
To appear in Mathematical Programming (2006)
The original article is available at http://www.springerlink.com

Active-Constraint Variable Ordering for Faster Feasibility of
Mixed Integer Linear Programs

Jagat Patel

Nortel Networks
3500 Carling Avenue

Ottawa, Ontario K2H 8E9
Canada

patelj@nortelnetworks.com

John W. Chinneck
Systems and Computer Engineering

Carleton University
Ottawa, Ontario K1S 5B6

Canada
chinneck@sce.carleton.ca

June 28, 2006

Abstract
The selection of the branching variable can greatly affect the speed of the branch and bound
solution of a mixed-integer or integer linear program. Traditional approaches to branching
variable selection rely on estimating the effect of the candidate variables on the objective
function. We present a new approach that relies on estimating the impact of the candidate
variables on the active constraints in the current LP relaxation. We apply this method to the
problem of finding the first feasible solution as quickly as possible. Empirical experiments
demonstrate a significant improvement compared to a state-of-the art commercial MIP solver.

1. Introduction
The well-known branch and bound method is the main algorithm for solving mixed-integer,
integer, and binary linear programming problems (here referred to collectively as MIP
problems). It has a long history, dating to the 1960s [Land and Doig 1960] and has been
extensively developed since then (e.g. Johnson et al. [2000]). The general steps of the method,
summarized in Algorithm 1, are fairly standard, but there are numerous variations in the details.

A critical element of a successful branch and bound approach is the ability to find a feasible
solution quickly. In some cases, a feasible solution is the only goal. Where optimality is needed,
finding a feasible incumbent solution quickly permits early pruning and hence the development
of a smaller search tree. In very difficult models that may terminate before finding the optimum
solution, finding a feasible solution early increases the likelihood that the solver will at least be
able to report a usable solution. Finally, some methods for analyzing infeasibility in MIPs

 1

require the repeated solution of variations of the original MIP in which only the feasibility status
of the variant MIP is required [Guieu and Chinneck 1999]; finding a feasible solution quickly

terminates the assessment, thereby speeding the analysis. For these reasons, we concentrate here
on developing faster methods for finding the first feasible solution in MIPs.

Input: mixed-integer program. Incumbent solution = φ. List of unexplored nodes = φ.
1. Root node is the original model. Solve the LP relaxation of the root node. If LP

relaxation is infeasible, exit with infeasible outcome. If LP relaxation is integer-feasible,
exit with relaxation solution as optimum.

2. Choose a candidate variable in the current node for branching.
3. Create two child nodes from the current node by branching on the selected variable and

add these new nodes to the list of unexplored nodes.
4. If list of unexplored nodes is empty then:

4.1. If incumbent = φ, then exit with “infeasible” outcome.
4.2. Optimum is incumbent solution: exit with “optimal” outcome.

5. Choose a node from the list of unexplored nodes for expansion.
6. Solve the LP relaxation for the chosen node.

6.1. If LP relaxation is infeasible then discard the node and go to Step 4.
6.2. If LP relaxation is feasible and integer-feasible then:

6.2.1. If LP relaxation objective function value is better than incumbent objective
function value then replace incumbent with this solution.

6.2.2. Go to Step 4.
6.3. Go to Step 2.

Algorithm 1: General steps in the branch and bound method for solving MIPs.

Two of the most important aspects of the method are the selection of the next node for expansion
(Step 5), and selection of the branching variable (Step 2). Both can have a significant impact on
the speed of the solution. After solving the LP relaxation associated with the chosen node in
Step 6, the list of candidate variables for branching is known: it consists of the integer variables
that do not have integer values at the optimum solution of the LP relaxation. In Step 2, one of
the candidate variables is chosen for branching, thereby creating two new child nodes. Each
child node is created by adding a new variable bound to the model in the parent node. For
example, if some variable xi is chosen for branching, then it must be an integer variable that has a
non-integer value f in the LP relaxation solution of the parent LP, i.e. kL < f < kU, where kL is the
first integer below f and kU is the first integer above f. One child node is created by adding the
variable bound xi ≤ kL to the model in the parent node, and the other child node is created by
adding the variable bound xi ≥ kU to the model in the parent node.

The most common node selection scheme for solving MIPs via branch and bound is depth-first,
in which one of the two just-created child nodes is always selected for expansion next (or failing
that, the most recently created node). This has the advantage of allowing an immediate advanced
start based on the LP relaxation solution for the parent node, thereby increasing the overall speed
of solution. There are several common ways to choose between the two child nodes: (i) branch
down, in which the child node with the added bound xi ≤ kL is chosen next, (ii) branch up, in
which the child node with the added bound xi ≥ kU is chosen next, and (iii) other schemes, e.g.
based on whether f is closer to kL or kU.

 2

This paper presents a new approach to selecting the branching variable that demonstrates
significant improvement over existing state of the art methods in finding the first feasible
solution quickly. Changing the policy for branching variable selection can have a dramatic
effect on the speed to first feasible solution. For example, for the MIPLIB2003 momentum1
model, Cplex 9.0 with all default heuristics turned on times out after 28,800 seconds, while
Method B described herein reaches a feasible node in just 67 nodes and 74.61 seconds.

Most existing branching variable selection methods estimate the impact of the candidate
variables on the objective function in various ways. The candidate variable having the greatest
estimated impact is then chosen for branching. In contrast, the new methods developed here
recognize that the solution point in an LP relaxation is fixed by the constraints that are active at
the optimum. Therefore to cause the greatest movement of the optimum point in the child nodes,
choose the candidate variable that has the most impact on the active constraints in the parent
node, rather than looking at the impact on the objective function. The general idea is to arrive at
child node relaxation optima that are as far apart as possible, in the hopes that one of the child
nodes will never be expanded. The “active constraint variable selection methods” developed
here use a variety of means to estimate the impact of each candidate variable on the active
constraints.

A brief summary of existing branching variable selection schemes follows. In the methods
presented by Linderoth and Savelsbergh [1999], Dakin [1965], Benichou et al. [1971], Gauthier
and Ribiere [1977] and Eckstein [1994], the idea is to select the branching variable that
maximizes the degradation of the objective function value at the optimal solution of the child
node LP relaxation. This gives a tighter bound on the unsolved nodes. As pointed out by
Linderoth and Savelsbergh [1999], most branching variable selection methods either estimate
degradation in the objective function value of the LP relaxation or provide bounds on the
degradation. Many estimation methods are based on pseudo-costs introduced by Benichou et al.
[1971].

Pseudo-costs estimate the change in the objective function value of an LP per unit change in the
value of an integer variable. To compute the pseudo-costs of a variable exactly, both child node
LP relaxations must be solved, but this is obviously inefficient when there are many candidate
variables, so most methods try to estimate pseudo-costs by solving a small number of extra LP
relaxations. An important observation by Benichou et al. [1971] and later reconfirmed by
Linderoth and Savelsbergh [1999] is that the pseudo-costs of the integer variables in a particular
branch direction remain constant throughout the branch and bound tree with the exception of
only a few nodes. This means that once the pseudo-cost of a variable is computed it can be used
throughout the B&B tree without having to re-compute it at other nodes.

There are numerous variations on the theme of pseudo-costs. Gauthier and Ribiere [1977]
developed “automatic ordered branching” in which the integer variables are sorted in decreasing
order of estimated degradation in the objective function value, based on calculations using the
pseudo-costs of the variables. Eckstein [1994] keeps track of the pseudo-cost of the integer
variables on up and down branches. The average of these values is used for initializing the
pseudo-cost of an integer variable that has never been branched on. Forest et al. [1974] suggested

 3

that one way to update the pseudo-cost of the integer variables is to use the last observed value.
Linderoth and Savelsbergh [1999] suggested that candidate variables that have never been
branched on before should have their pseudo-costs explicitly computed. Both Gauthier and
Ribiere [1977] and Linderoth and Savelsbergh [1999] suggested setting a limit on the number of
simplex iterations performed for explicitly computing pseudo-costs.

A number of other objective-oriented approaches have been developed. Dakin [1965] and Small
[1965] suggested selecting the candidate variable that gives the largest degradation in the
objective function value of the LP relaxation problem during the first dual simplex pivot. Beale
[1968] uses a similar technique. Tomlin [1969] extended this method to also consider the non-
basic integer variables. “Strong branching” (attributed to Bixby by Linderoth and Savelsbergh
[1999]) performs a number of dual simplex pivots to get a better lower bound on the degradation
in the objective function value at the LP relaxation optimal solution of the child node. Padberg
and Rinaldi [1991] used a combination of the objective function coefficient and the fractional
part of the candidate variable in their branch-and-cut algorithm for solving large-scale traveling
salesman problems.

Branching variable selection can also be based on “Special Ordered Sets”, as introduced by
Beale and Tomlin [1970]. These are also discussed in Beale and Tomlin [1970] and Linderoth
and Savelsbergh [1999].

