
Subroutines

Thorne : Chapter 8Thorne : Chapter 8
(Irvine Edition IV : Section 5.5)

SYSC3006 1

SubroutinesSubroutines

- A sequence of instructions that can be called from various
places in the programp p g
- Allows the same operation to be performed with different
parameters
- Simplifies the design of a complex program by using theSimplifies the design of a complex program by using the
divide-and-conquer approach
- Simplifies testing and maintenance: separation of concerns
- Data structures handled by different subroutines: informationData structures handled by different subroutines: information
hiding

-In a high-level language they are called : function procedure-In a high-level language, they are called : function, procedure,
method
-In assembly languages, they are called : subroutine

SYSC3006 2

Subroutine Processing S b ti f f t l flSubroutine Processing

program start

Subroutines are a form of control flow
• Control is passed to the activity
• The activity is executed
• Control is returned to the invocation point

.

.

.

program start • Control is returned to the invocation point

<call> subroutine_x
next instruction subroutine_x

.

.

.

.

.

.

.

.

<return>

SYSC3006 3

Program flow during a subroutine call

Multiple Subroutine Calls

program

first
i ti multiple

activity:
invocation p

invocation
points ???

donesecond
invocation how can the activity

know which one to
“return” to?

During invocation, the invocation point must be saved.

SYSC3006 4

g , p
During return, the invocation point must be restored.

Machine Level Implementation of Subroutines

CALL target ; invoke target subroutine
E ti S tiExecution Semantics:

1. Save the return address (address of next instruction) on
i krun-time stack
PUSH IP

f l i i

IP value AFTER
fetching CALL
instruction!

2. Transfer control to activity
JMP target

RET ; return from subroutine
Execution Semantics:

1. Return control to address currently saved on top of stack

SYSC3006 5

POP IP

Subroutine Processing

program

activity:

CALL activity
after fetch

IP = = Next
CALL activity
Next:

y

RET

IP = = Next
PUSH IP
JMP activity

Next
RET
POP IP

after execution
IP == activity

SP Next

SP

Next

old topafter execution
IP = = Next

S

SP Next

old top
SP

Next

old top

Stack

N.B. Only works if
return address is on top responsibility of

Stack

SYSC3006 6

return address is on top
of stack when RET is

executed !!!

p y
subroutine !!

Nested Subroutine CallsNested Subroutine Calls

program

CALL
Next1:

activity1:

CALL
Next2:

activity2:

RET RET

Next1
Next2
Next1 Runtime Stack

SYSC3006 7

old top old top old top

Assembly Support : PROC Directive

• Informally, a subroutine is any named sequence of instructions
that end in a return statementthat end in a return statement

• Intel Assembly has additional directives that provide more
structure for encapsulation of the subroutine

.code .code
EXTRN subr:PROC subr PROC NEAR
main PROC PUBLIC subr

Subroutine

main PROC PUBLIC subr
MOV AX, @data PUSH BP
MOV DS, AX MOV BP, SP
… …
CALL subr …
… POP BP
MOV AX, 4C00 RET
INT 21h subr ENDP

SYSC3006 8

main ENDP END
END main

Issues in Subroutine Calls

We shall define subroutines using C-like prototypes

Return TYPE name Argument list : type name
void display (word number, byte base)
// Display the given number
// base = 0 for binary, =1 for HEX

byte absoluteValue (word number)
// Return the absolute value of the given

bnumber

boolean getSwitches (byte &settings)
// Return the current settings of the// Return the current settings of the

switches and true if the switches
bounced.

SYSC3006 9

Issues in Subroutine Calls : Scope and Arguments

unsigned int displayAddress;

int main ()

Global variable

()
{

int number = 5, number2 = 6;
display (number2, 0); number2 is a PARAMETER
…

}
void display (word number, byte base)
{

number is an ARGUMENTLocal
variable

{
int divisor, digit;
if (base == 0) divisor = 2 ;display in bin
else divisor = 16; display in hexelse divisor = 16; display in hex
digit = number / divisor;
…
displayAddress++;

SYSC3006 10

displayAddress++;
}

Issues in Subroutine Calls : Value versus Reference

int main ()
{

int number = 5, number2 = 6;, ;
display1 (number2, 0);
display2 (&number, 0);

} By Value
void display1 (word number, byte base)
{

…
b b / di inumber = number / divisor;

}
void display2 (word &number, byte base)
{

By Reference

{
…
number = number / divisor;

}

SYSC3006 11

}

Implementing Parameter Passing

• Parameters can be passed in various ways :
1. Global Variables
2 R i t2. Registers
3. On the stack.

• Global Variables
– The parameter is a shared (static) memory variable (in DS!)
– Parameters is passed when

• Caller puts the value in the variable
• Callee reads the value from the variable

SYSC3006 12

Callee reads the value from the variable.

