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Introduction : A simple queue

λ = Arrival rate.

µ−1 = Mean service time
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Introduction : Background

Models of the traffic offered to a network critical to
providing high QoS.....

Traditionally, arrivals in network queues assumed to be
Poisson.

Empirical studies (Leland94) show that packet
inter-arrivals clearly differ from exponential in WANs
and LANs.

Strong argument for divergence from Poisson
processes shown in (Paxson95), (Crovella99).
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Introduction (contd.)

Self-Similar Processes are theoretically much different
from Poisson processes.

Traffic bursts appear over wider range of time scales.

Longer-term spikes, ripples and swells.

Essentially self-similar processes exhibit fractal-like
behavior.
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Understanding Self-Similarity

Self-Similarity:

Packet traffic count exhibiting self-similarity (Leland94)

c© Vikas Paliwal 2003 – p.6/35



Understanding Self-Similarity (contd.)

Mathematically, a continuous-time process,
Y = Y (t), t ≥ 0 is self-similar if it satisfies the condition:

Y (t)
d
= a−HY (at), ∀t ≥ 0, ∀a ≥ 0, 0 ≤ H ≤ 1(1)

, where equality is in terms of distribution. H is known
as the Hurst parameter.

From an engineering point of view, the distribution
becomes heavy-tailed, i.e.

P [X ≥ x] ∼ x−α, x → ∞, 0 ≤ α ≤ 2.(2)
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Understanding Self-Similarity (contd.)

Self-similarity manifests as,

Slower decay of variances of sample mean than
reciprocal of sample size.

Autocorrelation decays hyperbolically than
exponentially. fast.

Spectral density is concentrated near the origin.
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Effect on Network Performance

Self-Similarity comes into picture because of longer,
sustained file-transfer type of connections resulting in →

Reduced Throughput (Park99)
Greater queueing delay (Yousefi02, Fang95)
Larger buffers needed

Mean queue length and self-similarity (Park99)
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Modeling Techniques

ARIMA Processes

Fractional Gaussian Noise

Artificial Neural Networks

Transform Expand Sample (TES)

M/G/∞ queues
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1. ARIMA Process

Autoregressive Integrated Moving Average Process
(Ardao00)

Anatomy of ARIMA(p, d, q) process:
AR : Each current observation as function of previous
p observations.
I : d-th order differences between samples are
modeled.
MA : Each current observation as function of
previous q errors.

Flexible in modeling both short-term and long-term
behavior.

Reported to be capable of generating quality traces with
lesser complexity.
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2. Fractional Gaussian Noise

Most used variant(Paxson97):
Create the FGN power spectrum based on n,
number of samples and Hurst parameter, H.
Perform inverse DTFT on spectrum to get the time
samples, which by construction will be FGN in
nature.

Very fast due to FFT algorithm.

Rigid correlation structure because of just three
parameters, µ, σ2 and H.
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3. Artificial Neural Networks

Universal approximation property of a neural network is
used to train a neural network to mimic the self-similar
traffic behavior by adjusting the inernal weight of the
neural network based on a finite training data
(Yousefi02).
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3. Artificial Neural Networks(contd.)

Fast training algorithm for optimization process are
available.

However neural models behave arbitrarily outside the
trained ranges, some enhancements suggested
(Paliwal’03).
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4. Transform Expand Sample(TES)

Tries to capture the pdf and autocorrelation structure of
the empirical traffic data.

Uses correlated stream of random numbers.

Implemented in software, TesTool.

Unsuitable for very heavy-tailed distributions.
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5. M/G/∞ Queue-based Modeling

Basic Idea (Erra97): To simulate a M/G/∞ queueing
system with

Poisson arrivals (exponential inter-arrival time
distribution)
An infinite number of servers (pure delay system)
A heavy-tailed service time-distribution with infinite
variance, e.g. Pareto distribution:

1 − F (x) = P [X ≥ x] = cxα, x ≥ β(3)

The traces are generated by sampling the queue length
process at a suitable sampling rate.

c© Vikas Paliwal 2003 – p.16/35



Tools for Measurement

Introduction

Variance Analysis

R/S Plots

Wavelet Method
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Measurement Tools : Introduction

Three quantities of interest to be estimated,

Sample mean,
∧

µ

Sample variance,
∧

σ2

Hurst parameter,
∧

H

Estimation of first two fairly easy, can be done with any
standard statistical tool.

However,
∧

H, needs special treatment.....
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1. Variance Analysis

Create aggregated processes, X(m), for various values
of m.

Plot log(V ar(X(m))) against logm.

From the slope of the plot, calculate the Hurst
parameter using the relation, V ar(X(m)) = σ2m−β.

Useful for short-term analysis
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1. Variance Analysis

(Leland94)
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2. R/S Analysis

Following quantity is computed for different n,

R(n)

S(n)
= [max(0, W1, W2, . . . , Wn)−min(0, W1, W2, . . . , Wn)]

(4)

Wk = (X1 + X2 + . . . + Xk) − k
−

X .(5)

A plot of the log-statistic (log(R(n)/S(n))) versus logn
can be used to estimate H using,

E[R(n)/S(n)] ∼ αnH(6)

Useful time-domain analysis technique.
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2. R/S Analysis(contd.)

(Leland94)
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3. Wavelet Method (Veitch01)

Discrete wavelet transform is done on the time series.

From the coefficients of the wavelet decomposition,
LRD parameter is sellected in suitable octaves.

From the LRD parameter, self-similarity parameter is
easily estimated using, H = (1+γ)

2 .
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My Work

Introduction

Modeling

Verification
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My Work : Introduction

Aim: To select one of the modeling methodologies and
implement in one of the simulation softwares.

Design and Validation Choices
Modeling Methodology : M/G/∞ queue-based.
Simulation Software : GPSS
Verification: Wavelet-technique.
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Modeling

GPSS: A simple discrete-event simulator.

Parameters for M/G/∞ queues taken as suggested in
(Erra99) for generation of self-similar traffic with
H = 0.8.

Simulation script written in GPSS for the desired
modeling specs.

Sampling of queue length process is done to generate
self-similar traffic traces.
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Modeling : GPSS script
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Verification

Time units 100s and 10s
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Verification(contd.)

Time units 1s and 0.1s

c© Vikas Paliwal 2003 – p.29/35



Verification: Parameter Estimation

An implementation in MATLAB is used.
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Verification

Value of Hurst parameter using developed
model(0.7994) and initial value(0.8) are in close
agreement

The developed traffic model exhibits visual
self-similarity.
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Conclusions

Accurate modeling of self-similar behavior of network
traffic important for performance analysis of networks.

Research is ongoing to develop a robust model for
self-similar traffic generator.

FGN and pareto-distribution based generators most
widely used because of their inherent simplicity.

However, developing a model that covers broader range
of traffic patterns still a good potential research area.

M/G/∞-queue-based technique offers a simple and
easy-to-implement approach for self-similar traffic data
generation.
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Conclusion

A formalism for a critical study of various self-similar
traffic generation schemes is developed.

A modeling technique is implemented and verified.
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