
Distribution Sort with Randomized Cycling

Je�rey Scott Vitter � David A� Hutchinson�

Abstract

Parallel independent disks can enhance the performance
of external memory �EM� algorithms� but the program�
ming task is often di�cult� In this paper we develop
randomized variants of distribution sort for use with parallel
independent disks� We propose a simple variant called
randomized cycling distribution sort �RCD� and prove that
it has optimal expected I�O complexity� The analysis
uses a novel reduction to a model with signi	cantly fewer
probabilistic interdependencies� Experimental evidence is
provided to support its practicality� Other simple variants
are also examined experimentally and appear to o
er similar
advantages to RCD� Based upon ideas in RCD we propose
general techniques that transparently simulate algorithms
developed for the unrealistic multihead disk model so that
they can be run on the realistic parallel disk model� The
simulation is optimal for two important classes of algorithms�
the class of multipass algorithms� which make a complete
pass through their data before accessing any element a
second time� and the algorithms based upon the well�known
distribution paradigm of EM computation�

� Introduction

External memory �EM� algorithms are designed to be
e�cient when the problem data are too numerous to �t
into the high�speed random access memory �RAM� of
a computer and must reside on external devices such
as disk drives ��	
� In order to cope with the high
cost of accessing data� e�cient EM algorithms exploit
locality in their design� They access a large block of
B contiguous data elements at a time and perform the
necessary algorithmic steps on the elements in the block
while in the high�speed memory� The speedup can be
considerable�

A second eective strategy for EM algorithms is the
use of multiple parallel disks� whenever an input�output
operation is performed� D blocks are transferred in
parallel between memory and each of the D disks
�one block per disk�� An easy way to convert an
EM algorithm designed for a single disk into an EM
algorithm that utilizes parallel disks is the well�known
technique of disk striping� in which the D blocks that
are accessed at any given time reside at the same
oset on each of the D respective disks� Disk striping
can be shown to be equivalent to having a single disk
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with larger block�size BD� and its I�O performance for
problems like sorting is suboptimal when D is large� An
optimal EM algorithm for such problems thus requires
independent access to the D disks� in which each of the
D blocks in a parallel I�O operation can reside at a
dierent oset on its disk ��	
�

Designing algorithms for independent parallel disks
has turned out to be ad hoc and relatively di�cult ����
��� ��� �� �� 	� �� �� �� �	
� and in practice the added
overhead often makes the algorithms slower than those
based upon disk striping� It is therefore highly desirable
to develop e�cient techniques for converting serial EM
algorithms into EM algorithms that use parallel disks
independently�

In this paper we develop a randomized distribution
sort algorithm motivated by the simple randomized
merge sort �SRM� algorithm of Barve et al� ��� ��
 and
Barve and Vitter ��
� but with provably optimal per�
formance for all parameter settings� We also show how
the techniques can be generalized to provide optimal
speedup for the class of multipass EM algorithms when
run on parallel disks� Before we elaborate on these
contributions� let us �rst review past work�

��� Previous Work

Sorting is a heavily used application and subroutine in
external memory computing� The two main approaches
to sorting are merge sort and distribution sort� Merge
sort consists of two phases� the run formation phase
and the merging phase� During run formation� the N
input elements are input one memory�load at a time�
each memory�load is sorted and written to the disks
as a �run�� In the merge phase� the sorted runs are
merged together ��M�B� at a time �where M is the
internal memory size and B is the block size� in a round�
robin manner until a single sorted run remains� In
distribution sort the approach is to partition the data
into S approximately equally sized sub�les �or �buck�
ets��� In a splitter selection phase� we judiciously choose
S�� � min

�
�M�B������ �N�M

�
splitter elements from

the data� In the subsequent distribution phase the
input data are read sequentially and partitioned via the
splitters into buckets� which are stored on the disks� The
splitter selection and distribution phases are repeated
recursively until the buckets are small enough to be
sorted in internal memory� The individual buckets are
then concatenated together to form the desired output�



Barve et al� ��� ��
 and Barve and Vitter ��
 develop
a sorting algorithm for parallel disks called simple
randomized merge sort �SRM�� SRM is noticeably faster
than merge sort with disk striping� even when the
number of disks is small� Randomization is used to
choose a disk on which the �rst block of each run is
located� Subsequent blocks in that run follow a simple
round�robin order over the disks� The blocks input
from the disks at each step of the merge phase tend
to be distributed evenly among the disks� but for some
values of the parameters an eect akin to the maximum
bucket occupancy in statistics ���
 results in a provably
uneven distribution� and the I�O performance of SRM
is suboptimal�

The two strategies of blocked access and parallel block
transfer were proposed in the I�O model of Aggarwal
and Vitter ��
� The model permits D blocks to be
accessed at arbitrary locations in a single I�O operation�
which is convenient for algorithm design� although
unrealistic� In order to support D simultaneous I�O
operations� the more realistic parallel disk model of
Vitter and Shriver ���� �	
 requires that each of the D
blocks accessed in an I�O must reside on a separate
disk� Recently� Sanders et al� ���
 proposed an elegant
and provably good randomized simulation technique
for converting algorithms designed for the Aggarwal�
Vitter model to the more realistic parallel disk model
with only a constant factor slowdown� Their technique
involves creating multiple copies of the disk blocks
and randomly allocating each block to one of the D
disks� The resulting disk occupancies are not completely
independent since the number of blocks is �xed� but
they are negatively correlated� which encourages an
even distribution� �A summary of the derivation is given
in Section ���

A number of important EM algorithms have been
proposed with support for blocked access to external
memory but without support for parallel independent
disks� These include distribution sweeping and a
variety of geometric algorithms based upon distribution
sweeping ���
� trapezoidal decomposition� triangulation
of a simple polygon� red�blue line intersection in GIS ��
�
and spatial join ��
� In many cases� the algorithms can
be adapted to use parallel disks on an ad hoc basis by
applying techniques from previous parallel�disk sorting
algorithms� such as those by Vitter and Shriver ���
�
Nodine and Vitter ���� ��
� and Dehne et al� �	� �
� but in
practice these techniques are often slower than simpler
approaches based upon disk striping�

��� Our Contributions

In this paper we develop a simple� practical and prov�
ably optimal randomized algorithm for distribution sort
with parallel disks� Our method is motivated by the
simplicity and practicality of the SRM approach for

merge sort� We therefore examine simple randomization
schemes that promise to be practical and e�cient� The
key point in distribution sort is that the writing in
the distribution phase can be done in a lazy manner�
There is no need for all D blocks speci�ed in one write
operation to actually be written to disk before the
blocks speci�ed in the next write operation are written�
As long as there is buer space to temporarily cache
the buckets waiting to be written to the disks� the
writing can proceed optimally �up to a constant factor��
There is thus no suboptimal eect akin to maximum
bucket occupancy as there is with SRM� as mentioned
in Section ����

In Section � we de�ne our notation and propose
randomized variants of distribution sort that are simple
and practical to implement� but their analysis is di�cult
because of extensive dependencies between the random
variables in question� We also present our main result
�proven later in Section ��� which shows that our
randomized cycling distribution sort �RCD� variant has
optimal expected I�O complexity�

In Section � we discuss in detail the fully randomized
distribution sort �FRD� variant� and apply the analysis
of Sanders et al� ���
 to its writing component� FRD
is sometimes non�optimal in terms of I�O and it is
somewhat complicated to implement� although it is
optimal in terms of write operations�

In Section � we analyze RCD� our substantially
simpler variant� We give a novel reduction to show that
the number of write operations are bounded by those
of FRD� and the number of read operations is trivially
optimal�

In Section � we conjecture� based upon experimental
evidence and an interesting relation to hashing with lin�
ear probing� that another simple variant� called simple
randomized distribution sort �SRD� �akin to SRM�� is
also optimal�

In Section � we report on simulation experiments that
con�rm the theoretical analysis of RCD and demon�
strate the practicality of the methods� We are sepa�
rately pursuing an implementation as part of a parallel
disk environment and plan to report our �ndings in a
subsequent paper�

In Section 	 we discuss several interesting applica�
tions� We develop a general technique for simulating a
large class of algorithms for the Aggarwal�Vitter I�O
model on the parallel disk model� In many cases�
in contrast to more general simulation technique of
Sanders et al� ���
� we need only one copy of each data
block� In other cases� we need multiple copies of blocks
as before� but the randomization is always simpler to
implement and can be done in a local manner� which is
useful to exploit locality in algorithm design� Finally�
we give concluding remarks and open problems�



� Randomized Distribution Sort

We now consider the write component of the distri�
bution phase of distribution sort� Each disk has an
associated �rst�in �rst�out disk queue� and the D queues
share a common buer pool of internal memory� capable
of holding W blocks collectively� The S output buckets
in the distribution phase issue blocks of data to the
disk queues� The algorithm variants FRD� SRD� RSD�
and RCD� introduced below� dier primarily in their
allocation discipline� which is the method by which their
buckets allocate blocks to the disk queues� In each disk
write cycle� up to D blocks� at most one per disk� are
removed from the queues and physically written to the
disks� Since the queue space is limited� we consider a
collective block�arrival rate to the queues of �� � ��D
per disk write cycle� for some � � � � ��

Fully Randomized Distribution Sort �FRD�� In
FRD each bucket selects a separate� randomly
chosen disk for each block that it issues� FRD
is complicated to implement because of the
bookkeeping necessary during the partitioning�
each bucket must keep a list of its blocks on each
disk so that they can be linked together� Another
disadvantage of FRD is that the blocks being read
during the reading phase �which correspond to a
bucket in the previous pass� are not striped on
the disks or perfectly evenly distributed� When
N is relatively small or M�BD � o�logD�� the
algorithm is non�optimal� and we get a noticeably
uneven distribution�

Simple Randomized Distribution Sort �SRD��
Each bucket issues its blocks to consecutive
positions in a simple� round�robin manner� The
disk selected for the �rst block is called the starting
point and is chosen uniformly randomly�

Randomized Striping Distribution Sort �RSD��
Each bucket issues its blocks to consecutive
positions in a simple� round�robin manner� but a
new random starting point is chosen after every D
blocks� This technique was suggested in ���
 for
distribution sorting� but no analysis or experiments
were provided�

Randomized Cycling Distribution Sort �RCD��
Each bucket chooses a random cycle order
of the disk numbers �among the D� possible
permutations� and allocates its blocks to disks in a
round�robin manner according to the cycle order�

The advantage of SRD� RSD� RCD is that they are
easy to implement and the blocks from each bucket are
striped together for reading in the next phase� The
blocks actually written in a single I�O are therefore
to dierent stripes� since the blocks for a given bucket
go to a certain stripe� If a RAID system is used and
parity information is maintained for error recovery� an

extra parity block for each bucket can be maintained in
internal memory� At any given time� the parity block
is the parity for the blocks written so far in the current
stripe for that bucket� When we write the �D � ��st
block of the stripe� we can then write out the parity
block as the Dth block of the stripe�

By contrast� in FRD writing is done by stripes�
However the blocks in a bucket are not situated together
in stripes� they appear at various locations on the disks�
and as a result extra bookkeeping is needed by FRD to
link together the blocks in the bucket� If desired� the
FRD method of striped writing but non�striped reading
can also be supported by SRD� RSD� and RCD�

We de�ne the following important random variables
that govern the behavior of these methods� The
main di�culty with the analysis of SRD� RSD� RCD
�which is still open for SRD and RSD�� is the extensive
dependence between the random variables in question�

De�nition � �Queuing Model
 For purposes of our
analysis we assume the following de�nitions and se�
quence of events during each time step t and for each
queue � � i � D � ��

�� We de�ne the queue length Q
�t�
i to be the size of

queue i at the beginning of time step t before any
arrivals or consumption occur for that time step�
We let Q�t� �

P
��i�D Q

�t�
i denote the total of

the queue sizes �or simply the total queue size� at
time t�

�� The consumption process removes a block� if any
exist� from queue i at time step t and writes it to
the corresponding disk�

�� Some number A
�t�
i of new blocks arrive for queue

i at time step t �after the consumption for that
time step�� The total number of arrivals at time t
among all the queues� namely� A�t� �

P
��i�D A

�t�
i �

is D��� ���

In practice� we would normally wait until new block
arrivals appear before attempting to consume from
the queues� but the above order of events� in which
consumption is attempted before arrivals� is easier to
analyze and results in a slightly more conservative
analysis�

So far we haven�t discussed what happens if the buer
pool of size W over�ows� In that case� we insert the
following event number ��� to occur between events �
and � above�

���� while Q�t�  A�t� � W do
Remove a block from queue i and write
it to the corresponding disk

enddo

De�nition � We de�ne I�t��b� to be the number of
blocks issued by bucket b in time step t� In particular�
we have

P
b I

�t��b� � A�t� � D��� ���



De�nition � For SRD� RCD� and RSD� we de�ne the
cycle order of a bucket to be the permutation hi�� i��
� � � � iD��i of queue indices that specify the round�robin
order in which the bucket places blocks into the queues�
In other words� the jth block of the bucket is issued to
queue ijmodD� For RCD� the cycle order of a bucket can
be an arbitrary permutation of f�� �� � � � � D � �g� For
SRD� we have ij�� � ij � mod D� where i� can be any
value � � i� � D�

De�nition 	 The con�guration of a bucket b speci�es
the schedule I����b�� I����b�� � � � of blocks issued by the
bucket and its cycle order hi�� i�� � � � � iD��i� In other
words� Q�t� and each Q

�t�
i are deterministic functions of

the con�gurations of the buckets�

There are two important issues for I�O e�ciency in
distribution sort� reading in the blocks using the parallel
disks� and writing the blocks using parallel disks� Both
must be done optimally� Our main result� which we
prove in Section �� is Theorem �� It shows for RCD
that the conditional consumption step will very seldom
be needed� and the expected number of parallel write
operations will be linear in the number of queuing
events�

Theorem � Consider the model of De�nition � and the
allocation discipline of RCD� Let n�t� be the number of
parallel writes executed in time step t� Then for bu�er
pool size W � �ln �  ��D��� for some constant � � ��
we have E�n�t�� � �  e���D��

We conjecture that similar bounds hold for the write
I�Os in SRD and RSD� as suggested by the experiments
in Section �� In RCD� SRD� and RSD� the blocks of
each bucket are striped on the disks� so their reading
components are automatically optimal� We show in
Section � that FRD satis�es the same write bound
as does RCD in Theorem �� but that the reading
component is nonoptimal�

� FRD� Almost Independent Scenario

The writing component of the distribution phase of
FRD is optimal and satis�es the same bound given
for RCD in Theorem �� The analysis of the writing
component of FRD is essentially given by Sanders et
al� ���
�� we summarize it below� We then demonstrate
that the reading component of FRD is not theoretically
optimal because of possible global imbalance�

In FRD each bucket contributes only one block in
total� that is�

P
t I

�t��b� � � for all buckets b� Therefore�
the assignment of a bucket�s single block to a queue is
independent from the assignments of all other blocks�
The only �very limited� dependence arises because there
are a total of D��� �� blocks issued collectively by the
buckets in step t� that is�

P
b I

�t��b� � D�� � �� for all

time steps� Let the notation bQ�t� and bQ�t�
i denote Q�t�

and Q
�t�
i for the special case of FRD�

The size of queue i at time t  � can be expressed
recursively by�

bQ�t���
i � bQ�t�

i � �  � bQ�t�
i � � 
  A

�t�
i � ���

The probability generating function bQ�t�
i �z� �P

t�� Probf
bQ�t�
i � kgzk has the following closed

form in the steady state t ���

bQi�z� �
��� z��

�� z�� z
d
 �� �

d
������D

� ���

With the appropriate setting of the buer size W �
�ln �  ��D��� the probability that the buer over�ows
is exponentially small� the Cherno�like tail bound of
buer over�ow is derived by starting with Markov�s
inequality applied to es

bQ�t�

�

Probf bQ�t� � Wg � Probfes
bQ�t�

� esW g

� e�sWE�es
bQ�t�

�� ���

By de�nition of bQ�t�� the expected value term is

E�es
bQ�t�

� � E�e
P

��i�D s bQ�t�
i � � E

� Y
��i�D

es
bQ�t�
i

�
� ���

If the random variables h bQ�t�
i i��i�D were independent�

the expected value operator could be moved inside the
product and thus the right�hand�side of ��� replaced byY

