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Abstract 
The selection of the branching variable can greatly affect the speed of the branch and bound 
solution of a mixed-integer or integer linear program.  Traditional approaches to branching 
variable selection rely on estimating the effect of the candidate variables on the objective 
function.  We present a new approach that relies on estimating the impact of the candidate 
variables on the active constraints in the current LP relaxation.  We apply this method to the 
problem of finding the first feasible solution as quickly as possible.  Empirical experiments 
demonstrate a significant improvement compared to a state-of-the art commercial MIP solver. 

1. Introduction 
The well-known branch and bound method is the main algorithm for solving mixed-integer, 
integer, and binary linear programming problems (here referred to collectively as MIP 
problems).  It has a long history, dating to the 1960s [Land and Doig 1960] and has been 
extensively developed since then (e.g. Johnson et al. [2000]).  The general steps of the method, 
summarized in Algorithm 1, are fairly standard, but there are numerous variations in the details. 
 
A critical element of a successful branch and bound approach is the ability to find a feasible 
solution quickly.  In some cases, a feasible solution is the only goal.  Where optimality is needed, 
finding a feasible incumbent solution quickly permits early pruning and hence the development 
of a smaller search tree.  In very difficult models that may terminate before finding the optimum 
solution, finding a feasible solution early increases the likelihood that the solver will at least be 
able to report a usable solution.  Finally, some methods for analyzing infeasibility in MIPs 
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require the repeated solution of variations of the original MIP in which only the feasibility status 
of the variant MIP is required [Guieu and Chinneck 1999]; finding a feasible solution quickly 

terminates the assessment, thereby speeding the analysis.  For these reasons, we concentrate here 
on developing faster methods for finding the first feasible solution in MIPs. 

Input: mixed-integer program.  Incumbent solution = φ.  List of unexplored nodes = φ. 
1. Root node is the original model.  Solve the LP relaxation of the root node.  If LP 

relaxation is infeasible, exit with infeasible outcome.  If LP relaxation is integer-feasible, 
exit with relaxation solution as optimum. 

2. Choose a candidate variable in the current node for branching. 
3. Create two child nodes from the current node by branching on the selected variable and

add these new nodes to the list of unexplored nodes. 
4. If list of unexplored nodes is empty then: 

4.1. If incumbent = φ, then exit with “infeasible” outcome. 
4.2. Optimum is incumbent solution: exit with “optimal” outcome. 

5. Choose a node from the list of unexplored nodes for expansion. 
6. Solve the LP relaxation for the chosen node. 

6.1. If LP relaxation is infeasible then discard the node and go to Step 4. 
6.2. If LP relaxation is feasible and integer-feasible then: 

6.2.1. If LP relaxation objective function value is better than incumbent objective
function value then replace incumbent with this solution.  

6.2.2. Go to Step 4. 
6.3. Go to Step 2. 

Algorithm 1: General steps in the branch and bound method for solving MIPs. 

 
Two of the most important aspects of the method are the selection of the next node for expansion 
(Step 5), and selection of the branching variable (Step 2).  Both can have a significant impact on 
the speed of the solution.  After solving the LP relaxation associated with the chosen node in 
Step 6, the list of candidate variables for branching is known: it consists of the integer variables 
that do not have integer values at the optimum solution of the LP relaxation.  In Step 2, one of 
the candidate variables is chosen for branching, thereby creating two new child nodes.  Each 
child node is created by adding a new variable bound to the model in the parent node.  For 
example, if some variable xi is chosen for branching, then it must be an integer variable that has a 
non-integer value f in the LP relaxation solution of the parent LP, i.e. kL < f < kU, where kL is the 
first integer below f and kU is the first integer above f.  One child node is created by adding the 
variable bound xi ≤ kL to the model in the parent node, and the other child node is created by 
adding the variable bound xi ≥ kU to the model in the parent node. 
 
The most common node selection scheme for solving MIPs via branch and bound is depth-first, 
in which one of the two just-created child nodes is always selected for expansion next (or failing 
that, the most recently created node).  This has the advantage of allowing an immediate advanced 
start based on the LP relaxation solution for the parent node, thereby increasing the overall speed 
of solution.  There are several common ways to choose between the two child nodes: (i) branch 
down, in which the child node with the added bound xi ≤ kL is chosen next, (ii) branch up, in 
which the child node with the added bound xi ≥ kU is chosen next, and (iii) other schemes, e.g. 
based on whether f is closer to kL or kU. 
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This paper presents a new approach to selecting the branching variable that demonstrates 
significant improvement over existing state of the art methods in finding the first feasible 
solution quickly.  Changing the policy for branching variable selection can have a dramatic 
effect on the speed to first feasible solution.  For example, for the MIPLIB2003 momentum1 
model, Cplex 9.0 with all default heuristics turned on times out after 28,800 seconds, while 
Method B described herein reaches a feasible node in just 67 nodes and 74.61 seconds. 
 
Most existing branching variable selection methods estimate the impact of the candidate 
variables on the objective function in various ways.  The candidate variable having the greatest 
estimated impact is then chosen for branching.  In contrast, the new methods developed here 
recognize that the solution point in an LP relaxation is fixed by the constraints that are active at 
the optimum.  Therefore to cause the greatest movement of the optimum point in the child nodes, 
choose the candidate variable that has the most impact on the active constraints in the parent 
node, rather than looking at the impact on the objective function.  The general idea is to arrive at 
child node relaxation optima that are as far apart as possible, in the hopes that one of the child 
nodes will never be expanded.  The “active constraint variable selection methods” developed 
here use a variety of means to estimate the impact of each candidate variable on the active 
constraints. 
 
A brief summary of existing branching variable selection schemes follows.  In the methods 
presented by Linderoth and Savelsbergh [1999], Dakin [1965], Benichou et al. [1971], Gauthier 
and Ribiere [1977] and Eckstein [1994], the idea is to select the branching variable that 
maximizes the degradation of the objective function value at the optimal solution of the child 
node LP relaxation. This gives a tighter bound on the unsolved nodes. As pointed out by 
Linderoth and Savelsbergh [1999], most branching variable selection methods either estimate 
degradation in the objective function value of the LP relaxation or provide bounds on the 
degradation. Many estimation methods are based on pseudo-costs introduced by Benichou et al. 
[1971].  
 
Pseudo-costs estimate the change in the objective function value of an LP per unit change in the 
value of an integer variable. To compute the pseudo-costs of a variable exactly, both child node 
LP relaxations must be solved, but this is obviously inefficient when there are many candidate 
variables, so most methods try to estimate pseudo-costs by solving a small number of extra LP 
relaxations. An important observation by Benichou et al. [1971] and later reconfirmed by 
Linderoth and Savelsbergh [1999] is that the pseudo-costs of the integer variables in a particular 
branch direction remain constant throughout the branch and bound tree with the exception of 
only a few nodes. This means that once the pseudo-cost of a variable is computed it can be used 
throughout the B&B tree without having to re-compute it at other nodes. 
 
There are numerous variations on the theme of pseudo-costs.  Gauthier and Ribiere [1977] 
developed “automatic ordered branching” in which the integer variables are sorted in decreasing 
order of estimated degradation in the objective function value, based on calculations using the 
pseudo-costs of the variables.  Eckstein [1994] keeps track of the pseudo-cost of the integer 
variables on up and down branches. The average of these values is used for initializing the 
pseudo-cost of an integer variable that has never been branched on. Forest et al. [1974] suggested 
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that one way to update the pseudo-cost of the integer variables is to use the last observed value.  
Linderoth and Savelsbergh [1999] suggested that candidate variables that have never been 
branched on before should have their pseudo-costs explicitly computed.  Both Gauthier and 
Ribiere [1977] and Linderoth and Savelsbergh [1999] suggested setting a limit on the number of 
simplex iterations performed for explicitly computing pseudo-costs. 
 
A number of other objective-oriented approaches have been developed.  Dakin [1965] and Small 
[1965] suggested selecting the candidate variable that gives the largest degradation in the 
objective function value of the LP relaxation problem during the first dual simplex pivot. Beale 
[1968] uses a similar technique. Tomlin [1969] extended this method to also consider the non-
basic integer variables.  “Strong branching” (attributed to Bixby by Linderoth and Savelsbergh 
[1999]) performs a number of dual simplex pivots to get a better lower bound on the degradation 
in the objective function value at the LP relaxation optimal solution of the child node.  Padberg 
and Rinaldi [1991] used a combination of the objective function coefficient and the fractional 
part of the candidate variable in their branch-and-cut algorithm for solving large-scale traveling 
salesman problems. 
 
