
Template Driven Performance Modeling of Enterprise Java Beans

Jing Xu, Murray Woodside

 Dept. of Systems and Computer Engineering,

Carleton University, Ottawa K1S 5B6, Canada

xujing@sce.carleton.ca, cmw@sce.carleton.ca

Abstract
System designers find it difficult to obtain insight into the

potential performance, and performance problems, of

enterprise applications based on component technologies

like Enterprise Java Beans (EJBs) or .NET. One problem is

the presence of layered resources, which have complicated

effects on bottlenecks. Layered queueing network (LQN)

performance models are able to capture these effects, and

have a modular structure close to that of the system. This

work describes templates for EJB components that can be

instantiated from the platform-independent description of an

application, and composed in a component-based LQN. It

describes the process of instantiation, and the interpretation

of the model predictions.

1. Introduction and motivation
Application servers using component technologies such

as Enterprise Java Beans and the J2EE standards [1] [6] [8]

promise rapid development and good performance and

scalability. Many services are provided by platforms for

J2EE and other approaches like .NET (such as support for

concurrency, security, and transaction control), leading to

substantial overhead costs. Performance shortfalls are a

significant concern.

Predictive models of a software design can provide

insight into potential problems, and guidance for solutions,

as described by Smith and Williams (e.g. [15]) and others

(see for example [2] [21]). However modeling is unfamiliar

to designers, and takes significant effort. This work sets out

to reduce the effort by providing templates which can be

tailored to the business logic of the application. They are

instantiated and composed into a model of the infrastructure

parts such as a J2EE platform, the web server and the

database, which are modeled in advance, with parameters to

describe the possible deployments. This provides a rapid

model-building capability, compatible with the rapid

development process.

The process of defining component-based performance

models, and of building models from components, has

described in [5][20]. The models are layered queueing

networks (LQNs) as described in [14][16][17], and the

introductory tutorial [18]. Layered queueing is a strategic

choice. Compared to other formalisms surveyed in [2], it

extends queueing networks to include software resources,

and it avoids the state explosion of Markov models based on

Petri Nets. Each software component is a distinct model

entity, and contention for logical resources such as threads

(which define the concurrency in the server platform) is

captured.

This work defines a template-based framework for models

of any J2EE application server, and describes in detail how

the templates can be applied. The main focus of this paper is

the rationale of the LQN templates, i.e. how the templates are

derived from the platform-independent description of the

application behavior, and how to instantiate the templates to

represent a concrete EJB component. The paper also shows

the interpretation of results to guide the choice of pool sizes.

A companion paper [22] has considered the calibration of a

model against real profiling data, and its capability to

represent the performance of a small application.

2. Model Framework
Figure 1 shows a layered queueing model for a small web

application that provides two business services to the Web

Server and further to the Client. Each layer has a large

rectangle represents a concurrent entity that may have

multiplicity, resources, and behaviour. The right-hand block

of each entity (called a “task” in LQNs) represents the entity

as a whole; the blocks to its left represent its methods or

services exposed to its users (called “entries” in LQNs).

Client
(100)

WebServer

(20)

WSservice

[0.003]

<<component>>

ApplicationServer

DataBase

(20)

WriteOp

[0.005]

ReadOp

[0.002]

invokeServ

[2]

(2)
read update

toRead
toWrite

Figure 1 Layered Queueing Model for a web application

The arrows represent calls originating in one entry, to call

another. All these calls are synchronous (call-wait-reply)

interactions; asynchronous calls (with no wait/reply) can also

be indicated (graphically, by an open arrowhead on the arc).

The parameter within each entry gives its “host demand”

(CPU time demand per call); the parameter within each task

gives its multiplicity. Thus there are 100 Clients

(representing users at their desktops) with client delays of 2

sec., the Web server has 20 threads and WSservice demands

3 ms total to handle each call by a Client (including invoking

the application service), and the database has 20 threads, 2ms

for a read operation and 5 ms for a write operation. The

parameter on each arrow shows the mean number of calls

made during one invocation of the calling entry. It is 1 by

default if not explicitly shown.

