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Abstract 
 

When deploying services in a cloud, a balance must be found 

between performance and capacity of the service, and the 

memory available on nodes. This is further complicated if the 

number of replicas of an application is limited, for instance by 

the available number of licenses. The analysis of interference 

between services must scale to large numbers of host nodes, 

applications, replicas of applications, and classes of users. 

This paper combines a multi-dimensional packing heuristic 

and network flow optimization to satisfy simultaneous 

constraints on throughputs, processor utilizations, memory 

availability and license availability, at a minimum cost and 

with a minimum of host processors. 

1. INTRODUCTION 

Applications are increasingly hosted in large processing 

complexes sometimes called clouds [14][15], which share 

physical resources among many applications. Clouds support 

flexible deployment as an application’s needs change, hide 

management details from the user and the service provider, 

and require payment only for resources used. Clouds use 

virtualization to achieve controlled sharing of resources, rapid 

redeployment of application images, and isolation of different 

applications and instances from each other (when they share a 

host). Applications may include web applications, legacy 

client-server applications, platforms (i.e. PaaS [7]), 

infrastructure (i.e. IaaS [16]), and information services of all 

kinds.  

An economic driver for clouds is the efficiencies achieved 
by sharing resources among applications, beginning with 
efficient deployment of applications on the hosts of the cloud. 
A deployment method must scale up to thousands of services 
running on thousands of hosts, and be cheap enough to re-run 
frequently as loads and requirements change. This paper 
assumes an integrated management viewpoint in which 
deployment should consider the overall cost of the hosts used, 
and the performance and QoS goals of each application.  

To enhance sharing, one node may host more than one 
application; however memory constraints on each host must be 
respected. In previous work [19], [20], the present authors 
described a novel optimization algorithm for large deployment 

problems. The present paper extends the method to account for 
host memory and license constraints. 

Figure 1 illustrates the deployment of application processes 
in our experimental cloud for CERAS [6]. The virtual machine 
monitors control the rate of processing provided to each VM. 
Deployment issues include (i) the number of replicas of each 
service, (ii) the selection of processors, (iii) computing power 
consolidation, (iv) allocation of service replicas, and (v) 
workload balancing and distribution.  The deployment should 
meet performance targets described in service contracts, (e.g. 
response time, number of users, capacity given as arrival rates), 
and economic targets (e.g. cost budgets, power constraints, 
profit targets) in the presence of constraints (host processing 
capacity, host memory, licenses per type of application). The 
deployment solution will be based on data about the execution 
demands of each application to be deployed, which may be 
obtained from performance tests or from operating data. Using 
operating data, changing demands can be tracked.  
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Figure 1.   Application processes in a Cloud 

We consider that the Cloud uses a flexible licensing model. 
It owns a number of concurrent licenses (which means the 
owner can run a specified number of application instances at 
the same time) for each type of application. In this paper, the 
concurrent licenses are treated as constraints. When that 
number is exceeded the Cloud acquires additional pay per use 
licenses. These additional licenses are reflected in the 
optimization cost function. Therefore, in the remainder of the 
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paper, the licenses will be taken into account as soft 
constraints, with a violation penalty in a cost function. 

There is a rich literature on optimal deployment and 
deployment to satisfy constraints. One approach was to 
minimize the amount of communications between physically 
distributed hosts, as described by Bokhari and others (e.g. 
[2][3][4]). Bin-packing has been applied to pack execution 
requirements [10], execution and communications 
requirements [23] and memory; these have been combined in 
multidimensional bin-packing [8]. 

Recently Tang et al described a combination of network 
optimization with heuristic rules that satisfies total demand for 
each application (as here), and tends to level load and memory 
requirements [22]. They generate incremental changes to 
accommodate load changes or new applications, and attempt 
also to minimize the number of deployment changes in 
responding to the increment. Because they focus on 
incremental changes, their placements could drift towards 
higher costs (e.g. by using more hosts than necessary) through 
a sequence of decisions; a global re-optimization should be 
used periodically as a reality check. Another solution for global 
optimization of this problem, or incremental optimization after 
a load change, solves a Multiple Knapsack Problem [18]. 
Neither [18] nor [22] address the question of limiting the 
number of replicas because of a license constraint. 