Branching variable selection can also be based on “Special Ordered Sets”, as introduced by 
Beale and Tomlin [1970].  These are also discussed in Beale and Tomlin [1970] and Linderoth 
and Savelsbergh [1999]. 
 
We now turn our attention to methods that are specifically designed to find feasible solutions in 
mixed-integer linear programs.  Fischetti, Glover and Lodi [2005] recently proposed the 
Feasibility Pump heuristic for finding a feasible solution to MIP problems without branch and 
bound.  The method alternates between LP-relaxations (which satisfy the linear constraints) and 
“nearby” integer-feasible roundings of the LP-relaxation solutions (which satisfy the integrality 
restrictions).  The authors report very good results on binary MIP problems.  The Feasibility 
Pump heuristic could provide a useful root node heuristic for reaching feasibility, but the 
methods developed in this paper will still be valuable when the root node heuristics fail. 
 
Danna, Rothberg and Le Pape [2005] recently introduced the Relaxation Induced Neighbourhood 
Search (RINS) and guided dives as ways of improving the speed to optimality in solving MIPs. 
These methods are now included in Cplex 9.0.  RINS involves exploring the neighbourhood of 
the incumbent solution in an effort to find better feasible solutions.  The RINS and guided dive 
methods are complementary to those developed here; it may be profitable to explore using them 
together. 
 
Balas et al [2001] developed the OCTANE heuristic for generating feasible solutions for pure 
binary programs within a branch-and-cut framework.  The heuristic uses an n-dimensional 
octagon circumscribing the n-dimensional cube to associate facets with binary solutions.  
Directions are generated from LP-relaxation solutions, which cross the extended facets of the 
octagon, and based on which facets are crossed, heuristic solutions are proposed.  The authors 
report very promising heuristic results.  Where possible we have compared their empirical results 
with ours (using node counts as the metric due to differences in machines and software).  The 
results for our methods are very similar to theirs over the few MIPLIB 3.0 models for which they 
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report node counts.  However our methods are also applicable to general integer and mixed-
integer programs. 
 
The pivot-and-complement procedure [Balas and Martin 1980] and its descendent pivot-and-shift 
[Balas and Martin 1986, Balas et al 2004] also focus on obtaining feasible solutions quickly.  
The more recent pivot-and-shift is a phased rounding procedure.  The search phase runs through 
a cycle of rounding and pivot or shift procedures such as pivoting out basic integer variables, 
reducing the number of basic integer variables, improving the objective without increasing 
integer infeasibility, and reducing integer infeasibility.  Small neighbourhood searches are also 
used.  During the improvement phase, integer variables are fixed to their best values based on 
reduced costs, then shifts are applied, and finally a large neighbourhood search is used.   
 
Balas et al [2001] compare OCTANE with several variants of pivot-and-shift and conclude that 
OCTANE is a competitive alternative.  The basis for comparison is the number of branch and 
bound nodes. OCTANE is faster than the pivot-and-shift variants on 8 of the tested models, but 
worse on 4. The reported data permits a cursory comparison with the methods developed in this 
paper since a few of the models are also tested here.  Our results are very close to the best result 
reported for OCTANE or pivot-and-shift in all cases.  In one case, Method A developed here is 
remarkably better: it uses just 6 nodes to reach feasibility for the misc07 model while OCTANE 
uses 7504 and all of the pivot-and-shift variants time out.  More importantly, the active 
constraint methods developed here are complementary to OCTANE and pivot-and-shift.  The 
active constraint methods are branching variable selection heuristics and hence can be used 
whenever the other heuristics are not running. 
 
Though the active constraint methods described here were developed independently, it turns out 
that they are directly related to the concept of surrogate constraints due to Glover et al [Glover 
1968, Glover 2003, Lokketangen and Glover 1997].  In the most basic form, a surrogate 
constraint is any linear combination of a set of linear constraints.  When the constraints are all 
inequalities, their linear combination yields a single linear knapsack inequality. This gives a 
heuristic method for solving the problem by observing the ratio between the objective function 
coefficient and the constraint coefficient for each variable (the “bang for the buck”): variable 
values are selected according to their “bang for the buck” ordering.  Various weightings of the 
individual constraints can be used in constructing the linear combination.  Numerous 
sophisticated methods for selecting the weightings and applying the heuristic have been 
developed. 
 
As shown later, the active constraint schemes have three main steps: (1) normalization of the 
active constraints (e.g. by dividing through by the number of candidate variables that appear in 
the constraint), (2) assigning a “weight” to each candidate variable (e.g. by summing the 
normalized coefficients for the variable across all of the active constraints), and (3) selecting the 
variable with the highest total weight as the branching variable.  Steps (1) and (2) amount to the 
creation of a surrogate constraint, however there are significant differences from previous work 
on surrogate constraints.  The most important new development is the application of surrogate 
constraints to select the branching variable.  Other unusual features include (i) restricting 
attention to only the active constraints, (ii) restricting attention to only a subset of the variables, 
and (iii) novel normalizations involving absolute values and other innovations. 
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2. Active Constraint Branching Variable Selection Schemes 
As generally defined [Greenberg 2005], the set of “active constraints” includes all equality 
constraints and all inequalities that hold with equality at the current point; this is the definition 
used here.  Note especially that this definition means that all tight inequalities are included 
among the active constraints, including both those associated with nonbasic variables, and those 
that are tight due to degeneracy.  The point in question is the optimum point for the LP relaxation 
associated with a node in the branch and bound tree. 
 
The goal of the schemes described below is to select the branching variable so that the LP 
relaxation optimum points for the two child nodes are as far apart as possible (in the sense of 
Euclidean distance).  The hope is that these two child node optima will yield such significantly 
different solutions that one of them will be quite good and lead toward an integer-feasible 
solution if explored further, while the other child node is so poor that it will never be revisited.  
This is accomplished by choosing the variable that most affects the active constraints at the 
parent node LP relaxation optimum.  We estimate the impact that an individual candidate 
variable has on the active constraints by looking at two components: (i) how much influence the 
variable has within a particular active constraint, and (ii) how much a particular active constraint 
can be influenced by a single variable. 
 
Measures of the influence of a variable within an active constraint include: 

• simple presence of a candidate variable in an active constraint, 
• magnitude of the coefficient of a candidate variable in an active constraint, and 
• magnitude of the coefficient of a candidate variable in an active constraint normalized by 

the sum of the magnitudes of all of the coefficients in the active constraint (or the sums of 
the magnitudes of the coefficients of just the integer variables, or of just the candidate 
variables). 

 
Measures of how much an active constraint can be influenced include: 

• equal valuation for each active constraint, 
• inverse of the sum of the magnitudes of all of the coefficients in the active constraint (or 

the sums of the magnitudes of the coefficients of just the integer variables, or of just the 
candidate variables), or 

• inverse of the number of variables in the active constraint (or the number of integer 
variables or the number of candidate variables). 

 
In each scheme, a weight wij is assigned to candidate variable j in active constraint i, based on 
some combination of the measures mentioned above.  The variable having the highest total 
weight over all of the active constraints is chosen as the branching variable.  Variations on the 
basic schemes include biasing the weights using the dual costs of the active constraints, looking 
at the single highest wij instead of the total weight, and a voting scheme.  Ties are broken by 
selecting the variable with maximum infeasibility (defined as minimum distance from 
integrality); if still tied, the variable with the lowest Cplex-determined index is chosen. 
 
In the course of the research we developed and tested 20 methods using various combinations of 
the measures listed above.  We present here a subset of 7 of the best-performing methods.  These 
are designated by letters or letter combinations that correspond to the original naming scheme for 
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compatibility with our full sets of experimental results.  Several methods not presented here have 
comparably good results.  Some other omitted methods have inferior overall results, but perform 
spectacularly well on individual models.  The reasons for this behaviour are the subject of 
ongoing research. 
 
The following MIP example is used throughout this section to illustrate the different schemes: 
 

maximize z = 3y1 – 4x1  + y2 – 2y3  
subject to: P:  8y1 + y2 – y3 ≤ 9  

 Q: -x1  + 2y2 + y3 ≤ 5 (1)
 R:  3y1 + 4x1 + 2y2 ≤ 10  
 x1, y1, y2, y3 ≥ 0  
 x1 real; y1, y2, y3 integer  
 
The LP relaxation optimal solution at the root node of the branch and bound tree is z(y1, x1, y2, 
y3) = z(0.8125, 0, 2.5, 0) = 4.9375. The candidate branching variables are y1 and y2. P and Q are 
the active constraints at the LP relaxation optimum and their dual costs are 0.375 and 0.3125 
respectively. 