We now turn our attention to methods that are specifically designed to find feasible solutions in
mixed-integer linear programs. Fischetti, Glover and Lodi [2005] recently proposed the
Feasibility Pump heuristic for finding a feasible solution to MIP problems without branch and
bound. The method alternates between LP-relaxations (which satisfy the linear constraints) and
“nearby” integer-feasible roundings of the LP-relaxation solutions (which satisfy the integrality
restrictions). The authors report very good results on binary MIP problems. The Feasibility
Pump heuristic could provide a useful root node heuristic for reaching feasibility, but the
methods developed in this paper will still be valuable when the root node heuristics fail.

Danna, Rothberg and Le Pape [2005] recently introduced the Relaxation Induced Neighbourhood
Search (RINS) and guided dives as ways of improving the speed to optimality in solving MIPs.
These methods are now included in Cplex 9.0. RINS involves exploring the neighbourhood of
the incumbent solution in an effort to find better feasible solutions. The RINS and guided dive
methods are complementary to those developed here; it may be profitable to explore using them
together.

Balas et al [2001] developed the OCTANE heuristic for generating feasible solutions for pure
binary programs within a branch-and-cut framework. The heuristic uses an n-dimensional
octagon circumscribing the n-dimensional cube to associate facets with binary solutions.
Directions are generated from LP-relaxation solutions, which cross the extended facets of the
octagon, and based on which facets are crossed, heuristic solutions are proposed. The authors
report very promising heuristic results. Where possible we have compared their empirical results
with ours (using node counts as the metric due to differences in machines and software). The
results for our methods are very similar to theirs over the few MIPLIB 3.0 models for which they

 4

report node counts. However our methods are also applicable to general integer and mixed-
integer programs.

The pivot-and-complement procedure [Balas and Martin 1980] and its descendent pivot-and-shift
[Balas and Martin 1986, Balas et al 2004] also focus on obtaining feasible solutions quickly.
The more recent pivot-and-shift is a phased rounding procedure. The search phase runs through
a cycle of rounding and pivot or shift procedures such as pivoting out basic integer variables,
reducing the number of basic integer variables, improving the objective without increasing
integer infeasibility, and reducing integer infeasibility. Small neighbourhood searches are also
used. During the improvement phase, integer variables are fixed to their best values based on
reduced costs, then shifts are applied, and finally a large neighbourhood search is used.

Balas et al [2001] compare OCTANE with several variants of pivot-and-shift and conclude that
OCTANE is a competitive alternative. The basis for comparison is the number of branch and
bound nodes. OCTANE is faster than the pivot-and-shift variants on 8 of the tested models, but
worse on 4. The reported data permits a cursory comparison with the methods developed in this
paper since a few of the models are also tested here. Our results are very close to the best result
reported for OCTANE or pivot-and-shift in all cases. In one case, Method A developed here is
remarkably better: it uses just 6 nodes to reach feasibility for the misc07 model while OCTANE
uses 7504 and all of the pivot-and-shift variants time out. More importantly, the active
constraint methods developed here are complementary to OCTANE and pivot-and-shift. The
active constraint methods are branching variable selection heuristics and hence can be used
whenever the other heuristics are not running.

Though the active constraint methods described here were developed independently, it turns out
that they are directly related to the concept of surrogate constraints due to Glover et al [Glover
1968, Glover 2003, Lokketangen and Glover 1997]. In the most basic form, a surrogate
constraint is any linear combination of a set of linear constraints. When the constraints are all
inequalities, their linear combination yields a single linear knapsack inequality. This gives a
heuristic method for solving the problem by observing the ratio between the objective function
coefficient and the constraint coefficient for each variable (the “bang for the buck”): variable
values are selected according to their “bang for the buck” ordering. Various weightings of the
individual constraints can be used in constructing the linear combination. Numerous
sophisticated methods for selecting the weightings and applying the heuristic have been
developed.

As shown later, the active constraint schemes have three main steps: (1) normalization of the
active constraints (e.g. by dividing through by the number of candidate variables that appear in
the constraint), (2) assigning a “weight” to each candidate variable (e.g. by summing the
normalized coefficients for the variable across all of the active constraints), and (3) selecting the
variable with the highest total weight as the branching variable. Steps (1) and (2) amount to the
creation of a surrogate constraint, however there are significant differences from previous work
on surrogate constraints. The most important new development is the application of surrogate
constraints to select the branching variable. Other unusual features include (i) restricting
attention to only the active constraints, (ii) restricting attention to only a subset of the variables,
and (iii) novel normalizations involving absolute values and other innovations.

 5

2. Active Constraint Branching Variable Selection Schemes
As generally defined [Greenberg 2005], the set of “active constraints” includes all equality
constraints and all inequalities that hold with equality at the current point; this is the definition
used here. Note especially that this definition means that all tight inequalities are included
among the active constraints, including both those associated with nonbasic variables, and those
that are tight due to degeneracy. The point in question is the optimum point for the LP relaxation
associated with a node in the branch and bound tree.

The goal of the schemes described below is to select the branching variable so that the LP
relaxation optimum points for the two child nodes are as far apart as possible (in the sense of
Euclidean distance). The hope is that these two child node optima will yield such significantly
different solutions that one of them will be quite good and lead toward an integer-feasible
solution if explored further, while the other child node is so poor that it will never be revisited.
This is accomplished by choosing the variable that most affects the active constraints at the
parent node LP relaxation optimum. We estimate the impact that an individual candidate
variable has on the active constraints by looking at two components: (i) how much influence the
variable has within a particular active constraint, and (ii) how much a particular active constraint
can be influenced by a single variable.

Measures of the influence of a variable within an active constraint include:

• simple presence of a candidate variable in an active constraint,
• magnitude of the coefficient of a candidate variable in an active constraint, and
• magnitude of the coefficient of a candidate variable in an active constraint normalized by

the sum of the magnitudes of all of the coefficients in the active constraint (or the sums of
the magnitudes of the coefficients of just the integer variables, or of just the candidate
variables).

Measures of how much an active constraint can be influenced include:

• equal valuation for each active constraint,
• inverse of the sum of the magnitudes of all of the coefficients in the active constraint (or

the sums of the magnitudes of the coefficients of just the integer variables, or of just the
candidate variables), or

• inverse of the number of variables in the active constraint (or the number of integer
variables or the number of candidate variables).

In each scheme, a weight wij is assigned to candidate variable j in active constraint i, based on
some combination of the measures mentioned above. The variable having the highest total
weight over all of the active constraints is chosen as the branching variable. Variations on the
basic schemes include biasing the weights using the dual costs of the active constraints, looking
at the single highest wij instead of the total weight, and a voting scheme. Ties are broken by
selecting the variable with maximum infeasibility (defined as minimum distance from
integrality); if still tied, the variable with the lowest Cplex-determined index is chosen.

In the course of the research we developed and tested 20 methods using various combinations of
the measures listed above. We present here a subset of 7 of the best-performing methods. These
are designated by letters or letter combinations that correspond to the original naming scheme for

 6

compatibility with our full sets of experimental results. Several methods not presented here have
comparably good results. Some other omitted methods have inferior overall results, but perform
spectacularly well on individual models. The reasons for this behaviour are the subject of
ongoing research.

The following MIP example is used throughout this section to illustrate the different schemes:

maximize z = 3y1 – 4x1 + y2 – 2y3
subject to: P: 8y1 + y2 – y3 ≤ 9

 Q: -x1 + 2y2 + y3 ≤ 5 (1)
 R: 3y1 + 4x1 + 2y2 ≤ 10
 x1, y1, y2, y3 ≥ 0
 x1 real; y1, y2, y3 integer

The LP relaxation optimal solution at the root node of the branch and bound tree is z(y1, x1, y2,
y3) = z(0.8125, 0, 2.5, 0) = 4.9375. The candidate branching variables are y1 and y2. P and Q are
the active constraints at the LP relaxation optimum and their dual costs are 0.375 and 0.3125
respectively.

2.1 Weighting Based on the Number of Active Constraints Involving a
Candidate Variable
Scheme A uses a simple count of the number of active constraints in which a candidate variable
occurs. For candidate variable j in active constraint i, wij = 1 if the candidate variable appears in
the active constraint, and wij = 0 if the candidate variable does not appear in the constraint. The
total weight is a simple count of the number of active constraints that the candidate variable
appears in. In the example, the weights of the candidate variables are found as follows:

Active constraint i wi(y1) wi(y2)
P 1 1
Q 0 1

Total: 1 2

Variable y2 has the highest total weight and so is selected as the branching variable.

Scheme B recognizes that constraints are relatively easier or more difficult to influence via a
single variable. This effect is estimated by noting the sum of the magnitudes of the coefficients
of all of the variables in the active constraint. The weight associated with a particular active
constraint, instead of being 1 as in Scheme A, is taken as 1/∑j|aij|, where the coefficient of
variable j in constraint i is aij. Active constraints with many coefficients of large magnitude thus
have lower weights since they are likely less influenced by a single variable. wij = 0 if candidate
variable j does not appear in active constraint i.

In the example, the weights of the candidate variables are found as follows:

 7

Active constraint i ∑j|aij| wi(y1) wi(y2)
P 10 0.1 0.1
Q 4 0 0.25

Total: 0.1 0.35

Variable y2 has the highest total weight and so is selected as the branching variable.

