
A Framework to Achieve Guaranteed QoS for Applications and High
System Performance in Multi-Institutional Grid Computing

Umar Farooq, Shikharesh Majumdar, Eric W. Parsons
Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada

Email: {ufarooq, majumdar, eparsons} @ sce.carleton.ca

Abstract

Providing QoS guarantees to the applications in a
multi-institutional Grid is a challenging task. Although
advance reservations (ARs) can provide QoS
guarantees for the applications, they often seriously
degrade system performance for resource owners. In
this paper, we present a framework for AR based
resource sharing that not only provides QoS
guarantees for the applications but also ensures high
utilization of the resources. This paper focuses on the
application-to-resource mapping component of the
framework as our results show that traditional
mapping algorithms used with best effort jobs do not
perform well for ARs. The paper proposes a set of
algorithms for mapping ARs and investigates their
performance in detail. The paper then presents a novel
algorithm that outperforms a number of other
algorithms in almost every respect for a wide range of
workload parameters. Rigorous experimentation
proves the efficacy of our algorithm and brings
important insights into the dynamics of the system.

1. Introduction

Grid computing provides dynamic, secure and

coordinated sharing of heterogeneous resources that
may be distributed geographically as well as
organizationally. One of the major challenges for Grid
computing is to ensure “non-trivial qualities of
service” to the users [1]. Provision of guaranteed level
of QoS in multi-institutional geographically
distributed resource sharing is complicated by two
factors. First, the unpredictable delays over Wide Area
Networks and second, the requirements of the Grid
applications for heterogeneous resources that are being
independently administered or controlled. Since
resources belonging to different administrative
domains do not share their schedules, if an application
needs to access more than one resource
simultaneously, the user either has to arrange for it

through the domain administrators or submit the tasks
of the job to queues of different resources without any
guarantees that all resources would be available
simultaneously. In order to address this, advance
reservations (ARs) were introduced as a part of
Globus Architecture for Reservation and Allocation
(GARA) [2]. Advance reservations of resources for a
specific time in future ensure that all resources would
be simultaneously available at the execution time of
the application. Since their introduction, ARs have
been studied in numerous contexts such as architecture
for ensuring end-to-end QoS for network applications
[3], job scheduler for clusters and supercomputers [4]
and Grid based architecture for dynamic optical
networks [5]. As by reserving resources in advance the
user can be assured of an upper bound on the response
time, ARs can be used for ensuring end-to-end quality
of service. Just like other resources, Grid-enabled
network resources can also be reserved in advance for
a more predictable network delay [3, 5, 6].

Although advance reservations are attractive for
resource consumers, they may cause severe
performance degradation for the resource owners.
Sulistio [7] and Smith [8] have studied the
performance of ARs. Their results show that with only
20% of the jobs arriving as ARs, the utilization can go
as low as 66% of the case where none of the jobs is an
advance reservation while mean wait times of the best
effort jobs, commonly known as on-demand requests
(ODs) in Grid literature, can increase by 71%. Since
there are multiple stakeholders in the Grid – resource
owners and resource consumers – each with different
objectives, we need a framework for resource sharing
with ARs that can meet the objectives of both: provide
QoS guarantees to resource consumers and ensure
high utilization of resources for resource owners.

In this paper, we present a framework for resource
sharing with ARs that meets the objectives of both the
resource consumers and the resource owners. The
framework comprises several entities including
resource brokers and schedulers. The goal of the
resource broker is to efficiently map jobs to different

resources and the goal of the scheduler is to order jobs
mapped to a particular resource to achieve specified
time requirements. In earlier papers [6, 9, 10], we have
shown how laxity in the reservation window can help
improve resource utilizations of AR based scenarios
by leaving the final scheduling decision with the
scheduler. Laxity of an AR on a certain resource is the
difference between its deadline and the time at which
it would finish executing on that resource if it starts
executing at its earliest start time. Earlier, we have
presented scalable algorithms for scheduling ARs
mapped to a given resource [6, 9, 10]. In this paper,
we focus on the mapping component as our results
show that the algorithm for mapping ARs to resources,
herein called matchmaking, can significantly affect
performance. The contributions of the paper are listed.
 The paper presents a framework for resource

sharing with ARs that can achieve QoS guarantees for
the applications and high performance for the
resources in multi-institutional Grid computing.
 To the best of our knowledge, this is one of the

first papers that tackle the issue of mapping jobs to
resources for AR based scenarios. With the help of
simulation results, we show that traditional mapping
algorithms used in Grid and distributed computing in
general do not give desired performance with ARs.
We present different algorithms for matchmaking and
investigate their performance in detail.
 We present a novel algorithm, Minimum Laxity