Component-based modeling for LQNs was described in

[20] for assembling sub-models for application elements

together with infrastructure sub-models such as a web server,

a database, or an application server [13]. The definition of a

component sub-model, and its binding into a system model,

are illustrated in Figure 1 and Figure 2. In Figure 2, the large

rectangle represents the boundary of the component, with its

interfaces. The ports represented by circles on the upper edge

show provided interfaces (with a separate port for each entry

within the component), and the ports represented by squares

on lower edge show required interfaces. In component-based

modeling the outer system model is defined with a “slot”

having the same interface (shown as the ApplicationServer in

Figure 1). The component sub-model is defined separately

(as in Figure 2), and then bound to the interfaces and

processors of the slot in the system model.

InvokeRead

[$s_checkAccess]
InvokeUpdate

[$s_checkAccess]
Container

(inf)

getThread1

[$s_getThread]

getThread2
[$s_getThread]

Bean Thread Pool
(inf)

prepareBean

[$s_prepareBn]

ContServ

(1)

updateService
[$s_writeserv]

activebean
(inf)

readService

[$s_readserv]

Read-in

Write-out Read-out

Update-in

Figure 2 Component Sub-model for an Application Server

The component submodel in Figure 2 represents a

Session Bean (based on a template that is described below)

taking the place of the application server in Figure 1. We

notice that there is a number of internal “tasks”, some of

which represent the container functions (Container and

Bean_Thread_Pool) and some, the application. Infinite

multiplicity is attached to fully reentrant objects, multiplicity

1 to a critical section, and other multiplicities, to thread

pools. Host demands are described by variables with names

beginning with ‘$’ signs.

3. Template Driven LQN Modeling
Model templates provide a general solution for modeling

EJB applications in their environment. The template captures

common standard structure and parameters and allows

variable features to be instantiated both for specific platform

and for specific application.

A template has partially fixed internal structure with

placeholders and parameters that provide capability of

alternative. Instantiation of a template results a LQN

component sub-model.

A placeholder is like a piece of schema or meta-model for

a LQN model fragment (e.g. entries in a task). When a

template is instantiated, the placeholder is replaced by zero

or more concrete elements according to application behavior.

Relationship between generated concrete elements remains

the same as the relationship between their placeholders.

Execution demands and entry invocations (frequency of

calls in LQN) can be defined as parameters in a template.

When the template is instantiated, the parameters are either

replaced by concrete values or kept as variables to be

determined later.

Template driven modeling is suitable for analysis of EJB

system because all application servers behave alike. Fixed

part of a template represents features that are common to all

application servers that conform to the J2EE standards. For a

particular product, the parameters associated with structural

fixed part (mostly container services) can be instantiated by

using platform specific data. These data usually can be

obtained through profiling or benchmark. Instantiation of the

placeholders and their parameters makes the resulted

concrete component representing specific application

business logic. The data for these parameters can be either

obtained by profiling or benchmark, or be assumed or

required values in order to get performance prediction.

In the following sections, we will show templates for

different types of Enterprise Java Beans (EJBs) and examples

on how to use these templates.

4. LQN templates for different EJBs
The three main types of EJB are the Session Bean (used

to implement business logic), the Entity Bean (used to

represent business entity objects that exist in persistent

storage), and the Message Driven Bean (used to respond to

an asynchronous invocation). Session Beans are called

“stateful” if they maintain the status of a client conversation,

or “stateless” if they do not. This section will describe the

LQN templates for each type of the EJBs, for cases with

Container-Managed Persistence.

4.1 LQN Template for a Stateless Session Bean
A Session Bean represents a single client inside the

Application Server, and is not sharable. It performs work for

its client and is similar to an interactive session, for instance

it manages transaction properties. A Session Bean is not

persistent. When the client terminates the session, the session

bean is no longer associated with the client.

Figure 3 shows the internal behavior of a Stateless

Session Bean. Incoming requests for a business method are

captured by the EJB container. A Container thread will be

generated for each incoming call. It first checks if the client

has access rights to perform this operation on the Session

Bean, indicated as a method of the Container. Here we model

cases in which the client is authorized. Then the Container

thread requests a bean thread from the bean thread manager

(BnThreadMng). After obtaining a bean thread, the

Container instance enters a critical section described by the

behavior fragment in the box labeled “critical”, to prepare the

thread to execute the method. If the session bean involves

transaction operations, it may call external services for

initiating or terminating transactions. On exit from the

critical section, the Container will invoke the business

method on the active bean thread obtained. During execution

of the method, external services may be called.