2.2 Weighting Based on Polling Across Constraints or Methods
Scheme H looks for the maximum impact of a candidate variable on a single active constraint
when using any particular method. The variable having the largest weight in an individual active
constraint is selected as the branching variable. When applied to scheme M for example, the
resulting scheme is designated HM. The weights of the candidate variables using scheme HM for
the example model are as shown with scheme M below. The highest individual weight is
associated with variable y2 in active constraint Q; hence y2 is selected as the branching variable.
We examine methods HM and HO in our experiments. Both of the underlying schemes M and O
produce good results on their own, however the scheme M results are omitted for clarity.

2.3 Weighting Using the Number of Variables in an Active Constraint
Scheme L adjusts the relative weight of each active constraint according to the number of
variables in the constraint. The idea is that constraints that have many variables are less
influenced by changes in a single variable because the other variables may be able to
compensate. The weight associated with a particular active constraint is taken as 1/NI

i where NI
i

is the number of integer variables in constraint i. wij = 1/NI
i if candidate variable j appears in

constraint i and wij = 0 if candidate variable j does not appear in active constraint i.

In the example, Scheme L yields the following weights:

Active constraint i NI
i wi(y1) wi(y2)

P 3 0.333 0.333
Q 2 0 0.5

Total: 0.333 0.833

Variable y2 has the highest total weight and so is selected as the branching variable.

Scheme M is identical to Scheme L but considers only the number of fractional valued integer
variables in each active constraint. The weight associated with a particular active constraint is
taken as 1/NF

i where NF
i is the number of integer variables currently fractional in constraint i. wij

= 1/NF
i if candidate variable j appears in constraint i and wij = 0 if candidate variable j does not

appear in active constraint i.

In the example, Scheme M yields the following weights:

Active constraint i NF
i wi(y1) wi(y2)

P 2 0.5 0.5
Q 1 0 1

Total: 0.5 1.5

 8

Variable y2 has the highest total weight and so is selected as the branching variable.

2.4 Weighting Using Coefficients and Number of Variables in an Active
Constraint
Scheme O considers both the size of the coefficient associated with a candidate variable in an
active constraint and the number of variables. As in other schemes, the underlying idea is that
larger coefficients indicate a greater impact on the active constraint while more variables indicate
a smaller impact. The weight associated with candidate variable j in active constraint i is wij =
|aij|/ NI

i and wij = 0 if candidate variable j does not appear in active constraint i.

In the example, Scheme O yields the following weights:

Active constraint i NI
i wi(y1) wi(y2)

P 3 2.667 0.333
Q 2 0 1.000

Total: 2.667 1.333

Variable y1 has the highest total weight and so is selected as the branching variable.

Scheme P is identical to Scheme O except that it considers only the integer variables currently
fractional in the active constraint. The weight associated with candidate variable j in active
constraint i is wij = |aij|/ NF

i and wij = 0 if candidate variable j does not appear in active constraint
i.

In the example, Scheme P yields the following weights:

Active constraint i NF
i wi(y1) wi(y2)

P 2 4.000 0.500
Q 1 0 2.000

Total: 4.000 2.500

Variable y1 has the highest total weight and so is selected as the branching variable.

3. Experimental Setup
Constructing a complete branch and bound MIP solver requires the specification of the node
selection method as well as the branching variable selection method. We undertook a
preliminary evaluation of a number of node selection schemes in conjunction with the new
active-constraint variable selection schemes. These included standard methods such as depth-
first search [Dakin 1965], best-first search [Land and Doig 1960], estimation based on pseudo-
costs [Benichou et al. 1971], best projection [Hirst 1969, Mitra 1973], and backtracking
[Gauthier and Ribiere 1977]. We also investigated some methods tuned to achieving integer
feasibility quickly, including minimum number of candidate variables, minimum sum of the
integer infeasibilities, minimum number of constraints containing candidate variables, and
minimum ratio of number of integer infeasible active constraints to the total number of active
constraints. We concluded that depth-first search is generally preferred for the purposes of

 9

achieving integer-feasibility quickly. Depth-first search is also the default method in many
commercial solvers. For these reasons, all of the active-constraint solvers use depth-first node
selection.

Depth-first search also requires the specification of the branching direction. The common
choices are to branch up, to branch down, or to select the direction that corresponds to the closest
integer value for the branching variable. We arbitrarily chose to branch up in all of the active
constraint solvers.

3.1 Experiments 1 and 2
As described in detail later, Cplex provides the underlying MIP solver framework on which the
new variable selection schemes are built. Two experiments are conducted, differing in terms of
which internal Cplex-specific heuristics are activated. The heuristics in modern commercial MIP
solvers such as Cplex vary widely, and the details are normally proprietary for reasons of
competitive advantage. Heuristics may include root node probing, aggregation, presolving,
generating cuts, neighbourhood search, etc.

In Experiment 1, all Cplex heuristics are turned off to achieve a straightforward branch and
bound set-up. This provides a level playing field for comparing the effectiveness of the various
branching variable selection schemes without the confounding effects of additional heuristics.
This is the main experiment for evaluating the worth of the new active constraint variable
selection algorithms.

All of the new algorithms are compared to the Cplex default scheme and the Experiment 1
results favour the new schemes by a good margin. However it may be that the new schemes
perform especially well on the very models that would be solved quickly by the Cplex internal
heuristic methods if they were turned on. Experiment 2 provides a supplemental set of results to
test this idea by solving the models with all Cplex parameters at their default settings, which
generally turns all user-controllable heuristics on. For Experiment 2 we eliminated all models
that are solved at the root node from the test set, and then compared solution speed on the
resulting smaller set of more difficult models.

3.2 Implementation
The well-known commercial solver Cplex 9.0 [Ilog 2003a, 2003b, 2003c] was used in the
experiments reported below. Cplex was used in two ways (i) as a representative state-of-the-art
commercial MIP solver with which to compare our new methods, and (ii) as the basic MIP
solver framework upon which our new methods are built.

A C++ program manages the interface between Cplex and our new routines, especially the
process of obtaining necessary information via the callback routines in the Cplex callable library
[ILOG 2003a, 2003b]. The interface program maps the branch and bound nodes to saved data
based on the unique node sequence number allocated by the Cplex MIP solver. The interface
also allows the user to choose from among the variable and node selection methods described in
this paper as well as from the routines internal to Cplex.

 10

The Cplex parameters are set as follows in every active-constraint solver (see the Cplex manuals
[Ilog 2003a, 2003b, 2003b]). The corresponding Cplex parameter is shown in brackets.

• Branching variable selection scheme (CPX_PARAM_VARSEL): For Cplex, the default
method. For the active constraint methods, overridden by the callback routines.

• Node selection scheme (CPX_PARAM_NODESEL): For Cplex, the default method, which is
similar to a depth first search strategy until the first feasible solution is found and is then
closer to a best first search. For the active constraint methods, pure depth-first search in
Experiment 1 and Cplex default in Experiment 2.

• MIP Emphasis (CPX_PARAM_MIPEMPHASIS): emphasis is on finding a feasible solution.
• Branch and bound node limit (CPX_PARAM_NODELIM): explained below.
• Time Limit (CPX_PARAM_TILIM): explained below.
• Tree Memory Size Limit (CPX_PARAM_TRELIM): 128 MB.
• Node File Size Limit (CPX_PARAM_NODEFILELIM): 800 MB.
• Compress Node File (CPX_PARAM_NODEFILEIND): node file saved on disk and

compressed.
• Logging information in file.
• Logging frequency (CPX_PARAM_MIPINTERVAL): 500 nodes.
• All other parameters are set at their default values.

In Experiment 1, all of the preprocessing and node heuristics in the underlying Cplex solver are
turned off by these additional parameter settings:

• Pre-solving (CPX_PARAM_PREIND): off.
• Aggregation (CPX_PARAM_AGGIND): off.
• Root Node Heuristic (CPX_PARAM_HEURISTIC): off.
• Internal Node Heuristic (CPX_PARAM_HEURFREQ): off.
• Cut generation (CPX_PARAM_CLIQUES, CPX_PARAM_COVERS, CPX_PARAM_GUBCOVERS,

CPX_PARAM_FLOWCOVERS, CPX_PARAM_IMPLBD): off.

3.3 Premature Termination
To permit the completion of many experiments in a reasonable amount of time, the MIP
solutions are terminated prematurely if any one of several conditions is met. Termination for any
of these reasons does not imply that the algorithm would not complete successfully if given
sufficient time or resources.

The most important of the conditions for premature termination is solution time: a maximum of
28,800 seconds (8 hours) of run-time is allowed. Note that this limit includes the calculation
time for selecting the branching variable when an active constraint scheme is used. While
necessary for practical reasons, this is unfair to the active constraint methods, as explained next.

