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Chapter 1

Introduction

1.1 Computer Networks

Computer networks have been in the scene since the last 3-4 decades. With
ever-growing internet and other networks, interest in computer networks is
natural. More and more universities and research labs across the world are
working towards enhancing the performance of computer networks. All this
indicates towards a future with a greater role for networked computers. This
has manifested in the form of various networked applications like internet
surfing, distributed computing, etc. Industry, together with the research
community, is welcoming this advent of computer networks with greater
support as can be seen in Sun Microsystems’ punch line, “Network is the
computer”.1

However, with growing popularity of networks, the volume of traffic on
the network becomes an issue. As the number of users on a network (say,
Internet) increases, traffic on the network is also bound to increase. A greater
traffic on the network has its own implications on the network performance.
Congestion, packet losses, greater delays in transmission are some of the
phenomena that are bound to happen with increased network traffic.

On the flip side of it, the expectations of the network users are also
increasing with time. These days applications require greater Quality of
Service(QoS). To offer greater quality of service, network is expected to have
greater throughputs, reduced packed losses and smaller delays.

All this makes the life of a modern-day network designer very difficult.

1It was, in fact, the main vision of Sun Microsystems’ Chief Scientist, Bill Joy.
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Figure 1.1: A Simple Queue

He has to meet two contrasting targets of support for greater traffic and
enhanced QoS. This indicates towards serious planning on the part of a net-
work designer. Models and simulators for networks are useful in predicting
the network performance and hence are helpful in enhancing it. So, there is a
growing need to develop accurate and fast models for modeling the computer
networks[2, 10, 11].

1.2 A Simple Queue

A computer network can be studied at various levels. One standard way
of looking at it is in terms of queuing theory, wherein, the offered network
traffic load is studied at various nodes, viz. gateways, routers, servers and
clients. A node can receive packets from various other nodes connected to
it. Similarly, it can transmit packets to other nodes connected to it. The
packet arrivals at a node usually indicate some trend and may be modeled
using some statistical distribution. Upon arrival at a node a packet enters
the queue and is being serviced by the node based on some queuing policy.

In a practical network, at each node some processing of the incoming
packet is desirable. This amounts to a servicing time at each node and
causes some delay. Fig. 1.1 shows a simple queue with, λ = arrival rate,
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µ−1 = mean service time. Such a queue has traditionally been denoted with
the notation, G/G/n, where the first two symbols stand for the arrival and
service distributions, respectively. The last value denotes the number of
servers. This is a simplistic model of a queue that can be used in network
modeling at various nodes.

Analysis is available in the existing literature to calculate the various
quantities of interest for such a system, viz. mean queue length, average
waiting time, server utilization etc. However, such an analysis has so far been
carried out in a simple framework with some distributional assumptions.

In the network domain such a queue can be thought of as packet queue
at various nodes. Nonetheless, it is important to mention that modeling
can only be done for the network after getting sufficient empirical data and
then laying some distributional assumptions based on that. The most critical
issues to be considered while modeling the network behavior are accuracy and
speed. Whereas, accuracy for the model comes from logical assumptions for
distributions based on empirical data and speed is inherent in the algorithm
used for simulating the arrival and departure process.

1.3 The Failure of Poisson Modeling

Traditionally, for the sake of mathematical tractability and simplicity, Pois-
son arrivals are assumed in wide-area networks. A Poisson process with
exponential inter-arrival times offers interesting properties. However, it has
been shown that such a model is incapable of capturing the inter arrival
behavior of wide-area and local-area networks [13, 14].

The interest in self-similar traffic modeling began after empirical results
on traffic behavior in ethernet traffic were presented in [13]. This revolu-
tionary paper based on data collected from traffic in the ethernet at Bellcore
Morris Research Engineering Centre (MRE). This paper established through
experimental results that interarrival behavior of packets differs from expo-
nential. Prior to this point of time, network traffic was thought to be similar
to telephone traffic where the Poisson model is of greater relevance and util-
ity. However, this work presented strong arguments in favor of a different
way of modeling the network traffic. There were greater research efforts in
this direction to work out a suitable modeling approach for self-similar traffic.

This work showed that LAN traffic follows some fractal -like behavior
where we have long-term spikes,ripples and swells [12]. Such a behavior calls
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for a different treatment for this kind of behavior. In the coming section,
we will try to understand this concept of self-similarity in greater details.
Then we will proceed to look at some recent modeling techniques and a few
measurement techniques. Also, a case study of one of the modeling technique
that is used will be presented and a fuller analysis and implementation details
of the approach will be detailed in later chapters.
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Chapter 2

Understanding Self-Similarity

2.1 Pictorial View of Self-Similarity

A simple way of understanding self-similarity is in terms of scale-invariance.
Basically it means that whatever be the time-scale for the traffic plots on a
time scale, the plots will appear intuitively very ”similar” to one another.
An example of this concept is shown in Fig. 2.1, where starting from a time
scale of 100s, all subsequent plots are obtained from the previous one by
increasing the time resolution by a factor of 10. It is apparent that all the
plots appear almost similar and exhibit self-similarity.