Figure 3 is annotated with performance information

according to the UML Profile for Schedulability,

Performance and Time [11]. This includes the stereotyping of

computation steps (<<PAstep>>) with CPU demands (tagged

value PAdemand) and in the case of calling for external

transaction services giving the step probability which is

shown as tagged value PAprob=$ptranx, and same for

PAprob=$pextserv for invoking external services. The

stereotyping of the critical section as <<GRMResource>>,

with steps to acquire and release it, is an extension of the

Profile for logical resources suggested in [12].

Container

busiMethod(args)

execMethod

 transactionService <<PAStep>> {PAProb=$ptranx}

Check Access

sd StlBn_callMethod

Prepare Bean Thread
critical

<<PAstep>> {PAdemand =
(‘asmd’, ‘mean’, (4.1, ‘ms’) }

<<PAStep>>{ PAdemand=(‘asmd’,‘mean’,($s_checkAccess,‘ms’) }

ActiveBean BnThreadMng
r

Get Bn Thread <<GRMacquire>>

Release Bn Thread <<GRMrelease>>

<<PAStep>>{PAdemand = (‘asmd’, ‘mean’, ($s_prepBn, ‘ms’) }

<<GRMResource>>

 extService
<<PAStep>>
{PAProb=$pextserv}

Figure 3 Internal behavior of a Stateless Session Bean

Figure 4 shows the LQN template for a stateless Session

Bean derived from the behaviour. The container services are

separated into 2 tasks: a Container task with infinite

multiplicity represents the unconstrained operations on the

incoming calls, including the check access operation, and a

single threaded task ContServ models the critical section for

preparing the bean thread. The contention for active bean

instances is represented as requests to the BeanThreadPool

task, with multiplicity parameter $M for the pool size.

The elements with bold lines are placeholders, which, in

this case, include all provided and required ports, entries

invokeMethod, getThread, busiMethod and all the calls that

with at least one end connected to these entries. Parameters

are annotated by a ‘$’ sign followed by a name, such as

$s_prepareBn for the CPU demand of the entry prepareBean

and $ptranx for mean number of calls made to external

transaction services from prepareBean.

The general structure of this template represents the

platform independent behaviour of a session bean, while the

parameters $s_checkAccess, $s_getThread, $s_prepareBn

can be filled with values according a specific middleware

solution. $M is a tunable parameter of the runtime

configuration. The business logic of an application

determines the instantiation of the placeholders and their

associated parameters, including the instantiation of required

or provided interfaces (the placeholder ServiceRequest or

methodInvoke) and calls to or from them. Options in the

business logic will also determine the use of the required

transactionService interface.

Container
(inf)

Bean Thread Pool
($M)

getThread
[$s_getThread]

ContServ
(1)

invokeMethod
[$s_checkAccess]

activebean
(inf)

busiMethod
[$s_method]

methodInvoke

transactionService serviceRequest

($ptranx)

prepareBean
[$s_prepareBn]

($pextServ)

Figure 4 LQN template for Stateless Session Bean

To instantiate the template, each placeholder is replaced

by one or more instance entities. The chain of entries

invokeMethod, getThread, busiMethod is instantiated for

each separate business method, along with its input port and

the arcs joining the entries. The result is an LQN component

sub-model. Figure 2 shows an instantiation of the template in

Figure 4, with two ports connected to two business methods.

The template methodInvoke port is instantiated twice into

ports Read-in and Update-in, along with the entry chain,

invokeMethod, getThread and busiMethod. The required port

serviceRequest is instantiated twice. The call from

busiMethod is instantiated once for readService, and twice

for updateService with calls to both required ports (the call

number $pextServ =1 for both). Since no external transaction

service is required, the outgoing call from entry prepareBn

and its port are omitted in Figure 2 (i.e $ptranx=0). The CPU

demands $s_checkAccess and $s_getThread are the same on

both paths since they representing platform operations,

whereas $s_method is instantiated separately in the instance

entries since each business method has its own demands.