The present authors combined a contention model with 
network optimization to optimize deployment subject to 
response time constraints that take account of resource 
queueing, including logical resources modeled by extended 
queueing [20]. However, that work did not account for memory 
requirements of tasks. This was extended to find a minimal 
change to accommodate one new application, in [19]. No work 
we know of addresses the flexible license model proposed here, 
where concurrent and pay per use licenses coexist. . 

This paper is quite different from [19], [20], in that it 
applies a heuristic allocator motivated by multi-dimensional 
bin-packing, with one dimension for packing memory on host 
processors, a second for packing the execution requirements of 
deployed tasks into a permitted threshold on a host, and a third 
for packing task allocations into a permitted license-based limit 
per task. For cost minimization this is augmented with a 
network flow model similar to [19], [20] but adjusted to 
minimize the sum of execution cost and a penalty for excess 
licenses. The resulting algorithm can deploy thousands of tasks 
on thousands of processors, and is capable of further scale-up.  

2. SERVICE SYSTEMS AND DEPLOYMENT 

We consider the general service meta-model shown in 
Figure 2, in which a user class requests a set of services 
according to its usage profile, and these services may in turn 
request other services.    

UserClasses request services which in turn request other 
services (exploiting the concepts of Service-Oriented 
Architecture), forming a web of inter-service traffic. Services 
are implemented by Applications which run as system tasks or 
thread pools (ServerTasks), which may have limited capacity. 
UserClasses have throughput and delay requirements expressed 

by their SLAs. Resources, such as ServerTasks and Hosts make 
up the Cloud and are shared among the running Applications. 
Hosts have flow constraints due to limited processing capacity. 
ServerTasks can have license constraints. For example, an 
Application can run its ServerTasks within commercial Data 
Base Management Systems or in Application Servers and there 
are upper limits on how many instances of those can be 
deployed. 
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Figure 2.  Service system metamodel 

Attributes are attached to the stereotypes. Some of the 
attributes are provided by the service provider, some by the 
cloud administrator and some are computed or estimated at run 
time using optimal filters [24]. The attributes will be referred to 
in the sequel by the following notation: 

 fUser,c = requestRate of UserClass c  

 fUser,c,SLA = the minimum required value of  fUser,c 

 SUser,c = the set of services used by class c,  

 STask,t be the set of services provided by task t. 

 Ycs = meanRequests by UserClass c to Service s, during 
one response to a user request. This includes the effect 
of indirect calls to other services at rate meanCalls. 

 ds = mean hostDemand of Service s, per invocation, in 
CPU-sec. 

 Mt = memoryRequirement of task t, in order to execute 
(assumed the same for all nodes) 

 Lt = maxLicenses available for task t (these are the 
concurrent licenses) 

 CLt = pay-per-use cost of extra licenses for task t, 
beyond Lt 

 Ch = executionCost of host h, a cost factor for a unit of 
execution on this host. In a homogeneous cloud these 
are all equal. 

 Mh = memoryCapacity of host h, memory available for 
application tasks 
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Attributes which do not have specific notation are: 

 h = the capacity limit of host h, given as a processing 
rate relative to a “standard” host used to calibrate 
execution demands of services. The saturationCapacity 
of host h is given in the same units, and the utilizat to 
provide a margin 

 Uh = utilization of host h = h/saturationCapacity of h 

2.1. An Example 

Figure 3 shows an example with two user classes and six 
services/applications, labeled by the request rates from one 
service to another. Tasks are labeled t1 - t6. Other labels, such 
as the size of the user classes and the host demands of the 
services, are not shown here.  