2.1 Weighting Based on the Number of Active Constraints Involving a 
Candidate Variable 
Scheme A uses a simple count of the number of active constraints in which a candidate variable 
occurs.  For candidate variable j in active constraint i, wij = 1 if the candidate variable appears in 
the active constraint, and wij = 0 if the candidate variable does not appear in the constraint.  The 
total weight is a simple count of the number of active constraints that the candidate variable 
appears in.  In the example, the weights of the candidate variables are found as follows: 
 

Active constraint i wi(y1) wi(y2)
P 1 1 
Q 0 1 

Total: 1 2 
 
Variable y2 has the highest total weight and so is selected as the branching variable. 
 
Scheme B recognizes that constraints are relatively easier or more difficult to influence via a 
single variable.  This effect is estimated by noting the sum of the magnitudes of the coefficients 
of all of the variables in the active constraint.  The weight associated with a particular active 
constraint, instead of being 1 as in Scheme A, is taken as 1/∑j|aij|, where the coefficient of 
variable j in constraint i is aij.  Active constraints with many coefficients of large magnitude thus 
have lower weights since they are likely less influenced by a single variable.  wij = 0 if candidate 
variable j does not appear in active constraint i. 
 
In the example, the weights of the candidate variables are found as follows: 
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Active constraint i ∑j|aij| wi(y1) wi(y2)
P 10 0.1 0.1 
Q 4 0 0.25 

Total:  0.1 0.35 
 
Variable y2 has the highest total weight and so is selected as the branching variable. 

2.2 Weighting Based on Polling Across Constraints or Methods 
Scheme H looks for the maximum impact of a candidate variable on a single active constraint 
when using any particular method. The variable having the largest weight in an individual active 
constraint is selected as the branching variable. When applied to scheme M for example, the 
resulting scheme is designated HM.  The weights of the candidate variables using scheme HM for 
the example model are as shown with scheme M below.  The highest individual weight is 
associated with variable y2 in active constraint Q; hence y2 is selected as the branching variable.  
We examine methods HM and HO in our experiments.  Both of the underlying schemes M and O 
produce good results on their own, however the scheme M results are omitted for clarity. 

2.3 Weighting Using the Number of Variables in an Active Constraint 
Scheme L adjusts the relative weight of each active constraint according to the number of 
variables in the constraint.  The idea is that constraints that have many variables are less 
influenced by changes in a single variable because the other variables may be able to 
compensate.  The weight associated with a particular active constraint is taken as 1/NI

i where NI
i 

is the number of integer variables in constraint i. wij = 1/NI
i if candidate variable j appears in 

constraint i and wij = 0 if candidate variable j does not appear in active constraint i. 
 
In the example, Scheme L yields the following weights: 
 

Active constraint i NI
i wi(y1) wi(y2) 

P 3 0.333 0.333 
Q 2 0 0.5 

Total:  0.333 0.833 
 
Variable y2 has the highest total weight and so is selected as the branching variable. 
 
Scheme M is identical to Scheme L but considers only the number of fractional valued integer 
variables in each active constraint.   The weight associated with a particular active constraint is 
taken as 1/NF

i where NF
i is the number of integer variables currently fractional in constraint i. wij 

= 1/NF
i if candidate variable j appears in constraint i and wij = 0 if candidate variable j does not 

appear in active constraint i. 
 
In the example, Scheme M yields the following weights: 
 

Active constraint i NF
i wi(y1) wi(y2) 

P 2 0.5 0.5 
Q 1 0 1 

Total:  0.5 1.5 
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Variable y2 has the highest total weight and so is selected as the branching variable. 

2.4 Weighting Using Coefficients and Number of Variables in an Active 
Constraint 
Scheme O considers both the size of the coefficient associated with a candidate variable in an 
active constraint and the number of variables.  As in other schemes, the underlying idea is that 
larger coefficients indicate a greater impact on the active constraint while more variables indicate 
a smaller impact.  The weight associated with candidate variable j in active constraint i is wij = 
|aij|/ NI

i and wij = 0 if candidate variable j does not appear in active constraint i. 
 
In the example, Scheme O yields the following weights: 
 

Active constraint i NI
i wi(y1) wi(y2) 

P 3 2.667 0.333 
Q 2 0 1.000 

Total:  2.667 1.333 
 
Variable y1 has the highest total weight and so is selected as the branching variable. 
 
Scheme P is identical to Scheme O except that it considers only the integer variables currently 
fractional in the active constraint. The weight associated with candidate variable j in active 
constraint i is wij = |aij|/ NF

i and wij = 0 if candidate variable j does not appear in active constraint 
i. 
 
In the example, Scheme P yields the following weights: 
 

Active constraint i NF
i wi(y1) wi(y2) 

P 2 4.000 0.500 
Q 1 0 2.000 

Total:  4.000 2.500 
 
Variable y1 has the highest total weight and so is selected as the branching variable. 

3. Experimental Setup 
Constructing a complete branch and bound MIP solver requires the specification of the node 
selection method as well as the branching variable selection method.  We undertook a 
preliminary evaluation of a number of node selection schemes in conjunction with the new 
active-constraint variable selection schemes.  These included standard methods such as depth-
first search [Dakin 1965], best-first search [Land and Doig 1960], estimation based on pseudo-
costs [Benichou et al. 1971], best projection [Hirst 1969, Mitra 1973], and backtracking 
[Gauthier and Ribiere 1977].  We also investigated some methods tuned to achieving integer 
feasibility quickly, including minimum number of candidate variables, minimum sum of the 
integer infeasibilities, minimum number of constraints containing candidate variables, and 
minimum ratio of number of integer infeasible active constraints to the total number of active 
constraints.  We concluded that depth-first search is generally preferred for the purposes of 
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achieving integer-feasibility quickly.  Depth-first search is also the default method in many 
commercial solvers.  For these reasons, all of the active-constraint solvers use depth-first node 
selection. 
 
Depth-first search also requires the specification of the branching direction.  The common 
choices are to branch up, to branch down, or to select the direction that corresponds to the closest 
integer value for the branching variable.  We arbitrarily chose to branch up in all of the active 
constraint solvers. 

3.1 Experiments 1 and 2 
As described in detail later, Cplex provides the underlying MIP solver framework on which the 
new variable selection schemes are built. Two experiments are conducted, differing in terms of 
which internal Cplex-specific heuristics are activated.  The heuristics in modern commercial MIP 
solvers such as Cplex vary widely, and the details are normally proprietary for reasons of 
competitive advantage.  Heuristics may include root node probing, aggregation, presolving, 
generating cuts, neighbourhood search, etc.   
 
In Experiment 1, all Cplex heuristics are turned off to achieve a straightforward branch and 
bound set-up.  This provides a level playing field for comparing the effectiveness of the various 
branching variable selection schemes without the confounding effects of additional heuristics.  
This is the main experiment for evaluating the worth of the new active constraint variable 
selection algorithms. 
 
All of the new algorithms are compared to the Cplex default scheme and the Experiment 1 
results favour the new schemes by a good margin.  However it may be that the new schemes 
perform especially well on the very models that would be solved quickly by the Cplex internal 
heuristic methods if they were turned on.  Experiment 2 provides a supplemental set of results to 
test this idea by solving the models with all Cplex parameters at their default settings, which 
generally turns all user-controllable heuristics on.  For Experiment 2 we eliminated all models 
that are solved at the root node from the test set, and then compared solution speed on the 
resulting smaller set of more difficult models. 

3.2 Implementation 
The well-known commercial solver Cplex 9.0 [Ilog 2003a, 2003b, 2003c] was used in the 
experiments reported below.  Cplex was used in two ways (i) as a representative state-of-the-art 
commercial MIP solver with which to compare our new methods, and (ii) as the basic MIP 
solver framework upon which our new methods are built.   
 
A C++ program manages the interface between Cplex and our new routines, especially the 
process of obtaining necessary information via the callback routines in the Cplex callable library 
[ILOG 2003a, 2003b].  The interface program maps the branch and bound nodes to saved data 
based on the unique node sequence number allocated by the Cplex MIP solver.  The interface 
also allows the user to choose from among the variable and node selection methods described in 
this paper as well as from the routines internal to Cplex.    
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The Cplex parameters are set as follows in every active-constraint solver (see the Cplex manuals 
[Ilog 2003a, 2003b, 2003b]).  The corresponding Cplex parameter is shown in brackets.  

• Branching variable selection scheme (CPX_PARAM_VARSEL): For Cplex, the default 
method.  For the active constraint methods, overridden by the callback routines.  