Impact (MLI), for matchmaking with ARs that
outperforms a number of other algorithms in almost
every respect for a wide range of workload
parameters.
 Through simulation, we study the effect of

workload and system parameters on matchmaking
algorithms. The results provide important insights into
system behavior and performance.
 The results of this paper are also applicable to

Community Scheduler Framework (CSF) [11]. The
meta-scheduler within CSF can use the matchmaking
algorithms presented in this paper to co-schedule
resources across different domains.

The rest of the paper is organized as follows.
Section 2 briefly reviews the related work. In Section
3, we present a framework for resource management
with ARs and present algorithms for matchmaking.
We discuss in detail our experimental setup in Section
4 while in Section 5 we present the experimental
results. We conclude the paper in Section 6.

2. Background and related work

An advance reservation reserves a Grid resource for
the execution of a job at a specified time in future. A
job is a Grid application consisting of a single or

multiple tasks. A job completes when all its tasks are
completed. A Grid resource may be a single CPU or a
multiple CPU based computing device or a storage
system. If a Grid resource is used in such a way that
each job requests the exclusive use of the resource
during its execution, we refer to the sharing model as
the non-shared resource model. On the other hand, if a
resource can be shared among multiple jobs running
concurrently on the resource we refer to the sharing
model as the shared resource model. An example of a
shared resource model is one in which a cluster
consisting of multiple nodes is shared among multiple
jobs by running tasks of different jobs on different
nodes. Only one task can run on a node at a time.

ARs with laxity are characterized by a start time of
the reservation that specifies the time at which the job
would be available for execution and a deadline by
which the job must be completed by the resource.
Thus, given a set of jobs assigned to a particular
resource the goal of the scheduler is to schedule jobs
in such a way that each job starts executing at or after
its start time and finishes before its deadline. It has
been shown that scheduling jobs with given start
times, execution times and deadlines is an NP-Hard
problem even if we consider a non-shared resource
model [12]. In previous papers, we have presented
scalable algorithms for scheduling ARs for both non-
shared [6, 9] and shared [10] resource models.

Globus Architecture for Reservation and Allocation
(GARA) [2], which introduced ARs, presents the
concepts of co-reservation and co-allocation agents
that an application can use to dynamically assemble
resources to meet its QoS constraints. The co-
reservation agents interact with the Information
Service to discover resources that can satisfy
application constraints. GARA however, does not
specify how co-reservation agents select among the
resources that can satisfy the application constraints or
how reservations are scheduled by the underlying
resource managers to achieve performance while
meeting application’s QoS constraints. Our framework
specifically deals with the above-mentioned issues and
in this context extends the functionality of GARA.

Among other notable application-to-resource
mapping mechanisms in Grid are the Condor-G Class-
Ad matchmaking mechanism [13] and Sun Grid
Engine load averaging mechanism [14]. In Condor-G,
an application can specify its request for resources in
the form of a small advertisement while a resource can
also advertise its capabilities. Based on these
advertisements, the goal of the broker is to map
application to resources that can satisfy the application
constraints. Although Condor-G matchmaking takes
into account user preferences for resources, it does not
specify how broker should make dynamic mapping

decisions based on the system state. As the results
presented in this paper show, such dynamic
matchmaking can significantly affect the overall
system performance especially for AR based
scenarios. Sun Grid Engine on the other hand, has two
primary policies for application-to-resource mapping.
In one of the policies, the resources are sequenced and
each time the list is iterated through to select the next
node. In the second policy, the node with the
minimum load is selected to run the next job. The
results presented in Section 5 however show that when
the proportion of advance reservations increases none
of these policies results in high performance.