In the present analysis, the total host demand for each 
application (task) is computed from the total direct and indirect 
requests for each of its services, due to requests from each class 
of users. For example, from Users1 to DB2Serv it is: 

YUsers1, DB2Serv = 1 x 0.3 x (0.7 + 0.3 x 1.4) = 0.336 
requests/user request 
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Figure 3.  An example of a web application 

3. NOTATION FOR DEPLOYMENT 

At the required throughputs, the CPU demand dt, in seconds 
per second of real time, for task t is: 

dt = c fUser,c,SLA s  SUser,c ∩STask,t
 (Ycs ds) (1) 

Values for ds can be obtained by measurement on the reference 
processor type. The demand dt is the sum of the processor 
utilizations for task t, (on hosts of the “standard” rate of 
processing, required to supply the classes with their required 
throughputs. 

For the example above, suppose (for the sake of 
illustration) that the execution demands ds for the six services 

offered by the six tasks are all unity except for task 4 which is 
0.01, and the user request rates fUser,c,SLA are 20/sec in class 1 
and 30/sec in class 2. Then the task demand rates are: 

Task t 1 2 3 4 5 6 

Demand dt 

(sec/sec) 
50 15 4.5 5.1 15 16.8 

If a host is faster than the “standard” host, its 
saturationCapacity and capacity limit are proportionately 
greater; the demand figures are not changed. 

If we define the part of dt which is executed by host h as ht, 

then the analysis will determine the ht to satisfy 

t ht = fHost,h ≤ h, for all h (2) 

h ht = dt  for all t (3) 

The execution rate ht is provided in practice by controlling the 
share of the processor given to task t by the virtual machine 
monitor. 

The cost of execution, per unit time, may be different for 
each host. The cost of executing a unit of demand on host h is 
defined as Ch, and the total cost is: 

COST = h Ch fHost,h  = h,t Ch ht (4) 

The fact that a node executes part of the demand of a task is 
conveyed by an allocation variable Aht, 

Aht = 1 if ht > 0, Aht = 0 otherwise (5) 

Memory and licenses provide additional constraints. Each 
task has a memory requirement of Mt bytes, and each host has a 
memory available of Mh bytes. Using the allocation variables,  

Memory:   t Aht Mt ≤ Mh    for each h (6) 

Licenses:   h Aht ≤ Lt    for each t  (7) 

The cost of execution has a contribution Chht for each 
host-task combination, and a term for the pay-per-use licenses 

of each task.  For the licenses, a cost CLhht is applied to the 

smallest flows, as follows: For a task t with h Aht > Lt, order 

the flows ht from largest to smallest. For the first Lt of these 
flows, set C*ht = Ch (no penalty). For the remainder, which are 
treated as the excessive allocations, set C*ht = (Ch + CLt). Then 
the cost is  

 COST* = h,t C*ht ht   (8) 

3.1. Node Utilization and Quality of Service 

Quality of Service is often stated in terms of response delay 
or throughput[25]. However, these metrics are replaced here by 
constraints on the host utilizations.  Here is the rationale behind  
this substitution: 

 host utilization = assigned demand /saturation capacity 

 maximum utilization = capacity limit/saturation capacity 

inequality (2) states that every node has a utilization less than 
the maximum utilization. As in [22] and other works, we 
assume that if node utilization is kept low enough, say below 
60%, then contention will be moderate. Response times then 
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will be limited to a low multiple of the execution demands to 
satisfy the request, which should be reasonable. 

3.2. Approach 

A bin-packing type algorithm HP minimizes the number of 
hosts required, subject to a looseness factor which inflates the 
demands, in order to slightly over-allocate. Then within this 
number of processors, the cost is minimized by a network flow 
calculation Solve-NFM. Some final optional adjustments are 
suggested which can reduce the effect of looseness, or reduce 
the extra licenses, at the expense of some additional cost. 

4. HEURISTIC PACKING (HP) 

In the simplest version of bin-packing, a set of items, each 
having a single dimension of “size” (e.g. length) is given, and 
the task is to pack all of the items into the smallest number of 
identical bins, each of which can accommodate a maximum 
total of item sizes. This problem is known to be NP-complete 
(e.g. [13]), hence it is usually solved in practice by heuristics 
which return approximate solutions. Some heuristics provide 
tight bounds on the optimal solution. See Coffman et al [11] for 
a survey of bin-packing methods. 