Cplex performs internal optimizations at each branch and bound node that adjust the number of
variables and constraints, and affect whether a particular variable even appears in a particular
constraint. This optimization cannot be turned off. For this reason it is not possible to write
efficient schemes for searching the data structures during external callbacks. The active
constraint methods use simple top-to-bottom searches for the candidate variables in the
constraints, which is very time-consuming. In a good implementation, the time taken by the

 11

simple active constraint calculations would be negligible, but it can take a long time in our test
software. Some models are terminated prematurely for this reason when the time limit is
exceeded, even though the active constraint solver has actually consumed much less Cplex
computation time. We present summary statistics on this effect in the tables of results.

Algorithms may also be terminated prematurely if the number of branch and bound nodes solved
is too great. There is a hard limit of 100,000 nodes for any experiment. In addition, there is a
relative limit for the active constraint methods, as follows. Models are first solved using Cplex.
Let k represent the number of nodes taken by Cplex for the solution. Active constraint methods
are prematurely terminated if they solve more than 10(k+1) nodes since they are clearly shown to
be inferior to Cplex at this point.

As described in Section 3.2, limits are also placed on the tree memory size and the node file size,
but these limits are not exceeded in any of the experiments reported here.

3.4 Comparison Criteria
Many researchers [Dakin 1965, Tomlin 1969, Benichou et al. 1971, Gauthier and Ribiere 1977,
Linderoth and Savelsbergh 1999, Mittelman 2001] have used one or more of the following
metrics to compare the effectiveness of MIP solvers in finding a feasible or optimum solution:
number of solved nodes (i.e. number of solved LP relaxation problems), total number of simplex
iterations over all solved nodes, or solution time (CPU or clock time in seconds). Each metric
has advantages and disadvantages.

We perform two sets of experiments to compare the various methods against each other and
against Cplex. We use various metrics to compare the solution speed:

• Number of solved nodes. This is the most influential factor in terms of memory
consumption, and is also closely related to the total computational effort.

• Number of simplex iterations. This is a good measure of total computational effort. As
opposed to the node count, the number of simplex iterations accounts for the extra effort
involved when the algorithm causes a great deal of backtracking, which requires the
solution of a node that is quite different from the last one solved (hence there is less
scope for an advanced start).

• Fewer nodes/iterations than Cplex. The number of models for which the active
constraint method takes fewer nodes or iterations than Cplex. This measure takes Cplex
as the state of the art for comparison. Note that this does not count instances in which the
active constraint method is equally as fast as Cplex (which does happen when the number
of solved nodes is used as the measure of speed).

• Feasibility success ratio (FSR). Related to the previous measure, this shows the fraction
of the models for which the scheme is strictly faster than Cplex.

• Number of times within 10% of best. The difference in speed between solutions
(measured in number of nodes or iterations) is often quite minor: fractions of a second or
just a few nodes. It is misleading to count only the number of times a method is the
absolute fastest when it may have been only marginally slower in several cases. For this
reason we give the count of the number of times the speed of a method was within 10%
(rounded up to next integer) of the fastest speed achieved by any method, including
Cplex, for a model. The choice of 10% is arbitrary.

 12

• Performance profiles. Performance profiles, as recommended by Dolan and Moré
[2002], generalize the idea given in the previous measure by showing how frequently
each method is within some arbitrary ratio of the best performance.

• Quality success ratio (QSR). The fraction of the models for which the first feasible
solution returned by the active constraints method has an optimality gap that is equal to
or smaller than the optimality gap for the first feasible solution returned by Cplex.
Details follow below.

• Times terminated. To complete a large number of experiments in a practical amount of
time, solutions are terminated prematurely for the reasons described in Section 3.3. The
fewer forced terminations, the better.

Because a different set of models is terminated prematurely for each solver (including Cplex), it
is hard to make direct comparisons of average performance. For this reason we also look at a
comparable subset of the models: those for which all of the methods terminate successfully. We
apply the following additional metrics to the models in the comparable subset:

• Average nodes, average iterations.
• (Average nodes)/(Cplex average nodes), (average iterations)/(Cplex average iterations).
• Average ratio to best. Applies for both nodes and iterations.

We considered the use of clock time as an additional measure of total computational effort,
modified to exclude the time spent on the variable selection algorithm for the reasons described
in Section 3.3. Because the pattern of the results is closely similar to those returned by the
number of simplex iterations metric, we have omitted the clock time results.

Speed to first feasibility is our interest in this paper. However the methods developed here may
also prove useful in speeding the solution to optimality, so we are interested in the closeness to
optimality of the solutions they return. Feasible solutions obtained quickly may be quite far from
optimality, and hence may be detrimental to reaching optimality rapidly. The Quality Success
Ratio (QSR) measures how frequently the first feasible solution returned by an active constraints
method has an optimality gap that is equal to or smaller than the optimality gap returned by
Cplex at its first feasible solution. The optimality gap is as reported by Cplex: (|Zlo − Zup|)/(ε +
|Zlo|) where Zlo is the current lower bound, Zup is the current upper bound, and ε is a small
tolerance to prevent overflow. The QSR is defined as (number of models for which the method
returns an optimality gap that is equal to or smaller than the gap returned by Cplex)/(all models
compared).

3.5 Test Models
The active constraint methods are tested using the models in the MIPLIB 2003 library
[MIPLIB2003, 2005]. This library is an update of the well-known MIPLIB 3.0 library [Bixby et
al., 1998] to include more difficult examples. It includes both pure and mixed integer linear
programs. Most of the models are from real-world applications, for example 10teams deals with
assigning teams to time slots in the English football league, and danoint and dano3mip are
telecommunication applications. Basic model statistics appear in Table 1.

The library classifies the models according to their level of difficulty: “easy” models are those
that can be solved within an hour by a commercial solver, “medium” models are those that have

 13

actually been solved to optimality, but in more than an hour, and “difficult” models are those that
have never been solved to optimality. This designation is also shown in Table 1.

For both Experiments 1 and 2, any models that are prematurely terminated by all of the methods
(including Cplex) within the specified time and node limits are eliminated from the test sets. For
Experiment 1, two models are eliminated: momentum3 and stp3d, leaving a net 58 models in the
test set. For Experiment 2, three models are eliminated for this reason: momentum2,
momentum3, and stp3d. All three of these models are in the MIPLIB2003 “difficult” category
and are among the largest models in the library in terms of number of row constraints. In
addition, we eliminate from Experiment 2 any models that are solved at the root node. This
eliminates a further 32 models, leaving a net 25 models.

It is interesting to note that momentum2 is actually solvable by Cplex without triggering
premature termination with all of the default heuristics turned off, but not when they are turned
on.

Model Rows Cols Int Bin Real NZ diff.
10teams 230 2025 0 1800 225 12150 e
a1c1s1 3312 3648 0 192 3456 10178 d
aflow30a 479 842 0 421 421 2091 e
aflow40b 1442 2728 0 1364 1364 6783 d
air04 823 8904 0 8904 0 72965 e
air05 426 7195 0 7195 0 52121 e
arki001 1048 1388 123 415 850 20439 d
atlanta-ip 21732 48738 106 46667 1965 257532 d
cap6000 2176 6000 0 6000 0 48243 e
dano3mip 3202 13873 0 552 13321 79655 d
danoint 664 521 0 56 465 3232 m
disctom 399 10000 0 10000 0 30000 e
ds 656 67732 0 67732 0 1024059 d
fast0507 507 63009 0 63009 0 409349 m
fiber 363 1298 0 1254 44 2944 e
fixnet6 478 878 0 378 500 1756 e
gesa2 1392 1224 168 240 816 5064 e
gesa2-o 1248 1224 336 384 504 3672 e
glass4 396 322 0 302 20 1815 d
harp2 112 2993 0 2993 0 5840 m
liu 2178 1156 0 1089 67 10626 d
manna81 6480 3321 3303 18 0 12960 e
markshare1 6 62 0 50 12 312 m
markshare2 7 74 0 60 14 434 m
mas74 13 151 0 150 1 1706 e
mas76 12 151 0 150 1 1640 e
misc07 212 260 0 259 1 8619 e
mkc 3411 5325 0 5323 2 17038 m
mod011 4480 10958 0 96 10862 22254 e
modglob 291 422 0 98 324 968 e

Table 1a: MIPLIB2003 Model Statistics (part 1).

 14

3.6 Machine
The experiments reported here were carried out on Pentium-4 PC running at 2.4 GHz, with 1
gigabyte of random access memory.

4. Empirical Results
Tables 2 to 8 and Figures 1 to 4 summarize the results of the experiments. Experiment 1
establishes the main result concerning the effectiveness of the active constraint methods in
branch and bound. Experiment 2 provides supplemental data about how well the active
constraint methods work in conjunction with the Cplex default heuristics. In Tables 4-6 and 8-9,
bold indicates the best value in a column.