2.2 Definitions

A rigorous mathematical definition for self-similarity at this point is in place.
Some widely used definitions for self-similarity are[19]:

1. Let {Xk}, k = 0, 1, 2, . . . , be a discrete-time stationary process with
mean µ, variance σ2, and auto-correlation function {ρk}, for k =

0, 1, 2, . . . , and let {X (m)
k }∞k=1 = {X (m)

1 , X
(m)
1 , . . . , }, m = 1, 2, 3, . . . , be

a sequence of batch means, i. e. , X
(m)
k = (Xkm−m+1+. . .+Xkm)/m, k ≥

1.

The process {Xk} with ρk → k−β, as k → ∞, 0 ≤ β ≤ 1, is called

exactly self-similar with Hurst parameter, H = 1− (β/2), if ρ
(m)
k = ρk,

for any m = 1, 2, 3, . . .. In other words, the process, {Xk} and the

averaged process {X (m)
k }, m ≥ 1, have identical correlation structure.
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Figure 2.1: Self-Similarity in Picture (from [13])
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The process {Xk} is asymptotically self-similar with H = 1− (β/2), if

ρ
(m)
k → ρk, as m → ∞ .

2. A continuous time stochastic process {Xt} is strongly self-similar with,
H(0 < H < 1), if for any positive stretching factor c, the rescaled
process with time scale ct, c−HXct is equal in distributional sense to
the original process, {Xt}. This implies that, for any sequence of time
points t1, t2, . . . , tn, and for all c > 0, {c−HXct1 , c

−HXct2 , . . . , c
−HXctn}

has the same distribution as {Xt1 , Xt2 , . . . , Xtn}.

3. In an engineering sense, the queue for a node exhibiting self-similarity
will have heavy-tailed service-time distribution like,

P [X ≥ x] ∼ cx−α, x → ∞, 0 ≤ α ≤ 2 (2.1)

If such a traffic load is offered to the queue with heavy-tailed service
distribution, self-similarity in queue length process is observed. This
fact has been used in the modeling of self-similar traffic in [15] and
forms the basis of this work.

2.3 Main Properties

Main properties of self-similar processes include:

• Slowly decaying variances Usually for most other processes, the vari-
ance of the sample mean decreases along with the sample size. How-
ever, in case of self-similar process, the variance does not decrease
as fast as sample size. Specifically, the variance experiences hyper-
bolic kind of decay instead of the faster exponential decay, i. e. ,
V ar[{X (m)

k }] → c1m
−β1 as m → ∞, where c1 is a positive constant

and 0 < β1 < 1.

• Long-range dependence This property is manifested in a non-summable
autocorrelation function. The summation of autocorrelations, Σ∞

k=0ρk =
∞. Again, the problem comes because of a hyperbolic decay instead of
an exponential decay[8].

• 1/f-noise The spectral density obeys a near-zero power law, i. e. ,
f(λ, H) → c3λ

1−2H , as λ → 0. This is expected as long-range de-
pendence in time-domain will have greater impact on the performance
near zero point of the spectral response.
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Mathematical impacts apart, self-similarity has greater impact on the per-
formance of the network that we will see in the next chapter.
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Chapter 3

Impact of Self-Similarity on
Network Performance

3.1 Protocol View

In the sense of network protocols, the self-similarity comes from the length of
sessions. Specifically, it has been shown that file transfers with files of sizes
following a heavy-tailed distribution result in self-similarity. Self-similarity
is more a phenomenon arising out of higher layer issues than lower layers.
In fact, application layer parameters decide upon whether there would be
self-similarity in the traffic behavior or not.

Application layer parameters like file sizes have greater impact on the
transport layer [9]. Transport layer experiences the self-similarity effect when
being offered a heavy-tailed load at the application layer. One way of analyz-
ing the performance impact of self-similarity is to look in terms of sizes of files
being transferred at the application layer as proposed in [23]. For the purpose
of generation of a heavy-tailed distributed file sizes, pareto distributions have
been used. At the transport layer, the effects are more pronounced in terms
of congestion whereas at the lower layer it is seen in terms of self-similarity.

In a nutshell, all layers of the protocol architecture are affected with self-
similarity in some or the other manner. This is expected as the root of it
lies at the apex of protocol stack at the application layer which in turn gets
transferred to the lower layers. 3.1 summarizes the impact on various layers:

9



Layer No. Layer Impact/Cause
5 Application Heavy-tailed file-sizes
4 Transport Congestion
3 Network Greater Queueing Delays
2 Data Link Layer Self-Similar Link Traffic
1 Physical Greater bandwidth hogged

Table 3.1: Protocol Stack Architecture

3.2 Impacts

Self-similarity calls for greater network resources like link bandwidth and
buffer space. Also, network performance goes down as seen by reduced
throughput, greater packet loss rate and greater packet retransmissions. The
overall network experiences reduced performance because of the long-range
dependence.

