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Abstract 
 

Providing QoS guarantees to the applications in a 
multi-institutional Grid is a challenging task. Although 
advance reservations (ARs) can provide QoS 
guarantees for the applications, they often seriously 
degrade system performance for resource owners. In 
this paper, we present a framework for AR based 
resource sharing that not only provides QoS 
guarantees for the applications but also ensures high 
utilization of the resources. This paper focuses on the 
application-to-resource mapping component of the 
framework as our results show that traditional 
mapping algorithms used with best effort jobs do not 
perform well for ARs. The paper proposes a set of 
algorithms for mapping ARs and investigates their 
performance in detail. The paper then presents a novel 
algorithm that outperforms a number of other 
algorithms in almost every respect for a wide range of 
workload parameters. Rigorous experimentation 
proves the efficacy of our algorithm and brings 
important insights into the dynamics of the system.   

 
1. Introduction 

 
Grid computing provides dynamic, secure and 

coordinated sharing of heterogeneous resources that 
may be distributed geographically as well as 
organizationally.  One of the major challenges for Grid 
computing is to ensure “non-trivial qualities of 
service” to the users [1]. Provision of guaranteed level 
of QoS in multi-institutional geographically 
distributed resource sharing is complicated by two 
factors. First, the unpredictable delays over Wide Area 
Networks and second, the requirements of the Grid 
applications for heterogeneous resources that are being 
independently administered or controlled. Since 
resources belonging to different administrative 
domains do not share their schedules, if an application 
needs to access more than one resource 
simultaneously, the user either has to arrange for it 

through the domain administrators or submit the tasks 
of the job to queues of different resources without any 
guarantees that all resources would be available 
simultaneously. In order to address this, advance 
reservations (ARs) were introduced as a part of 
Globus Architecture for Reservation and Allocation 
(GARA) [2]. Advance reservations of resources for a 
specific time in future ensure that all resources would 
be simultaneously available at the execution time of 
the application. Since their introduction, ARs have 
been studied in numerous contexts such as architecture 
for ensuring end-to-end QoS for network applications 
[3], job scheduler for clusters and supercomputers [4] 
and Grid based architecture for dynamic optical 
networks [5]. As by reserving resources in advance the 
user can be assured of an upper bound on the response 
time, ARs can be used for ensuring end-to-end quality 
of service. Just like other resources, Grid-enabled 
network resources can also be reserved in advance for 
a more predictable network delay [3, 5, 6].  

Although advance reservations are attractive for 
resource consumers, they may cause severe 
performance degradation for the resource owners. 
Sulistio [7] and Smith [8] have studied the 
performance of ARs. Their results show that with only 
20% of the jobs arriving as ARs, the utilization can go 
as low as 66% of the case where none of the jobs is an 
advance reservation while mean wait times of the best 
effort jobs, commonly known as on-demand requests 
(ODs) in Grid literature, can increase by 71%. Since 
there are multiple stakeholders in the Grid – resource 
owners and resource consumers – each with different 
objectives, we need a framework for resource sharing 
with ARs that can meet the objectives of both: provide 
QoS guarantees to resource consumers and ensure 
high utilization of resources for resource owners. 

In this paper, we present a framework for resource 
sharing with ARs that meets the objectives of both the 
resource consumers and the resource owners. The 
framework comprises several entities including 
resource brokers and schedulers. The goal of the 
resource broker is to efficiently map jobs to different 



resources and the goal of the scheduler is to order jobs 
mapped to a particular resource to achieve specified 
time requirements. In earlier papers [6, 9, 10], we have 
shown how laxity in the reservation window can help 
improve resource utilizations of AR based scenarios 
by leaving the final scheduling decision with the 
scheduler. Laxity of an AR on a certain resource is the 
difference between its deadline and the time at which 
it would finish executing on that resource if it starts 
executing at its earliest start time. Earlier, we have 
presented scalable algorithms for scheduling ARs 
mapped to a given resource [6, 9, 10]. In this paper, 
we focus on the mapping component as our results 
show that the algorithm for mapping ARs to resources, 
herein called matchmaking, can significantly affect 
performance. The contributions of the paper are listed.  
 The paper presents a framework for resource 

sharing with ARs that can achieve QoS guarantees for 
the applications and high performance for the 
resources in multi-institutional Grid computing.  
 To the best of our knowledge, this is one of the 

first papers that tackle the issue of mapping jobs to 
resources for AR based scenarios. With the help of 
simulation results, we show that traditional mapping 
algorithms used in Grid and distributed computing in 
general do not give desired performance with ARs. 
We present different algorithms for matchmaking and 
investigate their performance in detail.  
 We present a novel algorithm, Minimum Laxity 

Impact (MLI), for matchmaking with ARs that 
outperforms a number of other algorithms in almost 
every respect for a wide range of workload 
parameters. 
 Through simulation, we study the effect of 

workload and system parameters on matchmaking 
algorithms. The results provide important insights into 
system behavior and performance. 
 The results of this paper are also applicable to 

Community Scheduler Framework (CSF) [11]. The 
meta-scheduler within CSF can use the matchmaking 
algorithms presented in this paper to co-schedule 
resources across different domains.  