Community Scheduler Framework (CSF) [11] is an
open source framework for implementing a Grid meta-
scheduler that can dispatch jobs to underlying resource
managers. The current implementation of CSF
employs scheduling policies similar to those employed
in Sun Grid Engine. It thus needs an efficient
matchmaking algorithm for AR based scenarios.

3. A framework for resource management
with advance reservations

We present a framework for AR based resource

sharing that ensures high performance for the resource
owners while meeting the QoS needs of the resource
consumers. A high-level simplified view of the
framework is presented in Figure 1. Due to space
limitations, detailed architecture is not presented.

Figure 1 shows that the framework consists of two
major components: MMC that lies at the collective
layer of the Grid layered architecture [1] and RLC that
lies at resource and fabric layers. Applications submit
their resource requirements along with their QoS
constraints to MMC. MMC finds a suitable match for
the application and allocates the resource using RLC.
For the applications that need QoS guarantees and/or
those that need simultaneous co-allocations of
resources, ARs are used.

Figure 1. High-level view of the framework

The function of the RLC is to do admission control
for each resource and ensure that each accepted AR
meets its deadline. If the resource cannot meet the
QoS needs of an AR, it rejects the new request. To
prevent performance degradations due to ARs, laxity
in the reservation window is required. Thus, while
RLC provides response time guarantees to the
application, it leaves final scheduling decisions with
the local scheduler. The simplified view of RLC in
Figure 2 shows three major components. The
Resource Manager component provides the
functionality of a remote resource manager and
negotiates access to the resource through the local
resource managers. The Scheduler component
schedules jobs in such a way that QoS constraints of
ARs are met while high utilizations of resources are
maintained. Depending on the model of the resource
used, the Scheduler employs either our algorithm for a
non-shared resource model [6, 9] or our algorithm for
a shared resource model [10]. The function of Match
Advisor is to asses the degree of fit of a particular job
given the QoS requirements of the job and current
state (schedule) of the resource and report it to MMC.

MMC also consists of three components. Just like
in GARA, the Co-reservation Agents discover
available resources through the information service.
They then use the services of the Matchmaker
component to choose the resource to allocate the job.
Matchmaker relies on the reports from the Match
Advisors of each resource and employs our MLI
algorithm for resource selection. Once the resource(s)
is (are) selected, the reservation handle is provided to
the application. At the execution time of the
application, the application uses Co-allocation Agent
to submit the tasks to the selected resource(s).

The framework can be used for efficient meta-
scheduling within CSF. Intelligent matchmaking
before dispatching ARs to be scheduled on resources
can result in significant improvement in performance.

3.1. Algorithms for matchmaking
This section presents several algorithms that we

have investigated for matchmaking. These algorithms
assume that the resources that do not meet the job’s
functional requirements have already been eliminated
during the resource discovery process. If the number
of resources that meet a job’s functional requirements
is too high, only a subset of resources can be passed to
the Matchmaker. We call the resources that are passed
to the Matchmaker to do the selection from as the
selection window. We compare the performance of
these algorithms in Section 5.

3.1.1. Random (RAN). This algorithm randomly
picks up a resource from the selection window. If the

resource meets the QoS needs of the job, the resource
is selected. Otherwise, the process is repeated until
either a match is found or all options are exhausted.

3.1.2. First fit (FF). With this algorithm, all resources
in the selection window are sequenced in a particular
order. Each time a new job is submitted, the first
resource in sequence is tried. If the resource meets the
QoS constraints of the job, the resource is selected.
Otherwise, the next resource in sequence is tried. The
process is repeated until either a match is found or all
options are exhausted. This algorithm has a limitation
as it assumes that either all jobs arrive at the same
broker that has sequenced the resources or a particular
ordering of the resources has been agreed upon by all
brokers in the system.