3.2.1 Packet loss

A heavy-tailed service distribution as in self-similar traffic results in greater
time spent by packet in queues at the nodes of the network. These nodes ad-
here to some queuing policy based on which they decide upon which packets
to drop in case the buffer overflows. Whatever be the queuing mechanism
viz. droptail, RED or ARED, sustained packet transfer result in greater
waiting time for incipient packets in the queue. Upon overflow of the buffer,
the router may even drop these packets. So it is clear that a long-term sus-
tained flow results in greater loss for other flows. This is how self-similarity
adversely affects the network and results in greater packet loss.

A greater problem coming out of this packet loss phenomena is packet
retransmission in cases where the flows are connection-oriented like TCP. In
such flows, loss of a packet results in retransmission of the entire packet.
This has more pronounced effect as this results in greater traffic and an even
greater packet losses. So the effect of self-similarity is compounded by the
retransmission of packets.
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3.2.2 Throughput

Throughput over a link is defined by the equation,

Throughput =
NT × SS

T
(bps) (3.1)

where NT is the number of packets transmitted in time T, SS is the segment
size in bits.

Under the assumption of infinite link bandwidth and no loss, TCP through-
put is,

Throughputmax =
W × SS

RTT
(bps) (3.2)

where W is TCP segment size and RTT is the round trip time. However, the
exact behavior is deteriorated by packet losses leading to retransmissions.
The effective throughput is considerably reduced owing to this and Eq. 3.2
represents only the raw throughput which is significantly reduced because
of the packet losses. It is now clear that significant loss in throughput is
experienced because of packet losses due to self-similarity. However analytical
derivation of the throughput decline is involving and cumbersome and has
been modeled in form of simulations only.

3.2.3 Queue Length

Because of sustained transfers, packets experience greater queuing delay than
normal. This causes greater queue lengths and greater queuing delay. Fig. 3.1
shows the impact of increasing self-similarity (by reducing the pareto distri-
bution’s parameter, α ) on the mean queue length in a simulation setup in
[23].

3.3 Conclusion

As seen, self-similarity has pronounced impacts on the network performance.
It hogs the bandwidth, causes packet delay and causes greater mean queue
lengths at bottleneck links and hence is a major issue in network performance.

An effective design strategy for handling self-similar traffic would encom-
pass greater buffer capacities and increased link capacities. However, doing
so needs needs an effective modeling strategy so that based on simulations,
design choices about network components can be made in a more effective
fashion.
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Figure 3.1: Effect of Self-Similarity on Mean Queue Length (from [23])
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Chapter 4

Self-Similar Traffic Modeling

4.1 Introduction

As has been discussed in earlier chapters, modeling of self-similar traffic is
critical to improving the performance of a network. Ever since it became
clear that Poisson models are incapable of capturing the self-similar behav-
ior in network traffic, researchers have been trying to come up with a suitable
modeling strategy[17, 26, 27, 29]. Recently , many new attractive approaches
have been proposed and have been shown to offer significant modeling flexi-
bility.

Before delving into some of the most popular modeling techniques, it
would be worthwhile for us to look into some expected features of a suitable
modeling strategy.

• Mean A modeling strategy should be such that the empirical sample

mean calculated from the traffic data,
∧

µ matches fairly well with the
mean of the modeling approach, µ.

• Variance For a matching till the second order, the sample variance

of the empirical network traffic data,
∧

σ2 matches fairly well with the
model variance, σ2.

• Self-Similarity A suitable model should be able to appropriately cap-
ture the observed self-similarity in the empirical traffic data. This has

to be verified by matching the estimate of the Hurst parameter,
∧

H,
from the traffic data and the Hurst parameter for the model, H.
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• Visual Similarity The traffic data and the model when plotted as a
time-series should appear similar to each other. There is clear mea-
sure for this feature but a modeler, based on his experience can check
whether the model and the data follow the same path or not.

As clear from above, a model needs to meet some specific requirements. The
utility of a model can be seen in terms of the parameters as mentioned above.
There are effective statistical techniques to verify the correctness of a model
that we will be seeing in the next chapter. Now we begin to look into some of
the most recent and effective modeling strategies for modeling the self-similar
network traffic behavior [2, 33, 34].

4.2 Fractional Gaussian Noise

Fractional gaussian noise generated using normal procedures is not capable
of generating traffic with lower values of Hurst parameter, H. A popular
variant of the approach presented in [22] is very fast and generates quality
samples for a broad range of Hurst parameter. The algorithm for generating
the traffic data using this approach is:

1. A sequence of values {f1, f2, . . . , fn/2} is constructed, corresponding to
power spectrum of an FGN process.

2. Each of the samples is fuzzed to get {
∧

fi} so that the mean of actual
power and the model are equal.

3. Then a sequence of complex numbers, {z1, z2, . . . , zn/2} is generated so
that it becomes a frequency-domain sample path. It is ensured that
different sample paths generated using this method will be independent.

4. Expansion of the samples is done to produce spread them over a double
of the earlier value, i. e. n. Now the signal corresponds to Fourier
transform of the real-valued signal.

5. Finally, inverse fourier transform is performed to get the approximate
time-domain FGN sample path.

The key factor of this approach is the use of the fast Fourier transform (FFT)
for obtaining the sample. It is clear that FFT based algorithm are very
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fast compared to others and offer a great computational advantage. It has
been shown in the literature that generating the samples using this approach
takes far less time than other popular approaches. This computational speed
advantage makes it a very fast algorithm.