The rest of the paper is organized as follows. 
Section 2 briefly reviews the related work. In Section 
3, we present a framework for resource management 
with ARs and present algorithms for matchmaking. 
We discuss in detail our experimental setup in Section 
4 while in Section 5 we present the experimental 
results. We conclude the paper in Section 6.  

 
2. Background and related work 
 

An advance reservation reserves a Grid resource for 
the execution of a job at a specified time in future. A 
job is a Grid application consisting of a single or 

multiple tasks. A job completes when all its tasks are 
completed. A Grid resource may be a single CPU or a 
multiple CPU based computing device or a storage 
system. If a Grid resource is used in such a way that 
each job requests the exclusive use of the resource 
during its execution, we refer to the sharing model as 
the non-shared resource model. On the other hand, if a 
resource can be shared among multiple jobs running 
concurrently on the resource we refer to the sharing 
model as the shared resource model. An example of a 
shared resource model is one in which a cluster 
consisting of multiple nodes is shared among multiple 
jobs by running tasks of different jobs on different 
nodes. Only one task can run on a node at a time. 

ARs with laxity are characterized by a start time of 
the reservation that specifies the time at which the job 
would be available for execution and a deadline by 
which the job must be completed by the resource. 
Thus, given a set of jobs assigned to a particular 
resource the goal of the scheduler is to schedule jobs 
in such a way that each job starts executing at or after 
its start time and finishes before its deadline. It has 
been shown that scheduling jobs with given start 
times, execution times and deadlines is an NP-Hard 
problem even if we consider a non-shared resource 
model [12]. In previous papers, we have presented 
scalable algorithms for scheduling ARs for both non-
shared [6, 9] and shared [10] resource models.  

Globus Architecture for Reservation and Allocation 
(GARA) [2], which introduced ARs, presents the 
concepts of co-reservation and co-allocation agents 
that an application can use to dynamically assemble 
resources to meet its QoS constraints. The co-
reservation agents interact with the Information 
Service to discover resources that can satisfy 
application constraints. GARA however, does not 
specify how co-reservation agents select among the 
resources that can satisfy the application constraints or 
how reservations are scheduled by the underlying 
resource managers to achieve performance while 
meeting application’s QoS constraints. Our framework 
specifically deals with the above-mentioned issues and 
in this context extends the functionality of GARA.  

Among other notable application-to-resource 
mapping mechanisms in Grid are the Condor-G Class-
Ad matchmaking mechanism [13] and Sun Grid 
Engine load averaging mechanism [14]. In Condor-G, 
an application can specify its request for resources in 
the form of a small advertisement while a resource can 
also advertise its capabilities. Based on these 
advertisements, the goal of the broker is to map 
application to resources that can satisfy the application 
constraints. Although Condor-G matchmaking takes 
into account user preferences for resources, it does not 
specify how broker should make dynamic mapping 



decisions based on the system state. As the results 
presented in this paper show, such dynamic 
matchmaking can significantly affect the overall 
system performance especially for AR based 
scenarios. Sun Grid Engine on the other hand, has two 
primary policies for application-to-resource mapping. 
In one of the policies, the resources are sequenced and 
each time the list is iterated through to select the next 
node. In the second policy, the node with the 
minimum load is selected to run the next job. The 
results presented in Section 5 however show that when 
the proportion of advance reservations increases none 
of these policies results in high performance.  

Community Scheduler Framework (CSF) [11] is an 
open source framework for implementing a Grid meta-
scheduler that can dispatch jobs to underlying resource 
managers. The current implementation of CSF 
employs scheduling policies similar to those employed 
in Sun Grid Engine. It thus needs an efficient 
matchmaking algorithm for AR based scenarios. 

 
3. A framework for resource management 
with advance reservations 

 
We present a framework for AR based resource 

sharing that ensures high performance for the resource 
owners while meeting the QoS needs of the resource 
consumers. A high-level simplified view of the 
framework is presented in Figure 1. Due to space 
limitations, detailed architecture is not presented.  

Figure 1 shows that the framework consists of two 
major components: MMC that lies at the collective 
layer of the Grid layered architecture [1] and RLC that 
lies at resource and fabric layers. Applications submit 
their resource requirements along with their QoS 
constraints to MMC.  MMC finds a suitable match for 
the application and allocates the resource using RLC. 
For the applications that need QoS guarantees and/or 
those that need simultaneous co-allocations of 
resources, ARs are used.  