In multi-dimensional bin-packing, items and bins have 
more than one dimension, e.g. height, width, and depth. 
Multidimensional bin-packing was applied to find task-to-
processor assignments in digital signal processing systems [8]. 
This paper considers the problem of packing tasks into the 
smallest number of hosts while respecting limits on the 
processing capacity and the memory capacity of the processors. 
Here, the memory requirement of a task is a fixed amount 
which must be packed into the memory of each host, and the 
number of licenses is a discrete limit on the number of 
processors (“bins”) into which a particular task can be packed.  
Since processing capacity can be subdivided into parts of any 
size for allocation, this dimension is not a standard bin-packing 
problem. However we derive a packing heuristic for this 
dimension motivated by classical static bin-packing methods. 
HP includes a tendency to respect the limit on the number of 
licenses of a task, also.  

HP uses a packing heuristic suggested by the basic best-fit 
one-dimensional bin-packing algorithm [15]. In the static 
version of the best-fit algorithm, the items are first sorted from 
largest to smallest. Items are taken from this list in order and 
packed into the bin that leaves the smallest amount of unused 
space. In this problem the primary dimension, execution 
demand, is infinitely divisible, however the license constraint 
suggests an upper limit on the number of chunks into which it 
can be divided. 

4.1. Heuristic Packing Formulation of Service 

Deployment 

Packing determines the allocation variables Aht defined 

above (Aht = 1 if ht > 0, 0 otherwise), with the goal 

minA h maxt Aht = min number of hosts used (9) 

subject to the constraints (2),(3),(6),(7). The license constraint 
(7) is treated as a soft constraint (desirable but not enforced) in 
this allocation algorithm. 

The packing process goes through a sequence of states in 
which tasks are partially allocated, in which: 

M+
h = remaining memory space of host h, 

+
h = remaining execution demand space of host h,  


++

h = available part of 
+

h for allocation to a single task, 
++

h 

= min (
+

h, (reservation factor)  h)  

d+
t = remaining execution demand of task t 

The control parameter reservation factor ≤1 forces tasks to be 
spread across multiple processors, and is examined in Section 
6.4.2 below. Initially, 

M+
h = Mh,  

+
h = h , d

+
t = dt     (10) 

Algorithm HP 

1.  Sort tasks by Lt in an increasing order. (Break ties by sorting 

by the CPU demands d+
t, largest first) 

2.  For each task t in order: 

2(a) Sort the hosts that have M+
h greater than Mt, by their 

CPU execution demand space ++
h  (largest first) 

2(b) If d+
t ≤ ++

h(1) for the first host h(1), then the 
remaining demand of task t will fit into one host. Then: 

2(bi) Find the best fit for d+
t, i.e. the host h with the 

smallest ++
h ≥ d+

t.  

2(bii) Allocate all of d+
t to host h, that is set ht = d+

t, 

decrement +
h by ht, and set d+

t = 0. 

2(biii) Proceed to allocate the next task 

2(c) Else if d+
t > ++

h(1) for the first host h(1), the 
remaining demand will not fit into one host. Then: 

2(ci) Allocate as much of d+
t as possible to h(1), that 

is set h(1)t = ++
h(1), decrement +

h(1) by h(1)t, and 

decrement d+
t by h(1)t.  

2(cii) Repeat Step 2 for the same task t. 

3.  When execution of all tasks is allocated, compute the cost as 
COST* given by Eq. (8). 

4.2. Effectiveness of the Packing Heuristic 

A scalable example conforming to the service metamodel 
of Figure 2 was defined as follows. 

 a list of 2000 tasks was created, each with parameters 
chosen randomly in an interval: CPU demands dt in 
interval [10 , 70] ms., memory requirement Mt  in [ 5, 25] 
units, and licenses Lt in [1, 5].  
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 a list of 1000 host processors was created, with capacities 

(i.e. speed factors) h in [80 , 120], memory Mh in 
[50,100] units, and host cost factors Ch in [1, 3]. 

