
1

Deployment of Services in a Cloud Subject to Memory and License Constraints

Jim (Zhanwen) Li, John Chinneck, Murray Woodside

Dept. of Systems and Computer Engineering,

Carleton University,

Ottawa, Canada

{zwli | chinneck | cmw}@sce.carleton.ca

Marin Litoiu

School of Information Technology,

York University,

Toronto, Canada

mlitoiu@yorku.ca

Abstract

When deploying services in a cloud, a balance must be found

between performance and capacity of the service, and the

memory available on nodes. This is further complicated if the

number of replicas of an application is limited, for instance by

the available number of licenses. The analysis of interference

between services must scale to large numbers of host nodes,

applications, replicas of applications, and classes of users.

This paper combines a multi-dimensional packing heuristic

and network flow optimization to satisfy simultaneous

constraints on throughputs, processor utilizations, memory

availability and license availability, at a minimum cost and

with a minimum of host processors.

1. INTRODUCTION

Applications are increasingly hosted in large processing

complexes sometimes called clouds [14][15], which share

physical resources among many applications. Clouds support

flexible deployment as an application’s needs change, hide

management details from the user and the service provider,

and require payment only for resources used. Clouds use

virtualization to achieve controlled sharing of resources, rapid

redeployment of application images, and isolation of different

applications and instances from each other (when they share a

host). Applications may include web applications, legacy

client-server applications, platforms (i.e. PaaS [7]),

infrastructure (i.e. IaaS [16]), and information services of all

kinds.

An economic driver for clouds is the efficiencies achieved
by sharing resources among applications, beginning with
efficient deployment of applications on the hosts of the cloud.
A deployment method must scale up to thousands of services
running on thousands of hosts, and be cheap enough to re-run
frequently as loads and requirements change. This paper
assumes an integrated management viewpoint in which
deployment should consider the overall cost of the hosts used,
and the performance and QoS goals of each application.

To enhance sharing, one node may host more than one
application; however memory constraints on each host must be
respected. In previous work [19], [20], the present authors
described a novel optimization algorithm for large deployment

problems. The present paper extends the method to account for
host memory and license constraints.

Figure 1 illustrates the deployment of application processes
in our experimental cloud for CERAS [6]. The virtual machine
monitors control the rate of processing provided to each VM.
Deployment issues include (i) the number of replicas of each
service, (ii) the selection of processors, (iii) computing power
consolidation, (iv) allocation of service replicas, and (v)
workload balancing and distribution. The deployment should
meet performance targets described in service contracts, (e.g.
response time, number of users, capacity given as arrival rates),
and economic targets (e.g. cost budgets, power constraints,
profit targets) in the presence of constraints (host processing
capacity, host memory, licenses per type of application). The
deployment solution will be based on data about the execution
demands of each application to be deployed, which may be
obtained from performance tests or from operating data. Using
operating data, changing demands can be tracked.

Cloud with multiple clusters

Cluster with multiple hosts

Physical host with several VMs

Users

Services offered by an

Application

VM

Optimize this deployment

decision based on predictions

by a performance model

Deployed Application

Prior performance model

from

(a) software specification,

(b) previous operational

data.

used for the initial

deployment

Tracked performance

model based on

operational data, used

for adjusting the

deployment

. . .
. . .

. . .

Figure 1. Application processes in a Cloud

We consider that the Cloud uses a flexible licensing model.
It owns a number of concurrent licenses (which means the
owner can run a specified number of application instances at
the same time) for each type of application. In this paper, the
concurrent licenses are treated as constraints. When that
number is exceeded the Cloud acquires additional pay per use
licenses. These additional licenses are reflected in the
optimization cost function. Therefore, in the remainder of the

2

paper, the licenses will be taken into account as soft
constraints, with a violation penalty in a cost function.

There is a rich literature on optimal deployment and
deployment to satisfy constraints. One approach was to
minimize the amount of communications between physically
distributed hosts, as described by Bokhari and others (e.g.
[2][3][4]). Bin-packing has been applied to pack execution
requirements [10], execution and communications
requirements [23] and memory; these have been combined in
multidimensional bin-packing [8].

Recently Tang et al described a combination of network
optimization with heuristic rules that satisfies total demand for
each application (as here), and tends to level load and memory
requirements [22]. They generate incremental changes to
accommodate load changes or new applications, and attempt
also to minimize the number of deployment changes in
responding to the increment. Because they focus on
incremental changes, their placements could drift towards
higher costs (e.g. by using more hosts than necessary) through
a sequence of decisions; a global re-optimization should be
used periodically as a reality check. Another solution for global
optimization of this problem, or incremental optimization after
a load change, solves a Multiple Knapsack Problem [18].
Neither [18] nor [22] address the question of limiting the
number of replicas because of a license constraint.