3.1.3. Next fit (NF). In this algorithm, all resources in
the selection window are sequenced in a particular
order. When the jobs are submitted, the list of the
resources is iterated through in a sequence, selecting
the next resource in the list. If that resources does not
meet QoS constraints of the job the next resource in
sequence is tried. The process is repeated until either a
match is found or all options are exhausted. In its
simplest form, with no QoS constraints associated
with the job, the algorithm is used in Sun Grid Engine
[14]. This algorithm has the same limitations as FF.

3.1.4. Initial minimum completion time (IMCT).
Whenever a new request arrives, this algorithm
queries all the resources in the selection window and
finds a subset of resources that can meet the QoS
needs of the job. It then chooses from this subset the
resource that reports minimum completion time for the
job. Note that the Scheduler in RLC can re-schedule
jobs to improve resource utilization as long as it meets
the QoS needs of all accepted jobs. Hence, the time of
completion reported to the Matchmaker at this time
may not be the actual completion time of the job.

3.1.5. Resource with minimum utilization (MinU).
Whenever a new request arrives, this algorithm
queries all the resources in the selection window and
selects the one with minimum utilization among the
resources that meet the QoS constraints of the job.
This algorithm thus tries to balance the load on
resources. It is used by Sun Grid engine [14].

3.1.6. Resource with maximum utilization (MaxU).
Whenever a new request arrives, this algorithm
queries all the resources in the selection window and
selects the one with maximum utilization among the
resources that meet the QoS constraints of the job.
The rationale behind this algorithm is that it keeps
enough spare capacity on some of the resources to
accommodate jobs with large demands.

3.1.7. Minimum laxity impact (MLI). In this
algorithm, whenever a new request arrives, all
resources in the selection window are queried and the
algorithm selects one from those that meet the QoS
constraints of the job. This resource selection is done
is such a way that the accommodation of this job
produces the minimum impact on laxity of the jobs
already in the schedule of the resource. If in order to
accommodate the new job the resource has to re-
schedule a number of jobs pushing them towards their
deadlines, we say the impact on laxity was high. On
the other hand, if the resource can accommodate the
job without significant re-scheduling, we call the
impact on laxity was low. Thus, if we always select
the resource that has minimum impact on laxity to
accommodate a job we would have a higher
probability of finding out a feasible schedule for later
arrivals by utilizing the spare laxity. Quantitatively,
we measure the impact on laxity by subtracting from
cumulative remaining laxity of the jobs in schedule
before the new task was accommodated the
cumulative remaining laxity of the jobs after the new
job is accommodated.

If ti represents the earliest start time of job i, ei its
runtime on the resource and di its deadline then the
laxity LXi of the job on the resource can be given as:

LXi = di – ei – ti (3.1)
Since it is not always possible to schedule a job at

its earliest start time due to the other jobs in schedule,
the remaining laxity RLi of a job i measures the
“laxity” of the job at its scheduled-time si at which it is
currently scheduled to start. Thus,

RLi = di – ei – si (3.2)
Let aj represent the arrival time of the job j, Є

represents the set of jobs in the resource schedule that
are scheduled to start after aj and si(j-1) and si(j)
respectively represent the scheduled-time of a job i in
Є before and after the job j is accommodated in the
system. Then the impact on laxity, ζ, of the new job j
is calculated as:

ζ = ∑(For all jobs i in Є) [(di – ei – si(j-1)) –
(di – ei – si(j))] (3.3)

 = ∑(For all jobs i in Є) RLi(j-1) –
∑(For all jobs i in Є) RLi(j) (3.4)

If all resources are identical, the algorithm selects
the resource that reports the smallest value of ζ.
Otherwise, ζ is scaled with respect to the relative
speeds of the resources and the algorithm selects the
resource that results in smallest value of scaled ζ. Due
to space limitations, discussion on scaling ζ is not
presented in this paper. If more than one resource has
same value of ζ, ties are broken by selecting the one
that reports the minimum completion time.