• Node selection scheme (CPX_PARAM_NODESEL): For Cplex, the default method, which is 
similar to a depth first search strategy until the first feasible solution is found and is then 
closer to a best first search.  For the active constraint methods, pure depth-first search in 
Experiment 1 and Cplex default in Experiment 2. 

• MIP Emphasis (CPX_PARAM_MIPEMPHASIS): emphasis is on finding a feasible solution. 
• Branch and bound node limit (CPX_PARAM_NODELIM): explained below. 
• Time Limit (CPX_PARAM_TILIM): explained below. 
• Tree Memory Size Limit (CPX_PARAM_TRELIM): 128 MB. 
• Node File Size Limit (CPX_PARAM_NODEFILELIM): 800 MB. 
• Compress Node File (CPX_PARAM_NODEFILEIND): node file saved on disk and 

compressed. 
• Logging information in file. 
• Logging frequency (CPX_PARAM_MIPINTERVAL): 500 nodes. 
• All other parameters are set at their default values. 

 
In Experiment 1, all of the preprocessing and node heuristics in the underlying Cplex solver are 
turned off by these additional parameter settings: 

• Pre-solving (CPX_PARAM_PREIND): off. 
• Aggregation (CPX_PARAM_AGGIND): off. 
• Root Node Heuristic (CPX_PARAM_HEURISTIC): off. 
• Internal Node Heuristic (CPX_PARAM_HEURFREQ): off. 
• Cut generation (CPX_PARAM_CLIQUES, CPX_PARAM_COVERS, CPX_PARAM_GUBCOVERS, 

CPX_PARAM_FLOWCOVERS, CPX_PARAM_IMPLBD): off. 

3.3 Premature Termination 
To permit the completion of many experiments in a reasonable amount of time, the MIP 
solutions are terminated prematurely if any one of several conditions is met.  Termination for any 
of these reasons does not imply that the algorithm would not complete successfully if given 
sufficient time or resources. 
 
The most important of the conditions for premature termination is solution time: a maximum of 
28,800 seconds (8 hours) of run-time is allowed.  Note that this limit includes the calculation 
time for selecting the branching variable when an active constraint scheme is used.  While 
necessary for practical reasons, this is unfair to the active constraint methods, as explained next. 
 
Cplex performs internal optimizations at each branch and bound node that adjust the number of 
variables and constraints, and affect whether a particular variable even appears in a particular 
constraint.  This optimization cannot be turned off.  For this reason it is not possible to write 
efficient schemes for searching the data structures during external callbacks.  The active 
constraint methods use simple top-to-bottom searches for the candidate variables in the 
constraints, which is very time-consuming.  In a good implementation, the time taken by the 
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simple active constraint calculations would be negligible, but it can take a long time in our test 
software.  Some models are terminated prematurely for this reason when the time limit is 
exceeded, even though the active constraint solver has actually consumed much less Cplex 
computation time.  We present summary statistics on this effect in the tables of results. 
 
Algorithms may also be terminated prematurely if the number of branch and bound nodes solved 
is too great.  There is a hard limit of 100,000 nodes for any experiment.  In addition, there is a 
relative limit for the active constraint methods, as follows.  Models are first solved using Cplex.  
Let k represent the number of nodes taken by Cplex for the solution.  Active constraint methods 
are prematurely terminated if they solve more than 10(k+1) nodes since they are clearly shown to 
be inferior to Cplex at this point. 
 
As described in Section 3.2, limits are also placed on the tree memory size and the node file size, 
but these limits are not exceeded in any of the experiments reported here. 

3.4 Comparison Criteria 
Many researchers [Dakin 1965, Tomlin 1969, Benichou et al. 1971, Gauthier and Ribiere 1977, 
Linderoth and Savelsbergh 1999, Mittelman 2001] have used one or more of the following 
metrics to compare the effectiveness of MIP solvers in finding a feasible or optimum solution: 
number of solved nodes (i.e. number of solved LP relaxation problems), total number of simplex 
iterations over all solved nodes, or solution time (CPU or clock time in seconds).  Each metric 
has advantages and disadvantages. 
 
We perform two sets of experiments to compare the various methods against each other and 
against Cplex.  We use various metrics to compare the solution speed:   

• Number of solved nodes.  This is the most influential factor in terms of memory 
consumption, and is also closely related to the total computational effort. 

• Number of simplex iterations.  This is a good measure of total computational effort.  As 
opposed to the node count, the number of simplex iterations accounts for the extra effort 
involved when the algorithm causes a great deal of backtracking, which requires the 
solution of a node that is quite different from the last one solved (hence there is less 
scope for an advanced start). 

• Fewer nodes/iterations than Cplex.  The number of models for which the active 
constraint method takes fewer nodes or iterations than Cplex.  This measure takes Cplex 
as the state of the art for comparison.  Note that this does not count instances in which the 
active constraint method is equally as fast as Cplex (which does happen when the number 
of solved nodes is used as the measure of speed). 

• Feasibility success ratio (FSR). Related to the previous measure, this shows the fraction 
of the models for which the scheme is strictly faster than Cplex. 

• Number of times within 10% of best.  The difference in speed between solutions 
(measured in number of nodes or iterations) is often quite minor: fractions of a second or 
just a few nodes.  It is misleading to count only the number of times a method is the 
absolute fastest when it may have been only marginally slower in several cases.  For this 
reason we give the count of the number of times the speed of a method was within 10% 
(rounded up to next integer) of the fastest speed achieved by any method, including 
Cplex, for a model.  The choice of 10% is arbitrary. 
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• Performance profiles.  Performance profiles, as recommended by Dolan and Moré 
[2002], generalize the idea given in the previous measure by showing how frequently 
each method is within some arbitrary ratio of the best performance. 

• Quality success ratio (QSR).  The fraction of the models for which the first feasible 
solution returned by the active constraints method has an optimality gap that is equal to 
or smaller than the optimality gap for the first feasible solution returned by Cplex.  
Details follow below. 

• Times terminated.  To complete a large number of experiments in a practical amount of 
time, solutions are terminated prematurely for the reasons described in Section 3.3.  The 
fewer forced terminations, the better. 

 
Because a different set of models is terminated prematurely for each solver (including Cplex), it 
is hard to make direct comparisons of average performance.  For this reason we also look at a 
comparable subset of the models: those for which all of the methods terminate successfully.  We 
apply the following additional metrics to the models in the comparable subset: 

• Average nodes, average iterations. 
• (Average nodes)/(Cplex average nodes), (average iterations)/(Cplex average iterations). 
• Average ratio to best.  Applies for both nodes and iterations. 

 
We considered the use of clock time as an additional measure of total computational effort, 
modified to exclude the time spent on the variable selection algorithm for the reasons described 
in Section 3.3.  Because the pattern of the results is closely similar to those returned by the 
number of simplex iterations metric, we have omitted the clock time results. 
 
Speed to first feasibility is our interest in this paper.  However the methods developed here may 
also prove useful in speeding the solution to optimality, so we are interested in the closeness to 
optimality of the solutions they return. Feasible solutions obtained quickly may be quite far from 
optimality, and hence may be detrimental to reaching optimality rapidly.  The Quality Success 
Ratio (QSR) measures how frequently the first feasible solution returned by an active constraints 
method has an optimality gap that is equal to or smaller than the optimality gap returned by 
Cplex at its first feasible solution.  The optimality gap is as reported by Cplex: (|Zlo − Zup|)/(ε + 
|Zlo|) where Zlo is the current lower bound, Zup is the current upper bound, and ε is a small 
tolerance to prevent overflow. The QSR is defined as (number of models for which the method 
returns an optimality gap that is equal to or smaller than the gap returned by Cplex)/(all models 
compared). 

3.5 Test Models 
The active constraint methods are tested using the models in the MIPLIB 2003 library 
[MIPLIB2003, 2005].  This library is an update of the well-known MIPLIB 3.0 library [Bixby et 
al., 1998] to include more difficult examples.  It includes both pure and mixed integer linear 
programs. Most of the models are from real-world applications, for example 10teams deals with 
assigning teams to time slots in the English football league, and danoint and dano3mip are 
telecommunication applications.  Basic model statistics appear in Table 1.   
 
The library classifies the models according to their level of difficulty: “easy” models are those 
that can be solved within an hour by a commercial solver, “medium” models are those that have 
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actually been solved to optimality, but in more than an hour, and “difficult” models are those that 
have never been solved to optimality.  This designation is also shown in Table 1. 
 