4.2 LQN Template for a Stateful Session Bean
A Stateful Session Bean is different in that it maintains

the status of its client conversation. In order to achieve this

while maintaining efficiency on sharing a limited thread

pool, the status of a session bean may be swapped out from

memory and stored in a file system when it is not in use and

the container claims its thread resource. This procedure is

called passivation of a bean instance. When its client requires

its service again, an empty thread will be acquired from the

container and its status information will swapped into

memory again, called activation of the instance. This may

incur swapping out another bean instance.

Passivate/Activate
[$s_callback]

(1-$p)

prepareBean
[$s_prepareBn]

ContServ
 (1)

Container
(i)

homeRemove
[$s_cremove]

getThreadForC
[$s_getThreadC]

getThreadForR
[$s_getThreadR]

homeCreate
[$s_ccreate]

invokeMethod
[$s_checkAccess]

Bean Thread Pool
($M)

getThread
[$s_getThread]

($ptranx)

($pextserv) busiMethod
[$s_method]

activeBean
 (inf)

($pextserv)

serviceRequest

Transaction
Service

methodInvoke removeBean createBean

create
[$s_create]

remove
[$s_remove]

Figure 5 Template for a Stateful Session Bean

Figure 5 shows the LQN template for a Stateful Session

Bean. The passivation and activation operations are

aggregated and shown as callback functions from the critical

section of the container service ContServ to the active bean.

These calls inform the bean that the container is about to

passivate or activate the bean instance, so that the bean

instance can release or acquire corresponding resources such

as sockets, database connection, etc., and they include the

passivation/activation overhead as well. The “hit rate” $p is

the probability that a required bean instance is currently

active (in memory), so (1-$p) is the probability that

passivation/activation is invoked on a new request.

A Stateful Session Bean also provides home interfaces

that allow clients to control creation and removal of a bean

instance. Elements representing these interfaces and related

container services are shown in the template.

4.3 LQN Template for a Message Driven Bean

A Message Driven Bean is similar to stateless session

bean except that it processes messages asynchronously. It

normally acts as a Java Message Service (JMS) listener

which can process either JMS messages or other kinds of

messages. The messages can be sent to any J2EE component

by a JMS application, including systems that do not use J2EE

technologies. A Message Driven Bean is useful for

implementing asynchronous business logic.

The LQN template for a message driven bean is the same

as the template of a stateless session bean, except its

incoming calls are asynchronous messages to the

invokeMethod entry.

Container
(inf)

invokeMethod
[$s_checkAccess]

Instance
(1)

instanceMethod
[0]

}$I replicas

Bean Thread Pool
($M)

(1-$p)

prepareBean
[$s_prepareBn]

ContServ
(1)

(1/$I)

getThread
[$s_getThread]

activebean
(inf)

passivate
[$s_passiv]

activate
[$s_activ]

load
[$s_load]

store
[$s_store]

(1-$p)

homeFinder
[$s_cfind]

homeCreate
[$s_ccreate]

homeRemove
[$s_cremove]

instanceRemove
[0]

getThreadForR
[$s_getThreadR]

getThreadForC
[$s_getThreadC]

(1/$I)

(1-$p)

remove
[$s_remove]

create
[$s_create]

store

serviceRequest

methodInvoke

remove create find

updateDB

readDB

storeEntity
[$s_cstore]

busiMethod
[$s_method]

($pextserv)

Figure 6 Template for an Entity Bean

4.4 LQN Template for an Entity Bean
The Entity Bean has the most complex functional and

resource behaviour, often resulting in performance issues.

Besides competing for thread pool and critical container

services, requests may contend for data objects. When an

instance of an Entity Bean is in use by a client, other clients

requiring the same instance (i.e. the same data) must wait. In

the LQN template this contention is represented by requests

to a replication pool of pseudo-tasks called Instance, with

one task for each Entity Bean instance. A request to a busy

Instance must wait for it to become free. The probability of

accessing each replica in the pool is assumed equal here, i.e.

probabilities of calls into entries of each replica are the same

(1/$I in the diagram). In the case of some data instances may

be accessed more frequently than others, separate tasks with

different accessing rate need to be added.