The present authors combined a contention model with
network optimization to optimize deployment subject to
response time constraints that take account of resource
queueing, including logical resources modeled by extended
queueing [20]. However, that work did not account for memory
requirements of tasks. This was extended to find a minimal
change to accommodate one new application, in [19]. No work
we know of addresses the flexible license model proposed here,
where concurrent and pay per use licenses coexist. .

This paper is quite different from [19], [20], in that it
applies a heuristic allocator motivated by multi-dimensional
bin-packing, with one dimension for packing memory on host
processors, a second for packing the execution requirements of
deployed tasks into a permitted threshold on a host, and a third
for packing task allocations into a permitted license-based limit
per task. For cost minimization this is augmented with a
network flow model similar to [19], [20] but adjusted to
minimize the sum of execution cost and a penalty for excess
licenses. The resulting algorithm can deploy thousands of tasks
on thousands of processors, and is capable of further scale-up.

2. SERVICE SYSTEMS AND DEPLOYMENT

We consider the general service meta-model shown in
Figure 2, in which a user class requests a set of services
according to its usage profile, and these services may in turn
request other services.

UserClasses request services which in turn request other
services (exploiting the concepts of Service-Oriented
Architecture), forming a web of inter-service traffic. Services
are implemented by Applications which run as system tasks or
thread pools (ServerTasks), which may have limited capacity.
UserClasses have throughput and delay requirements expressed

by their SLAs. Resources, such as ServerTasks and Hosts make
up the Cloud and are shared among the running Applications.
Hosts have flow constraints due to limited processing capacity.
ServerTasks can have license constraints. For example, an
Application can run its ServerTasks within commercial Data
Base Management Systems or in Application Servers and there
are upper limits on how many instances of those can be
deployed.

« Host»

-saturationCapacity

-executionCost

-memoryCapacity

« UserClass»

-requestRate

-classSize

« Service»

- hostDemand

*

* 1

* requester

1

1 service

« reqDirect»

{meanRequests}

« provides»

« executes»

« ServerTask»

-memoryRequirement

-maxLicenses

« Resource»

«Application»

*

*

callee
1

caller

« reqIndirect»

 {meanCalls}

«Cloud»

*
*

« runs»

Figure 2. Service system metamodel

Attributes are attached to the stereotypes. Some of the
attributes are provided by the service provider, some by the
cloud administrator and some are computed or estimated at run
time using optimal filters [24]. The attributes will be referred to
in the sequel by the following notation:

 fUser,c = requestRate of UserClass c

 fUser,c,SLA = the minimum required value of fUser,c

 SUser,c = the set of services used by class c,

 STask,t be the set of services provided by task t.

 Ycs = meanRequests by UserClass c to Service s, during
one response to a user request. This includes the effect
of indirect calls to other services at rate meanCalls.

 ds = mean hostDemand of Service s, per invocation, in
CPU-sec.

 Mt = memoryRequirement of task t, in order to execute
(assumed the same for all nodes)

 Lt = maxLicenses available for task t (these are the
concurrent licenses)

 CLt = pay-per-use cost of extra licenses for task t,
beyond Lt

 Ch = executionCost of host h, a cost factor for a unit of
execution on this host. In a homogeneous cloud these
are all equal.

 Mh = memoryCapacity of host h, memory available for
application tasks

3

Attributes which do not have specific notation are:

 h = the capacity limit of host h, given as a processing
rate relative to a “standard” host used to calibrate
execution demands of services. The saturationCapacity
of host h is given in the same units, and the utilizat to
provide a margin

 Uh = utilization of host h = h/saturationCapacity of h

2.1. An Example

Figure 3 shows an example with two user classes and six
services/applications, labeled by the request rates from one
service to another. Tasks are labeled t1 - t6. Other labels, such
as the size of the user classes and the host demands of the
services, are not shown here.

In the present analysis, the total host demand for each
application (task) is computed from the total direct and indirect
requests for each of its services, due to requests from each class
of users. For example, from Users1 to DB2Serv it is:

YUsers1, DB2Serv = 1 x 0.3 x (0.7 + 0.3 x 1.4) = 0.336
requests/user request

«UserClass»

Users1

«Service»

AppServ

«UserClass»

Users2

«Service»

DB1Serv

«Service»

DB2Serv

«Service»

HelpServ

«Service»

WebServ
«Application»

WebServer(t1)

«Application»

Helper(t3)

«Application»

App(t2)

«Service»

FileServ

«Application»

DB2(t6)

«Application»

DB1(t5)

«Application»

FileServer(t4)

«reqIndirect»

{meanReq=0.3}

«reqIndirect»

{meanReq=1.4}

«reqIndirect»