For both Experiments 1 and 2, any models that are prematurely terminated by all of the methods 
(including Cplex) within the specified time and node limits are eliminated from the test sets.  For 
Experiment 1, two models are eliminated: momentum3 and stp3d, leaving a net 58 models in the 
test set.  For Experiment 2, three models are eliminated for this reason: momentum2, 
momentum3, and stp3d.  All three of these models are in the MIPLIB2003 “difficult” category 
and are among the largest models in the library in terms of number of row constraints.  In 
addition, we eliminate from Experiment 2 any models that are solved at the root node.  This 
eliminates a further 32 models, leaving a net 25 models. 
 
It is interesting to note that momentum2 is actually solvable by Cplex without triggering 
premature termination with all of the default heuristics turned off, but not when they are turned 
on.   

Model Rows Cols Int Bin Real NZ diff. 
10teams 230 2025 0 1800 225 12150 e 
a1c1s1 3312 3648 0 192 3456 10178 d 
aflow30a 479 842 0 421 421 2091 e 
aflow40b 1442 2728 0 1364 1364 6783 d 
air04 823 8904 0 8904 0 72965 e 
air05 426 7195 0 7195 0 52121 e 
arki001 1048 1388 123 415 850 20439 d 
atlanta-ip 21732 48738 106 46667 1965 257532 d 
cap6000 2176 6000 0 6000 0 48243 e 
dano3mip 3202 13873 0 552 13321 79655 d 
danoint 664 521 0 56 465 3232 m 
disctom 399 10000 0 10000 0 30000 e 
ds 656 67732 0 67732 0 1024059 d 
fast0507 507 63009 0 63009 0 409349 m 
fiber 363 1298 0 1254 44 2944 e 
fixnet6 478 878 0 378 500 1756 e 
gesa2 1392 1224 168 240 816 5064 e 
gesa2-o 1248 1224 336 384 504 3672 e 
glass4 396 322 0 302 20 1815 d 
harp2 112 2993 0 2993 0 5840 m 
liu 2178 1156 0 1089 67 10626 d 
manna81 6480 3321 3303 18 0 12960 e 
markshare1 6 62 0 50 12 312 m 
markshare2 7 74 0 60 14 434 m 
mas74 13 151 0 150 1 1706 e 
mas76 12 151 0 150 1 1640 e 
misc07 212 260 0 259 1 8619 e 
mkc 3411 5325 0 5323 2 17038 m 
mod011 4480 10958 0 96 10862 22254 e 
modglob 291 422 0 98 324 968 e 

Table 1a: MIPLIB2003 Model Statistics (part 1). 
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3.6 Machine 
The experiments reported here were carried out on Pentium-4 PC running at 2.4 GHz, with 1 
gigabyte of random access memory. 

4. Empirical Results 
Tables 2 to 8 and Figures 1 to 4 summarize the results of the experiments.  Experiment 1 
establishes the main result concerning the effectiveness of the active constraint methods in 
branch and bound.  Experiment 2 provides supplemental data about how well the active 
constraint methods work in conjunction with the Cplex default heuristics.  In Tables 4-6 and 8-9, 
bold indicates the best value in a column. 

4.1 Experiment 1 
We ran Experiment 1 on 20 active constraint algorithm variants.  All performed better than 
Cplex, but we concentrate here on the 5 variants that give the best results overall: methods A, 
HM, HO, O, and P. The raw results for the number of branch and bound nodes solved for each 

Model Rows Cols Int Bin Real NZ diff. 
momentum1 42680 5174 0 2349 2825 103198 d 
momentum2 24237 3732 1 1808 1923 349695 d 
momentum3 56822 13532 1 6598 6933 949495 d 
msc98-ip 15850 21143 53 20237 853 92918 d 
mzzv11 9499 10240 251 9989 0 134603 e 
mzzv42z 10460 11717 235 11482 0 151261 e 
net12 14021 14115 0 1603 12512 80384 d 
noswot 182 128 25 75 28 735 m 
nsrand-ipx 735 6621 0 6620 1 223261 d 
nw04 36 87482 0 87482 0 636666 e 
opt1217 64 769 0 768 1 1542 d 
p2756 755 2756 0 2756 0 8937 e 
pk1 45 86 0 55 31 915 e 
pp08a 136 240 0 64 176 480 e 
pp08aCUTS 246 240 0 64 176 839 e 
protfold 2112 1835 0 1835 0 23491 d 
qiu 1192 840 0 48 792 3432 e 
rd-rplusc-21 125899 622 0 457 165 852384 d 
roll3000 2295 1166 492 246 428 29386 d 
rout 291 556 15 300 241 2431 e 
set1ch 492 712 0 240 472 1412 e 
seymour 4944 1372 0 1372 0 33549 m 
sp97ar 1761 14101 0 14101 0 290968 d 
stp3d 159488 204880 0 204880 0 662128 d 
swath 884 6805 0 6724 81 34965 m 
t1717 551 73885 0 73885 0 325689 d 
timtab1 171 397 107 64 226 829 m 
timtab2 294 675 181 113 381 1482 d 
tr12-30 750 1080 0 360 720 2508 m 
vpm2 234 378 0 168 210 917 e 

Table 1b: MIPLIB2003 Model Statistics (part 2). 

 15



model in Experiment 1 are given in Table 2, and the number of simplex iterations in each 
solution is given in Table 3.  Summary statistics of these results are given in Tables 4 and 5. 
 
Tables 4 and 5 show the performance of the algorithms over all 58 models, and also over a 
subset of 40 models for which all methods completed successfully (comparable models).  It is 
suitable to count the number of times certain events occur when looking at all 58 models, but the 
calculation of average results is reserved for the subset of comparable models. 

 

 All 58 Models 40 Comparable Models 

method 

times 
within 
10% of 

best 

fewer 
nodes 
than 

Cplex FSR 

times 
term. 

(fewer 
nodes at 
time-out) 

Avg. 
nodes: 

(avg. 
nodes)/ 

(Cplex avg. 
nodes) 

avg. 
ratio 

to 
best 

Cplex 9.0 7   4 1967.5  58.22 
A 30 47 0.810 7 (2) 149.5 0.076 1.19 

HM 28 45 0.776 8(2) 130.5 0.066 1.18 
HO 35 45 0.776 9 (3) 123.3 0.063 1.47 
O 36 43 0.741 11 (3) 116.1 0.059 1.11 
P 32 44 0.759 10 (2) 156.2 0.079 1.37 

Table 4: Summary of Experiment 1 (Number of Nodes). 

The active constraint methods are invariably much better than Cplex overall (recall that during 
Experiment 1, all of the Cplex internal heuristics are turned off).  Over all 58 models, method A 
is the best relative to Cplex, completing with fewer branch and bound nodes than Cplex on 81% 
of the models and with fewer simplex iterations on 74.1% of the models.  The worst active 
constraint methods in both Tables 4 and 5 are still significantly better than Cplex.  All of the 
active constraint methods are within 10% of the fewest nodes or simplex iterations for a 
significant fraction of the models:  62% (36/58) of the models for the nodes metric for method O 

and 52% (30/58) of the models for the simplex iterations metric for methods A and P. 

 All 58 Models 40 Comparable Models 

method 

times 
within 
10% of 

best 

fewer 
itns 
than 

Cplex FSR 

times 
term. 

(fewer 
itns at 

time-out) 
Avg. 
itns: 

(avg. itns)/ 
(Cplex avg. 

itns)  
[w/o disctom] 

avg. 
ratio to 

best 
Cplex 9.0 12   4 55052  14.93 

A 30 43 0.741 7 (3) 0.663 [0.214] 36484 1.17 
HM 8(3) 35173 0.639 [0.245] 28 40 0.690 1.18 
HO 23 40 0.690 9 (3) 117320 2.131 [0.237] 1.48 
O 25 37 0.638 11 (4) 117401 2.133 [0.239] 1.38 
P 30 41 0.707 10 (3) 216100 3.925 [0.232] 1.67 

Table 5: Summary of Experiment 1 (Simplex Iterations). 
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Over the 40 comparable models, method O requires just a small fraction (0.059) of the nodes 
used by Cplex on average, and the other active constraint methods are in a similar range.  The 
average ratios to the smallest number of nodes for each model are very small for the active 
constraint methods, with a minimum of 1.11 for method O.  In terms of the number of simplex 
iterations, the averages over the 40 comparable models show that Methods A and HM are 
significantly faster than Cplex (about a third fewer iterations), but that the other active constraint 
methods are slower.  In contrast, the average ratios to the smallest number of iterations favour all 
of the active constraint methods by a large margin.  This disparity is due to the skewing effect of 
the disctom model, which requires disproportionately large numbers of simplex iterations for the 
active constraint methods.  When disctom is ignored, the (average iterations)/(Cplex average 
iterations) are in the range 0.214 for method A to 0.245 for method HM. 
 