Parameter Passing using Global VariablesParameter Passing using Global Variables

Caller MOV Value, 245

C prototype: void activity(word aValue).data
Value DW ?

,
CALL activity
. . .

Callee activity PROCCallee activity PROC
MOV AX, Value
. . .
RET

activity ENDP

Passing parameters via global variables is NOT widely used in practiceass g pa a e e s v a g oba va ab es s NO w de y used p ac ce
– Consider nested subroutines (eg. a subroutine that calls itself)
– Consider large programs with many subroutines, each with many

parameters;

SYSC3006 13

parameters;
– However, sometimes it is the only way (eg. interrupts), later!

Parameter Passing using RegistersParameter Passing using Registers

• Parameters can alternatively be passed in registers
– Each parameter is assigned to a particular register
– Caller would load the registers with appropriate values
– Callee would read registers to get the value.g g

• Register Parameters are used in DOS function call
MOV AH, 9 ; AH = OS Function (9=Print)
MOV DX OFFSET message ; DX = Address of msgMOV DX, OFFSET message ; DX = Address of msg
INT 21h ; “Call” DOS function

• Advantage : Little overhead since values are in registers
• Disadvantage : There is a finite number of registers

– What to do if more parameters than registers?

SYSC3006 14

p g

Parameter Passing using the Runtime Stack
POLICY for SYSC-3006

Parameter Passing using the Runtime Stack

• Parameters can alternatively be passed on the runtime stack
– Caller pushes the parameters onto the stack
– Callee indexes into stack to access arguments

C prototype: void activity(word aValue)

Caller MOV DX, 245
PUSH DX
CALL activity

C prototype: void activity(word aValue)

CALL activity
. . .

Callee activity PROC
MOV BP, SPMOV BP, SP
MOV AX, [BP + ?]
. . .
RET

Indirect addressing!

SYSC3006 15

activity ENDP

Why does SYSC-3006 use Parameter Passing via Stack ?

• Let’s look at nested subroutine calls again …

void sub2(word x)void main () id b (d l) void sub2(word x)
{

…
sub1(3);

void main ()
{

…
sub1(245)

void sub1(word value)
{

…
sub2(value*2) sub1(3);

}
sub1(245)

}
sub2(value*2)

}

Return to sub2

Return to main

Return to sub1
490
Return to main

3
Return to sub1
490

Stack frame

SYSC3006 16

Return to main
245

Return to main
245

490
Return to main
245

SYSC-3006 Subroutine Policies – Register Save/Restore

• Problem : Subroutines need to use registers. What if the registers
contain values that are needed by the caller upon return?

• Solutions: Assign responsibility to either caller or callee
1. Caller has the responsibility to save all useful values before

calling the subroutine. g
• The callee is then free to use any register
• Upon return, the caller restores the useful values

2 Callee (subroutine) must save any register before it uses it and2. Callee (subroutine) must save any register before it uses it and
restore it to its original value before returning.
• Caller is guaranteed that its registers are the same before

and after the subroutine calland after the subroutine call.
• More efficient because subroutine knows what registers it

uses.
3006 P li S l ti 2 ith ti Th i t () d

SYSC3006 17

• 3006 Policy : Solution 2 with one exception : The register(s) used
to pass out return TYPE cannot be preserved

SYSC-3006 Subroutine Policies – Local VariablesSYSC 3006 Subroutine Policies Local Variables

• Problem : Subroutines often have local variables that exist only for the
duration of the subroutine.
– Example

double average (double array[], int number)
{

double total = 0;
for (int i=0; i< number; i++)
{ Local Variables

total += array[I];
}
double result = total / number;
return result;

}
• SYSC-3006 Policy : Local variables are maintained as register

SYSC3006 18

y g
variables or by using the stack as a temporary storage buffer.

SYSC-3006 Subroutine Policies – Parameter Passing

• 3006 Policy : Parameters shall be passed on the stack.
– The caller must push the parameters on the stack before p p

calling
• With multiple parameters, parameters are pushed from

right-to-leftg
– The caller must remove the parameters from the stack upon

return.
base is in AL

Example: void display (word number, byte base)

Caller: MOV AL, 0 ; binary
Byte parameters are passed
in LSB of a word

PUSH AX
PUSH [BX+SI]
CALL display
ADD SP 4

Parameters can be cleared by
POPing or by simply adjusting the

SYSC3006 19

ADD SP, 4 g y p y j g
SP. Why ADD ? Why 4 ?

number is at address (BX+SI)

SYSC 3006 Subroutine Policies Parameter PassingSYSC-3006 Subroutine Policies – Parameter Passing

– The callee must index into the stack to access the parameter
values, using a stack frame …., g

– A stack frame is a consistent view of the stack upon
b i i th d f th b tibeginning the core code of the subroutine.
• It provides a uniform method for accessing parameters

passed on the stack using BP based indirect addressing
regardless of the number of arguments and/or the
number of registers saved/restored by the subroutine

SYSC3006 20

SYSC 3006 Subroutine Policies Stack FrameSYSC-3006 Subroutine Policies – Stack Frame

anySub proc
PUSH BP

S d d E C d
MOV BP, SP
; PUSH any registers used
; Core code of the subroutine where the work

Standard Entry Code

; Core code of the subroutine where the work
is done

; POP all registers that were saved
(i d !); (in reverse order!)