4. Experimental setup

For the simulation experiments, we model 64-node

IBM SP2 supercomputers as Grid resources. Shared
resource model is simulated in which different
applications can run on SP2 concurrently by running
tasks of different jobs on different nodes. The Grid
applications are modeled as parallel non-preemptable
rigid jobs requesting any where from 1 to 64 nodes
depending on their number of tasks. The applications
submit their requirements along with their QoS
constraints to MMC. The Matchmaker in MMC uses
algorithms presented in Section 3.1 to find a suitable
match. Since different tasks of the parallel job may
need to communicate during execution, once a suitable
cluster has been selected all tasks of the job are gang
scheduled on the cluster. If the job needs to be re-
scheduled to improve cluster utilization all tasks of the
job are always re-scheduled as a gang.

For efficient gang scheduling with QoS constraints
within a cluster, RLC employs our algorithm for AR
scheduling with shared resource model [10]. This
algorithm is capable of handling both non-preemptable
and preemptable parallel rigid jobs. It can work for
computing, network and storage resources and is
capable of scheduling tasks of a job as a gang. The
algorithm employs the earliest-deadline-first heuristic.
If we consider the modeled resource to be a computing
cluster, the algorithm selects nodes of the cluster to
run the tasks of a particular job in such a way that
fragmentation in the resource schedule is minimized.
It is also capable of dealing with inaccuracies in user’s
estimations of the runtimes of the jobs. The algorithm
has been described and analyzed in detail in [10].

4.1. Performance metrics
The paper uses the following performance metrics.

4.1.1. Percentage of work rejected (WR). WR
measures the percentage of the work rejected by the
system because it cannot be accommodated without
violating QoS constraints of some of the jobs. Total
work of a job is defined as the sum of the runtimes of
all of its tasks. Since in our model the tasks are always
gang-scheduled, runtimes of all the tasks can be
considered equal. Hence, total work of a job can also
be computed by multiplying the size of the job
(number of tasks) by its runtime. WR is the ratio of the
sum of the total work of all the jobs rejected and the
sum of the total work of all the jobs submitted.

4.1.2. Probability of blocking (Pb). Pb is the
probability that a system would reject a new job
because it cannot be accommodated without violating
QoS constraints of some of the jobs. It can be
calculated as:

Pb = Total Number of Requests Rejected / Total
Number of Requests (4.1)

4.1.3. Utilization (U). U of a resource is the fraction
of the total time the resource is busy executing jobs. It
is calculated as follows:

U = Sum of the Busy Units of Time of All the
Nodes in the Cluster / (Total Duration of Simulation *
Total Number of Nodes in the Cluster) (4.2)

4.1.4. Fairness (Q). Q measures the ability of the
matchmaking algorithm to treat small and large jobs
equally. It is defined as the average total work of all
jobs rejected divided by the average total work of all
jobs submitted. A value of 1 for Q means that the
matchmaking algorithm treats small and large jobs
equally, a value greater than 1 means more large jobs
are rejected than small jobs while a values less than 1
means comparatively more small jobs are rejected.

4.1.5. Mean response time of on-demand requests
(ROD). ROD is the mean time between the submission
of an on-demand request and its completion.

4.1.6. Mean response time of advance reservation
requests (RAR). RAR is the mean time between the
earliest start time of an AR request and the time of
completion of the job associated with that request.

4.2. Workload model
We generated jobs using a synthetic workload

model for rigid jobs proposed in [15]. The workload
model is based on the traces collected from San Diego
Supercomputer Center’s Intel Paragon Machine, a
CM-5 machine at Las Alamos National Lab and IBM
SP2 machine at the Swedish Royal Institute of
Technology. Since the Grid resources modeled in this
paper are IBM SP2 machines, we additionally
analyzed traces collected from SP2 at Cornell Theory
Center and SP2 at San Diego Supercomputer Center to
calculate the parameters for the workload model. The
workload model models the runtime of the jobs using
hyper-gamma distribution with a mean of
approximately 2200 seconds and the size of the jobs
using two-phase uniform distribution with a mean of
approximately 8.4 nodes. The correlation between the
size of the job and its runtime is also modeled and
described in detail in [15]. Since it is not always
possible to accurately predict the runtimes of the jobs,
in Section 5.3 we discuss how our framework deals
with inaccuracies in user-estimated runtimes.