4.1 Experiment 1
We ran Experiment 1 on 20 active constraint algorithm variants. All performed better than
Cplex, but we concentrate here on the 5 variants that give the best results overall: methods A,
HM, HO, O, and P. The raw results for the number of branch and bound nodes solved for each

Model Rows Cols Int Bin Real NZ diff.
momentum1 42680 5174 0 2349 2825 103198 d
momentum2 24237 3732 1 1808 1923 349695 d
momentum3 56822 13532 1 6598 6933 949495 d
msc98-ip 15850 21143 53 20237 853 92918 d
mzzv11 9499 10240 251 9989 0 134603 e
mzzv42z 10460 11717 235 11482 0 151261 e
net12 14021 14115 0 1603 12512 80384 d
noswot 182 128 25 75 28 735 m
nsrand-ipx 735 6621 0 6620 1 223261 d
nw04 36 87482 0 87482 0 636666 e
opt1217 64 769 0 768 1 1542 d
p2756 755 2756 0 2756 0 8937 e
pk1 45 86 0 55 31 915 e
pp08a 136 240 0 64 176 480 e
pp08aCUTS 246 240 0 64 176 839 e
protfold 2112 1835 0 1835 0 23491 d
qiu 1192 840 0 48 792 3432 e
rd-rplusc-21 125899 622 0 457 165 852384 d
roll3000 2295 1166 492 246 428 29386 d
rout 291 556 15 300 241 2431 e
set1ch 492 712 0 240 472 1412 e
seymour 4944 1372 0 1372 0 33549 m
sp97ar 1761 14101 0 14101 0 290968 d
stp3d 159488 204880 0 204880 0 662128 d
swath 884 6805 0 6724 81 34965 m
t1717 551 73885 0 73885 0 325689 d
timtab1 171 397 107 64 226 829 m
timtab2 294 675 181 113 381 1482 d
tr12-30 750 1080 0 360 720 2508 m
vpm2 234 378 0 168 210 917 e

Table 1b: MIPLIB2003 Model Statistics (part 2).

 15

model in Experiment 1 are given in Table 2, and the number of simplex iterations in each
solution is given in Table 3. Summary statistics of these results are given in Tables 4 and 5.

Tables 4 and 5 show the performance of the algorithms over all 58 models, and also over a
subset of 40 models for which all methods completed successfully (comparable models). It is
suitable to count the number of times certain events occur when looking at all 58 models, but the
calculation of average results is reserved for the subset of comparable models.

 All 58 Models 40 Comparable Models

method

times
within
10% of

best

fewer
nodes
than

Cplex FSR

times
term.

(fewer
nodes at
time-out)

Avg.
nodes:

(avg.
nodes)/

(Cplex avg.
nodes)

avg.
ratio

to
best

Cplex 9.0 7 4 1967.5 58.22
A 30 47 0.810 7 (2) 149.5 0.076 1.19

HM 28 45 0.776 8(2) 130.5 0.066 1.18
HO 35 45 0.776 9 (3) 123.3 0.063 1.47
O 36 43 0.741 11 (3) 116.1 0.059 1.11
P 32 44 0.759 10 (2) 156.2 0.079 1.37

Table 4: Summary of Experiment 1 (Number of Nodes).

The active constraint methods are invariably much better than Cplex overall (recall that during
Experiment 1, all of the Cplex internal heuristics are turned off). Over all 58 models, method A
is the best relative to Cplex, completing with fewer branch and bound nodes than Cplex on 81%
of the models and with fewer simplex iterations on 74.1% of the models. The worst active
constraint methods in both Tables 4 and 5 are still significantly better than Cplex. All of the
active constraint methods are within 10% of the fewest nodes or simplex iterations for a
significant fraction of the models: 62% (36/58) of the models for the nodes metric for method O

and 52% (30/58) of the models for the simplex iterations metric for methods A and P.

 All 58 Models 40 Comparable Models

method

times
within
10% of

best

fewer
itns
than

Cplex FSR

times
term.

(fewer
itns at

time-out)
Avg.
itns:

(avg. itns)/
(Cplex avg.

itns)
[w/o disctom]

avg.
ratio to

best
Cplex 9.0 12 4 55052 14.93

A 30 43 0.741 7 (3) 0.663 [0.214] 36484 1.17
HM 8(3) 35173 0.639 [0.245] 28 40 0.690 1.18
HO 23 40 0.690 9 (3) 117320 2.131 [0.237] 1.48
O 25 37 0.638 11 (4) 117401 2.133 [0.239] 1.38
P 30 41 0.707 10 (3) 216100 3.925 [0.232] 1.67

Table 5: Summary of Experiment 1 (Simplex Iterations).

 16

Over the 40 comparable models, method O requires just a small fraction (0.059) of the nodes
used by Cplex on average, and the other active constraint methods are in a similar range. The
average ratios to the smallest number of nodes for each model are very small for the active
constraint methods, with a minimum of 1.11 for method O. In terms of the number of simplex
iterations, the averages over the 40 comparable models show that Methods A and HM are
significantly faster than Cplex (about a third fewer iterations), but that the other active constraint
methods are slower. In contrast, the average ratios to the smallest number of iterations favour all
of the active constraint methods by a large margin. This disparity is due to the skewing effect of
the disctom model, which requires disproportionately large numbers of simplex iterations for the
active constraint methods. When disctom is ignored, the (average iterations)/(Cplex average
iterations) are in the range 0.214 for method A to 0.245 for method HM.

The number of models for which a method is within 10% of the fastest method (based on nodes
or number of simplex iterations) is shown in Tables 4 and 5. Performance profiles generalize
this idea to any arbitrary ratio to the fastest method: see Figures 1 and 2. The ideal profile
consists of a single dot in the upper left hand corner of the graph, indicating that the method is
the fastest for 100% of the models in the test set. Profiles that come closest to this ideal are
preferred. Figure 1 shows that the active constraint methods give much better results than Cplex.
For example, in Figure 1 consider the fraction of models for which an algorithm completes
within twice the number of nodes taken by the best method: method A solves 78% of the models
within this limit while Cplex solves just 33%. The “ratio to best axis” is truncated at 10: Cplex
solves 33% of models at ratios above this limit, while just 12% of the models are potentially
above this limit for method A (the method A curve truncates at this point since 12% of the

Experiment 1 Nodes Performance Profile

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

ratio to best (nodes)

fr
ac

tio
n

of
 m

od
el

s

Cplex 9.0
A
O
P
HM
HO

Figure 1: Performance Profiles for Experiment 1 (Nodes).

 17

models are prematurely terminated). The worst ratio to best is recorded by Cplex at 1067 on
aflow3a for which Cplex solves 23481 nodes while each of the active constraint methods solve
just 22 nodes.

The performance profiles based on the number of simplex iterations, given in Figure 2, show the
same general story of faster performance by the active constraint methods. Method A again
dominates.

While generally much faster, the active constraint methods are terminated prematurely more
often than is the case for Cplex. It is not known how many of the models would eventually have
been solved to completion if the solver were allowed to run longer. For each active constraint
method there are a few models that have used fewer nodes or simplex iterations when terminated
by reaching the time limit. As mentioned in Section 3.3, this is likely unfair to the active
constraint methods because of their unoptimized data structure searches. The models that
experience this problem most frequently are atlanta-ip, momentum1, msc98-ip and rd-plusc-21.
These are exactly the models for which an inefficient search for the candidate variables in the
active constraints would be the most time-consuming as shown by the following simple analysis.
Sorting the models in descending order of (number of rows) × (number of integer variables +
number of binary variables) places these 4 models very close to the top of the list (positions 1, 2,
4 and 6). Note that all four models are rated “difficult”, while the models at positions 3 and 5 in
the list (mzzv42z and mzzv11) are rated “easy”. Note that if the difficult omitted stp3d and
momentum3 were added to this list, they would take positions 1 and 3 in the revised list.

Experiment 1 Iterations Performance Profiles

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

ratio to best (simplex iterations)

fr
ac

tio
n

of
 m

od
el

s

Cplex 9.0
A
O
P
HM
HO

Figure 2: Performance Profiles for Experiment 1 (Simplex Iterations).

 18

The quality success ratio indicates the fraction of models for which an active constraint method
has a lower optimality gap at the first feasible solution as compared to the optimality gap at the
first feasible solution for Cplex. As shown in Table 6, the quality success ratios for all of the
active constraint methods in Experiment 1 are above 50%, and even as high as 78% for method
P. This indicates that the active constraint methods are potentially beneficial in the search for
optimality since they frequently return a first feasible solution that is closer to optimality than the
first feasible solution returned by Cplex.

Overall, Experiment 1 demonstrates that the active constraint methods generally improve the
speed of the branch and bound algorithm considerably. The extremely simple method A is
surprisingly effective, though a number of other methods are almost as good. Further, the active
constraint methods, though seeking feasibility, also improve the movement towards optimality.

Experiment 1
over 40 comparable models

Experiment 2
over 12 comparable models

method QSR method QSR
A 0.53 B 0.75

HM 0.55 HM 0.50
HO 0.58 HO 0.50
O 0.70 L 0.58
P 0.78 P 0.33

Table 6: Quality Success Ratios.

4.2 Experiment 2
Experiment 2 differs from Experiment 1 in that all of the Cplex internal heuristics are turned on.
This greatly complicates the analysis because the exact nature of the interactions between the
internal Cplex heuristics on the one hand and the models and active constraint methods for
variable selection on the other hand are not known. However, as shown below, speed to first
feasibility is generally increased when the active constraint methods are used as compared to the
default Cplex variable selection scheme. The results could probably be improved even further if
the active constraint variable selection schemes were closely integrated with the heuristics.