The number of models for which a method is within 10% of the fastest method (based on nodes 
or number of simplex iterations) is shown in Tables 4 and 5.  Performance profiles generalize 
this idea to any arbitrary ratio to the fastest method: see Figures 1 and 2. The ideal profile 
consists of a single dot in the upper left hand corner of the graph, indicating that the method is 
the fastest for 100% of the models in the test set.  Profiles that come closest to this ideal are 
preferred.  Figure 1 shows that the active constraint methods give much better results than Cplex.  
For example, in Figure 1 consider the fraction of models for which an algorithm completes 
within twice the number of nodes taken by the best method: method A solves 78% of the models 
within this limit while Cplex solves just 33%.  The “ratio to best axis” is truncated at 10: Cplex 
solves 33% of models at ratios above this limit, while just 12% of the models are potentially 
above this limit for method A (the method A curve truncates at this point since 12% of the 
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Figure 1: Performance Profiles for Experiment 1 (Nodes). 
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models are prematurely terminated).  The worst ratio to best is recorded by Cplex at 1067 on 
aflow3a for which Cplex solves 23481 nodes while each of the active constraint methods solve 
just 22 nodes. 
 
The performance profiles based on the number of simplex iterations, given in Figure 2, show the 
same general story of faster performance by the active constraint methods.  Method A again 
dominates. 
 
While generally much faster, the active constraint methods are terminated prematurely more 
often than is the case for Cplex.  It is not known how many of the models would eventually have 
been solved to completion if the solver were allowed to run longer.  For each active constraint 
method there are a few models that have used fewer nodes or simplex iterations when terminated 
by reaching the time limit.  As mentioned in Section 3.3, this is likely unfair to the active 
constraint methods because of their unoptimized data structure searches.  The models that 
experience this problem most frequently are atlanta-ip, momentum1, msc98-ip and rd-plusc-21.  
These are exactly the models for which an inefficient search for the candidate variables in the 
active constraints would be the most time-consuming as shown by the following simple analysis.  
Sorting the models in descending order of (number of rows) × (number of integer variables + 
number of binary variables) places these 4 models very close to the top of the list (positions 1, 2, 
4 and 6).  Note that all four models are rated “difficult”, while the models at positions 3 and 5 in 
the list (mzzv42z and mzzv11) are rated “easy”.  Note that if the difficult omitted stp3d and 
momentum3 were added to this list, they would take positions 1 and 3 in the revised list. 
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Figure 2: Performance Profiles for Experiment 1 (Simplex Iterations). 
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The quality success ratio indicates the fraction of models for which an active constraint method 
has a lower optimality gap at the first feasible solution as compared to the optimality gap at the 
first feasible solution for Cplex.  As shown in Table 6, the quality success ratios for all of the 
active constraint methods in Experiment 1 are above 50%, and even as high as 78% for method 
P.  This indicates that the active constraint methods are potentially beneficial in the search for 
optimality since they frequently return a first feasible solution that is closer to optimality than the 
first feasible solution returned by Cplex. 
 
Overall, Experiment 1 demonstrates that the active constraint methods generally improve the 
speed of the branch and bound algorithm considerably.  The extremely simple method A is 
surprisingly effective, though a number of other methods are almost as good.  Further, the active 
constraint methods, though seeking feasibility, also improve the movement towards optimality. 

Experiment 1 
over 40 comparable models  

Experiment 2 
over 12 comparable models 

method QSR  method QSR  
A 0.53 B 0.75 

HM 0.55 HM 0.50 
HO 0.58 HO 0.50 
O 0.70 L 0.58 
P 0.78 P 0.33 

Table 6: Quality Success Ratios.

4.2 Experiment 2 
Experiment 2 differs from Experiment 1 in that all of the Cplex internal heuristics are turned on.  
This greatly complicates the analysis because the exact nature of the interactions between the 
internal Cplex heuristics on the one hand and the models and active constraint methods for 
variable selection on the other hand are not known.  However, as shown below, speed to first 
feasibility is generally increased when the active constraint methods are used as compared to the 
default Cplex variable selection scheme.  The results could probably be improved even further if 
the active constraint variable selection schemes were closely integrated with the heuristics. 
 
Deciding which heuristics to apply is best done by an expert who can customize the choice to the 
problem at hand.  Applying a particular heuristic or combination of heuristics actually slows the 
generation of the first feasible solution in some cases.  In our experiments, the Cplex root node 
heuristics are quite effective: 32 models are solved by these heuristics and hence are eliminated 
from the Experiment 2 test set (3 more models are eliminated because all methods are 
prematurely terminated).  For the remaining 25 models, the other heuristics have a mixed effect. 
Comparing the Cplex results in Experiments 1 and 2, speed to first feasibility is worse in 
Experiment 2 in about half of the cases, in terms of number of nodes or number of simplex 
iterations.  In some cases the worsening is dramatic: momentum2 is solved by Cplex in 
Experiment 1, but is prematurely terminated in Experiment 2; timtab2 is solved using 14059 
nodes in Experiment 1, but 25351 nodes are used in Experiment 2. 
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Note that the active constraint methods are complementary to the Cplex internal heuristics: they 
can simply be used whenever a branching variable must be selected.  However, because of the 
unpredictable effects of the heuristics, we take Experiment 1 as the definitive evaluation of the 
worth of the active constraint methods.  The Experiment 2 results are supplementary data that 
can at least establish whether or not the active constraint methods have a negative impact when 
combined with the Cplex internal heuristics in a naïve manner. 
 
For clarity, we concentrate on the 5 variants that give the best overall results for Experiment 2: 
methods B, L, HM, HO, and P.  Note that methods HM, HO, and P are also among the methods that 
return the best results for Experiment 1. Table 7 shows the number of nodes and the number of 
simplex iterations used by Cplex and the five active constraint methods in solving each of the 25 
models included in Experiment 2.  Tables 8 and 9 provide summary statistics on the number of 
branch and bound nodes and the number of simplex iterations used.  Since the test set is small, 
these statistics are less reliable than those for Experiment 1.  This is even truer for the small 
subset of 12 comparable models. 
 
As shown in Table 8, all of the active constraint methods solve fewer nodes than Cplex on 
average. For example, over the 25 models, method B is faster than Cplex for 68% of the models, 
and is terminated prematurely on an additional 20%.   Method L gives similar results.  The small 
sample of 12 comparable models shows that the active constraint methods solve only around 
20% of the nodes solved by Cplex.  The best results are again given by methods B and L.  The 
disctom model has a skewing effect on these results since it requires significantly more nodes for 

solution.  If disctom is ignored, the (average nodes)/(Cplex average nodes) improve significantly 
for the active constraint methods, ranging from 0.045 for method P to 0.119 for method HM. 

 All 25 Models 12 Comparable Models 

method 

times 
within 
10% of 

best 

fewer 
nodes 
than 

Cplex FSR 

times 
term. 

(fewer 
nodes at 
time-out) 

Avg. 
nodes: 

(avg. 
nodes)/ 

(Cplex avg. 
nodes) 

avg. 
ratio 

to 
best 

Cplex 9.0 4   1 1214.6  23.86 
B 9 17 0.680 5 (1) 235.0 0.193 2.02 
L 7 17 0.680 6 (1) 233.0 0.192 2.01 

HM 6 16 0.640 7 (2) 262.9 0.216 2.13 
HO 6 13 0.520 8 (2) 260.9 0.215 1.96 

P 9 15 0.600 9 (1) 293.8 0.242 1.27 

Table 8: Summary of Experiment 2 (Number of Nodes). 

 
Table 9 summarizes the speed to first feasible solution in terms of the number of simplex 
iterations.  This again shows that the active constraint methods are faster than Cplex on average: 
the feasibility success ratios are all 56% or higher.  The average number of iterations over the 
small sample of 12 comparable models seems to show that the active constraint methods are 
worse than Cplex, but this is again due to the skewing effect of disctom.  When disctom is 
ignored the ratio of the average results favours the active constraint methods by a significant 
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margin.  Over the 12 comparable models, the active constraint methods are faster than Cplex for 
75% of the models (methods B, L and HM) or 83% of the models (methods HO and P). 

 All 25 Models 12 Comparable Models 

method 

times 
within 
10% of 

best 

fewer 
itns 
than 

Cplex FSR 

times 
term. 

(fewer 
itns at 

time-out) 
Avg. 
itns 

(avg. itns)/ 
(Cplex avg. 

itns)  
[w/o disctom] 

avg. ratio 
to best 

Cplex 9.0 7   1 32578  6.89 
B 5 14 0.56 5 (1) 400552 12.295 [0.452] 4.37 
L 7 14 0.56 6 (2) 400233 12.285 [0.437] 4.38 

HM 2 14 0.56 7 (3) 108898 3.343 [0.760] 2.15 
HO 6 15 0.60 8 (3) 418697 12.852 [0.785] 4.66 

P 9 14 0.56 9 (2) 609275 18.702 [0.367] 5.90 

Table 9: Summary of Experiment 2 (Simplex Iterations). 