{meanReq

=0.7}

«reqIndirect»

{meanReq=9}

«reqDirect»

{meanReq=1}

«reqIndirect»

{meanReq=0.3}

«reqDirect»

{meanReq=1}

«reqIndirect»

{meanReq=1}

«provides» «provides» «provides»

«provides»

«provides»

«provides»

«reqIndirect»

{meanReq=4}

Figure 3. An example of a web application

3. NOTATION FOR DEPLOYMENT

At the required throughputs, the CPU demand dt, in seconds
per second of real time, for task t is:

dt = c fUser,c,SLA s  SUser,c ∩STask,t
 (Ycs ds) (1)

Values for ds can be obtained by measurement on the reference
processor type. The demand dt is the sum of the processor
utilizations for task t, (on hosts of the “standard” rate of
processing, required to supply the classes with their required
throughputs.

For the example above, suppose (for the sake of
illustration) that the execution demands ds for the six services

offered by the six tasks are all unity except for task 4 which is
0.01, and the user request rates fUser,c,SLA are 20/sec in class 1
and 30/sec in class 2. Then the task demand rates are:

Task t 1 2 3 4 5 6

Demand dt

(sec/sec)
50 15 4.5 5.1 15 16.8

If a host is faster than the “standard” host, its
saturationCapacity and capacity limit are proportionately
greater; the demand figures are not changed.

If we define the part of dt which is executed by host h as ht,

then the analysis will determine the ht to satisfy

t ht = fHost,h ≤ h, for all h (2)

h ht = dt for all t (3)

The execution rate ht is provided in practice by controlling the
share of the processor given to task t by the virtual machine
monitor.

The cost of execution, per unit time, may be different for
each host. The cost of executing a unit of demand on host h is
defined as Ch, and the total cost is:

COST = h Ch fHost,h = h,t Ch ht (4)

The fact that a node executes part of the demand of a task is
conveyed by an allocation variable Aht,

Aht = 1 if ht > 0, Aht = 0 otherwise (5)

Memory and licenses provide additional constraints. Each
task has a memory requirement of Mt bytes, and each host has a
memory available of Mh bytes. Using the allocation variables,

Memory: t Aht Mt ≤ Mh for each h (6)

Licenses: h Aht ≤ Lt for each t (7)

The cost of execution has a contribution Chht for each
host-task combination, and a term for the pay-per-use licenses

of each task. For the licenses, a cost CLhht is applied to the

smallest flows, as follows: For a task t with h Aht > Lt, order

the flows ht from largest to smallest. For the first Lt of these
flows, set C*ht = Ch (no penalty). For the remainder, which are
treated as the excessive allocations, set C*ht = (Ch + CLt). Then
the cost is

 COST* = h,t C*ht ht (8)

3.1. Node Utilization and Quality of Service

Quality of Service is often stated in terms of response delay
or throughput[25]. However, these metrics are replaced here by
constraints on the host utilizations. Here is the rationale behind
this substitution:

 host utilization = assigned demand /saturation capacity

 maximum utilization = capacity limit/saturation capacity

inequality (2) states that every node has a utilization less than
the maximum utilization. As in [22] and other works, we
assume that if node utilization is kept low enough, say below
60%, then contention will be moderate. Response times then

4

will be limited to a low multiple of the execution demands to
satisfy the request, which should be reasonable.

3.2. Approach

A bin-packing type algorithm HP minimizes the number of
hosts required, subject to a looseness factor which inflates the
demands, in order to slightly over-allocate. Then within this
number of processors, the cost is minimized by a network flow
calculation Solve-NFM. Some final optional adjustments are
suggested which can reduce the effect of looseness, or reduce
the extra licenses, at the expense of some additional cost.

4. HEURISTIC PACKING (HP)

In the simplest version of bin-packing, a set of items, each
having a single dimension of “size” (e.g. length) is given, and
the task is to pack all of the items into the smallest number of
identical bins, each of which can accommodate a maximum
total of item sizes. This problem is known to be NP-complete
(e.g. [13]), hence it is usually solved in practice by heuristics
which return approximate solutions. Some heuristics provide
tight bounds on the optimal solution. See Coffman et al [11] for
a survey of bin-packing methods.

In multi-dimensional bin-packing, items and bins have
more than one dimension, e.g. height, width, and depth.
Multidimensional bin-packing was applied to find task-to-
processor assignments in digital signal processing systems [8].
This paper considers the problem of packing tasks into the
smallest number of hosts while respecting limits on the
processing capacity and the memory capacity of the processors.
Here, the memory requirement of a task is a fixed amount
which must be packed into the memory of each host, and the
number of licenses is a discrete limit on the number of
processors (“bins”) into which a particular task can be packed.
Since processing capacity can be subdivided into parts of any
size for allocation, this dimension is not a standard bin-packing
problem. However we derive a packing heuristic for this
dimension motivated by classical static bin-packing methods.
HP includes a tendency to respect the limit on the number of
licenses of a task, also.