Besides the home interfaces for creating and removing an

instance, a find interface is also provided for looking up data

in database and returning the handle of a bean instance which

represents the data. The store interface is used when a

request to update the Entity state into the database is issued

by another EJB component in the same application server,

for instance during a transaction-committing step of a

Session bean.

The readDB and updateDB interfaces represent database

operations during service and bean-instance context

swapping (passivate/activate).

5. Using the LQN templates
An EJB system is modeled by first modeling the beans as

tasks with estimated parameters, then instantiating the

template to wrap each class of bean in a model of its

container, and finally modeling the execution environment

including processors (CPUs) and database. Calls between

beans, and calls to the database, are part of the final

assembly. The model may be calibrated directly from

operational data such as profiling, or by combining designer

knowledge of the operations of each bean with pre-calibrated

workload parameters for container and database operations.

The model can then be solved by LQN solvers either

analytically or by simulation, to evaluate throughputs,

response times, and resource utilizations. The results can be

used to guide choices of EJB patterns and deployment

configurations.

Two examples will be shown in this section. The first

example describes the LQN model for a three-tier client-

server system with only Entity Beans. The model was solved

and the results were compared with a previous study by

simulation. The second example describes how to build a

model for a more complex system with different type of

EJBs, but (to save space) it only shows parts of the model.

5.1 An Entity Bean example for the use of the template
To demonstrate that the LQN model can be applied to this

class of system with reasonable accuracy, we revisit a

simulation study done by Llado and Harrison for a system

with entity beans [9] [10].

Client

Application

Server

Database

Figure 7 A three-tier client-server system in [9] [10]

Figure 7 shows the architecture of their three-tier client-

server system. The client requests database operations

through Entity Beans which reside in the application server.

There is only one class of Entity Bean involved with a single

type of business method. No home operations are required on

the Entity Beans.

Figure 8 shows the LQN model for this system. The client

and database are modeled by tasks. The Entity Bean template

was instantiated into an “EJB Component” sub-model and

then was assembled in the slot of the application server.

Finally the component is bound to the ServerCPU which is

shared with the Database. In order to focus on performance

of software components and eliminate the affect of hardware,

the ServerCPU was set at infinite multiplicity (ample

multiple CPUs).

update
[$update]

read
[$read]

Database
(inf)

Server
CPU

store
[$s_store]

load
[$s_load]

passivate
[$s_passiv]

activate
[$s_activ]

busiMethod
[$s_method]

activebean
(inf)

(1-$p)

prepareBean
[$s_prepareBn]

ContServ
(1)

getThread
[$s_getThread]

Bean Thread Pool
($M)

ClientCPUClient
 ($N)

request
[$thinkTime]

instanceMethod
[0]

Instance
(1)

Container
(inf)

invokeMethod
[$s_checkAccess]

}$I replicas

(1-$p)

(1/$I)

EJB Component
sub-model

Figure 8 LQN model for the system in Figure 7

Using the same parameter values as in [10], the LQN

model was solved with 40 instances ($I=40), a pool size of 6

($M=6), negligible execution demand for invokeMethod,

getThread, and prepareBean ($s_checkAccess = 0.001ms,

$s_getThread = 0, $s_prepareBn = 0.00ms) and business

method (busiMethod) time of 4.1ms ($s_method = 4.1ms).

The underlying Database services and call back functions

were aggregated to a total demand of 0.4ms (i.e. $update +

$read + $s_store + $s_load + $passiv + $activ = 0.4ms).

Figure 9 compares the simulation results from [10] with

the LQN model. The difference between these two results is

about 6%, with the LQN being a little pessimistic.

From the results we can learn that the system is saturated

with about 10 clients giving a throughput of 1.3/ms. The

bottleneck is at the bean thread pool, which has a utilization

of 98.8%. These results imply that the configuration of the

bean thread pool size should be increased in order to achieve

higher performance if more than 10 concurrent clients are

expected.