It is notable that for this approach, the mean, variance and the Hurst
paramater H, are all independent and hence any kind of linear transforma-
tion can be preformed on the sample while preserving the value of H. In
fact, it generated a sample path with zero mean sample path that needs to
be transformed to a desired value. So, negative values may be eliminated
from the model after suitable transformation with desired mean and vari-
ance. However, if even after doing so, the negative values do persist, then
overall efficacy of fGn approach in modeling such a network traffic behav-
ior becomes suspect. Under such circumstances, it is preferable to switch
to another suitable modeling mechanism like fractional ARIMA (fARIMA)
that is presented in the next section. So it is apparent that fGn processes
correspond only to a specific class of self-similar process. There may be cases
where it is unable to model the self-similar behavior of the network traffic. It
has been shown that fractional Gaussian noise has a autocorrelation function
as,

τ(k) = 1/2(|k + 1|2H − |k|2H + |k − 1|2H), k > 0 (4.1)

Also it can be seen that fGn is exactly second-order self-similar with self-
similarity parameter, H as long as 1/2 < H < 1. Another popular variant of
the fractional gaussian noise is the fractional Brownian motion (fBm). The
only difference between fGn and fBm is that fBm is simply the sum of the
fGn increments. In a sense, fBm is integrated version of fGn. In a nutshell,
fGn processes are a wide class of process that are useful in developing a
model for self-similar traffic in fast and scalable manner.

4.3 ARIMA Processes

ARIMA stands for Autoregressive Integrated Moving Average Processes and
are named so as they are composed of following components:

• AR(AutoRegressive) This corresponds to the technique wherein the
current sample is produced as linear combination of previous samples.
For instance, an AR process of order p, refers to a process {xn} of
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type:
xn = en + a1xn−1 + a2xn−2 + . . . + apxn−p (4.2)

This is a linear form of relating the current sample with the previous
ones. In addition to this, they can be related in a non-linear fashion
for other forms. Such a relation is useful in relating the concurrent
samples to form a suitable correlation structure.

• I (Integrated) This corresponds to the order of previous errors taken
is consideration while adjusting for the current sample. For example, a
d-th order integration will accumulate the errors from past d samples
when matched against the empirical time series as:

en = en−1 + en−2 + . . . + en−d (4.3)

The errors accumulated thus help in matching the model with the traffic
data. This way, after optimizing for the weights, ai, the model can be
made to match the traffic data.

• MA (Moving Average) To adjust the model to the traffic data it is
essential to take into account the dynamic behavior of the time series.
To do so, the average of the time series is adjusted according to the
traffic data. The order of the moving average process corresponds to
the number of previous samples considered in doing so.

Together an ARIMA process with p-th order autoregression, d-th order inte-
grative and q-th order moving average process gives rise to an ARIMA(p, d, q)
process. It is clear that ARIMA processes have more variables to optimize
than the fGn process and hence yield greater flexibility in modeling the self-
similar behavior. They have been shown to be very useful in modeling both
long-range and short-term dependence. More specifically, ARIMA(1, d, 0)
and ARIMA(0, d, 1) have been shown to be capable of capturing the self-
similar behavior of most practical network traffic time-series.

ARIMA processes excel over others in terms of their greater flexibility
and simplicity. The only problem with these processes is that it may be
hard to optimize the weights to tune the model the empirical time-series. A
suitable optimization algorithm needs to be chosen before actual optimization
w. r. t. the actual traffic data is performed. Several optimization algorithms
are available like:

• Quasi-Newton
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• Genetic Algorithm(GA)

• Levenberg-Marquardt

• Classical Newton method

• Huber Method etc.

Among these, the network modeler can choose a suitable method to fine-
tune the weights according to the traffic data. However the usefulness of
the model is dependent on the order of the process chosen, suitability of
the optimization algorithm and, to an extent, the experience of the network
designer. The problem with ARIMA processes comes in the form of too much
flexibility that makes it difficult to optimize with too many variables. A too
rigid model with fewer parameters may be incapable of capturing the real
network’s self-similar behavior. On the other hand, a too loose model, with
too many parameters to optimize may be difficult to be tuned to the actual
network traffic behavior.

ARIMA(p, q, d) processes have been shown to be second-order self-similar
with self-similarity parameter, d + 1/2, as long as, 0 < d < 1/2. In fact,
ARIMA processes are generalizations of the broader Box-Jenkins model [25].
The latter one offer even more flexibility than ARIMA processes, but it is
even more difficult to control the many parameters of the Box-Jenkins model.
Also, a narrowed down version of ARIMA processes is the ARMA processes
which do not have the integrative terms. These are also useful in model-
ing the short-term autocorrelation behavior. Overall, ARIMA processes are
difficult to be optimized for the empirical data, once optimized, they can
be used to generate data in a fast and useful manner. Many simulators are
increasingly using the ARIMA models for self-similar traffic generation in
network simulators.