HP uses a packing heuristic suggested by the basic best-fit
one-dimensional bin-packing algorithm [15]. In the static
version of the best-fit algorithm, the items are first sorted from
largest to smallest. Items are taken from this list in order and
packed into the bin that leaves the smallest amount of unused
space. In this problem the primary dimension, execution
demand, is infinitely divisible, however the license constraint
suggests an upper limit on the number of chunks into which it
can be divided.

4.1. Heuristic Packing Formulation of Service

Deployment

Packing determines the allocation variables Aht defined

above (Aht = 1 if ht > 0, 0 otherwise), with the goal

minA h maxt Aht = min number of hosts used (9)

subject to the constraints (2),(3),(6),(7). The license constraint
(7) is treated as a soft constraint (desirable but not enforced) in
this allocation algorithm.

The packing process goes through a sequence of states in
which tasks are partially allocated, in which:

M+
h = remaining memory space of host h,

+
h = remaining execution demand space of host h,


++

h = available part of 
+

h for allocation to a single task, 
++

h

= min (
+

h, (reservation factor)  h)

d+
t = remaining execution demand of task t

The control parameter reservation factor ≤1 forces tasks to be
spread across multiple processors, and is examined in Section
6.4.2 below. Initially,

M+
h = Mh, 

+
h = h , d

+
t = dt (10)

Algorithm HP

1. Sort tasks by Lt in an increasing order. (Break ties by sorting

by the CPU demands d+
t, largest first)

2. For each task t in order:

2(a) Sort the hosts that have M+
h greater than Mt, by their

CPU execution demand space ++
h (largest first)

2(b) If d+
t ≤ ++

h(1) for the first host h(1), then the
remaining demand of task t will fit into one host. Then:

2(bi) Find the best fit for d+
t, i.e. the host h with the

smallest ++
h ≥ d+

t.

2(bii) Allocate all of d+
t to host h, that is set ht = d+

t,

decrement +
h by ht, and set d+

t = 0.

2(biii) Proceed to allocate the next task

2(c) Else if d+
t > ++

h(1) for the first host h(1), the
remaining demand will not fit into one host. Then:

2(ci) Allocate as much of d+
t as possible to h(1), that

is set h(1)t = ++
h(1), decrement +

h(1) by h(1)t, and

decrement d+
t by h(1)t.

2(cii) Repeat Step 2 for the same task t.

3. When execution of all tasks is allocated, compute the cost as
COST* given by Eq. (8).

4.2. Effectiveness of the Packing Heuristic

A scalable example conforming to the service metamodel
of Figure 2 was defined as follows.

 a list of 2000 tasks was created, each with parameters
chosen randomly in an interval: CPU demands dt in
interval [10 , 70] ms., memory requirement Mt in [5, 25]
units, and licenses Lt in [1, 5].

5

 a list of 1000 host processors was created, with capacities

(i.e. speed factors) h in [80 , 120], memory Mh in
[50,100] units, and host cost factors Ch in [1, 3].

To evaluate the algorithms at different scales of problem,
configurations were constructed from the first n tasks and first

m hosts in these lists, for values of the product m n ranging

from 200 to 2,440,000. This product is the number of allocation
variables Aht, which indicates the scale of the problem.

The packing heuristic alone gave the results shown in Table
1. The times are modest. The cost (COST*) per task is roughly
constant at about 0.06 units, across the entire table. Cost is not
minimized by HP.

TABLE I. Heuristic packing alone: results for cost and execution time over problem scales
tasks n 20 45 75 115 160 240 300 400 1000 2200

hosts m 10 25 40 70 95 125 166 250 600 1200

arcs mn 200 1125 3000 8050 15200 30000 49800 100000 600000 2640000

Cost x1000 1.17 2.59 4.51 7.25 10.03 14.8 18.2 23.0 61.8 133

Time (sec) 0.016 0.016 0.015 0.031 0.047 0.078 0.125 0.235 1.47 14.2

5. THE NETWORK FLOW MODEL (NFM)

Costs arre minimized by a Network Flow Model (NFM)
[20]. This is a graph with arcs that carry flows (representing
execution demands) and nodes which operate on the flows, as
illustrated in Figure 4. Figure 4 shows one representative node
of each type. The flow into a host node is its total execution
demand fHOST,h, divided between its tasks, then between their
entries, and finally between the user classes that request it. In
the NFM the nodes balance the flow between their input and
output arcs (total input = total output), so the model enforces
the allocation of each task demand rate (as demanded by the
user request rates) to some host.