��i�D

E�es
bQ�t�
i � �

�
E�es

bQ�t�
� �
�D

� ���

The random variables h bQ�t�
i i��i�D are not independent�

but fortunately they are negatively associated�� which
allows the right�hand�side of ��� to be bounded by ����

Finally� we use the fact that E�es
bQ�t�
i � � E�es

bQ���
i � �bQi�e

s� �which by l�H!opital�s rule can be bounded by �
when s � ��� and the following bound emerges�

Probf bQ�t� � Wg � e���W�ln ��D � e��D� ���

In other words� a conditional consumption step is
only executed with exponentially small probability� If
such a rare event occurs� the number of conditional
consumption steps needed to eliminate over�ow can be
conservatively bounded byD����� W � since after that
number of steps the queues would be empty� Therefore

�We use the notation �condition � to denote � if condition is
true and � otherwise


�A sequence hX�� � � � �Xni of discrete RVs are negatively

associated �	� if for any nondecreasing function f and for any
disjoint subsets I and J of ��� n�� E

�
fXi� i � I�gXj � j � J�

�
�

E
�
fXi� i � I�

�
E
�
gXj � j � J�

�

 Intuitively� if Xi is large� then

Xj tends to be small




the total expected number E�n�t�� of parallel write
operations made by FRD at step t is bounded by

�  
�
D��� ��  W

�
Probf bQ�t� � Wg

� �  O�D� e��D � �  e���D�� �	�

which is the bound used in Theorem � for RCD�

The reading component of FRD can be nonoptimal
by a lnD� ln lnD factor when D is large because of
unbalanced I�O operations ���
� Consider the following
example� Let the block size be large� say ��� KB to
amortize the seek latency over many data elements�
Let the number of disks be D � ���� and let the
memory size be ���MB� Let the problem size be ���MB
�i�e�� ���� blocks� and let the number of buckets be ��
giving about ��� blocks per bucket� For each bucket�
the expected maximum occupancy of its blocks on the
disks is � �ln ����� ln ln ��� � ���� even though the
average number of blocks per disk is only �� The
reading is thus about three times slower than if the input
�le were striped� which would be the case with SRD�
RCD� and RSD� The amount of imbalance is reduced
somewhat by choosing smaller block sizes� but then
the I�O costs would increase because of the increased
number of random accesses to disk ��	
�

FRD requires that lists be maintained to link together
the blocks in each bucket on each disk� and this book�
keeping complicates the implementation� For similar
eort� a better approach would be to use Phase I of
the algorithm of Vitter and Shriver ���
� where data are
written to the disks in stripes and the buckets tend to
be more evenly distributed�

� Analysis of Total Queue Size Q�t� in RCD

In this section we give a proof of Theorem �� Our
objective is to derive a type of Cherno bound on the
total queue size of RCD� This bound is the same one
given in ���"��� for the substantially more independent
case FRD� After we derive the Cherno bound� the rest
of the proof of Theorem � proceeds as in ��� and �	� for
FRD�

Our strategy for getting the desired bound on
E
�
esQ

�t��
is to do a series of transformation steps on an

instance of RCD� after which all buckets are singleton
buckets �which corresponds to FRD��

De�nition 
 A bucket b is a singleton bucket if it
issues a total of one block over all time steps� that is�P

t� I
�t���b� � ��

We reduce an instance of RCD to an instance of FRD
via the following series of transformations�

for r �� � to t do
while there is a nonsingleton bucket b that

issues at least one block at time step r
do the following transformation step

Remove one block from bucket b at
time step r�
Create a new singleton bucket that
issues one block at time step r

enddo
enddo

As mentioned in ��� and ���� the total queue
size bQ�t� for FRD �the situation in which all buckets
are singletons� satis�es E�es

bQ�t�

� �
Q

��i�D E�e
s bQ�t�

i � ��
E�es

bQ�t�
i �
�D

� The right�hand�side is the corresponding
quantity for the case in which the queue sizes are
completely independent� In this section we will show
for each transformation step that E�esQ

