
COURSE PROJECT: COMPUTER ARITHMETIC ALGORITHMS AND HARDWARE DESIGN (CSE 246) 1

Design of Parallel-Form Digital Filters
Vikas Paliwal and Dr. Chung-Kuan Cheng (Course Professor)

Abstract� Recent advancements in �eld programmable gate
array (FPGA) technology offer signi�cant advantages in terms of
reduction of word lengths used in calculations. This necessitates
determining the bit lengths of each of the calculated variables and
coef�cients so that a simpler implementation can be realized as
compared to �xed word length digital �lters. Parallel-form digital
�lters are preferred in variety of scenarios due to their direct
relation with poles and accuracy in terms of placing the poles
very close to the unity circle. This study addresses the need for
calculating the necessary bit widths needed for realizing a desired
level of accuracy in parallel from digital �lters based on analysis
and simulations and study of similar research efforts towards
direct-form digital �lters. We provide the word lengths needed
to avoid the over�ow and loss of accuracy in realizing the �lters.
Finally we show the accuracy offered by choosing suf�ciently
wide word lengths as opposed to �xed word length designs.

I. INTRODUCTION

D IGITAL �lters are used in wide variety of applications
due to their simplicity and �exibility in implementation.

Their behavior can easily be manipulated based on their
mathematical formulation. Recent advancements in �eld pro-
grammable gate arrays (FPGAs) over traditional digital signal
processing (DSP) offer accurate and fast design choices for
digital �lters. However, these advancement also pose several
new design challenges in choosing the bit-lengths used in
representation of calculated variables and coef�cients. This is
needed to make the fullest use of the design �exibility offered
by variable bit widths in FPGAs.

Fixed point calculations are of greater importance in signal
processing applications. On the other hand, �oating point
calculations - although come with greater precision, accuracy
and a wider dynamic range - require complex hardware
implementation and are not as cost effective as �xed-point
processors. While the dynamic range of �xed point numbers
can be addressed by use of more bits in representation, but an
optimal design requires using only suf�cient number of bits
for the sake of representation of variables [1].

In this work, �xed-point parallel-form digital �lter design is
presented. Minimum number of bits needed to avoid over�ows
and achieve a desired level of accuracy is presented. This is
based on existing research on direct form �lters [4], [7] and
signal processing theory [2]. We further illustrate by means of
simulations and analysis that desired accuracy can be attained
by using the bounds presented in this work. Extension of
the parallel-�lter problem to generic pole placements is also
presented.

II. FIXED-POINT ARITHMETIC

Fixed point representation of numbers has a �xed number
of decimal points before and after the radix point, thereby
making the radix point location as �xed. Compared to the
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Fig. 1. Fixed point number representation

�oating numbers, whose radix location varies depending on the
required level of precision, �xed point representation has static
design. This results in reduced dynamic range of numbers [7]
that can be represented by �xed point numbers. Figure 1 shows
the �xed point number representation with 16 bits. 11 bits are
used for fractional part, 4 bits for the integer part and 1 bit
for the sign. This results in a dynamic range of numbers from
−24 = −16 to 24 − 2−11 = 15.99951171875.

Fixed point arithmetic in digital signal processors (DSPs)
involves using a constant register lengths for carrying out
mathematical operations and hence a single �xed point is
used throughout the calculations. FPGAs, in contrast to DSPs,
allow separate �xed point format for each of the signals
and hence offer greater savings in widths of numbers and
simplicity of implementation. Figure 2 illustrates how for a
single multiplication of a number with a �xed coef�cient,
FPGAs require fewer number of bits. It is clear that for
multiplication of an 8-bit number with a 3-bit coef�cient,
savings can be achieved in number of bits used for representing
both the coef�cient and result. Clearly, FPGAs offer a greater
scope of optimizing the hardware design and hence lesser
power consumption.

Even though FPGA based design is more optimized, it
poses a new requirement for designing the length of each
of signals [4], [6]. To harness the full potential of �exibility
in choosing the bit lengths of signals, it is mandatory to
determine the relation between the bit-length and the level
of accuracy required. In this reference, this study seeks to
give estimate for minimum number of bits required to achieve
a desired level of accuracy and avoid the over�ow in signal
operations. In brief, with FPGAs, every system needs to be
optimized uniquely based on its behavior to achieve desired
stability and precision.