There is an arc from host h to each task t which is permitted

to be deployed on h, with flow ht (the demand rate executed
on host h, to satisfy the needs of task t). If multiple replicas of a
task are deployed, each has a flow from its processor.

fHOST,h

.

.

.

h

.

.

.

Hosts

t

Server
Tasks

.

.

.

.

.

.
[0 , Ω h , C h]

 ht

d t

Figure 4. The network flow model notation for this
problem

Each arc is labeled with a triple of parameters [l,u,c]: the
lower flow bound l (default 0), the upper flow bound u (default
infinity), and the cost per unit of flow c (default 0). The
parameters are not shown where all take the default values [0,
∞, 0]. The input arcs on the left in Figure 4 are labeled by [0,
Ωh, Ch] meaning that

 fHOST,h ≥ 0,

 the host capacity limit is flow fHOST,h ≤ Ωh,

 the cost is Ch per unit of flow.

For a homogeneous set of processors all of “standard”
processor type, the capacities are all 1.0.

A general description of NFMs is given in [9].

To restrict the allocation of demand from a task to a subset
of hosts, the arcs to other hosts are simply removed from the
graph.

Procedure Solve-NFM

It is a standard linear programming (LP) problem to

minimize the cost of the host-to-task flows ht, expressed as
COST* defined by (8), subject to the constraints (2),(3).

This procedure however does not scale well. There are nm
arc flows to be determined by an LP with nm variables, which
may quickly reach into the millions [1]. To avoid this blow-
upwe will apply HP first to reduce the number of arcs.

6. THE COMBINED ALGORITHMS

Because HP alone does not minimize cost and may not
succeed in satisfying the license constraints, it was combined
with an NFM solution, in different ways:

 HP-NFM: An initial allocation is found and the host-to-
task arcs are pruned to minimize the size of the subsequent
NFM. The NFM then determines the processing rate on
each allocated host. To provide some freedom at the NFM
step, all demands are multiplied by a looseness factor ≥ 1
at the HP step. The looseness is removed at the NFM step.

 HP-NFM-HP: When HP-NFM failed to satisfy the license
constraints, a final packing step succeeded in re-imposing
them (in our experiments). There are two variants,
described below.

 In the order NFM-HP, the NFM first minimizes cost and
then HP tries to satisfy the memory and license constraints.
It works well but does not scale, and to conserve space it is
not reported here. We report on the successful HP-NFM
variant below.

6

6.1. Combined Algorithm HP-NFM

A small number of processors satisfying the memory
constraint and if possible the license constraint is first found by
HP (for the “loosened” problem), then the minimum-cost rates
of processing the tasks on those processors are found by the
NFM (with the loosening removed). A looseness factor of 1.1
was used in our experiments.

In this heuristic packing step, every host also has a
reservation factor less than one, which is an upper bound on
the capacity fraction that can be reserved by any single task;
this prevents a host from being reserved by a single task, which
could limit the reasonable choices for the subsequent NFM.

Algorithm HP-NFM

1. Apply Algorithm HP to the problem, after augmenting the
execution demands dt of all tasks by the looseness factor.

2. Construct a pruned NFM for the problem with

(a) nodes for the tasks, and for the hosts that have been used
in Step 1,

(b) the task demands dt without the looseness factor, and

(c) arcs from each host to the tasks allocated to it by HP,
with cost C*ht on arc (h,t) (including penalties for
exceeding the license limit).

3. Apply Solve-NFM to minimize COST*

6.2. Algorithms HP-NFM-HP1 and HP-NFM-HP2

The HP-NFM algorithm may spread the allocations out
over more processors than necessary, due to the initial
looseness factor. Therefore a final HP step without looseness
was introduced to reduce the number of allocated processors if
possible. Two approaches were used:

 To counter underutilized hosts, an idleness threshold for
hosts was chosen. Following Step 3 above, hosts with an
execution demand space greater than this, i.e. with

+
h ≥ (idleness threshold for host h)

are de-allocated, and their task execution demands are
repacked using the HP algorithm.

 To counter license violations, tasks which exceed their
license limit had the excess replicas de-allocated.

There are two variants of the algorithm. In HP-NFM-HP1 both
criteria are applied; in HP-NFM-HP2 only the license criterion
is applied. They are described together.

Algorithm HP-NFM-HPx

1 - 3 execute Algorithm HP-NFM. At the end, the remaining

execution demand for all tasks is d+
t = 0.

4. In the HP1 variant only: unpack underutilized hosts. For

each host h with +
h ≥ idleness threshold,

(4a) For each task t, increment d+
t by ht .