We used an open model in which a stream of jobs
arrives on the system. As in [15], the arrival process is
modeled with a Gamma distribution. We multiplied
the arrival time of the jobs with a constant number to
generate different load conditions. The details of the
parameters are discussed in [10].

4.3. Workload parameters
Following are the workload parameters of interest.

4.3.1. Proportion of advance reservations (PAR).
PAR is the proportion of AR requests in the total
number of requests. We study the performance of the
matchmaking algorithms at different values of PAR.
The time between the arrival of an AR and its start
time is modeled as a uniform distribution. ARs can
request to reserve the resource for any time between
the current system time and the next 12 hours.

4.3.2. Mean percentage laxity (L). We define
percentage laxity of an AR as the ratio of its laxity and
its runtime. A uniform distribution for the laxity of
ARs is used with the lowest value of the distribution
fixed at 0. Mean percentage laxity L is varied between
0% and 1000%.

Theoretically, ODs have no deadlines. However, to
prevent starvation of ODs, we associate a large
deadline with ODs equivalent to 2 days.

4.3.3. Total number of clusters (N). In order to study
the effect of the size of the selection window, we vary
the total number of clusters in the system. However,
only the results obtained with N = 4 are presented in
this paper.

4.4. Accuracy of results
Tests were run long enough and repeated multiple

times, to obtain reasonably small confidence intervals
for the performance metrics. We obtained confidence
intervals of ±5% for WR and Q, ±3 % for U, RAR and
ROD, and ±10.0% for Pb at a confidence level of 95%.
For all graphs to be presented in Section 5, the mean
of the performance metric is plotted.

5. Experimental results
5.1. Impact of laxity

This section presents the impact of laxity on the
performance of the system. The results shown in
Figure 2 were obtained with PAR = 1 and N = 4.

As expected, Figure 2(a) shows that with the
increase in laxity, percentage of work rejected WR
decreases significantly. The figure also shows that the
matchmaking algorithm can significantly affect system
performance justifying the use of an intelligent
Matchmaker at MMC. At L = 1000%, the spread in
WR is over 25% of WR of RAN. The comparison of
the algorithms shows that when L is increased beyond
a certain point, MLI performs better than all other
algorithms. At L = 1000%, it results in WR which is
only 89.2% of the next best algorithm (IMCT).
Although not shown in the figure due to space
limitations, the results also show that MLI increases U

of each cluster by 2% over that of the next best
algorithm. The performance of MLI can be attributed
to the economical use of jobs laxity.

Surprisingly, MaxU and FF perform better than
MinU, resulting in lower WR and higher U. This is
because these algorithms always concentrate the load
on a subset of clusters and hence leave enough
capacity on some of the other clusters to accommodate
large jobs when they arrive. This shows that the
techniques that are known to perform well in ordinary
application-to-resource mapping do not perform well
for AR based scenarios. Although not shown in figure
to avoid cluttering, the performance of NF is close to
that of RAN.

(a)

9

12

15

18

21

24

27

30

33

36

0 200 400 600 800 1000

L

W
R

RAN
FF
MLI
IMCT
MinU
MaxU

(b)

0

30

60

90

120

150

180

210

240

270

0 200 400 600 800 1000

L

R
AR

 (m
in

ut
es

)

RAN
FF
MLI
IMCT
MinU
MaxU

(c)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 200 400 600 800 1000

L

Q

RAN
FF
MLI
IMCT
MinU
MaxU

Figure 2. Impact of laxity on performance

Figure 2(b) shows that MLI results in the lowest
RAR values. IMCT results in a significantly higher RAR
than all other algorithms. This is because that often
minimum completion time for the new job is reported
by that cluster in which, in order to accommodate the
new job in the schedule, the shared resource scheduler

ends up pushing jobs already in the schedule towards
their deadlines. This tends to increase the response
time of the previously scheduled jobs. As this greedy
algorithm often selects such a cluster the overall
response time of the jobs in the system increases.

Figure 2(c) shows that when L is small, Q is many
times higher than 1 showing that many of the jobs
with large total works are rejected as they cannot be
accommodated in the system. As L increases, there is
more flexibility in scheduling and Q approaches 1. As
FF and MaxU keep enough spare capacity on some of
the clusters to accommodate large jobs, their Q is
lower and they are fairer to large jobs than the other
algorithms. Since with MLI the load is more balanced
among the clusters, it results in values of Q higher
than those achieved by FF and MaxU.