III. PARALLEL FORM DIGITAL FILTERS

Digital �lters perform the �ltering operations on incoming
samples based on mathematical relations. Such mathematical
operations need to be implemented in the hardware in an
optimal fashion. Filters can be represented in several forms
- cascade, parallel, direct among others. The actual hardware
implementation of a �lter is closely tied to the representation
used for the �lter. In general, the question of choosing a
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Fig. 2. Number representation in DSPs and FPGAs

suitable form can be resolved by the requirements of a par-
ticular scenario. Each of the representations offer advantages
in particular situations. Further, it is well known from signal
processing theory that performance of a �lter is closely tied to
its pole/zero locations and their proximity to the unity circle in
the z-plane. Thus accuracy of mathematical operations is key
to the performance of the �lter. The in�nite impulse response
(IIR) �lters [8] have non-zero response to an impulse function
and in the most general form can be represented in an auto-
regressive moving average form as,

y[n] =
N∑

m=1

amy[n−m] +
N∑

m=0

bmx[n−m]. (1)

The z-transform for such an IIR �lter is,

H(z) =
b0 + b1z

−1 · · · bjz
−j · · ·+ bMz−M

1 + a1z−1 · · · akz−k · · ·+ bNz−N
. (2)

Parallel form of digital �lters translates to a conversion to
partial fraction terms of the type,

H(z) =
N∑

m=1

R
′
m

1− pmz−1
. (3)

Such parallel form �lters are fairly easy to implement when
the order of pole location is more important than the precise
pole location. In these cases, choosing binary poles of the
form, pm = (1 − 1

2km
), is very easy to realize in hardware

as it only involves addition, subtraction, multiplication with
residues and bit shifts. This eliminates the need for the costly
multiplications in the loop sections and even costlier divisions.
However if precise pole locations are indeed needed, multipli-
cations need to be performed in the feedback loop as discussed
in later sections. Figure 3 shows a realization of the parallel-
form digital �lter with binary poles and Ri = R

′
i(1−pi). This

design only involves addition and bit-shifting and is therefore
very easy to implement in hardware.

Despite the advantages offered by parallel form digital
�lters, the �lter response precision is impacted by �nite word
length effects. Compared to a �oating point representation
with a large dynamic range, �xed point implementation results
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Fig. 3. Parallel-form digital �lter with binary poles

in truncation errors and possible over�ow. While over�ow
problems are directly related to the precision used in choosing
the representation, truncation errors get compounded over and
over again by being fed to the �lter and are therefore dif�cult
to model. As an example for truncations, in our �lter example
in Figure 3, each right shift by k bits results in loss of
information by same amount.

IV. RESIDUE BIT WIDTH CALCULATIONS

The residue values of the parallel-form �lter need to be
represented in suitable form. This entails choosing the width
of the integer part as well as the fractional part in �xed point
notation. While the integer part can be trivially chosen as
(dlog2Rme+1). The fractional part needs to be derived based
on the �lter characteristics and desired level of precision in the
the zeroes of the �lter [4]. If the system is tolerant to larger
variations in the zeroes of the �lter, we can do with away
with fewer bits and vice versa. In a more rigorous form, for
instance, a two-pole �lter,

H(z) =
R1

1− p1z−1
+

R2

1− p2z−1
(4)

has a zero at
R1p2 + R2p1

R1 + R2
. (5)

For a permissible perturbation δ in the zero location, assuming
other coef�cients and poles being accurate, the perturbation in
residue R1, ∆R1, is related as,

δ =
(R1 + R2)(∆R1p1)− (∆R1)(R1p2 + R2p1)

(R1 + R2)2
(6)
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⇒ ∆R1 =
δ(R1 + R2)2

R2(p2 − p1)
(7)

So, for a permissible perturbation δ in the zeroes of the �lter,
the minimum number of fractional bits required to achieve the
desired accuracy would be,

d−log2(
δ(R1 + R2)2

R2(p2 − p1)
e+ 1 (8)

Similar analysis can be developed to calculate the fraction
width with an n-pole transfer function.

V. OVERFLOW AVOIDANCE

Each of the calculated intermediate signals, need to have
enough number of bits in the integer part of representation
so that over�ow is prevented. The problem with intermediate
signals is that they are dependent on the �lter response as
well. Knowing the upper bound on the values attained by the
signals requires an understanding of the �lter performance. In
this regard, known results from DSP theory [3] on the upper
bounds of the intermediate and output signals of �lters come
handy. The idea behind estimating the upper bound primarily
comes from seeing the transfer function from the input signal,
x[n], to the target signal, v[n], i.e. hv,x[n] and calculating the
upper bound achieved by this transfer function if perpetually
fed with the maximum possible value of input signal, xmax.

|vmax| ≤
∞∑

k=0

hv,x[k]|xmax|. (9)

Based on this relation and the value of maximum possible
signal value, the number of bits required for representing the
integer part is simply dlog2|vmax|e + 1. The procedure for
calculating the upper bound in parallel form �lters is very
simpli�ed because of representation in pole-residue forms.
This is due to the fact that the inverse z-transform of parallel
form �lter in eqn. (3) can be very easily obtained as opposed
to a direct form representation. For instance, the output signal
in parallel form

h[n] = Z−1{H(z)} =
N∑

m=1

Rmpmu[n] (10)

and the upper bound on the output signal is simply,

|ymax| ≤
∞∑

k=0

h[k]|xmax| (11)