(4b) Set +
h = h

5. In both variants: unpack for license violations. For each task

t which violates its license constraint (i.e. has h Aht – Lt = Vt >
0),

5(a) Sort the demand allocations ht of task t in increasing
order,

5(b) For the first Vt of these demand allocations, increment

both d
+

t and 
+

h by ht.

6. Apply Algorithm HP (with no looseness factor) to pack the

remaining execution of the set of tasks with d+
t > 0, into the

processors with M+
h > 0.

6.3. Computational Experience and Scalability

1) Comparison on Random Cases
The algorithms are compared on how they process the same

scalable example as was described for HP alone, but now for
100 replications at each scale with randomly generated
parameters. The running times, the final value of COST*, and
the license cost are shown in TABLE II. .

TABLE II. Results over 100 replications of three
algorithms

Size

tasks n 240 300 400 1000 1200

hosts m 125 166 250 600 800

allocations
n x m

30000 49800 100000 600000 960000

COST* x 1000: average and (standard deviation as %)

HP 14.6

(±8.18%)

18.2

(±6.20%)

24.2

(±5.42%)

60.3

(±3.14%)

72.3

(±3.10%)

HP-NFM 12.4

(±8.18%)

15.5

(±7.59%)

18.4

(±6.31%)

45.7

(±4.40%)

51.4

(±4.02%)

HP–NFM-

HP1

13.1

(±8.18%)

15.9

(±8.22%)

19.2

(±7.39%)

51.19

(±5.62%)

58.8

(±5.50%)

HP–NFM-
HP2

12.7
(±8.49%)

15.6
(±7.46%)

18.93
(±6.91%)

47.6
(±4.70%)

53.12
(±4.16%)

Average Solution Time (sec)

HP 0.048 0.078 0.171 1.132 1.633

HP-NFM 0.075 0.111 0.189 1.210 1.513

HP–NFM-

HP1

0.091 0.139 0.235 1.283 2.200

HP–NFM-
HP2

0.084 0.118 0.191 1.212 1.686

Average Number of Hosts in Use

HP 103.34 130.17 175.43 435.04 528.50

HP-NFM 116.20 149.68 210.00 487.48 613.80

HP–NFM-

HP1

100.93 127.01 172.27 425.00 518.55

HP–NFM-

HP2

116.16 149.52 210.00 487.46 613.79

Average License Cost (average extra licenses per case)

[cases which meet license constraints]

HP 0 0 0 0 0

HP-NFM 28.84

(0.14)

[75/100]

44.16

(0.22)

[69/100]

10.531

 (0.08)

[93/100]

13.346

(0.11)

[92/100]

7.54

(0.05)

[95/100]

7

HP–NFM-

HP1

0 0 0 0 0

HP–NFM-

HP2

0 0 0 0 0

The values of control parameters used were:

 maximum capacity: 80% of saturation capacity,

 license violation penalty: 10 times the number of
license violations (where this may be fractional),

 looseness factor: 1.1,

 reservation factor: 20%,

 idleness threshold: 20% of the maximum capacity.

The results in Table II show

 HP alone is competitive in every category except COST*.
This is not surprising since it ignores this factor; in any
case it is worse by no more than 20% at the scales tested
here (but the gap grows with scale).

 The lowest COST* and fastest solution is always obtained
with HP-NFM, since it terminates with optimization.
However it also terminates with residual license violations
(whose cost is included in the lowest cost) and uses more
hosts. If either of these factors is of high importance to the
management decisions, then this algorithm is inferior.

 HP-NFM-HP1 and 2 achieved zero license violations. Of
these:

o The smaller number of hosts is always obtained
by HP-NFM-HP1. This difference is as high as
20% in the rightmost column, and grows with the
system scale, left to right.

o The lower solution time and COST* are always
obtained by HP-NFM-HP2.

So a user may select the appropriate heuristic according to
which goals are most important: HP-NFM or HP-NFM-HP2
for cost, HP-NFM-HP1 for hosts.

2) Looseness and Reservation Factors
The impact of the looseness and reservation factors used in

Algorithm HP-NFM is explored in Table III. This table shows
the final cost after applying HP-NFM to a single randomly
generated case with 1000 tasks and 600 hosts.

TABLE III. Impact of looseness and reservation
factors(case with 1000 tasks and 600 hosts)

Reservation

factor 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Looseness

factor COST* x 1000

1 46.0 50.0 54.4 59.2 61.5 62.1 61.7 61.8 61.8

1.1 45.6 48.7 53.3 57.0 60.0 61.5 62.0 61.8 61.8

1.2 nil 47.6 51.0 54.7 56.9 61.0 60.9 61.0 61.0

1.3 nil 46.5 49.6 52.4 54.6 58.4 60.5 60.8 60.7

1.4 nil 45.9 47.0 50.9 52.0 55.3 58.3 60.3 60.6

Reducing the reservation factor reduces the cost, which
validates the use of the reservation factor to limit how much
processing for a single task is permitted on a single host.
Increasing the looseness factor also reduces the cost only a
little, indicating that the freedom it provides to the later NFM
step is not very valuable.