Pb curves (not presented in this paper due to space
limitations) show that Pb does not change significantly
with the increase in L. It can be shown that Pb = WR /
Q and hence as both WR and Q decreases at almost the
same rate with the increase in L, Pb tends to remain
constant. MLI results in the lowest Pb values.

5.2. Effect of mixed workload
This section presents the results obtained by using a

mix of advance reservation and on-demand (OD)
requests. The results shown in Figure 3 were obtained
with PAR = 0.5 and N = 4.

Figure 3 shows that trends of the curves for WR, Q
and RAR are the same as in Figure 2 with PAR = 1.
However, with 50% ODs in Figure 3(a) WR is
significantly lower (by up to 66.74%). This is because
ODs have less QoS constraints and hence provide
more flexibility in scheduling. The graphs show that
when ODs are introduced along with ARs the choice
of the matchmaking algorithm becomes even more
important. For L = 1000%, the spread of WR in Figure
3(a) is 46.5% of WR obtained with the worst algorithm
which in this case is MaxU. The figure shows that FF
and MaxU that perform well for PAR = 1, perform
very poorly when there are a significant number of
ODs in the system. However, MLI still performs the
best among all the algorithms. IMCT gives
comparable performance as far as WR, U and ROD are
concerned; however, IMCT gives worst RAR for the
reasons described in Section 5.1.

5.3. Impact of inaccuracies in user-estimated
runtimes

It is not always possible to accurately predict the
runtimes of the jobs but our framework is capable of
dealing with inaccuracies in user-estimated runtimes.
The inaccuracies in runtimes are dealt with at the
Scheduler level in the RLC component of our
framework. In our framework, the schedulability

analysis at the time of admission is always done using
the user-estimated runtimes. However, if a job finishes
earlier than its estimated runtime the scheduling
process is triggered to utilize the extra time left in the
schedule by the finishing job. If a job takes longer to
finish than its estimated runtime, the schedulability
analysis is triggered to see if a small quantum of time
can be allocated to the job without violating the QoS
constraints of the other jobs in schedule. If the job still
does not finish in the extra time, the job can be
allocated more than one quanta if doing so does not
result in violation of the QoS constraints of other jobs.
Otherwise, the job is aborted. The detailed discussion
on dealing with inaccuracies and the corresponding
performance results are currently under investigation.

6. Conclusions

Providing QoS guarantees to the applications in a

multi-institutional Grid is a challenging task because
there are multiple stakeholders – resource owners and
resource consumers – each with different objectives.
Although advance reservations can provide QoS
guarantees for the applications, they may result in poor
system performance for resource owners if resource
management is not done carefully. This paper presents
a framework for resource management with ARs that
not only provides QoS guarantees for the applications
but also ensures high utilization of the resources. The
paper focused on the Matchmaker component of the
framework, presented several algorithms for
matchmaking and investigated their performance in
detail.

The results show that the choice of the
matchmaking algorithm can significantly affect system
performance. For the parameters used in the
experiments, using a suitable matchmaking algorithm
can reduce WR by as much as 46.5%. This justifies the
use of intelligence in matching. The results also show
that traditional mapping algorithms used in Grid
technologies such as MinU and NF do not perform
well when ARs are introduced in the system. The MLI
algorithm proposed by this paper exploits the current
system state and performs better than every other
algorithm in terms of lower WR, RAR and ROD and
higher U for a wide range of workload parameters.
MLI gives the best performance even when a
significant number of ODs are introduced in the
system. The high performance of MLI can be
attributed to the intelligent use of laxity of jobs.

Among other algorithms that give good
performance are FF and MaxU when PAR is high and
IMCT when PAR is low. MaxU and FF are most fair
to small and large jobs and for large L result in values
of Q close to 1.