�t�

� never
decreases as a result of the transformation� Hence we
will have

E�esQ
�t�

� �
Y

��i�D

E�es
bQ�t�
i � �

�
E�es

bQ�t�
i �
�D

� ���

which establishes a Cherno�type bound for Q�t� that
is bounded by the Cherno�type bound for FRD� The
remainder of the proof of Theorem � follows from ���
and �	� applied to RCD�

��� Main Lemmas

Let us de�ne f�x� � esx� so that the term we are
interested in �namely� the left�hand�side of ���� is
E
�
f�Q�t��

�
� Our main lemma below� which we prove in

the next section� shows that the transformations have
the desired eect�

Lemma � Each bucket transformation step as
described above� in which one block at time step r is
removed from the bucket and a new bucket is created
with one block at the same time step� causes the
quantity E

�
f�Q�t��

�
to increase or stay the same�

A key concept in proving Lemma � is the notion of
critical starting points�

De�nition � Consider an arbitrary bucket b whose
�rst block�s� appear at time step r � t� and consider
any �xed con�gurations for the other buckets� Consider
the following two scenarios�
�� Queue i is the starting point for bucket b �i�e�� the
�rst block issued at time step r from bucket b is
placed into queue i�� Let Q�t� be the total size of
the queues at time step t�

�� Same as case �� except that we remove the block
that bucket b contributes to queue i at time r
�without moving any of the other blocks�� Let Q�

�t�

be the resulting total size of the queues at time
step t�



t� r r �  � � � t�  t

Q
�t��
i � � � � � � � � � � � � � Q

�t�
i

Item
Arrivals

� � � � � �

Figure �� A Critical Queue� The size of queue i is shown
at each time step t� � �r� t
� An arrival at queue i during
a time step is indicated by �� Since the size of the ith
queue is at least � for r � t� � t� it will remain at least �
even without the arrival at time step r� and a block will
continue to be consumed at each time step� Hence� the
�nal queue size will contain one fewer block than before�

We say that queue i is a critical starting point for
bucket b with respect to time step t if

Q�
�t�
� Q�t� � � ���

�or equivalently ifQ�
�t�
i � Q

�t�
i ��� since the other queues

are not aected��

Note that it is always true that Q�t� � � � Q�
�t�

�
Q�t�� Criticality means that the �rst ��� is actually
an equality� The following lemmas are important for
reasoning about the eect of block arrivals upon the
sizes of queues� See Figure �� The proofs �by induction�
are omitted for brevity�

Lemma � The following conditions are equivalent�

�� Consider an arbitrary bucket b with starting point i
whose �rst block�s	 appear at time step r � t� The
starting point i is critical for bucket b with respect
to time step t�


� Q
�t��
i � �� for all r � t� � t�

Lemma � The following conditions are equivalent�

�� Q
�t��
i � �� for all r � t� � t�


� If we add a new block to queue i at time step r�
then Q

�t��
i increases by � at each time step t�� for

r � t� � t�

For critical buckets the following lemma shows that
the value of Q

�t�
i is maximized when the starting point

of the bucket is queue i�

Lemma 	 If an block in a queue is moved from time
step r to time step r�� where r � r� � t� then the size of
the queue increases by � or stays the same�

��� Proof of Lemma �

To prove Lemma �� let us consider the eect of a
transformation step applied to bucket b at time step r�
We assume that b does not issue any blocks before

time r� We use Q�t� to represent the sum of queues at
time t� and we use Q��

�t�
to represent the sum of queues

at time t after bucket b has been transformed� We let
the con�gurations of the other buckets be arbitrary and
�xed� Let the permutation cycling order for bucket b
be hi�� i�� � � � � iD��i� We consider for the moment
a �xed starting point i� for the cycle order before the
transformation� and after the transformation we assume
a shifted cycle order hi�� � � � � iD��� i�i� The reason for
the shifted cycle order is that� after the transformation�
the blocks of the bucket are issued to the same queues
as before the transformation� except for the block that
was removed�

We can express the total queue size Q���t� after the
transformation by

Q��
�t�
� Q�

�t�
 � new bucket increases queue size 
�

where Q�
�t�
is de�ned as in De�nition � of criticality�

If bucket b�s starting point i� is critical� then Q�
�t�
�

Q�t���� Suppose that c of theD possible starting points
for bucket b are critical with respect to time step t� If
the new bucket issues its block to one of the c critical
starting points� which happens with probability c�D�
then by Lemmas � and � the total queue size will be
incremented and Q��

�t�
� Q�

�t�
 � � Q�t�� If the new

bucket issues its block to one of the D � c non�critical
starting points� which happens with probability ��c�D�
then by Lemmas � and � we will have Q��

�t�
� Q�

�t�
�

Q�t� � ��

In the following we will use the notation CR and NCR
to represent the events �the starting point of bucket b
is critical� and �the starting point of bucket b is non�
critical�� respectively� The above relations give us the
following lower bound on the conditional expectation�
given that the starting point of bucket b is critical�
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where the expectation is over the starting point of the
new bucket�

If instead b�s starting point i� is non�critical� then by
similar reasoning either Q��

�t�
� Q�t� orQ��

�t�
� Q�t� ��

and we get the conditional expectation
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Using the identities E
�
f�X  ��

�
� f��� E

�
f�X�

�
and E

�
f�X � ��

�
� E

�
f�X�

�
�f���� we can rewrite ����



and ���� as
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Since there are c critical starting points and D� c non�
critical starting points� we can remove the conditioning
as follows� Before the transformation we have
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After the transformation we get
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Combining ���� and ���� we get
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The following important lemma is needed to show
that ���� is nonnegative�

Lemma 
 We have

E
�
f�Q�t��

�� NCR � � �

f���
E
�
f�Q�t��

�� CR ��
Proof Sketch� We prove the lemma by showing a
correspondence between the cycle orders of bucket b for
which the starting point is critical and the cycle orders
of b for which the starting point is non�critical� Consider
the cycle order sequence hi�� i�� � � � � iD��i where i� is
critical and ij is non�critical� for some � � j � D� If we
swap the positions of i� and ij to get the cycle order hij �
i�� � � � � ij��� i�� ij��� � � � iD��i� then the only queues
whose sizes are aected are i� and ij �

Suppose that the number of arrivals at queue i�
before time step t under the new cycle ordering is
the same as before� then by Lemmas �"� and further
analysis it follows that Q

�t�
i�
remains the same and that

Q
�t�
ij
either decreases by � or remains the same� If

instead the number of arrivals at queue i� before time
step t decreases by � under the new cycle ordering�
then by Lemmas �"� and further analysis it follows
that Q

�t�
i�
decreases by � and that Q

�t�
ij
either increases

by � or remains the same� In either case� Q
�t�
i�
 Q

�t�
ij

never decreases by more than �� and the lemma follows
immediately� �

Substituting the bound of Lemma � into ���� shows
that ���� is nonnegative� which completes the proof of
Lemma �� As noted earlier� the rest of the proof of
Theorem � follows from ��� and �	� applied to RCD�

In our analysis above� the con�gurations of the other
buckets were �xed� An interesting question is whether
a more general approach� in which the con�gurations
of the other buckets are allowed to vary over all the
possible con�gurations� would work for the analysis of
SRD or RSD� We conjecture that the answer is yes�
Evidence in favor of SRD is given in the next section�

� SRD� Linear Probing Analogy

There is an interesting correspondence between hashing
with linear probing ���
 and the total queue size of SRD�
For the case in which there are S � D�� � �� buckets
and each of the S buckets issues one block per time
step� which seems to be a �hard� instance of SRD�
the expected queue size in the limit is precisely the
average number of probes for all S possible successful
searches in hashing with linear probing� where the hash
table size is D and the number of inserted elements
is S� Asymptotically� this quantity is �S���

�
�  �����

S�D�
�
� �

�D�� � ����  ����� For lack of space� we
do not elaborate on the correspondence� but it suggests
that the I�O performance of SRD may also be optimal
up to a constant factor for any �xed � � ��

	 Experimental Results

In this section we describe experiments designed to
explore the memory usage of FRD� SRD� RSD and
RCD� As the theoretical analysis provides guidance
primarily for large D� we were especially interested
in the performance for smaller� practical numbers of
disks� We simulated a stream of blocks arriving at the
D disk queues� each block was labeled with a bucket
index� Labeling was done via� ��� random assignment
of buckets to blocks� or ��� balanced assignment �bucket
b�i���modS issues a block immediately after bucket bi��
A write cycle was simulated every D block arrivals�
After an initial startup period ����� write cycles in this
case� to permit the system to reach a steady state� the
number of queued blocks was recorded following each
write cycle�

Figures �"� show the memory usage frequency dis�
tributions for FRD� SRD� RSD� and RCD for case ����



with the � values ��� and ���� �� queues� �� buckets� and
����	 total blocks� Also shown are the curves for SRD
and RCD when � � �� No conditional consumption
steps were performed� The curves for SRD and RCD
completely overlap for � values ��� and ���� and they
dier only when � becomes extremely small or zero�
with RCD slightly better than SRD� RCD is noticeably
better than RSD and FRD� FRD�s memory usage is
worse in all cases than those of SRD and RCD� and
it could not be shown for � � � since its memory
consumption increased without apparent bound� The
graphs indicate that the mean and variance of all of the
variants increase with decreasing �� but FRD more so
than SRD or RCD� Figures �"	 show the memory usage
frequency distributions for case ���� These seem to be
harder cases for SRD but RCD continues to perform
better than the other variants�


 Applications

The elegant simulation technique of Sanders et al� ���

can simulate an arbitrary multiheaded disk algorithm
by using instead a collection of D separate disks� but it
is somewhat cumbersome for practical use� Each block
must be duplicated and each copy randomly relocated�
In order for the analysis to be valid� before each write of
a block� all the copies of the block must be re�mapped
and the old copies deallocated on disk� This rather
severe assumption is made in order to guarantee that
any two writes are to independent disks�

A more practical simulation technique was proposed
in ���
 using the notion of randomized striping �which
is the allocation discipline of RSD�� It has not been
analyzed theoretically for the general case� and we
conjecture that it and related techniques do allow
optimal general simulation�

The RCD technique can be generalized to simulate an
important class of multiheaded disk algorithms� This
class includes all multipass algorithms� by which we
mean that the algorithms read and write the data in
passes� all of the data elements are read and written
once before being read and written a second time� and
so on� Duplication is done as before� but the duplicate
blocks do not need to be individually remapped to a
random disk� Instead� the ordering of the D blocks in
each stripe is randomly scrambled �thus allowing the
algorithm to take advantage of locality optimizations on
the disks for extra speed�� The analysis is an extension
of the analysis of Section �� The notion of �bucket� is
replaced by the notion of �track�� Details are deleted
for brevity� they will be included in the full paper�

Theorem � Multipass algorithms for the multiheaded
disk I�O model can be emulated on independent disks
with only a constant factor slowdown in terms of I�O
cost�

The multipass property is present in a large number
of EM algorithms� including those based upon the data
stream model of computation ���
�
An even simpler approach with no duplication of

blocks is possible for the important subclass of the class
of multipass algorithms that are based upon the stream�
distribution and distribution sweeping paradigms ����
�	
� For these algorithms� the RCD method works
almost exactly as described for distribution sort� and
the same analysis applies� No duplicate copies of blocks
are needed� Relevant algorithms include orthogonal
segment line segment intersection� all nearest neighbors
of a point set and a variety of other geometric algo�
rithms ���
� trapezoidal decomposition� triangulation of
a simple polygon� red�blue line intersection in GIS ��
�
and spatial join ��
�

� Conclusions

In this paper we showed that randomized cycling distri�
bution sort RCD is theoretically optimal for sorting with
parallel disks� and it is practical for implementation� A
detailed implementation is being pursued as part of a
parallel disk environment we are developing�

We conclude by mentioning some open problems� We
observed that the distribution sort variants SRD and
RSD performed similarly to RCD in our experiments�
We conjecture that they have similar behavior in gen�
eral� but proof of their I�O complexity is open�
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