To evaluate the algorithms at different scales of problem, 
configurations were constructed from the first n tasks and first 

m hosts in these lists, for values of the product m n ranging 

from 200 to 2,440,000. This product is the number of allocation 
variables Aht, which indicates the scale of the problem.  

The packing heuristic alone gave the results shown in Table 
1. The times are modest. The cost (COST*) per task is roughly 
constant at about 0.06 units, across the entire table. Cost is not 
minimized by HP.  

TABLE I.  Heuristic packing alone: results for cost and execution time over problem scales 
tasks n 20 45 75 115 160 240 300 400 1000 2200 

hosts m 10 25 40 70 95 125 166 250 600 1200 

arcs mn 200 1125 3000 8050 15200 30000 49800 100000 600000 2640000 

Cost x1000 1.17 2.59 4.51 7.25 10.03 14.8 18.2 23.0 61.8 133 

Time (sec) 0.016 0.016 0.015 0.031 0.047 0.078 0.125 0.235 1.47 14.2 

 

5. THE NETWORK FLOW MODEL (NFM) 

Costs arre minimized by a Network Flow Model (NFM) 
[20]. This is a graph with arcs that carry flows (representing 
execution demands) and nodes which operate on the flows, as 
illustrated in Figure 4. Figure 4 shows one representative node 
of each type. The flow into a host node is its total execution 
demand fHOST,h, divided between its tasks, then between their 
entries, and finally between the user classes that request it. In 
the NFM the nodes balance the flow between their input and 
output arcs (total input = total output), so the model enforces 
the allocation of each task demand rate (as demanded by the 
user request rates) to some host.  

There is an arc from host h to each task t which is permitted 

to be deployed on h, with flow ht (the demand rate executed 
on host h, to satisfy the needs of task t). If multiple replicas of a 
task are deployed, each has a flow from its processor.  
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Figure 4.  The network flow model notation for this 
problem 

Each arc is labeled with a triple of parameters [l,u,c]: the 
lower flow bound l (default 0), the upper flow bound u (default 
infinity), and the cost per unit of flow c (default 0).  The 
parameters are not shown where all take the default values [0, 
∞, 0]. The input arcs on the left in Figure 4 are labeled by [0, 
Ωh, Ch] meaning that  

 fHOST,h ≥ 0,  

 the host capacity limit is flow fHOST,h ≤ Ωh,  

 the cost is Ch per unit of flow.  

For a homogeneous set of processors all of “standard” 
processor type, the capacities are all 1.0.   

A general description of NFMs is given in [9].  

To restrict the allocation of demand from a task to a subset 
of hosts, the arcs to other hosts are simply removed from the 
graph. 

Procedure Solve-NFM 

It is a standard linear programming (LP) problem to 

minimize the cost of the host-to-task flows ht, expressed as 
COST* defined by (8), subject to the constraints (2),(3).  

This procedure however does not scale well. There are nm 
arc flows to be determined by an LP with nm variables, which 
may quickly reach into the millions [1]. To avoid this blow-
upwe will apply HP first to reduce the number of arcs. 

6. THE COMBINED ALGORITHMS 

Because HP alone does not minimize cost and may not 
succeed in satisfying the license constraints, it was combined 
with an NFM solution, in different ways: 

 HP-NFM: An initial allocation is found and the host-to-
task arcs are pruned to minimize the size of the subsequent 
NFM. The NFM then determines the processing rate on 
each allocated host. To provide some freedom at the NFM 
step, all demands are multiplied by a looseness factor ≥ 1 
at the HP step.  The looseness is removed at the NFM step.  

 HP-NFM-HP: When HP-NFM failed to satisfy the license 
constraints, a final packing step succeeded in re-imposing 
them (in our experiments). There are two variants, 
described below. 