$M=6 $I=20

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

0 10 20 30 40 50 60

$No of Client

T
h
ro
u
g
h
p
u
t

SIM

LQN

Figure 9 LQN model predictions compared with

Simulation Results [10]

In [9] Llado and Harrison describe another analytic model

for this system using decomposition, with a custom-built

solution strategy, which provides an even closer match to the

simulation results. However the effort of creating such a

model must be repeated for every configuration, and would

be even more complex with multiple interacting beans. The

advantage we seek with the LQN is the use of a standardized

model framework and solution strategy, and a systematic

model-building process based on templates for different

kinds of beans.

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 10 20 30 40

No of Clients

T
h
ro
u
g
h
p
u
t

$I=20

$I=40

$I=100

Figure 10 Results for Different Numbers of Instances

Another set of results in Figure 10 compares the

throughput for different numbers of bean instances $I, with

the same pool size $M = 6. We can see that the number of

bean instances makes little difference because the system is

limited by the small thread pool. This also corresponds to

Llado’s results. Before reaching saturation, the system with a

larger number of instances gives higher throughputs because

of less competition for each data instance (based on an equal

probability 1/$I of accessing each instance, which is small for

large $I). On the other hand, after the bean thread pool is

saturated, the throughput for the case with small number of

instances is higher, because the hitting rate on an active bean

instance is lower ($p is small), which results in more

overhead on swapping bean instance.

5.2 Example on constructing a LQN component model
containing different types of EJBs

In this section, we model a more complex EJB system

called RADS Book Store. Due to space limitations, we only

show the internal structure of the application server and some

but not all of the EJB components.

The RADS Book Store is a web-based system providing

basic online store services including user inquiry, purchase,

and inventory management. The system was implemented on

Weblogic 8.0 platform in Windows environment.

Figure 11 shows the sequence diagram for one of its

scenarios, the Checkout scenario. It follows the EJB session

façade pattern and involves three types of EJB: Stateless

Session Bean (Controller), Stateful Session Bean (Shopping

Cart) and Entity Bean (Order, OrderLine, and Book). We

will model this scenario.

Sd Checkout

Controller
(StlSesnB)

ShoppingCart
(StfSesnB)

Order
(EntB)

Book
(EntB)

checkout()

loop findBook(BookID)

BookRef

insertOrderLine(L)

updateStock()

create()

N=$B

order

OrderLine
(EntB)

create()

fillData()

userCheckout()

Figure 11 Checkout Scenario for RDS Book Store System

Figure 12 shows the LQN component model for the

application server with slots to fit in EJB components. It has

a provided interface (userCheckout) which will be connected

to the client component, and 2 required interfaces (readDB

and updateDB) that will be connected to database component

in higher level LQN model.

Figures 13-15 shows the internal structure of the

Controller Bean, Shopping Cart Bean and Book Bean

instantiated from different EJB templates, as described in

section 4.

In the case of the session façade pattern with container

managed persistence, transactions are entirely managed by

the container. A transaction is started at the beginning of an

invocation on the session bean ShoppingCart, and is

committed and ended right before the operation on

ShoppingCart is completed. Any change on entity data is

updated into database during the transaction committing

stage. Therefore, the store operation on entities is actually

invoked by ShoppingCart during its critical section for bean

context swapping (represented by prepareBean in the model).

Due to limited space, the component models for the Order

and OrderLine entity beans are not shown here. Instantiation

of the entity bean template for them is similar to that for the

Book bean. The model would be completed by binding each

component into its corresponding slot in Figure 12.