 
Data that compares each method to the best method is included in Tables 8 and 9. The best active 
constraint methods are within 10% of the best method for 36% (9/25) of the models in terms of 
number of nodes or number of simplex iterations, better than Cplex.  The average ratios to best 
are also significantly lower than for Cplex.  The performance profiles in Figures 3 and 4 give a 
better picture of the relative performance of the methods.  
 
The nodes performance profiles in Figure 3 show that method P performs particularly well 
except for the number of times that it is prematurely terminated.  Methods B and L are also very 
good and experience fewer premature terminations.  All three active constraint methods are 
considerably better than Cplex for the models that are not prematurely terminated. 
 
The number of simplex iterations performance profiles in Figure 4 also show that methods B, L 
and P perform generally better Cplex, but the gap is smaller.  The profiles show that these three 
active constraint methods are always close to the fewest iterations (say within a factor of 2) for 
the majority of the models, but then suffer from very poor performance (or are prematurely 
terminated) on the remainder.  This suggests that it is important to match the active constraint 
algorithm to the model at hand. 
 
As discussed in Section 4.1, three models (momentum1, msc98-ip, rd-plusc-21) have used fewer 
simplex iterations than Cplex when they time out for most of the active constraint methods.  
Again, if we are able to implement an efficient search strategy, the active constraint methods 
may return better results for these models. 
 
As shown in Table 6, the quality success ratio favours all of the active constraint methods with 
the exception of method P, and is particularly high for method B.  This generally supports the 
eventual use of active constraint methods in developing algorithms for reaching full optimality 
more quickly. 
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The active constraint variable selection methods perform well in Experiment 2, generally 
increasing the speed to first feasibility in most cases.  Methods B, L, and P give the best results, 
and are the best candidates for further integration with the internal Cplex heuristics in order to 
yield more consistent results.  Method P is interesting in that it is very quick on those models that 
it completes successfully, but it has a higher rate of premature termination.  This again 
emphasizes the need to carefully select the variable selection scheme based on the characteristics 
of the model.  In the same vein, heuristics must also be carefully selected based on the 
characteristics of the model.  As evidence, consider that its own internal heuristics cause worse 
results for Cplex itself in about half of the 25 models that survive the root node heuristics. 
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Figure 3: Performance Profiles for Experiment 2 (Number of Nodes). 

The supplemental results in Experiment 2 support our contention that the active constraint 
variable selection methods are useful in branch and bound.   

5. Conclusions 
Some of the active constraint methods are decidedly superior to a state-of-the-art commercial 
code in achieving MIP feasibility quickly.  Method A clearly dominates in Experiment 1, our 
main experiment using a straightforward branch and bound setup.  The active constraint methods 
are also generally better when multiple internal heuristics are in operation, as shown by our 
supplementary Experiment 2, though it is clear that both variable selection algorithms and 
heuristics must be carefully matched to the characteristics of the model for best results.  In the 
preliminary tests reported here, active constraints method B is preferred over the Cplex internal 
variable selection scheme when all of the internal heuristics are turned on.   
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Figure 4: Performance Profiles for Experiment 2 (Simplex Iterations). 

Our main conclusion is that the active constraint variable selection methods show significant 
promise for reducing the time needed to find the first feasible solution.  In addition, they may 
also reduce the time to optimality given that they generally provide a better optimality gap at the 
first feasible solution as compared to Cplex. 

5.1 Future Research 
There are many avenues for further research.  There are several potential refinements to the 
current algorithms: 

• At present, an active constraints variable selection method is applied straight through 
from start to finish.  It may be better to check the conditions at each node before deciding 
which method to apply at this particular node.  Which method to choose may depend on 
the number of candidate variables, the number of equality constraints, etc. 

• A fuller evaluation of the interaction between the node selection methods and the active 
constraint variable selection methods should be undertaken. 

• Methods for using the active constraint methods to reduce the time to optimality should 
be studied.  There may be ways to combine the active constraint methods with more 
traditional objective function impact methods to produce a hybrid that is faster to 
optimality. 

• As mentioned in Section 4.2, the exact nature of the interaction between the variable 
selection scheme and the Cplex internal heuristics should be studied with the goal of 
making the best matches between the two, and between them and the characteristics of 
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the model. A larger set of test problems that are not solved by the root node heuristics in 
Cplex is needed.   

• At present the algorithms consider only the active row constraints.  It may also be 
important to consider the active variable bounds, including those introduced by the 
branch and bound process. 

 
Some implementation issues should also be addressed: 

• As noted in several places, our current implementation uses a very inefficient method for 
searching through the active constraints for candidate variables.  Despite the difficulties 
of dealing with the shifting Cplex data structures, an efficient implementation should be 
constructed to avoid the problem of spurious premature terminations. 

• The time taken by the Cplex heuristics should be measured.  For example, Experiment 2 
is conducted on the models that did not reach feasibility at the root node when the node 
heuristics were applied.  Those root node heuristics may have taken longer to run than 
simply solving the entire model using an active constraint method, but this was not 
measured.  Many of the node heuristics involve limited branch and bound operations, and 
these too could perhaps benefit from the use of the active constraint methods.  A detailed 
study is needed. 

 
The choice of branching direction may have an impact on the results.  Preliminary analysis at 
Ilog shows that branching up during depth-first search may in fact be the best strategy.  Further 
experimentation is needed to gauge the impact of the branching direction in general, and on our 
experimental results in particular. 
 
Finally, there are promising lines of research suggested by the connection to the concept of 
surrogate constraints.  Some of the new normalizations described in this paper may prove useful 
in other applications of surrogate constraints.  At the same time, some methods known in the 
surrogate constraints literature may be valuable in selecting branching variables.  In addition, 
when the research moves to the goal of improving speed to optimality, the existing use of 
surrogate constraints for this purpose may provide useful insights. 
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Model Cplex9 A HM HO O O PP  Model Cplex9 A HM HO

10teams 579 19 14 200 19 168  modglob 66 31 31 31 31 31
a1c1s1 7835 174 174 174 174 174  momentum1 t:1219 t:206 t:100 t:149 t:191 74
aflow30a 23481 22 22 22 22 22  momentum2 236 t:647 t:678 t:223 t:658 t:688 
aflow40b n:max 46 46 33 33 33  msc98-ip 1309 t:2560 t:2673 128 t:2673 t:2601 
air04 31 9 13 38 n:320 29  mzzv11 157 80 94 n:1580 n:1580 n:1580 
air05 40 26 19 32 33 25  mzzv42z 135 52 71 n:1360 72 71
arki001 318 105 n:3190 82 n:3190 102  net12 1004 432 1545 47 t:4904 t:2503 
atlanta-ip 1247 496 t:759 t:866 t:834 t:844  noswot 37 65 30 32 32 32
cap6000 477 n:4780 n:4780 1331 589 n:4780  nsrand-ipx 3301 22 18 19 19 20
dano3mip 60 48 47 48 48 47  nw04 50 3 3 4 4 3
danoint 20 74 44 n:210 n:210 n:210  opt1217 130 47 48 44 44 44
disctom 9098 3167 2381 1917 1917 3404  p2756 429 127 139 110 113 89
ds 1312 24 46 28 28 32  pk1 65 25 25 24 24 24
fast0507 14753 26 41 61 58 34  pp08a 56 49 49 47 47 47
fiber 69 26 36 12 13 16  pp08aCUTS 56 30 30 29 30 30
fixnet6 181 65 65 65 65 65  protfold 314 62 n:3150 n:3150 29 1679
gesa2-o 171 65 67 66 65 65  qiu 41 23 19 20 21 21
gesa2 143 64 67 64 64 66  rd-plusc-21 n:max t:93 65 t:87 t:85 t:85
glass4 7940 62 62 62 55 62  roll3000 600 66 64 48 51 n:6010
harp2 126 n:1270 53 58 58 374  rout 124 54 30 25 22 29
liu 568 666 670 677 658 665  set1ch 160 117 117 100 100 100
manna81 272 274 272 272 274 274  seymour 155 87 105 154 103 96
markshare1 52 23 23 24 20 20  sp97ar 3553 60 66 76 58 57
markshare2 42 30 30 27 27 27  swath 45 33 35 33 24 27
mas74 39 21 21 21 21 21  t1717 2505 60 71 69 50 65
mas76 26 16 16 16 16 15  timtab1 446 234 234 234 234 234
misc07 25 7 9 7 7 7  timtab2 14059 n:max n:max n:max n:max n:max 
mkc 44 41 45 42 55 41  tr12-30 n:max 322 327 340 341 326
mod011 49 15 15 15 15 15  vpm2 700 31 28 28 34 33