 In the order NFM-HP, the NFM first minimizes cost and 
then HP tries to satisfy the memory and license constraints. 
It works well but does not scale, and to conserve space it is 
not reported here. We report on the successful HP-NFM 
variant below. 



6 

6.1. Combined Algorithm HP-NFM 

A small number of processors satisfying the memory 
constraint and if possible the license constraint is first found by 
HP (for the “loosened” problem), then the minimum-cost rates 
of processing the tasks on those processors are found by the 
NFM (with the loosening removed). A looseness factor of 1.1 
was used in our experiments. 

In this heuristic packing step, every host also has a 
reservation factor less than one, which is an upper bound on 
the capacity fraction that can be reserved by any single task; 
this prevents a host from being reserved by a single task, which 
could limit the reasonable choices for the subsequent NFM.  

Algorithm HP-NFM 

1. Apply Algorithm HP to the problem, after augmenting the 
execution demands dt of all tasks by the looseness factor.   

2. Construct a pruned NFM for the problem with  

(a) nodes for the tasks, and for the hosts that have been used 
in Step 1,  

(b) the task demands dt without the looseness factor, and  

(c) arcs from each host to the tasks allocated to it by HP, 
with cost C*ht on arc (h,t) (including penalties for 
exceeding the license limit). 

3. Apply Solve-NFM to minimize COST* 

6.2. Algorithms HP-NFM-HP1 and HP-NFM-HP2 

The HP-NFM algorithm may spread the allocations out 
over more processors than necessary, due to the initial 
looseness factor.  Therefore a final HP step without looseness 
was introduced to reduce the number of allocated processors if 
possible. Two approaches were used: 

 To counter underutilized hosts, an idleness threshold for 
hosts was chosen. Following Step 3 above, hosts with an 
execution demand space greater than this, i.e. with 

+
h ≥ (idleness threshold for host h) 

are de-allocated, and their task execution demands are 
repacked using the HP algorithm. 

 To counter license violations, tasks which exceed their 
license limit had the excess replicas de-allocated. 

There are two variants of the algorithm. In HP-NFM-HP1 both 
criteria are applied; in HP-NFM-HP2 only the license criterion 
is applied. They are described together. 

Algorithm HP-NFM-HPx 

1 - 3 execute Algorithm HP-NFM. At the end, the remaining 

execution demand for all tasks is d+
t = 0. 

4. In the HP1 variant only: unpack underutilized hosts. For 

each host h with +
h ≥ idleness threshold,  

(4a) For each task t, increment d+
t by ht .  

(4b) Set +
h  = h 

5.  In both variants: unpack for license violations. For each task 

t which violates its license constraint (i.e. has h Aht – Lt = Vt > 
0), 

5(a) Sort the demand allocations ht of task t in increasing 
order, 

5(b) For the first Vt of these demand allocations, increment 

both d
+

t and 
+

h by ht. 

6. Apply Algorithm HP (with no looseness factor) to pack the 

remaining execution of the set of tasks with d+
t > 0, into the 

processors with M+
h > 0.  

6.3. Computational Experience and Scalability  

1) Comparison on Random Cases 
The algorithms are compared on how they process the same 

scalable example as was described for HP alone, but now for 
100 replications at each scale with randomly generated 
parameters. The running times, the final value of COST*, and 
the license cost are shown in TABLE II. . 

TABLE II.  Results over 100 replications of three 
algorithms 

Size 

tasks n 240 300 400  1000 1200 

hosts m 125 166 250 600 800 

allocations 
n x m 

30000 49800 100000 600000 960000 

COST* x 1000: average  and (standard deviation as %) 

HP 14.6 

(±8.18%) 

18.2 

(±6.20%) 

24.2 

(±5.42%) 

60.3 

(±3.14%) 

72.3 

(±3.10%) 

HP-NFM 12.4 

(±8.18%) 

15.5 

(±7.59%) 

18.4 

(±6.31%) 

45.7 

(±4.40%) 