Controller
(StlSessionBean)

shoppingcartCheckOut

ShoppingCart
(StfSessionBean)

Order
(EntityBean)

OrderLine
(EntityBean)

Book
(EntityBean)

shoppingcartCheckOut

find updateStock create insertLine

create fillData

create
Line

fillLine

create
Order

InsertOrder
Line

findBook updateStock

($B) ($B) ($B)

userCheckOut

userCheckOut

readDB updateDB

Tranx
Service

store
store

store

Application Server

Figure 12 LQN model with Slots for EJB

Container
(inf)

prepareBean
[$s_prepareBn]

Bean Thread Pool
($Mcontroller)

getThread
[$s_getThread]

ContServ
(1)

InvokeCheckout
[$s_checkAccess]

activebean
(inf)

Checkout
[$s_checkout]

ControllerBean
userCheckout

shoppingCartCheckout

Figure 13 LQN component model for the Controller

(Stateless Session Bean)

Container
(inf)

prepareBean
[$s_prepareBn]

Bean Thread Pool
($MShoppingCart)

getThread
[$s_getThread]

ContServ
(1)

checkout
[$s_checkAccess]

activebean
(inf)

checkout
[$s_checkout]

ShoppingcartBean

Passivate/activate
[$s_callback]

ShoppingcartCheckout

TransactionService createOrder Insert
OrderLine

Find
Book

update
Stock

(1-$p)

Figure 14 LQN component model for the Shopping Cart

(Stateful Session Bean)

Container
(inf)

prepareBean
[$s_prepareBn]

Bean Thread Pool
($Mbook)

getThread
[$s_getThread]

ContServ
(1)

updateStock
[$s_checkAccess]

activebean
(inf)

updateStock
[$s_updtStk]

(1-$p)

BookBean

findByPK
[$s_cfind]

Instance
(1)

instUpdateStock
[0] }$I

(1/$I)

storeEntity
[$s_cstore]

activate
[$s_activate]

passivate
[$s_passivate]

load
[$s_load]

store
[$s_store]

store find updateStock

updateDB

readDB

(1-$p)
(1-$p)

(1-$p)

Figure 15 LQN component model for Book (Entity Bean)

6. Conclusions
This paper has described the process of defining

predictive performance models for J2EE-based systems,

using templates for EJB containers, and Layered Queueing

with component-based features.

The modeler needs to define models only for platform-

independent objects. These are then incorporated in template

instances which are assembled into a system model. Most of

the model, representing the J2EE platform, can be pre-

calibrated, and the application description (in terms of its use

of services) can be dropped in. This is a kind of PIM-to-PSM

(Platform-Independent Model to Platform-Specific Model)

transformation, in model space. Automation of the

transformation would be a useful next step.

The examples described in Section 5 demonstrate that the

model gives useful accuracy, comparable to other

approaches, and show how a complex system is handled.

The templates described here are for Enterprise Java

Beans in a J2EE application server, but a similar approach

could be applied to other technologies like .NET. The

templates could be further extended to include the operating

system by capturing common features of different operating

systems.

The process of building models is supported by tools for

component-based model-building [13][20]. However, the

sub-model of the application logic represented by a bean is

inserted into a template instantiated to contain it, with

appropriate parameters for the instantiation. This is different

from other examples of infrastructure which may run as a

service layer to the application elements, for example in [19].

The present approach has been tested on a couple of

example systems, including the well-known Duke’s Bank

Application which is shipped with J2EE documentation

provided by Sun Microsystems [3]. A companion paper [22]

describes experience calibrating a model and predicting

saturation and delay. Saturation was correctly predicted and

response time prediction errors ranged from about 2% to

about 25%, with better accuracy for more clients.

Acknowledgements

Discussions with Alexandre Oufimstev and Liam Murphy,

with regard to model calibration for the paper [22], were

helpful in this work.

References
[1] E. Armstrong, J. Ball, S. Bodoff, D. Carson, I. Evans,

D. Green, K. Haase, E. Jendrock, The J2EE 1.4

Tutorial, on-line document at

java.sun.com/j2ee/1.4/docs/tutorial/doc, Sun

MicroSystems, Dec. 16, 2004.

[2] S. Balsamo, A. DiMarco, P. Inverardi, and M. Simeoni,

"Model-based Performance Prediction in Software

Development," IEEE Trans. on Software Eng., vol. 30,

no. 5 pp. 295-310, May 2004.

[3] S. Bodoff, D. Green, E. Jendrock, M. Pawlan, The

Dukes Bank Application, on-line document at

java.sun.com/j2ee/tutorial/1_3-fcs/doc/E-bank.html,

Sun MicroSystems.

[4] G. Franks, A. Hubbard, S. Majumdar, J. Neilson, D.C.