4.4 Artificial Neural Networks

Artificial neural networks(ANNs) have been introduced in modeling, simu-
lation and optimization [6, 7]. Several researchers have effectively used the
universal approximation properties of ANNs to model the self-similarity and
network traffic and time-series prediction. Among the popular ANN ap-
proaches, dynamic neural networks (DNNs), have been used to model the
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transient behavior of network traffic. The structure, popularly used in dy-
namic modeling of the network traffic is shown in Fig. 4.1. Neural Networks
have been shown to exhibit universal approximation, i. e. they can capture
any kind of non-linear behavior provided sufficient number of neurons are
there in the hidden layer. The training data for the neural network comes
from empirical network traffic data. Based on the training data, the neural
network can be made to learn the network traffic behavior.

The modeling methodology for the network traffic involves feeding the neural
network with some finite number of previous number of samples to get the
current sample. Specifically, for a q-th order dynamic neural network, the
network is first fed with samples x[k− q]] through x[k− 1] to obtain the k-th
sample, x[k]. This is then matched with the k-th sample in the training data.
Based on the error in the predicted value, the internal weights of the neural
network are adjusted accordingly. In the next iteration of the training the
samples from x[k− q] through x[k] are used to calculate the k +1-th sample,
x[k + 1]. The error between the predicted and empirical value is then used
to adjust internal neural network weights. This way the neural network is
trained for the entire training data.

The power of neural newtroks emanate from very powerful optimization
algorithms like backpropagation can be used to tune the weights of the neu-
ral network for the empirical traffic data. Backpropagation is both fast and
effective. It has been shown to offer significant advantages over other opti-
mization algorithms and are widely used by neural network researchers across
the world. An example of use of neural network in modeling the traffic be-
havior is shown in Fig. where the model is compared against the empirical
traffic data. It can be seen in Fig. 4.2 that neural model fairly captures the
actual behavior(This work was done by this author sometime back).

Neural networks can be trained very fast and are very useful in predicting
network performance and queuing characteristics as well. However, the major
problem with neural networks comes with their poor performance outside the
trained range. Beyond the trained range, neural networks behave arbitrarily
and are not very useful. Several approaches [18] have been proposed to
enhance the performance of a neural network outside its trained range with
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Figure 4.1: Dynamic Neural Network Structure
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Figure 4.2: Comparison of Neural Model and original traffic data
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limited enhancements. Nonetheless, neural networks are very useful in the
sense of their ease of use and broad applicability.

On the front of capability in modeling the longer-term dependence, neu-
ral networks are not very useful beyond a point. The ability of a neural
network structure to model long-term behavior is dependent on the order
of the dynamic neural network structure, p. So, very long-range and sus-
tained processes require higher order DNNs and hence need many neurons
which make the whole network very cumbersome and complex. Also, the
time complexity grows with the order of the neural network.

4.5 M/G/∞ queue-based method

In this method, a queue with Poisson arrivals, a long-range dependent service-
time distribution and a infinite server system (i. e. pure delay system) is
considered. We can look at each of them in detail:

• Poisson arrivals mean that the interarrival service-time distribution is
exponentially distributed, i. e. a the arrival times are separated by a
time that follows the distribution:

fX(x) = Ae−λx (4.4)

where A and B are the locale and scale parameters respectively.

• A heavy-tailed service-time distribution is one which has infinite vari-
ance. With an infinite variance the service time can probabilistically
attain any higher value of service time and causes heavy-tailedness. An
example of a heavy-tailed distribution is:

F (x) = cx−α, α > 0, x > β (4.5)

• An infinite number of server means that an incoming packet need not
wait in the queue for any time and the only latency in the systems
comes from processing time of the packet.

With an M/G/∞ queue with components as shown above, the average queue
length turns out to be:

queuelength =
λβα

α − 1
(4.6)
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and the autocorrelation function is:

τ(k) = τ0k
−(2−H) (4.7)

Such a autocorrelation structure is very useful in modeling the long-range
dependence. This approach appears very natural in modeling the self-similar
traffic behavior as it actually mimics the causes that are underneath the cre-
ation of self-similar traffic in real computer networks. The data is generated
by sampling the queue length at a suitable sampling rate. The sampling rate
is critical in accuracy. However the speed is impacted in a negative manner
by the sampling rate. Hence a tradeoff has to be done in terms of sampling
rate so as to attain higher levels of both speed and accuracy. The drawback
of this method is is that the process is only asymptotically self-similar, so
again one needs to make a tradeoff of length of computation and degree of
self-similarity.

4.6 Transform-Expand-Sample(TES)

The Transform-Expand-Sample method was introduced in. This technique
aims at matching the pdf and autocorrelationfunction of the model and the
empirical traffic daata and preserve the visual resemblance at the same time.
For doing so, following methodology is used:

1. The histogram for the distribution function, H(y) is developed based
on the empirical data.

2. The distribution function is inverted to get the associated inverse,
H−1(y).

3. A stitching transformation is then performed on the inverse function.

4. An innovation density with randomly chosen slots in the interval [0, 1]
is chosen and is finally applied to the inverted function.