(a)
PAR = 0.5

0

2

4

6

8

10

12

14

16

18

0 200 400 600 800 1000

L

W
R

RAN
FF
MLI
IMCT
MinU
MaxU

(b)

PAR = 0.5

0

100

200

300

400

500

600

700

800

900

1000

0 200 400 600 800 1000

L

R
O

D
 (m

in
ut

es
)

RAN FF MLI IMCT MinU MaxU

(c)

PAR = 0.5

0

30

60

90

120

150

180

210

240

0 200 400 600 800 1000

L

R
AR

 (m
in

ut
es

)

RAN
FF
MLI
IMCT
MinU
MaxU

(d)

PAR = 0.5

0

1

2

3

4

5

6

0 200 400 600 800 1000

L

Q

RAN
FF
MLI
IMCT
MinU
MaxU

Figure 3. Effect of mixed workload on

performance
6. References
[1] I. Foster, C. Kesselman, S. Tuecke, “The

Anatomy of the Grid: Enabling Scalable Virtual
Organizations,” in Int’l Journal of Supercomputer
Applications, 15(3), 2001.

[2] I. Foster, C. Kesselman, C. Lee, R. Lindell, K.
Nahrstedt, A. Roy, “A Distributed Resource

Management Architecture that Supports Advance
Reservations and Co-Allocation,” in the Proc. of
the 7th Int’l Workshop on QoS, May 1999.

[3] I. Foster, A. Roy, V. Sander, “A QoS Architecture
that Combines Resource Reservation and
Application Adaptation,” in the Proc. of the 8th
Int’l Workshop on QoS, pp. 181-188, June 2000.

[4] The Maui Scheduling System. http://www.mhpcc.
edu/maui.

[5] T. Lavian, S. Merrill, H. Cohen, D. Hoang, J.
Mambretti, S. Figueira, D. Cutrell, S. Naiksatam,
F. Travostino, “A Grid Network Service
Architecture for Dynamic Optical Networks,”
submitted to the Journal of Grid Computing.

[6] U. Farooq, S. Majumdar, E. Parsons, “Dynamic
Scheduling of Lightpaths in Lambda Grids,” in
the Proc. of the 2nd Int’l Workshop on Networks
for Grid Applications, pp. 540-549, Oct. 2005.

[7] A. Sulistio, R. Buyya, “A Grid Simulation
Infrastructure Supporting Advance Reservation,”
in the Proc. of the 16th Int’l Conf. on Parallel and
Distributed Computing and Systems, Nov. 2004.

[8] W. Smith, I. Foster, V. Taylor, “On Sched. with
Advanced Reservations,” in the Proc. of the 14th
Int’l Parallel and Dist. Proc. Symp., May 2000.

[9] U. Farooq, S. Majumdar, E. Parsons, “Efficiently
Scheduling Advance Reservations in Grids,”
Technical Report SCE-05-14, Department of
Systems and Computer Engineering, Carleton
University, Ottawa, Canada, August 2005.

[10] U. Farooq, S. Majumdar, E. Parsons, “Scheduling
Advance Reservations on Shared Grid
Resources”, Technical Report, Department of
Systems and Computer Engineering, Carleton
University, Ottawa, Canada, July 2006.

[11] Platform Computing Inc., “Open Source Meta-
Scheduling for Virtual Organizations with the
Community Scheduler Framework (CSF),”
Technical Whitepaper. http://www.platform.com.

[12] G. McMahon, M. Florian, “On Scheduling with
Ready Times and Due Dates To Minimize
Maximum Lateness,” in Operations Research,
23(3), pp. 475-482, May-June, 1975.

[13] R. Raman, M. Livny, M. Solomon,
“Matchmaking: Dist. Resource Management for
High Throughput Computing,” in the Proc. of the
7th IEEE Int’l Symposium on High Performance
Distributed Computing, July 1998.

[14] The Sun Grid Engine, http://www.sun.com/
software/gridware/index.xml

[15] U. Lublin, D. G. Feitelson, “The Workload on
Parallel Supercomputers: Modeling the
Characteristics of Rigid Jobs,” in Journal of
Parallel & Distributed Computing, 63(11), pp.
1105-1122, Nov. 2003.