POP BP
RET

Standard Exit Code

anySub endp

SYSC3006 21

SYSC 3006 Subroutine Policies Stack FrameSYSC-3006 Subroutine Policies – Stack Frame

• The stack frame associated with the subroutine skeleton

Stack Frame is another policy

After saving registers

Stack Frame is another policy

old BP

saved registersSP

BP

BP – constant

BP + 0PUSH BP
MOV BP SP

arguments
return address BP + 2

BP + 4 or moreCaller

Callee
MOV BP, SP

After PUSH BP
BP+4 is always the
leftmost argument

SYSC3006 22

SYSC 3006 Subroutine Policies Stack FrameSYSC-3006 Subroutine Policies – Stack Frame

• Example : Recall our previous example
void display(word Value byte Base);void display(word Value, byte Base);

Call set up: (By the caller)

MOV AL, 0 ; Base = binary
PUSH AX ?PUSH AX
PUSH [BX + SI] ; Value to display
CALL Display16
ADD SP 4

return address
?

SP

?

After CALL
ADD SP, 4 Value = mem[BX+SI]

Base = 0
SPAfter PUSH [BX + SI] (& after RET in sub)

SPAt the beginning (& After ADD SP 4)
SPAfter PUSH AX

SYSC3006 23

SPAt the beginning (& After ADD SP, 4)

SYSC-3006 Subroutine Policies – Stack Frame
Subroutine Implementation (In body of Display)
display PROC

PUSH BP
MOV BP, SP
PUSH AX
PUSH BX

SP
saved value of AX

saved value of BX

; Get value
MOV AX, [BP + 4]
; if (base == binary) Value

return address
old BPBP

BP + 2
BP + 4

SP
; (y)
MOV BL, [BP+6]
CMP BL, 0
…

Base BP + 6

…
POP BX
POP AX
POP BP

SYSC3006 24

POP BP
RET

display ENDP

Issue : pass by value vs. pass by reference

• Definition : Pass by value
– The argument is a copy of the value of interest
– In high-level languages like C++, pass-by-value is the default

way to pass simple variables (primitive types like int, char,
float)

dd

• Example : Pass-by-Value 245
return addressSP

0

myValue dw 245
int myValue; MOV AL,0
myValue = 245; PUSH AXmyValue = 245; PUSH AX
display(myValue, 0); PUSH myValue

CALL display

Content of myValue
is PUSHed but not
the address!

SYSC3006 25

ADD SP, 4

Issue : pass by value vs. pass by reference
When passing-by-value : Inside the subroutine, arguments passed in the

stack can be treated like local variables
The contents of the stack can be read and modified– The contents of the stack can be read … and modified

– The variable is local and exists ONLY during the subroutine
execution

Wh ?• Why ?
• Consequence : Any modifications to the arguments on the

stack are not persistent and cannot be seen by the caller

SP ld BP

SP
saved value of AX

saved value of BX

BP

In Previous DisplayExample
- The subroutine can change the copy
of MyValue

SP

245
return address

old BPBP

BP + 2
BP + 4

MOV [BP + 4], AX
- The change will be made to the

copy on the stack, and not to the
original variable

SYSC3006 26

0BP + 6
original variable.

Issue : pass by value vs. pass by reference

• Definition : Pass by reference
– The argument is the address of a memory variable

Used when you need access to the caller’s variables either :– Used when you need access to the caller s variables either :
• The purpose of subroutine is to modify caller’s variables
• To pass large composite structures that would require too much

ti / th t k if d b ltime/space on the stack if passed-by-value.

• In high-level languages,
– Default : Pass-by-value int value;

– Pass-by-reference requires additional syntax : & operator.
int & value;

SYSC3006 27

;

Issue : pass by value vs. pass by reference
• Example : Pass by reference

void SortArray (int & SortMe[], int Size);

; array declaration
X DW

DW
. . .

SizeOfX DW

Caller :
PUSH SizeOfX
MOV AX, OFFSET X
PUSH AX
CALL SortArray

pass offset of array X

why not: PUSH X????