TES methodology also involves optimizing the parameters for matching the
correct behavior of network traffic. TES method, however, has the problem
that it can hardly only short-term dependence and is not very good for long-
range dependence. For longer runs, it involves optimization of many variables
that makes it hard for any optimizing algorithm to get to a good solution.
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For these reasons, TES method is suited only for short-range dependence.
However the advantage for this technique comes from the fact that it already
implemented in form of a useful software, TesTool that makes it an attractive
choice for rough modeling of network traffic.

4.7 Comparative Evaluation

Based on the discussion above, the modeling techniques for self-similar traffic
can be compared for various parameters as shown in the Table. 4.7. It can
be seen that, overall, FGN and ARIMA processes come as a natural choice
for the network designer to use as a model for generating self-similar traffic
because of their broad coverage. Among the two, FGN excels over ARIMA
because of its reported speed advantage over ARIMA with only exception
that under certain circumstances, it may not be possible to use the FGN
process as a modeling technique. However, it has been shown that for most
practical purposes FGN generated network traffic is sufficient to model the
self-similar behavior.

23



Property FGN ARIMA ANN M/G/∞ TES
Method FFT Linear Comb. ANN Sampling TES

Theoretical Asympt. 2nd order Univ. Asympt. -
Basis 2nd order Approx. s. s.

Analytical
√ √ × √ ×

Tractability
Implemen- Very

tation Simple Moderate Simple Simple Difficult
Complexity
Optmization µ, σ2, H Weights Neuron λ, β, α weights
Parameters weights

LRD support Good V. good Limited Good Very
Limited

S.S. only a all all all very
Coverage class covered covered covered limited

Speed Fastest Fast Fast Slow Fast
Parameterized

or Param. Opt. Opt. Param. Opt.
Optmimized

Table 4.1: Comparison of various modeling techniques for Self-Similar traffic
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Chapter 5

Measurement Techniques

5.1 Introduction

To measure the efficacy of the modeling technique it is useful to measure the
modeled traffic for various parameters. The parameters to be measured are :

• Sample mean,
∧

µ.

• Sample variance,
∧

σ2

• Hurst parameter,
∧

H

First two of these can be measured using standard statistical tools while,
for the last one, elaborate tools for measuring Hurst parameters are used.
The estimation of H is somewhat more involving. The literature is full of
variety of methods to measure H with their own advantages and disadvan-
tages. Verification of the developed model is an essential part of the modeling
methodology and needs to be done. Statistics has a major role to play in do-
ing so. There are a variety of software tools offering statstical packages that
can be used for the measurement purposes. In the following sections we will
be looking at some of the popular techniques for measuring the self-similarity
in modeled traffic data.

5.2 Variance-Time Plots

25



Figure 5.1: Variance-Time Plot (from [13])
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Based on the definition of self-similarity in Section 2. 2, we can say that the
aggregated processes, {X (m)

k } are strictly self-similar if,

var(X (m)) = σ2m−β (5.1)

with a Hurst parameter, H = 1− β/2 . So this indicates that if we form the
aggregated processes, {X (m)} for various values of m, and plot the logarithms
of variances against the logarithms of m, then it will yield a straight line,
the slope of which will give us the value of β. This is underlying idea behind
measurement technique using the variance time plot[2]. It is a simple time-
domain approach for measuring the Hurst parameter. In [13] it was shown
using the variance time plots on empirical data that the ethernet traffic is
self-similar. The same approach is used even today for a quick estimate of
H. Fig. 5.1 shows one such V-T plot. The dotted line corresponds to self-
similar traffic data whereas the solid line represents the hypothetical Poisson
process.

5.3 R/S Analysis

For the estimation of Hurst parameter using R/S analysis, the following
statistics is calculated first,

R(n)/S(n) = 1/S(n)[max(0, W1, W2, . . . , Wn) − min(0, W1, W2, . . . , Wn)]

Wk = (X1 + X2 . . . + Xk) − k
−

X (n)(k ≥ q)

where S2(n) is the sample variance and Xi are the samples from the traffic
data. It has been shown that,

E[
E(n)

S(n)
] ∼ anH , n → ∞ (5.2)

This property can be used in estimating the value of H[2]. First a logarithmic

plot of E[E(n)
S(n)

] versus n can be drawn and then a regression analysis on the
slope of the lines can yiled the value of H. Fig. 5.2 shows one such plot that
is used to evaluate the value of H.
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Figure 5.2: R/S Plot (from [13])
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5.4 Wavelet Method

This method of estimation is based on discrete wavelet decomposition[24]. In
doing so, first the coefficients of the discrete wavelet transform are calculated.
This performed by partitioning the data into octaves and for each octave, an
estimation of the long-range dependence parameter is made. It can be seen
that LRD parameter, α and the Self-Similarity parameter H are related as

H =
1 + α

2
(5.3)

An estimate for α is made in each of the octaves. Finally and average is
being made out of the LRD parameters in different octaves and is output as
estimate for α. This way the value of H can be calculated in the frequency
domain. It can be noted that the previous two techniques are time-domain
based, but wavelet method uses frequency domain for parameter estimation.
It has been reported that this method offers significant advantages over other
methods in terms of robustness, computational speed and in being an unbi-
ased estimator.
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Chapter 6

My Work

6.1 Aim

After having understood the self-similarity in network traffic, various mod-
eling and measurement strategies, the aim of this project is to work on some
issues related to self-similar traffic in Internet. Keeping in line with the idea
behind this project, following things were planned to be done as part of this
project:

1. To undertand Self-Similarity as a concept and its practical implications.

2. To do a review of some important modeling techniques for self-similar
traffic and tools for measuring the self-similarity.