The solution time varies somewhat with these factors but in
no very clear pattern. The number of hosts used in the final
allocation increases monotonically with the looseness factor,
which is not surprising since the looseness factor inflates the
amount of demand to be executed. As the reservation factor
increases across the table, the number of hosts first increases
and then decreases, because it is also subject to which hosts are
chosen rather than only the number of hosts selected.

From these experiments and observations, we conclude that
combining a large looseness factor and a small reservation
factor is helpful in finding a better solution, in general.

TABLE IV. Comparing HP and HP-NFM on the scalable example of Section 4.2 and Table I.
Cases, with their Size Parameters

tasks n 20 45 75 115 160 240 300 400 1000 2200

hosts m 10 25 40 70 95 125 166 250 600 1200

Arcs x1000 0.2 1 3 8 15 30 50 100 600 2640

COST* x 1000

HP 0.884 2.20 3.94 6.17 7.92 11.76 15.11 20.30 43.0 99.0

HP-NFM 0.746 1.63 3.16 4.83 5.74 8.90 11.03 12.75 29.9 67.0

Fractional Cost Improvement by HP-NFM

HP-NFM over

HP

0.156 0.261 0.20 0.22 0.28 0.24 0.27 0.37 0.33 0.32

Solution Time (Seconds)

HP 0.016 0.031 0.109 0.188 0.906 0.297 0.266 0.39 2.31 14.6

HP-NFM 0.125 0.187 0.344 0.329 0.359 0.313 0.453 0.844 2.91 16.5

6.4. Recommended Approach: HP-NFM-HPx

HP alone only minimizes processors subject to the memory
constraints, NFM only minimizes costs. However the
combination of the two in HP-NFM provides a reasonable

solution that takes memory requirements, license costs, CPU
demands, host CPUs and memory capacities etc. into account.

The optional HP-NFM-HPx variants give some advantages.
Of the final step HP1 or HP2, HP1 is significantly better for the

8

number of deployed hosts, while HP2 is better for solution time
and total COST*.

7. CONCLUSIONS

This paper presents an effective algorithm for the heuristic
optimization of task deployments in Clouds or in any large
system shared by many applications. The algorithm combines
the advantages of a packing heuristic with linear programming.
A key achievement is the ability to include many realistic
constraints in the model, including scalability, CPU and
memory requirements, and host capacities, while also
addressing goals of low economic costs and a small number of
hosts in use.

Limitation of the number of licenses is a secondary
objective in HP (it is sought only after meeting the primary
objectives) and is encouraged indirectly in NFM by the pay-
per-use costs. Thus it is a soft constraint in this work.

A new heuristic packing algorithm HP is defined to pack
execution demand (which is infinitely divisible, but with the
number of divisions limited by the license constraint) into
hosts. HP is inspired by a classic bin-packing approach, but
required significant adaptation.

Numerical experiments show that one variant of the
combined HP/network optimization approach, called HP-NFM-
HPx is preferred. It comes in two flavours, the first favouring a
reduced number of hosts in use, and the second favouring
lower economic costs and faster solutions. Other experiments
explore the search parameters introduced in the heuristic parts
of the algorithm.

The tests described here went as high as two and half
million candidate allocations, of over 2000 tasks (each with
several replicas) on over 1000 hosts. The mechanics of the
algorithm continue to scale above that size, perhaps
approaching a million hosts. The problem complexity appears
to be dominated by the successive sorting steps applied to lists
of tasks and hosts in the applications of HP (heuristic packing).

This work is a step in our research on developing advanced
management tools for Cloud computing. In future work, these
algorithms will be deployed in Websphere XD and Tivoli in
the virtualization environment of the CERAS Cloud.

ACKNOWLEDGMENTS

This research was supported by OCE, the Ontario Centres of Excellence,
and by the IBM Toronto Centre for Advanced Studies, as part of the program of
the Centre for Research in Adaptive Systems (CERAS).

REFERENCES

[1] MS Bazaraa, JJ Jarvis, HD Sherali, “Linear Programming and Network
Flows”, John Wiley & Sons, Inc., Hoboken, New Jersey, 2005.

[2] M.J. Berger, S.H. Bokhari, "A Partitioning Strategy for Nonuniform
Problems on Multiprocessors". IEEE Trans. Comput,. v 36 n 5 , pp 570-
580, 1987

[3] S. H. Bokhari, "On the mapping problem," IEEE Transactions on
Computers, vol. C-30, no. 3 pp. 207–214, 1981.

