_ PUSH BX
;. Get value BP
MOV AX, [BP + 4] |SP

\ 4

old BP

; 1T (base == binary)
MOV BL, [BP+6]
CMP BL, O

POP BX
{ POP

POP BP

RET

display ENDP SYSC3006

return address

Value

Base

BP +2
BP + 4
BP+6

24

Issue : pass by value vs. pass by reference

* Definition : Pass by value
— The argument is a copy of the value of interest

— In high-level languages like C++, pass-by-value is the default
way to pass simple variables (primitive types like int, char,

float)

e Example : Pass-by-Value

Int myValue;
myValue = 245;
display(myValue, 0);

SYSC3006

SP —

return address

245

0

myValue dw 245

MOV AL,0
PUSH AX

PUSH myVaIue{
CALL display
ADD SP, 4

the address!

25

Content of myValue
iIs PUSHed but not

Issue : pass by value vs. pass by reference

When passing-by-value : Inside the subroutine, arguments passed in the
stack can be treated like local variables

— The contents of the stack can be read ... and modified

— The variable is local and exists ONLY during the subroutine
execution

o Why?

» Consequence : Any modifications to the arguments on the
stack are not persistent and cannot be seen by the caller

In Previous DisplayExample Sp J saved value of BX
; ;rlt]/leyil/JabIL(()aUtme can change the <aved value of AX
MOV [BP + 4], AX BP old BP
- The change will be made to the BP + 2 return address
copy on the stack, and not to the BP + 4 245
original variable.
BP + 6 0

SYSC3006 26

Issue : pass by value vs. pass by reference

Definition : Pass by reference
— The argument is the address of a memory variable
— Used when you need access to the caller’s variables either :
* The purpose of subroutine is to modify caller’s variables

» To pass large composite structures that would require too much
time/space on the stack if passed-by-value.

In high-level languages,
— Default : Pass-by-value int value;

— Pass-by-reference requires additional syntax : & operator.
int & value;

SYSC3006 27

Issue : pass by value vs. pass by reference

 Example : Pass by reference
void SortArray (int & SortMe]| |, int Size);
; array declaration
X DW
DW

SizeOfX DW

Caller :
PUSH SizeOfX
MOV AX, OFFSET X
PUSH AX pass offset of array X
CALL SortArray why not: PUSH X??7??

ADD SP, 4
SYSC3006

Issue : pass by value vs. pass by reference

 Example : Pass by reference

SP
BP
BP + 2
BP+4
Callee : Inside the subroutine SortArray: Bp+6
MOV BX,[BP+4] ;getarray address
MOV SILO ;array index =0
MOV AX,[BX + Sl] ;getarray element

SYSC3006

A\ 4

saved registers

A\ 4

old BP

return address

address of X

copy of
SizeOfX

Argument ——

29

SYSC-3006 Subroutine Policies — Return Types

Subroutines can Information to the caller in two ways
1. Return (a) value(s) in (a) variable(s) that is (are) passed-by-
reference

2. Return a value via the subroutine’s

Example :
boolean AbsValue(Int & X, Int Y);

where boolean is usually a byte, with 0 = false,
non-zero = true

SYSC3006 30

SYSC-3006 Subroutine Policies — Return Types

Passing the return type back from the subroutine to the caller
could be done in any of the three ways used to pass parameters
In .

— Global variables (same troubles as before)

— On the stack

« For example, after passing any parameters, the caller
could allocate an extra word in stack before call

e SUB SP, 2
e callee could return value there

— Via registers (There is only one return type, need only one
register)

SYSC3006

31

SYSC-3006 Subroutine Policies — Return Types

Return-Value POLICY in SYSC-3006 (same as most High Level
Languages)

— return 8-bit value in AL

— return 16-bit value in AX

— return 32-bit value in DX:AX (as with 32-bit values for DIV
Instruction)

Implications of Return-Value Policy
— do not save/restore register(s) used for return-value
— the purpose of the subroutine is to return a value in the register(s)

— 1f 8-bit value (returned in AL) — subroutine is not responsible for
persistence of AH value

SYSC3006 32

Are the SYSC-3006 Subroutine Policies Practical ?

» Is it worth the effort to understand the 3006 Subroutine policies ?
» The policies follow industry practices for compiler-writing
— Proof of the pudding : Additional Intel Directives for Subroutines

INVOKE
INVOKE display, 256, 0 generates PUSH 0
PUSH 256
CALL display
ADDR

INVOKE display, ADDR myValue, 0 generates PUSH 0
PUSH offset myValue
CALL display
An alternate form of RET

RET immediate Add the immediate value to SP after
popping the return address (Why?)

SYSC3006 33

Intra- versus Inter-Segment Subroutine Calls

All of the examples of subroutines so far use intra-segment
control flow

— Only the IP is saved/changed/restored.
— Terminology : These subroutines are

In large programs and/or software libraries, subroutines can be
located in different code segment

— Require inter-segment control flow where both the CS and
the IP are saved/changed/restored.

— Terminology : These subroutines are

The PROC directive uses an optional modifier to denote the
type of control flow

— PROC NEAR or PROC FAR
— By default, without any modifier, a subroutine is NEAR.

SYSC3006

34

Example : NEAR versus FAR subroutines

« The PROC modifier influences how a subroutine is called

nearSub PROC NEAR farSub PROC FAR

iiET Execution : POP IP iiET Execution : POP
nearSub ENDP farSub ENDP [CS:IP
Execution : PUSH IP | * Execution : PUSH CS:IP
CALL nearSub IP= nearsub | CALL farSub CS:IP = farSub

How does the program know if it is NEAR or FAR ?

Don’t we need different RET statements ?

Draw a picture of a FAR stack frame?Which is pushed first:CS or IP?
Can a subroutine be both NEAR and FAR ?

Can a subroutine call a FAR subroutine that is in the same segment ?

Ok e

SYSC3006 35

0000
0000
0000
0003
0007

0007
0007
0008

0008
0008
0009

NEAR versus FAR subroutines

ES 0004

_code
main PROC
CALL nearsub

OE E8 0001 CALL Tfarsub

C3

CB

main ENDP

. NEAR subroutine
nearsub PROC NEAR
RET

nearsub ENDP

. FAR subroutine

farsub PROC FAR
RET

farsub ENDP

END main

SYSC3006

E8 — CALL
0E — PUSH CS

C3 — RET (NEAR)
Intra-segment

CB— RET (FAR)
Inter-segment

36