Deciding which heuristics to apply is best done by an expert who can customize the choice to the
problem at hand. Applying a particular heuristic or combination of heuristics actually slows the
generation of the first feasible solution in some cases. In our experiments, the Cplex root node
heuristics are quite effective: 32 models are solved by these heuristics and hence are eliminated
from the Experiment 2 test set (3 more models are eliminated because all methods are
prematurely terminated). For the remaining 25 models, the other heuristics have a mixed effect.
Comparing the Cplex results in Experiments 1 and 2, speed to first feasibility is worse in
Experiment 2 in about half of the cases, in terms of number of nodes or number of simplex
iterations. In some cases the worsening is dramatic: momentum2 is solved by Cplex in
Experiment 1, but is prematurely terminated in Experiment 2; timtab2 is solved using 14059
nodes in Experiment 1, but 25351 nodes are used in Experiment 2.

 19

Note that the active constraint methods are complementary to the Cplex internal heuristics: they
can simply be used whenever a branching variable must be selected. However, because of the
unpredictable effects of the heuristics, we take Experiment 1 as the definitive evaluation of the
worth of the active constraint methods. The Experiment 2 results are supplementary data that
can at least establish whether or not the active constraint methods have a negative impact when
combined with the Cplex internal heuristics in a naïve manner.

For clarity, we concentrate on the 5 variants that give the best overall results for Experiment 2:
methods B, L, HM, HO, and P. Note that methods HM, HO, and P are also among the methods that
return the best results for Experiment 1. Table 7 shows the number of nodes and the number of
simplex iterations used by Cplex and the five active constraint methods in solving each of the 25
models included in Experiment 2. Tables 8 and 9 provide summary statistics on the number of
branch and bound nodes and the number of simplex iterations used. Since the test set is small,
these statistics are less reliable than those for Experiment 1. This is even truer for the small
subset of 12 comparable models.

As shown in Table 8, all of the active constraint methods solve fewer nodes than Cplex on
average. For example, over the 25 models, method B is faster than Cplex for 68% of the models,
and is terminated prematurely on an additional 20%. Method L gives similar results. The small
sample of 12 comparable models shows that the active constraint methods solve only around
20% of the nodes solved by Cplex. The best results are again given by methods B and L. The
disctom model has a skewing effect on these results since it requires significantly more nodes for

solution. If disctom is ignored, the (average nodes)/(Cplex average nodes) improve significantly
for the active constraint methods, ranging from 0.045 for method P to 0.119 for method HM.

 All 25 Models 12 Comparable Models

method

times
within
10% of

best

fewer
nodes
than

Cplex FSR

times
term.

(fewer
nodes at
time-out)

Avg.
nodes:

(avg.
nodes)/

(Cplex avg.
nodes)

avg.
ratio

to
best

Cplex 9.0 4 1 1214.6 23.86
B 9 17 0.680 5 (1) 235.0 0.193 2.02
L 7 17 0.680 6 (1) 233.0 0.192 2.01

HM 6 16 0.640 7 (2) 262.9 0.216 2.13
HO 6 13 0.520 8 (2) 260.9 0.215 1.96

P 9 15 0.600 9 (1) 293.8 0.242 1.27

Table 8: Summary of Experiment 2 (Number of Nodes).

Table 9 summarizes the speed to first feasible solution in terms of the number of simplex
iterations. This again shows that the active constraint methods are faster than Cplex on average:
the feasibility success ratios are all 56% or higher. The average number of iterations over the
small sample of 12 comparable models seems to show that the active constraint methods are
worse than Cplex, but this is again due to the skewing effect of disctom. When disctom is
ignored the ratio of the average results favours the active constraint methods by a significant

 20

margin. Over the 12 comparable models, the active constraint methods are faster than Cplex for
75% of the models (methods B, L and HM) or 83% of the models (methods HO and P).

 All 25 Models 12 Comparable Models

method

times
within
10% of

best

fewer
itns
than

Cplex FSR

times
term.

(fewer
itns at

time-out)
Avg.
itns

(avg. itns)/
(Cplex avg.

itns)
[w/o disctom]

avg. ratio
to best

Cplex 9.0 7 1 32578 6.89
B 5 14 0.56 5 (1) 400552 12.295 [0.452] 4.37
L 7 14 0.56 6 (2) 400233 12.285 [0.437] 4.38

HM 2 14 0.56 7 (3) 108898 3.343 [0.760] 2.15
HO 6 15 0.60 8 (3) 418697 12.852 [0.785] 4.66

P 9 14 0.56 9 (2) 609275 18.702 [0.367] 5.90

Table 9: Summary of Experiment 2 (Simplex Iterations).

Data that compares each method to the best method is included in Tables 8 and 9. The best active
constraint methods are within 10% of the best method for 36% (9/25) of the models in terms of
number of nodes or number of simplex iterations, better than Cplex. The average ratios to best
are also significantly lower than for Cplex. The performance profiles in Figures 3 and 4 give a
better picture of the relative performance of the methods.

The nodes performance profiles in Figure 3 show that method P performs particularly well
except for the number of times that it is prematurely terminated. Methods B and L are also very
good and experience fewer premature terminations. All three active constraint methods are
considerably better than Cplex for the models that are not prematurely terminated.

The number of simplex iterations performance profiles in Figure 4 also show that methods B, L
and P perform generally better Cplex, but the gap is smaller. The profiles show that these three
active constraint methods are always close to the fewest iterations (say within a factor of 2) for
the majority of the models, but then suffer from very poor performance (or are prematurely
terminated) on the remainder. This suggests that it is important to match the active constraint
algorithm to the model at hand.

As discussed in Section 4.1, three models (momentum1, msc98-ip, rd-plusc-21) have used fewer
simplex iterations than Cplex when they time out for most of the active constraint methods.
Again, if we are able to implement an efficient search strategy, the active constraint methods
may return better results for these models.

As shown in Table 6, the quality success ratio favours all of the active constraint methods with
the exception of method P, and is particularly high for method B. This generally supports the
eventual use of active constraint methods in developing algorithms for reaching full optimality
more quickly.

 21

The active constraint variable selection methods perform well in Experiment 2, generally
increasing the speed to first feasibility in most cases. Methods B, L, and P give the best results,
and are the best candidates for further integration with the internal Cplex heuristics in order to
yield more consistent results. Method P is interesting in that it is very quick on those models that
it completes successfully, but it has a higher rate of premature termination. This again
emphasizes the need to carefully select the variable selection scheme based on the characteristics
of the model. In the same vein, heuristics must also be carefully selected based on the
characteristics of the model. As evidence, consider that its own internal heuristics cause worse
results for Cplex itself in about half of the 25 models that survive the root node heuristics.

Experiment 2 Nodes Performance Profiles

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

ratio to best (nodes)

fr
ac

tio
n

of
 m

od
el

s

Cplex 9.0
B
L
P
HM
HO

Figure 3: Performance Profiles for Experiment 2 (Number of Nodes).

The supplemental results in Experiment 2 support our contention that the active constraint
variable selection methods are useful in branch and bound.

5. Conclusions
Some of the active constraint methods are decidedly superior to a state-of-the-art commercial
code in achieving MIP feasibility quickly. Method A clearly dominates in Experiment 1, our
main experiment using a straightforward branch and bound setup. The active constraint methods
are also generally better when multiple internal heuristics are in operation, as shown by our
supplementary Experiment 2, though it is clear that both variable selection algorithms and
heuristics must be carefully matched to the characteristics of the model for best results. In the
preliminary tests reported here, active constraints method B is preferred over the Cplex internal
variable selection scheme when all of the internal heuristics are turned on.

 22

Experiment 2 Iterations Performance Profiles

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

ratio to best (iterations)

fr
ac

tio
n

of
 m

od
el

s

Cplex 9.0
B
L
P
HM
HO

Figure 4: Performance Profiles for Experiment 2 (Simplex Iterations).

Our main conclusion is that the active constraint variable selection methods show significant
promise for reducing the time needed to find the first feasible solution. In addition, they may
also reduce the time to optimality given that they generally provide a better optimality gap at the
first feasible solution as compared to Cplex.

5.1 Future Research
There are many avenues for further research. There are several potential refinements to the
current algorithms:

• At present, an active constraints variable selection method is applied straight through
from start to finish. It may be better to check the conditions at each node before deciding
which method to apply at this particular node. Which method to choose may depend on
the number of candidate variables, the number of equality constraints, etc.

• A fuller evaluation of the interaction between the node selection methods and the active
constraint variable selection methods should be undertaken.

• Methods for using the active constraint methods to reduce the time to optimality should
be studied. There may be ways to combine the active constraint methods with more
traditional objective function impact methods to produce a hybrid that is faster to
optimality.

• As mentioned in Section 4.2, the exact nature of the interaction between the variable
selection scheme and the Cplex internal heuristics should be studied with the goal of
making the best matches between the two, and between them and the characteristics of

 23

the model. A larger set of test problems that are not solved by the root node heuristics in
Cplex is needed.