[4] S.H Bokhari, "Partitioning Problems in Parallel, Pipeline, and
Distributed Computing". IEEE Trans. Comput. v 37 n 1, pp 48-57, 1988.

[5] N. Bobroff, A. Kochut, and K. Beatty. "Dynamic placement of virtual
machines for managing SLA violations”. In Proc. Integrated
Management 2007, pp 119-128, Munich, May 2007.

[6] CERAS (Centre of Excellence for Research in Adaptive Systems)
https://www.cs.uwaterloo.ca/twiki/view/CERAS

[7] M. Chang, J. He, E. Castro-Leon. "Service-Orientation in the Computing
Infrastructure ", Proc. 2nd IEEE Int. Symp. on Service-Oriented System
Engineering (SOSE'06), 2006.

[8] S. Chao, J.W. Chinneck, R.A. Goubran, “Assigning Service Requests in
Voice-over-Internet Gateway Multiprocessors” Computers and
Operations Research, v. 31, pp 2419-2437, 2004

[9] J.W. Chinneck, "Processing Network Models of Energy/Environment
Systems", Computers and Industrial Engineering, vol. 28, no. 1, pp.
179-189. 1995

[10] E. Coffman, M. Garey, D. Johnson, "An application of bin-packing to
multiprocessor scheduling", SIAM J. Computing, vol. 7, pp. 1-17, Feb.
1978

[11] E.G. Coffman, M.R. Garey, D.S. Johnson, “Approximation Algorithms
for Bin Packing: a Survey”, in Approximation Algorithms For NP-Hard
Problems, D. S. Hochbaum, Ed. PWS Publishing Co., Boston, MA, pp
46-93, 1997.

[12] G. Franks, T. Al-Omari, M. Woodside, O. Das, S. Derisavi, “Enhanced
Modeling and Solution of Layered Queueing Networks”, IEEE Trans.
on Software Eng. Aug. 2008.

[13] M.R. Garey, D.S. Johnson. Computers and intractability: a guide to the
theory of NP-completeness. W.H. Freeman and Company; 1979.

[14] IBM Corp., "From Cloud Computing to the New Enterprise Data
Center", http://download.boulder.ibm.com/ibmdl/pub/software/dw/
wes/hipods/CloudComputingNEDC_wp_28May.pdf, 2008.

[15] IBM Corp., “Cloud Computing”,
http://www.ibm.com/ibm/cloud/ibm_cloud/, 2009

[16] IBM Corp., “Dynamic Infrastructure” , http://www-
03.ibm.com/systems/dynamicinfrastructure/,2009

[17] D.S. Johnson. “Fast algorithms for bin packing”, Journal of Computer
and System Sciences, v 8, pp 272–314, 1974.

[18] A. Karve, T. Kimbrel, G. Pacifici, M. Spreitzer, M. Steinder, M.
Sviridenko, A. Tantawi, "Dynamic placement for clustered web
applications", Proc. 15th Int. Conf. on the World Wide Web May 2006.
ACM, New York.

[19] Z. Li, J. Chinneck, M. Woodside, M. Litoiu, G. Iszlai, "Performance
Model Driven QoS Guarantees and Optimization in Clouds," Proc.
Workshop on Software Engineering Challenges in Cloud Computing @
ICSE 2009, Vancouver, May 2009.

[20] Z. Li, J. Chinneck, M. Woodside, and M. Litoiu, "Fast Scalable
Optimization to Configure Service Systems having Cost and Quality of
Service Constraints," Proc. Int. Conf. on Autonomic Computing
(ICAC09), Barcelona, June 2009.

[21] M. Steinder, I. Whalley, D. Carrera, I. Gaweda D. Chess, "Server
virtualization in autonomic management of heterogeneous workloads ".
Proc. Integrated Management (IM 2007), Munich, May 2007.

[22] C. Tang, M. Steinder, M. Spreitzer, G. Pacifici, "A scalable application
placement controller for enterprise data centers ", Proc. 16th Int. Conf.
on the World Wide Web (WWW '07). ACM, pp 331-340, 2007

[23] C.M. Woodside, G.G. Monforton, "Fast Allocation of Processes in
Distributed and Parallel Systems", IEEE Trans. on Parallel and
Distributed Systems, V. 4, N. 2, pp. 164-174, 1993.

[24] T. Zheng, M. Woodside, M. Litoiu, "Performance Model Estimation and
Tracking using Optimal Filters", IEEE Trans. Software Engineering, V
34 , no. 3, pp 391-406, 2008.

[25] Salesforce.com, Quality of Services,

http://trust.salesforce.com/trust/status/, May 31, 2009.

http://trust.salesforce.com/trust/status/