51.4 

(±4.02%) 

HP–NFM-

HP1 

13.1 

(±8.18%) 

15.9 

(±8.22%) 

19.2 

(±7.39%) 

51.19 

(±5.62%) 

58.8 

(±5.50%) 

HP–NFM-
HP2 

12.7 
(±8.49%) 

15.6 
(±7.46%) 

18.93 
(±6.91%) 

47.6 
(±4.70%) 

53.12 
(±4.16%) 

Average Solution Time (sec) 

HP 0.048 0.078 0.171 1.132 1.633 

HP-NFM 0.075 0.111 0.189 1.210 1.513 

HP–NFM-

HP1 

0.091 0.139 0.235 1.283 2.200 

HP–NFM-
HP2 

0.084 0.118 0.191 1.212 1.686 

Average Number of Hosts in Use  

HP 103.34 130.17 175.43 435.04 528.50 

HP-NFM 116.20 149.68 210.00 487.48 613.80 

HP–NFM-

HP1 

100.93 127.01 172.27 425.00 518.55 

HP–NFM-

HP2 

116.16 149.52 210.00 487.46 613.79 

Average License Cost (average extra licenses per case) 

[cases which meet  license constraints] 

HP 0 0 0 0 0 

HP-NFM 28.84 

(0.14)  

[75/100] 

44.16 

(0.22) 

[69/100] 

10.531 

 (0.08) 

[93/100] 

13.346 

(0.11) 

[92/100] 

7.54 

(0.05) 

[95/100] 
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HP–NFM-

HP1 

0 0 0 0 0 

HP–NFM-

HP2 

0 0 0 0 0 

 

The values of control parameters used were: 

 maximum  capacity: 80% of saturation capacity, 

 license violation penalty: 10 times the number of 
license violations (where this may be fractional), 

 looseness factor: 1.1, 

 reservation factor: 20%, 

 idleness threshold: 20% of the maximum capacity. 

The results in Table II show 

 HP alone is competitive in every category except COST*. 
This is not surprising since it ignores this factor; in any 
case it is worse by no more than 20% at the scales tested 
here (but the gap grows with scale). 

 The lowest COST* and fastest solution is always obtained 
with HP-NFM, since it terminates with optimization. 
However it also terminates with residual license violations 
(whose cost is included in the lowest cost) and uses more 
hosts. If either of these factors is of high importance to the 
management decisions, then this algorithm is inferior. 

 HP-NFM-HP1 and 2 achieved zero license violations. Of 
these: 

o The smaller number of hosts is always obtained 
by HP-NFM-HP1. This difference is as high as 
20% in the rightmost column, and grows with the 
system scale, left to right. 

o The lower solution time and COST* are always 
obtained by HP-NFM-HP2. 

So a user may select the appropriate heuristic according to 
which goals are most important: HP-NFM or HP-NFM-HP2 
for cost, HP-NFM-HP1 for hosts. 

2) Looseness and Reservation Factors 
The impact of the looseness and reservation factors used in 

Algorithm HP-NFM is explored in Table III. This table shows 
the final cost after applying HP-NFM to a single randomly 
generated case with 1000 tasks and 600 hosts. 

TABLE III.  Impact of looseness and reservation 
factors(case with 1000 tasks and 600 hosts) 

Reservation 

factor  0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Looseness 

factor COST* x 1000 

1 46.0 50.0 54.4 59.2 61.5 62.1 61.7 61.8 61.8 

1.1 45.6 48.7 53.3 57.0 60.0 61.5 62.0 61.8 61.8 

1.2 nil 47.6 51.0 54.7 56.9 61.0 60.9 61.0 61.0 

1.3 nil 46.5 49.6 52.4 54.6 58.4 60.5 60.8 60.7 

1.4 nil 45.9 47.0 50.9 52.0 55.3 58.3 60.3 60.6 

 

Reducing the reservation factor reduces the cost, which 
validates the use of the reservation factor to limit how much 
processing for a single task is permitted on a single host. 
Increasing the looseness factor also reduces the cost only a 
little, indicating that the freedom it provides to the later NFM 
step is not very valuable.  