Table 2: Experiment 1 Number of Nodes. 
t: indicates time limit exceeded at the number of nodes shown. n: indicates node limit exceeded at number of nodes shown. n:max 

indicates 100,000 node limit reached.  Bold indicates time limit reached while number of nodes smaller than used by Cplex 9.0 
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Model Cplex9 A HM H HO O P  Model Cplex9 A HM O O P 
10teams 64177 8253 7327 33218 8253 41178  modglob 673 302 302 302 302 302 
a1c1s1 162715 1277 1263 1263 1277 1277  momentum1 t:1452453 t:1316982 t:1174742 t:1215730 t:1100447 7451 
aflow30a 559252 2128 2128 3770 3770 3770  momentum2 160202 t:716951 t:696357 t:1077297 t:692669 t:565815 
aflow40b n:3712351 10546 10546 14422 14422 14422  msc98-ip 5364578 t:1231963 t:331337 329561 t:828853 t:943085 
air04 9359 6329 6838 10347 n:133692 7738  mzzv11 98182 114597 167479 n:1613459 n:709333 n:548648 
air05 5563 5599 4103 5162 6654 3936  mzzv42z 33916 95022 103738 n:206200 178680 69318 
arki001 5566 2014 n:38008 2065 n:165353 2731  net12 484113 125320 971323 n:18050 t:2999970 t:4204447 
atlanta-ip 1217175 437934 t:576607 t:372971 t:718101 t:521645  noswot 145 182 143 181 173 174 
cap6000 1503 n:735620 n:735620 43236 2554 n:579753  nsrand-ipx 8355 416 667 480 469 440 
dano3mip 201015 200091 237900 190739 217601 193004  nw04 513 195 296 257 242 195 
danoint 3384 16431 8384 n:44454 n:40396 n:42159  opt1217 1210 737 489 487 487 428 
disctom 432194 1080459 973598 4273380 4273380 8234181  p2756 1123 323 336 304 324 297 
ds 394023 30737 41260 36526 38553 44966  pk1 510 398 398 360 300 300 
fast0507 64617 11744 13405 17009 16042 10291  pp08a 353 211 211 189 189 189 
fiber 735 559 726 420 379 543  pp08aCUTS 430 353 378 365 396 396 
fixnet6 1383 338 338 338 338 338  protfold 1279679 158070 n:2250448 n:1543869 71819 747318 
gesa2 1184 735 715 718 732 739  qiu 5619 3968 2767 3580 4024 4024 
gesa2-o 1301 574 560 553 559 556  rd-plusc-21 n:342232 t:543 1534 t:1853 t:952 t:979 
glass4 11734 153 153 153 148 153  roll3000 16816 5411 3701 4458 3733 n:116366 
harp2 2017 n:13168 1649 1714 1714 3268  rout 2036 1325 1084 1098 875 896 
liu 3572 2121 2171 2221 2168 2202  set1ch 576 636 636 970 970 970 
manna81 3153 3155 3153 3153 3155 3155  seymour 25542 22836 28867 33530 29983 24590 
markshare1 115 86 86 77 55 55  sp97ar 37557 4599 5861 6926 5493 5389 
markshare2 108 93 93 84 77 77  swath 3876 3762 3498 3762 3610 3692 
mas74 246 149 160 171 146 179  t1717 188279 61192 61995 61351 64580 51252 
mas76 140 127 117 129 117 107  timtab1 1856 950 950 950 950 950 
misc07 742 402 385 400 534 534  timtab2 75607 n:292205 n:292205 n:292205 n:292205 n:292205 
mkc 2686 2669 2889 2693 3213 2793  tr12-30 n:217919 754 744 752 743 737 
mod011 9358 5237 5237 5223 5223 5223  vpm2 3417 278 290 290 287 277 

Table 3: Experiment 1 Simplex Iterations. 
t: indicates time limit exceeded at the number of iterations shown. n: indicates node limit exceeded at number of iterations shown. Bold indicates time 

limit reached while number of iterations less than used by Cplex 9.0 
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Number of Nodes  Simplex Iterations 
Model Cplex9 B HM HO L P  Model Cplex9 B HM HO L P 
10teams 617 285 735 653 285 86  10teams 63242 54611 130451 129651 54611 41410 
aflow30a 250 28 10 10 54 10  aflow30a 8949 3819 1778 3107 4013 2435 
aflow40b 280 80 59 35 20 38  aflow40b 22669 10301 12610 17087 6054 16836 
air04 36 14 20 22 14 20  air04 9738 6064 9487 8144 6064 7972 
air05 138 30 21 26 30 10  air05 10221 5384 3960 4645 5384 2852 
arki001 613 n:6140 n:6140 n:6140 130 100  arki001 12464 n:93627 n:210379 n:84237 3137 2819 
atlanta-ip 240 t:1252 t:1165 t:1300 t:1140 t:1359  atlanta-ip 310975 t:956847 t:1130465 t:774937 t:1382224 t:479003 
danoint 70 10 49 400 428 n:710  danoint 12537 3260 10189 90771 79932 n:118684 
disctom 4770 2051 1987 2121 2051 3082  disctom 126572 4687261 1105886 4816947 4687261 7214344 
glass4 7450 41 51 61 45 61  glass4 16184 320 359 325 319 325 
misc07 80 8 7 7 8 7  misc07 2588 604 640 631 604 541 
msc98-ip 1390 30 t:3667 t:3587 290 t:3500  momentum1 t:8272328 17451 t:5515866 t:4654537 t:3195352 88498 
momentum1 t:2491 67 t:1085 t:376 t:4717 120  msc98-ip 2710456 237456 t:638999 t:1252588 499040 t:1425058 
mzzv11 157 80 52 n:1580 59 n:1580  mzzv11 72315 97945 81597 n:194797 79243 n:223011 
mzzv42z 71 61 40 n:720 60 n:720  mzzv42z 26275 31480 30880 n:73955 28843 n:42856 
net12 480 60 t:2792 115 t:3337 t:3457  net12 541559 219099 t:3001431 186146 t:2775561 t:2347168 
opt1217 90 43 54 46 56 52  opt1217 764 435 537 363 684 410 
protfold 630 n:6310 360 270 10 10  protfold 1923737 n:4318770 422879 1122198 71289 68384 
rd-plusc-21 10464 t:562 t:551 t:548 t:559 t:556  rd-plusc-21 84516 t:2442 t:13801 t:5601 t:6217 t:9352 
roll3000 150 57 50 41 n:1510 30  roll3000 8477 6347 6245 5519 n:49109 5552 
rout 10 20 10 10 20 10  rout 1412 1517 1290 1320 1517 1485 
t1717 680 40 60 70 40 30  t1717 125746 33316 36780 39702 33316 20148 
timtab1 868 3640 874 874 434 n:8690  timtab1 8367 13978 3161 3161 2425 n:30845 
timtab2 25351 n:max n:max n:max n:max n:max  timtab2 524654 n:961195 n:416533 n:416533 n:416400 n:565598 
tr12-30 174 180 141 70 173 120  tr12-30 2852 2994 2995 2441 2968 2539 

Table 7: Experiment 2 Number of Nodes and Simplex Iterations. 

t: indicates time limit exceeded at the number of nodes/iterations shown. n: indicates node limit exceeded at number of nodes/iterations 
shown.. n:max indicates 100,000 node limit reached.  Bold indicates time limit reached while number of nodes/iterations smaller than used by 

Cplex 9.0 


	Active-Constraint Variable Ordering for Faster Feasibility of Mixed Integer Linear Programs
	Abstract
	1. Introduction
	2. Active Constraint Branching Variable Selection Schemes
	2.1 Weighting Based on the Number of Active Constraints Involving a Candidate Variable
	2.2 Weighting Based on Polling Across Constraints or Methods
	2.3 Weighting Using the Number of Variables in an Active Constraint
	2.4 Weighting Using Coefficients and Number of Variables in an Active Constraint

	3. Experimental Setup
	3.1 Experiments 1 and 2
	3.2 Implementation
	3.3 Premature Termination
	3.4 Comparison Criteria
	3.5 Test Models
	3.6 Machine

	4. Empirical Results
	4.1 Experiment 1
	4.2 Experiment 2

	5. Conclusions
	5.1 Future Research

	References