⇒ |ymax| ≤
∞∑

k=0

N∑
m=1

Rmpmu[k]|xmax| (12)

⇒ |ymax| ≤ |
N∑

m=1

Rm

1− pm
||xmax| (13)

So, the number of bits required to avoid over�ow in the
output signal is simply, dlog2|

∑N
m=1

Rm

1−pm
||xmax|e+1. This

result was veri�ed with a single pole IIR �lter and it was con-
�rmed that the bound of dlog2| R1

1−p1
||xmax|e+ 1 is necessary

and suf�cient to avoid over�ow under all circumstances.
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Fig. 4. Modeling the truncation errors

VI. TRUNCATION ERRORS

It can be understood that right bit shifts used to achieve
division operation in the �lter relations in eqn. (3) result
in truncation errors which keep propagating in the �lter. It
is therefore imperative to develop a better understanding of
the relation between the desired accuracy and the number of
bits used in representing the fractional parts of the signal.
Therefore the primary source of error in �lter realization
comes from truncations due to bit shifts.

In an attempt to model the total truncation error in the
�lter, the impact of truncation in each of the branch needs
to be considered. This is different from direct form [4], where
all the errors are lumped at a single point. In this case the
errors are distributed in each of the branches. For parallel
form, the contributions from each of the branches need to
be accumulated to get the overall impact of truncations. An
approach analogical to the one with over�ow avoidance can
be followed where the impulse response from each of the
branches contributing to the truncation errors is calculated and
added together.

It can be understood that the maximum possible truncation
errors in each of the bit shift blocks can easily be calculated
based on the situation when all the bits that are lost due to
shifting are 1's. The positional value of all such bits in a �xed
point representation is related to the number of bits shifted
as well the number of bits used in representing the fractional
part of the �xed-point representation. So, if F bits are used in
representing the fractional part and ki bits are omitted due to
right shift in the i-th branch, the maximum possible truncation
error in output in branch i, yi that we can have is,
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Fig. 5. Impact of number of fractional bits on the �lter accuracy

∆yi[n] = 2−(F−ki) (14)

This maximum possible error can be fed after each of the
shift operators as shown in 3. The total permissible error can
be obtained by looking at the transfer function from these error
input branches to the output signal. The transfer function from
i-th branch to the output signal is simply,

Hy,ei(z) =
Ri(1− pi)−1

1− piz−1
(15)

Using the bound in eqn. 9, the maximum possible error that
we can have in the system is,

|δymax| =
N∑

m=1

Rm2−(F−2km) (16)

and the minimum number of bits used to represent the
fractional part in the output to ensure that truncation error
losses do not adversely impact the �lter behavior is simply,

d|log2(δymax)|e+ 1 (17)

We attempt to use these bounds for a simple case of single
pole IIR �lter with R1 = 1 and p1 = (1− 1

25 ). For a desired
The bounds as shown in eqn. 17, indicate at using at least 11
bits if permissible error level is at 2%. It can be seen in Figure
5 that using 12 bits for representing the fractional part helps us
nearly match the equivalent �oating point representation which
has a much larger dynamic range for representing values than
a 12-bit �xed point representation. If the tolerable error levels
are increased to 10%, the bounds indicate that only 9 bits
can be suf�cient to represent the fractional part. If we further

reduce the number of bits in fractional part, the truncation
errors become huge and Figure 5 shows that the �lter behavior
is largely inaccurate when insuf�cient number of bits are used
in representing the fractional parts.

VII. FUTURE WORK: NON-BINARY POLES

When exact precision is required in pole placement in the
parallel form �lter, the bit shift operation in the loop needs to
be replaced by multiplications. Essentially, the ARMA relation
for generic pole placement translates to,

y[n] =
N∑

m=1

(Rmx[n] + pmy[n− 1]) (18)

which needs greater precision in doing the multiplication
with the pole values due to their proximity to the unity
circle. The multiplier poles can also be represented in �xed
point format and the multiplications can be made faster using
specialized dedicated hardware accelerator such as carry-save
adder (CSA) based multiplications to accelerate the multipli-
cation process [5]. The required precision can be calculated in
a manner analogous to the determining the fractional part as
discussed in previous section. This work is being continued to
work with optimized, effective design for �lters with generic
pole placements and metrics related to hardware complexity
and power consumption will be collected.

VIII. CONCLUSION

In this work, a particular class of IIR digital �lters in parallel
form with binary poles was considered. The study presented
details on choosing suf�cient number of bits to accomplish (a)
Precision in residue value representations (b) Over�ow avoid-
ance in signal value calculations (c) Bounding the truncation
errors in �nal output to a desired value. Analytical results are
presented to work out the necessary details for �lter design
and some �xed-point simulations are compared against �oating
point simulations to validate the bound on desired precision.
Extension of such approaches to a more generic class of �lters
will be the focus of future research efforts to derive similar
word length requirements.
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