3. To choose one of the modeling approaches and develop a self-similar
traffic model generator based on it.

4. To implement the approach in one of the available simulation softwares.

5. To verify the accuracy of the developed model using one of the mea-
suring techniques.

In accomplishment of the final two goals, this chapter presents the imple-
mentation details for this project. It is desired in this process to conform to
one of the latest simulation techniques and use them effectively.
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6.2 Design Choices

For the purpose of implementation, following choices from the whole plethora
of availbale tools and methods is made. Following are the choices that were
made and the underlying logic behind them:

• Methodology: M/G/∞ queue-based As presented in section 4. 5,
M/G/∞ is a simple and versatile method for fast generation of quality
samples for self-similar traffic. The reason for making this choice lies
in its inherent simplicity and usefulness in study of traffic data genera-
tion. This method involves closed form analytical formulae that make
it a natural candidate for a network designer. All it requires in a sim-
ulator is a Random number generator and support for queues which
are available in most of the discrete-event simulators. It is to be noted
that this technique can be effectively extended to any other simulator
as well.

• Simulation Software : GPSS General Purpose Simulation System
(GPSS)[40] is a discrete-event simulator that is widely used for network
and other practical simulations. (A discrete-event simulation is one in
which the state of the system being simulated changes at only a dis-
crete set of time points.) GPSS lends itself especially well to modeling
systems in which discrete units of traffic compete with each other for
the use of scarce resources, and is useful in determining how well such
systems will respond to the demands placed on them. GPSS has been
applied in diverse disciplines, medical, computer networks, telephone
traffic, manufacturing systems etc. Overall, GPSS is a generic software
for common queuing simulations. GPSS is a both simple and useful
tool for the purpose of this project as well. Being a freeware, it can
be easily downloaded and installed and simulations can be run to meet
various kinds of requirements. GPSS has elaborate mechanisms for sta-
tistical analysis of queues that makes it an ideal choice for this work.
M/G/∞ queues can be easily implemented in GPSS because of their
queuing support. Due to minimal graphical overload, GPSS is fast and
accurate in simulating large complex calculations.

• Measurement Technique: Wavelet-based Because of the reported
advantages being offered by the wavelet technique as opposed to other
time-domain methods, it is being used for verifying the accuracy of the

31



model. An implementation of this technique available in MATLAB is
used.

6.3 Modeling Methodology

As has been described in section 4. 2, M/G/∞ method requires Poisson
arrival, infinite servers and a heavy-tailed distribution. For Poisson arrivals,
inter-arrival time in GPSS can be made exponential and for a heavy-tailed
distribution Pareto distribution is used. GPSS supports queues with discrete
arrivals and hence the desired setup can easily be done in it.

For the purpose of infinite number of servers, the available number of
servers in made arbitrarily larger than average number of packets in the
system. The service-time is the only factor causing delay in the processing
time as the number of servers is such large that all incoming packets find an
available server to get processed. This ensures that the stipulation of infinite
number of servers is met with.

6.4 Implementation

The code shown in Fig. 6.1 is used to implement the desired queuing behavior
in GPSS. The values of simulation parameters a prescribed in [15] is used
to get the traffic data with desired self-similarity characteristics. GPSS has
provisions for elaborate queuing analysis.

A description of the simulation script can be made like this. The key-
word STORAGE creates an entity with specified number of capacity. This
has been used to model an infinite number of servers by choosing an arbi-
trarily large number of servers. Variable definitions are made by the keyword
VARIABLE. The keyword QUEUE creates a queue with name of it being
specified. ENTER denotes the entry of an entity into the queue during the
runtime and in a similar fashion, DEPART refers to departure of the entity.
GENERATE command generated queuing entities at intervals distributed
according to the specified function and ADVANCE is used to create the ser-
vice time for the entity which is distributed according to a Pareto distribution
as has been discussed in earlier sections.
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Figure 6.1: GPSS simulation script
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After the end of simulations, GPSS creates a report mentioning the results
of the simulation. This reprot is used in statistical analysis of the developed
traffic model. The developed report for a sample simulation is shown in
Fig. 6.2.

6.5 Verification and Results

A visual look at the generated traffic using this technique shows that visual
self-similarity is apparent as seen in Fig. 6.3. It is clear that whatever be the
time-scale, the traffic appear visullay self-similar. This illustrates that data
generated using M/G/∞ technique shows self-similarity. More rigorous tests
are also performed to verify its accuarcy.