• At present the algorithms consider only the active row constraints. It may also be
important to consider the active variable bounds, including those introduced by the
branch and bound process.

Some implementation issues should also be addressed:

• As noted in several places, our current implementation uses a very inefficient method for
searching through the active constraints for candidate variables. Despite the difficulties
of dealing with the shifting Cplex data structures, an efficient implementation should be
constructed to avoid the problem of spurious premature terminations.

• The time taken by the Cplex heuristics should be measured. For example, Experiment 2
is conducted on the models that did not reach feasibility at the root node when the node
heuristics were applied. Those root node heuristics may have taken longer to run than
simply solving the entire model using an active constraint method, but this was not
measured. Many of the node heuristics involve limited branch and bound operations, and
these too could perhaps benefit from the use of the active constraint methods. A detailed
study is needed.

The choice of branching direction may have an impact on the results. Preliminary analysis at
Ilog shows that branching up during depth-first search may in fact be the best strategy. Further
experimentation is needed to gauge the impact of the branching direction in general, and on our
experimental results in particular.

Finally, there are promising lines of research suggested by the connection to the concept of
surrogate constraints. Some of the new normalizations described in this paper may prove useful
in other applications of surrogate constraints. At the same time, some methods known in the
surrogate constraints literature may be valuable in selecting branching variables. In addition,
when the research moves to the goal of improving speed to optimality, the existing use of
surrogate constraints for this purpose may provide useful insights.

Acknowledgements
Thanks are due to Ed Klotz and Ed Rothberg at Ilog Inc. for advice and discussions while
working with the Cplex solver. Emilie Danna at Ilog also provided helpful comments on draft
versions of the manuscript. Cplex 6.5, 8.0 and 9.0 were provided without charge by Ilog Inc. for
the purposes of this study. Christopher Kafka assisted in the later experimental work. The
support of NSERC through a Discovery Grant to John W. Chinneck is gratefully acknowledged.

References
E. Balas, S. Ceria, M. Dawande, F. Margot and G. Pataki (2001). “OCTANE: a New Heuristic
for Pure 0-1 Programs”, Operations Research 49, 207-225.

E. Balas and C. Martin (1980). “Pivot and Complement – a Heuristic for 0-1 Programming”,
Management Science 26, 224-234.

 24

E. Balas and C. Martin (1986). “Pivot and Shift – a Heuristic for Mixed Integer Programming”,
GSIA, Carnegie Mellon University.

E. Balas, S. Schmieta and C. Wallace (2004). “Pivot and Shift – a Mixed Integer Programming
Heuristic”, Discrete Optimization 1, 3-12.

E.M.L. Beale (1968). Mathematical Programming in Practice, Pitmans, London.

E.M.L. Beale and J.A. Tomlin (1970). “Special facilities in a general mathematical
programming system for nonconvex problems using ordered sets of variables”, Proceedings of
the Fifth International Conference on Operational Research, Tavistock publication, London,
447-454.

M. Benichou, J.M. Gauthier, P. Girodet, G. Hentges, G. Ribiere, and O. Vincent (1971).
“Experiments in mixed-integer linear programming”, Mathematical Programming 1, 76-94.

R.E. Bixby, S. Ceria, C.M. McZeal, and M.W.P. Savelsbergh (1998). “An Updated Mixed
Integer Programming Library: MIPLIB 3.0”, Optima 58, 12-15.

R.J. Dakin (1965). “A Tree Search Algorithm for Mixed Integer Programming Problems”,
Computer Journal 8, 250-255.

E. Danna, E. Rothberg and C. Le Pape (2005). “Exploring Relaxation Induced Neighborhoods to
Improve MIP Solutions”, Mathematical Programming Series A 102, 71-90.

E.D. Dolan and J. Moré (2002). “Benchmarking Optimization Software with Performance
Profiles”, Mathematical Programming Series A 91, 201-213.

J. Eckstein (1994). “Parallel branch-and-bound algorithms for general mixed integer
programming on the CM-5”, SIAM Journal on Optimization 4, 794-814.

M. Fischetti, F. Glover and A. Lodi (2005). “The Feasibility Pump”, Mathematical
Programming Series A 104, pp. 91-104.

J.J.H. Forest, J.P.H. Hirst, and J.A. Tomlin (1974). “Practical Solution of Large Scale Mixed
Integer Programming Problems with UMPIRE”, Management Science 20, 736-773.

J.M. Gauthier and G. Ribiere (1977). “Experiments in mixed-integer linear programming”,
Mathematical Programming 12, 26-47.

F. Glover (1968). “Surrogate Constraints”, Operations Research 16, 741-749.

F. Glover (2003). “Tutorial on Surrogate Constraint Approaches for Optimization in Graphs”,
Journal of Heuristics 9, 175-227.

 25

H.J. Greenberg (2005). “Mathematical Programming Glossary”. Online:
http://glossary.computing.society.informs.org/

O. Guieu and J.W. Chinneck (1999). “Analyzing Infeasible Mixed-Integer and Integer Linear
Programs”, INFORMS Journal on Computing 11, 63-77.

J.P.H. Hirst (1969). “Features required in Branch-and-Bound Algorithms for (0-1) Mixed Integer
Linear Programming”, unpublished manuscript.

ILOG Corporation (2003a). Cplex 9.0 Callable Library Reference Manual.

ILOG Corporation (2003b). Cplex 9.0 C++ API Reference Manual.

ILOG Corporation (2003c). Cplex 9.0 User’s Manual.

E.L. Johnson, G. L. Nemhauser, and M.W.P. Savelsbergh (2000). “Progress in Linear
Programming-Based Algorithms for Integer Programming: An Exposition”, INFORMS Journal
on Computing 12, 2-23.

A.H. Land and A.G. Doig (1960). “An Automatic Method for Solving Discrete Programming
Problems”, Econometrica 28, 497-520.

J.T. Linderoth and M.W.P. Savelsbergh (1999). “A computational study of search strategies for
Mixed Integer Programming”, INFORMS Journal of Computing 11, 173-187.

A. Lokketangen and F. Glover (1997). “Surrogate Constraint Analysis – New Heuristics and
Learning Schemes for Satisfiability Problems”, DIMACS Series in Discrete Mathematics and
Theoretical Computer Science 35, 537-572.

G. Mitra (1973). “Investigation of Some Branch-and-Bound Strategies for the Solution of Mixed
Integer Linear Programs”, Mathematical Programming 5, 155-170.

MIPLIB2003 (2005). Library of mixed-integer linear programming test models at
http://miplib.zib.de/miplib2003.php.

H. Mittelman (2001). Benchmark for Optimization Software web-site at
http://plato.la.asu.edu/bench.html.

M.W. Padberg, and G. Rinaldi (1991). “A Branch-and-Cut Algorithm for the Resolution of
Large-scale Symmetric Traveling Salesman Problems”, SIAM Review 33, 60-100.

R.E. Small (1965). “Mixed Integer Programming by a Branch and Bound Technique”, Proc. of
the 3rd IFIP Congress 2, 450-451.

J.A. Tomlin (1969). “An improved Branch-and-Bound Method for Integer Programming”,
Operations Research 19, 1070-1075.

 26

 27

Model Cplex9 A HM HO O O PP Model Cplex9 A HM HO

10teams 579 19 14 200 19 168 modglob 66 31 31 31 31 31
a1c1s1 7835 174 174 174 174 174 momentum1 t:1219 t:206 t:100 t:149 t:191 74
aflow30a 23481 22 22 22 22 22 momentum2 236 t:647 t:678 t:223 t:658 t:688
aflow40b n:max 46 46 33 33 33 msc98-ip 1309 t:2560 t:2673 128 t:2673 t:2601
air04 31 9 13 38 n:320 29 mzzv11 157 80 94 n:1580 n:1580 n:1580
air05 40 26 19 32 33 25 mzzv42z 135 52 71 n:1360 72 71
arki001 318 105 n:3190 82 n:3190 102 net12 1004 432 1545 47 t:4904 t:2503
atlanta-ip 1247 496 t:759 t:866 t:834 t:844 noswot 37 65 30 32 32 32
cap6000 477 n:4780 n:4780 1331 589 n:4780 nsrand-ipx 3301 22 18 19 19 20
dano3mip 60 48 47 48 48 47 nw04 50 3 3 4 4 3
danoint 20 74 44 n:210 n:210 n:210 opt1217 130 47 48 44 44 44
disctom 9098 3167 2381 1917 1917 3404 p2756 429 127 139 110 113 89
ds 1312 24 46 28 28 32 pk1 65 25 25 24 24 24
fast0507 14753 26 41 61 58 34 pp08a 56 49 49 47 47 47
fiber 69 26 36 12 13 16 pp08aCUTS 56 30 30 29 30 30
fixnet6 181 65 65 65 65 65 protfold 314 62 n:3150 n:3150 29 1679
gesa2-o 171 65 67 66 65 65 qiu 41 23 19 20 21 21
gesa2 143 64 67 64 64 66 rd-plusc-21 n:max t:93 65 t:87 t:85 t:85
glass4 7940 62 62 62 55 62 roll3000 600 66 64 48 51 n:6010
harp2 126 n:1270 53 58 58 374 rout 124 54 30 25 22 29
liu 568 666 670 677 658 665 set1ch 160 117 117 100 100 100
manna81 272 274 272 272 274 274 seymour 155 87 105 154 103 96
markshare1 52 23 23 24 20 20 sp97ar 3553 60 66 76 58 57
markshare2 42 30 30 27 27 27 swath 45 33 35 33 24 27
mas74 39 21 21 21 21 21 t1717 2505 60 71 69 50 65
mas76 26 16 16 16 16 15 timtab1 446 234 234 234 234 234
misc07 25 7 9 7 7 7 timtab2 14059 n:max n:max n:max n:max n:max
mkc 44 41 45 42 55 41 tr12-30 n:max 322 327 340 341 326
mod011 49 15 15 15 15 15 vpm2 700 31 28 28 34 33