SYSC3006 28

y
ADD SP, 4

y

Issue : pass by value vs. pass by reference
• Example : Pass by reference

old BPBP

SP saved registers

C ll I id th b ti S tA
address of X

return address
old BPBP

BP + 2
BP + 4

Callee : Inside the subroutine SortArray:

MOV BX, [BP + 4] ; get array address
MOV SI 0 i d 0

copy of
SizeOfX

BP + 6

ArgumentMOV SI, 0 ; array index = 0
. . .
MOV AX, [BX + SI] ; get array element

Argument

SYSC3006 29

SYSC-3006 Subroutine Policies – Return Types

Subroutines can return information to the caller in two ways
1. Return (a) value(s) in (a) variable(s) that is (are) passed-by-

referencereference
2. Return a value via the subroutine’s return type

Example :
boolean AbsValue(int & X, int Y);

where boolean is usually a byte, with 0 = false,
tnon-zero = true

SYSC3006 30

SYSC-3006 Subroutine Policies – Return Types

• Passing the return type back from the subroutine to the caller
could be done in any of the three ways used to pass parameters
in .
– Global variables (same troubles as before)
– On the stack

• For example after passing any parameters the callerFor example, after passing any parameters, the caller
could allocate an extra word in stack before call

• SUB SP, 2
• callee could return value there• callee could return value there

– Via registers (There is only one return type, need only one
register)

SYSC3006 31

SYSC 3006 Subroutine Policies Return TypesSYSC-3006 Subroutine Policies – Return Types

• Return-Value POLICY in SYSC-3006 (same as most High Level
Languages)
– return 8-bit value in AL
– return 16-bit value in AX
– return 32-bit value in DX:AX (as with 32-bit values for DIV

instruction)

• Implications of Return-Value Policy
– do not save/restore register(s) used for return-value

h f h b i i l i h i ()– the purpose of the subroutine is to return a value in the register(s)
– if 8-bit value (returned in AL) – subroutine is not responsible for

persistence of AH value

SYSC3006 32

Are the SYSC-3006 Subroutine Policies Practical ?
• Is it worth the effort to understand the 3006 Subroutine policies ?
• The policies follow industry practices for compiler-writing

– Proof of the pudding : Additional Intel Directives for SubroutinesProof of the pudding : Additional Intel Directives for Subroutines

INVOKE
INVOKE display 256 0 generates PUSH 0INVOKE display, 256, 0 generates PUSH 0

PUSH 256
CALL display

ADDRADDR
INVOKE display, ADDR myValue, 0 generates PUSH 0

PUSH offset myValue
CALL di lCALL display

An alternate form of RET
RET immediate Add the immediate value to SP after

popping the return address (Why?)

SYSC3006 33

popping the return address (Why?)

Intra- versus Inter-Segment Subroutine CallsIntra versus Inter Segment Subroutine Calls

• All of the examples of subroutines so far use intra-segment
t l flcontrol flow

– Only the IP is saved/changed/restored.
– Terminology : These subroutines are NEAR

• In large programs and/or software libraries, subroutines can be
located in different code segment
– Require inter-segment control flow where both the CS and q g

the IP are saved/changed/restored.
– Terminology : These subroutines are FAR

• The PROC directive uses an optional modifier to denote theThe PROC directive uses an optional modifier to denote the
type of control flow
– PROC NEAR or PROC FAR

By default without any modifier a subroutine is NEAR

SYSC3006 34

– By default, without any modifier, a subroutine is NEAR.

E l NEAR FAR b tiExample : NEAR versus FAR subroutines
• The PROC modifier influences how a subroutine is called

nearSub PROC NEAR
…
RET

S b ENDP

farSub PROC FAR
…
RET

f S b ENDP

Execution : POP IP Execution : POP
CS:IPnearSub ENDP

…
CALL nearSub

farSub ENDP

…
CALL farSub

CS:IP

Execution : PUSH IP Execution : PUSH CS:IP

1. How does the program know if it is NEAR or FAR ?
2. Don’t we need different RET statements ?

CALL nearSub CALL farSubIP= nearSub CS:IP = farSub

2. Don t we need different RET statements ?
3. Draw a picture of a FAR stack frame?Which is pushed first:CS or IP?
4. Can a subroutine be both NEAR and FAR ?
5 Can a subroutine call a FAR subroutine that is in the same segment ?

SYSC3006 35

5. Can a subroutine call a FAR subroutine that is in the same segment ?

NEAR versus FAR subroutines

0000 .code
0000 main PROC
0000 E8 0004 CALL nearsub E8 → CALL

0003 0E E8 0001 CALL farsub
0007 main ENDP

0E → PUSH CS

; NEAR subroutine
0007 nearsub PROC NEAR
0007 C3 RET
0008

C3 → RET (NEAR)
0008 nearsub ENDP

; FAR subroutine
0008 farsub PROC FAR

Intra-segment

0008 farsub PROC FAR
0008 CB RET
0009 farsub ENDP

END main

CB→ RET (FAR)
Inter-segment

SYSC3006 36

END main