As mentioned earlier the available implementation of verification tool in
MATLAB is used. The traffic data generated using GPSS is fed to MAT-
LAB and the distribution, autocorrelation and Hurst parameter are verified
against the design targets. The MATLAB plots for obtaining the values using
OCTAVE approach is shown in Fig. 6.4 and Fig. 6.5.

As mentioned earlier the design is tested for various values of H and the re-
sults are shown in Table. 6.5. The value of β is kept constant at 2 throughout.

6.6 Conclusion

Based on the verification process, it can be said that M/G/∞ is a useful
modeling approach and is shown to offer a reasonably high level of accuracy.
The only problem it runs with is lack of analytical tractability. A direct
formula relating the design parameters α, β, λ would have been useful. In
absence of a formula an optimization routine can be run to get the desired
values. For our purposes, we have taken the values as prescribed in earlier
works.
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Figure 6.2: GPSS Report for one example simulation
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(a) scale=100s

(b) scale=10s

(c) scale=1s

(d) scale=0.04s

Figure 6.3: Traffic data generated seen at various time-scales
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Figure 6.4: Octave splitting of traffic data
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Figure 6.5: Estimation of LRD parameter using various octaves
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S.No. Hspec λ α Hmodel

1 0.95 10 1.9 0.948
2 0.9 5 1.732 0.912
3 0.85 5 1.654 0.848
4 0.80 5 1.523 0.799
5 0.75 5 1.412 0.742
6 0.70 5 1.339 0.712
7 0.65 5 1.285 0.651
8 0.60 5 1.221 0.602
9 0.57 2 1.118 0.576
10 0.55 1 1.117 0.539

Table 6.1: Comparison of desired and measured value of H for different
setups

39



Chapter 7

Current Research

7.1 Current Direction

The need for self-similar traffic modeling is now recognized more than before.1

We can look at the ongoing research in diverse directions for modeling the
self-similar traffic. But it is important to mention here that most of the
current work is focussing on primarily FGN and ARIMA processes. Neural
Networks have also been recently introduced for this purpose.

ARIMA process are being touted as the solution for modeling self-similar
traffic in most of the existing network simulators. A recent modification to
the classical ARIMA process [3] reports enhanced performance and accuracy
and is reported to be better than the best known method on FGN side. the
shift is currently going in favour of approximate methods as opposed to exact
methods because of their computational speed. The goal for the future is to
develop a broad modeling mechanism that covers whole range of self-similar
processes. The research is getting more organized as issues like quality of
traces generated using various modeling techniques are now being tested on
common standards of autocorrelation structures. Previously it used to be
such that methods with limited correlation structures like TES were thought
to be mostly adequate ( or it was thought a little modification would suffice)
but now increasingly researchers are realizing the need for a real long-term
generator for self-similar traffic.

On the other side research community is also working towards the direc-

1ACM is even organizing a major event on the completion of ten years of emergence of
self-simlarity, see [1]
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tion of analyzing the impact of self-similarity on network traffic. It began
with application layer[23] but now even transport layer protocols like TCP
are being studied in light of self-similar traffic [5]. On the prediction side,
traditional methods like least mean [4], together with neural networks are
being used for network performance analysis.

Overall the interest in this stream of traffic modeling is increasing with
time and there is still a greater scope for even more research in this direc-
tion. Still the million-dollar question of, ”What self-similar process must I
choose?”, looms at large over the minda of network designers and researchers
across the world. It appears that ARIMA and FGN processes are the strong
contenders for the universal modeling technology for self-similar traffic. How-
ever, there is still a need for substantial improvement in both these methods
to cater the wide range of needs of a network designer.

7.2 Available Implementations

Several implementations covering some aspects of self-similar modeling are
available:

• A popular version of FGN implementation based on FFT is available
at [42].

• The Network Simulator [38] uses Pareto traffic generator and hence is
a very useful tool in extensive evaluation of impact of self-similarity on
network performance.

• A tool for R/S analysis at [36]

• A wavelet based estimator for measuring the self-similarity is available
at [41]

• A Neural Modeler that can be used is available at [39].

• The GPSS software that is used in this work is at [40].

• A tool for Variance-Time Analysis at [37]

In addition to these, MATLAB has routines that can be used for self-similar
traffic generation.
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Chapter 8

Conclusion

In this work a formalism for critical study of various methods for self-similar
traffic generation were studied. In doing so, efforts were made to under-
stand self-similarity as a concept. Then an overview of various methods for
modeling the self-similar traffic were studied. Also a comparative study of
the methods was done from a designer’s perspective. Also some of the mea-
surement techniques were also studied. All this helped in developing a good
understanding of the self-similarity in networks.

In addition to it, as a case study and implementation, one of the modeling
techniques was chosen and implemented in a simulation software. Through
various measurement techniques, the accuracy of the implementation was
verified. It was seen that final model worked as expected albeit with little
inaccuracy. Overall, the modeling technique was implemented and verified
using suitable techniques.

In a nutshell, in this work, self-similarity was studied both in a global and
a specific manner in the sense an overview of existing techniques was done
in general and, in particular, M/G/∞ queue-based method was studied in
detail.
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