Table 2: Experiment 1 Number of Nodes.
t: indicates time limit exceeded at the number of nodes shown. n: indicates node limit exceeded at number of nodes shown. n:max

indicates 100,000 node limit reached. Bold indicates time limit reached while number of nodes smaller than used by Cplex 9.0

 28

Model Cplex9 A HM H HO O P Model Cplex9 A HM O O P
10teams 64177 8253 7327 33218 8253 41178 modglob 673 302 302 302 302 302
a1c1s1 162715 1277 1263 1263 1277 1277 momentum1 t:1452453 t:1316982 t:1174742 t:1215730 t:1100447 7451
aflow30a 559252 2128 2128 3770 3770 3770 momentum2 160202 t:716951 t:696357 t:1077297 t:692669 t:565815
aflow40b n:3712351 10546 10546 14422 14422 14422 msc98-ip 5364578 t:1231963 t:331337 329561 t:828853 t:943085
air04 9359 6329 6838 10347 n:133692 7738 mzzv11 98182 114597 167479 n:1613459 n:709333 n:548648
air05 5563 5599 4103 5162 6654 3936 mzzv42z 33916 95022 103738 n:206200 178680 69318
arki001 5566 2014 n:38008 2065 n:165353 2731 net12 484113 125320 971323 n:18050 t:2999970 t:4204447
atlanta-ip 1217175 437934 t:576607 t:372971 t:718101 t:521645 noswot 145 182 143 181 173 174
cap6000 1503 n:735620 n:735620 43236 2554 n:579753 nsrand-ipx 8355 416 667 480 469 440
dano3mip 201015 200091 237900 190739 217601 193004 nw04 513 195 296 257 242 195
danoint 3384 16431 8384 n:44454 n:40396 n:42159 opt1217 1210 737 489 487 487 428
disctom 432194 1080459 973598 4273380 4273380 8234181 p2756 1123 323 336 304 324 297
ds 394023 30737 41260 36526 38553 44966 pk1 510 398 398 360 300 300
fast0507 64617 11744 13405 17009 16042 10291 pp08a 353 211 211 189 189 189
fiber 735 559 726 420 379 543 pp08aCUTS 430 353 378 365 396 396
fixnet6 1383 338 338 338 338 338 protfold 1279679 158070 n:2250448 n:1543869 71819 747318
gesa2 1184 735 715 718 732 739 qiu 5619 3968 2767 3580 4024 4024
gesa2-o 1301 574 560 553 559 556 rd-plusc-21 n:342232 t:543 1534 t:1853 t:952 t:979
glass4 11734 153 153 153 148 153 roll3000 16816 5411 3701 4458 3733 n:116366
harp2 2017 n:13168 1649 1714 1714 3268 rout 2036 1325 1084 1098 875 896
liu 3572 2121 2171 2221 2168 2202 set1ch 576 636 636 970 970 970
manna81 3153 3155 3153 3153 3155 3155 seymour 25542 22836 28867 33530 29983 24590
markshare1 115 86 86 77 55 55 sp97ar 37557 4599 5861 6926 5493 5389
markshare2 108 93 93 84 77 77 swath 3876 3762 3498 3762 3610 3692
mas74 246 149 160 171 146 179 t1717 188279 61192 61995 61351 64580 51252
mas76 140 127 117 129 117 107 timtab1 1856 950 950 950 950 950
misc07 742 402 385 400 534 534 timtab2 75607 n:292205 n:292205 n:292205 n:292205 n:292205
mkc 2686 2669 2889 2693 3213 2793 tr12-30 n:217919 754 744 752 743 737
mod011 9358 5237 5237 5223 5223 5223 vpm2 3417 278 290 290 287 277

Table 3: Experiment 1 Simplex Iterations.
t: indicates time limit exceeded at the number of iterations shown. n: indicates node limit exceeded at number of iterations shown. Bold indicates time

limit reached while number of iterations less than used by Cplex 9.0

 29

Number of Nodes Simplex Iterations
Model Cplex9 B HM HO L P Model Cplex9 B HM HO L P
10teams 617 285 735 653 285 86 10teams 63242 54611 130451 129651 54611 41410
aflow30a 250 28 10 10 54 10 aflow30a 8949 3819 1778 3107 4013 2435
aflow40b 280 80 59 35 20 38 aflow40b 22669 10301 12610 17087 6054 16836
air04 36 14 20 22 14 20 air04 9738 6064 9487 8144 6064 7972
air05 138 30 21 26 30 10 air05 10221 5384 3960 4645 5384 2852
arki001 613 n:6140 n:6140 n:6140 130 100 arki001 12464 n:93627 n:210379 n:84237 3137 2819
atlanta-ip 240 t:1252 t:1165 t:1300 t:1140 t:1359 atlanta-ip 310975 t:956847 t:1130465 t:774937 t:1382224 t:479003
danoint 70 10 49 400 428 n:710 danoint 12537 3260 10189 90771 79932 n:118684
disctom 4770 2051 1987 2121 2051 3082 disctom 126572 4687261 1105886 4816947 4687261 7214344
glass4 7450 41 51 61 45 61 glass4 16184 320 359 325 319 325
misc07 80 8 7 7 8 7 misc07 2588 604 640 631 604 541
msc98-ip 1390 30 t:3667 t:3587 290 t:3500 momentum1 t:8272328 17451 t:5515866 t:4654537 t:3195352 88498
momentum1 t:2491 67 t:1085 t:376 t:4717 120 msc98-ip 2710456 237456 t:638999 t:1252588 499040 t:1425058
mzzv11 157 80 52 n:1580 59 n:1580 mzzv11 72315 97945 81597 n:194797 79243 n:223011
mzzv42z 71 61 40 n:720 60 n:720 mzzv42z 26275 31480 30880 n:73955 28843 n:42856
net12 480 60 t:2792 115 t:3337 t:3457 net12 541559 219099 t:3001431 186146 t:2775561 t:2347168
opt1217 90 43 54 46 56 52 opt1217 764 435 537 363 684 410
protfold 630 n:6310 360 270 10 10 protfold 1923737 n:4318770 422879 1122198 71289 68384
rd-plusc-21 10464 t:562 t:551 t:548 t:559 t:556 rd-plusc-21 84516 t:2442 t:13801 t:5601 t:6217 t:9352
roll3000 150 57 50 41 n:1510 30 roll3000 8477 6347 6245 5519 n:49109 5552
rout 10 20 10 10 20 10 rout 1412 1517 1290 1320 1517 1485
t1717 680 40 60 70 40 30 t1717 125746 33316 36780 39702 33316 20148
timtab1 868 3640 874 874 434 n:8690 timtab1 8367 13978 3161 3161 2425 n:30845
timtab2 25351 n:max n:max n:max n:max n:max timtab2 524654 n:961195 n:416533 n:416533 n:416400 n:565598
tr12-30 174 180 141 70 173 120 tr12-30 2852 2994 2995 2441 2968 2539

Table 7: Experiment 2 Number of Nodes and Simplex Iterations.

t: indicates time limit exceeded at the number of nodes/iterations shown. n: indicates node limit exceeded at number of nodes/iterations
shown.. n:max indicates 100,000 node limit reached. Bold indicates time limit reached while number of nodes/iterations smaller than used by

Cplex 9.0

	Active-Constraint Variable Ordering for Faster Feasibility of Mixed Integer Linear Programs
	Abstract
	1. Introduction
	2. Active Constraint Branching Variable Selection Schemes
	2.1 Weighting Based on the Number of Active Constraints Involving a Candidate Variable
	2.2 Weighting Based on Polling Across Constraints or Methods
	2.3 Weighting Using the Number of Variables in an Active Constraint
	2.4 Weighting Using Coefficients and Number of Variables in an Active Constraint

	3. Experimental Setup
	3.1 Experiments 1 and 2
	3.2 Implementation
	3.3 Premature Termination
	3.4 Comparison Criteria
	3.5 Test Models
	3.6 Machine

	4. Empirical Results
	4.1 Experiment 1
	4.2 Experiment 2

	5. Conclusions
	5.1 Future Research

	References