Petriu, J.A. Rolia and C.M. Woodside, "A Toolset for

Performance Engineering and Software Design of

Client-Server Systems", Performance Evaluation, vol.

24, pp117-136, 1995

[5] V. Grassi, R. Mirandola, “Towards Automatic

Compositional Analysis of Component Based Systems”,

Proc Fourth Int.Workshop on Software and

Performance, Redwoood Shores, CA, Jan. 2004, 00 59-

63.

[6] Java Community Process, “J2EE 1.4 Specification”, on-

line document at http://java.sun.com/j2ee/1.4/download.

html#platformspec, Nov. 24, 2003

[7] Prasad Jogalekar, Murray Woodside, “Evaluating the

Scalability of Distributed Systems”, IEEE Trans. on

Parallel and Distributed Systems, v 11 n 6 pp 589-603,

June 2000.

[8] R. Johnson, J2EE Design and Development, Wiley

Publishing Inc., Indianapolis.

[9] C.M. Llado, P.G. Harrison, “Performance Evaluation of

an Enterprise Java Bean Server Implementation”, Proc

second Int. Workshop on Software and Performance

(WOSP 2000), Ottawa, September 2000, pp 180-188.

[10] C.M. Llado, PhD thesis, Imperial College, London,

2001.

[11] Object Management Group, "UML Profile for

Schedulability, Performance, and Time Specification,"

OMG Adopted Specification ptc/02-03-02, July 1, 2002.

[12] D. B. Petriu and M. Woodside, "A Metamodel for

Generating Performance Models from UML Designs,"

Proc. UML 2004, v. 3273 of Lecture Notes in Computer

Science (LNCS 3273), Lisbon, Oct 2004, pp. 41-53.

[13] Erik Putrycz, Murray Woodside, and Xiuping Wu,

“Performance Techniques for COTS Systems”, IEEE

Software, v. 22, n 4, pp. 36–44, July-August 2005.

[14] J. A. Rolia and K. C. Sevcik, "The Method of Layers,"

IEEE Trans. on Software Engineering, vol. 21, no. 8

pp. 689-700, August 1995

[15] C. U. Smith and L. G. Williams, Performance Solutions.

Addison-Wesley, 2002.

[16] C.M. Woodside, E. Neron, E.D.S. Ho, and B. Mondoux,

"An ``Active-Server'' Model for the Performance of

Parallel Programs Written Using Rendezvous," J.

Systems and Software, pp. 125-131, 1986

[17] C.M. Woodside, J.E. Neilson, D.C. Petriu and S.

Majumdar, "The Stochastic Rendezvous Network

Model for Performance of Synchronous Client-Server-

Like Distributed Software", IEEE Transactions on

Computers, Vol. 44, No. 1, January 1995, pp. 20-34

[18] M. Woodside, “Tutorial Introduction to Layered

Modeling of Software Performance”, Edition 3.0, May

2002 (Accessible from http://www.sce.carleton.ca/rads/

lqn/lqn-documentation/tutorialg.pdf)

[19] M. Woodside, D.B. Petriu, K. H. Siddiqui,

"Performance-related Completions for Software

Specifications", Proc 24th Int. Conf. on Software

Engineering (ICSE 2002), Orlando. May 2002.

[20] X.P. Wu and M. Woodside, "Performance Modeling

from Software Components," in Proc. 4th Int. Workshop

on Software and Performance (WOSP 04), Redwood

Shores, Calif., Jan 2004, pp. 290-301.

[21] J. Xu, M. Woodside, and D.C. Petriu, "Performance

Analysis of a Software Design using the UML Profile

for Schedulability, Performance and Time," in Proc.

13th International Conference on Modelling Techniques

and Tools for Computer Performance Evaluation

(TOOLS 03), Urbana, USA, Sept. 2003

[22] Jing Xu, Alexandre Outfimtsev, Murray Woodside,

Liam Murphy, “Performance Modeling and Prediction

of Enterprise Java Beans with Layered Queueing

Network Templates”, to appear in Proc. of

SAVCBS’05, Lisbon, Portugal, Sept. 2005.