The solution time varies somewhat with these factors but in 
no very clear pattern. The number of hosts used in the final 
allocation increases monotonically with the looseness factor, 
which is not surprising since the looseness factor inflates the 
amount of demand to be executed. As the reservation factor 
increases across the table, the number of hosts first increases 
and then decreases, because it is also subject to which hosts are 
chosen rather than only the number of hosts selected.  

From these experiments and observations, we conclude that 
combining a large looseness factor and a small reservation 
factor is helpful in finding a better solution, in general.   

TABLE IV.  Comparing HP and HP-NFM on the scalable example of Section 4.2 and Table I. 
Cases, with their Size Parameters 

tasks n 20 45 75 115 160 240 300 400 1000 2200 

hosts m 10 25 40 70 95 125 166 250 600 1200 

Arcs x1000  0.2 1 3 8 15 30 50 100 600 2640 

COST* x 1000 

HP 0.884 2.20 3.94 6.17 7.92 11.76 15.11 20.30 43.0 99.0 

HP-NFM 0.746 1.63 3.16 4.83 5.74 8.90 11.03 12.75 29.9 67.0 

Fractional Cost Improvement by HP-NFM 

HP-NFM over 

HP  

0.156 0.261 0.20 0.22 0.28 0.24 0.27 0.37 0.33 0.32 

Solution Time (Seconds) 

HP 0.016 0.031 0.109 0.188 0.906 0.297 0.266 0.39 2.31 14.6 

HP-NFM  0.125 0.187 0.344 0.329 0.359 0.313 0.453 0.844 2.91 16.5 

6.4. Recommended Approach: HP-NFM-HPx 

HP alone only minimizes processors subject to the memory 
constraints, NFM only minimizes costs. However the 
combination of the two in HP-NFM provides a reasonable 

solution that takes memory requirements, license costs, CPU 
demands, host CPUs and memory capacities etc. into account.  

The optional HP-NFM-HPx variants give some advantages.  
Of the final step HP1 or HP2, HP1 is significantly better for the 
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number of deployed hosts, while HP2 is better for solution time 
and total COST*.   

7. CONCLUSIONS 

This paper presents an effective algorithm for the heuristic 
optimization of task deployments in Clouds or in any large 
system shared by many applications. The algorithm combines 
the advantages of a packing heuristic with linear programming. 
A key achievement is the ability to include many realistic 
constraints in the model, including scalability, CPU and 
memory requirements, and host capacities, while also 
addressing goals of low economic costs and a small number of 
hosts in use. 

Limitation of the number of licenses is a secondary 
objective in HP (it is sought only after meeting the primary 
objectives) and is encouraged indirectly in NFM by the pay-
per-use costs. Thus it is a soft constraint in this work. 

A new heuristic packing algorithm HP is defined to pack 
execution demand (which is infinitely divisible, but with the 
number of divisions limited by the license constraint) into 
hosts. HP is inspired by a classic bin-packing approach, but 
required significant adaptation. 

Numerical experiments show that one variant of the 
combined HP/network optimization approach, called HP-NFM-
HPx is preferred. It comes in two flavours, the first favouring a 
reduced number of hosts in use, and the second favouring 
lower economic costs and faster solutions. Other experiments 
explore the search parameters introduced in the heuristic parts 
of the algorithm. 

The tests described here went as high as two and half 
million candidate allocations, of over 2000 tasks (each with 
several replicas) on over 1000 hosts. The mechanics of the 
algorithm continue to scale above that size, perhaps 
approaching a million hosts. The problem complexity appears 
to be dominated by the successive sorting steps applied to lists 
of tasks and hosts in the applications of HP (heuristic packing). 

This work is a step in our research on developing advanced 
management tools for Cloud computing.  In future work, these 
algorithms will be deployed in Websphere XD and Tivoli in 
the virtualization environment of the CERAS Cloud. 
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