 
Figure 1. High-level view of the framework 

The function of the RLC is to do admission control 
for each resource and ensure that each accepted AR 
meets its deadline. If the resource cannot meet the 
QoS needs of an AR, it rejects the new request. To 
prevent performance degradations due to ARs, laxity 
in the reservation window is required. Thus, while 
RLC provides response time guarantees to the 
application, it leaves final scheduling decisions with 
the local scheduler. The simplified view of RLC in 
Figure 2 shows three major components. The 
Resource Manager component provides the 
functionality of a remote resource manager and 
negotiates access to the resource through the local 
resource managers. The Scheduler component 
schedules jobs in such a way that QoS constraints of 
ARs are met while high utilizations of resources are 
maintained. Depending on the model of the resource 
used, the Scheduler employs either our algorithm for a 
non-shared resource model [6, 9] or our algorithm for 
a shared resource model [10]. The function of Match 
Advisor is to asses the degree of fit of a particular job 
given the QoS requirements of the job and current 
state (schedule) of the resource and report it to MMC. 

MMC also consists of three components. Just like 
in GARA, the Co-reservation Agents discover 
available resources through the information service. 
They then use the services of the Matchmaker 
component to choose the resource to allocate the job. 
Matchmaker relies on the reports from the Match 
Advisors of each resource and employs our MLI 
algorithm for resource selection. Once the resource(s) 
is (are) selected, the reservation handle is provided to 
the application. At the execution time of the 
application, the application uses Co-allocation Agent 
to submit the tasks to the selected resource(s). 

The framework can be used for efficient meta-
scheduling within CSF. Intelligent matchmaking 
before dispatching ARs to be scheduled on resources 
can result in significant improvement in performance.   

3.1. Algorithms for matchmaking  
This section presents several algorithms that we 

have investigated for matchmaking. These algorithms 
assume that the resources that do not meet the job’s 
functional requirements have already been eliminated 
during the resource discovery process. If the number 
of resources that meet a job’s functional requirements 
is too high, only a subset of resources can be passed to 
the Matchmaker. We call the resources that are passed 
to the Matchmaker to do the selection from as the 
selection window. We compare the performance of 
these algorithms in Section 5. 

3.1.1. Random (RAN). This algorithm randomly 
picks up a resource from the selection window. If the 



resource meets the QoS needs of the job, the resource 
is selected. Otherwise, the process is repeated until 
either a match is found or all options are exhausted.  

3.1.2. First fit (FF). With this algorithm, all resources 
in the selection window are sequenced in a particular 
order. Each time a new job is submitted, the first 
resource in sequence is tried. If the resource meets the 
QoS constraints of the job, the resource is selected. 
Otherwise, the next resource in sequence is tried. The 
process is repeated until either a match is found or all 
options are exhausted. This algorithm has a limitation 
as it assumes that either all jobs arrive at the same 
broker that has sequenced the resources or a particular 
ordering of the resources has been agreed upon by all 
brokers in the system. 

3.1.3. Next fit (NF). In this algorithm, all resources in 
the selection window are sequenced in a particular 
order. When the jobs are submitted, the list of the 
resources is iterated through in a sequence, selecting 
the next resource in the list. If that resources does not 
meet QoS constraints of the job the next resource in 
sequence is tried. The process is repeated until either a 
match is found or all options are exhausted. In its 
simplest form, with no QoS constraints associated 
with the job, the algorithm is used in Sun Grid Engine 
[14]. This algorithm has the same limitations as FF. 

3.1.4. Initial minimum completion time (IMCT). 
Whenever a new request arrives, this algorithm 
queries all the resources in the selection window and 
finds a subset of resources that can meet the QoS 
needs of the job. It then chooses from this subset the 
resource that reports minimum completion time for the 
job. Note that the Scheduler in RLC can re-schedule 
jobs to improve resource utilization as long as it meets 
the QoS needs of all accepted jobs. Hence, the time of 
completion reported to the Matchmaker at this time 
may not be the actual completion time of the job.  

3.1.5. Resource with minimum utilization (MinU). 
Whenever a new request arrives, this algorithm 
queries all the resources in the selection window and 
selects the one with minimum utilization among the 
resources that meet the QoS constraints of the job. 
This algorithm thus tries to balance the load on 
resources. It is used by Sun Grid engine [14].  

3.1.6. Resource with maximum utilization (MaxU). 
Whenever a new request arrives, this algorithm 
queries all the resources in the selection window and 
selects the one with maximum utilization among the 
resources that meet the QoS constraints of the job.  
The rationale behind this algorithm is that it keeps 
enough spare capacity on some of the resources to 
accommodate jobs with large demands. 

3.1.7. Minimum laxity impact (MLI). In this 
algorithm, whenever a new request arrives, all 
resources in the selection window are queried and the 
algorithm selects one from those that meet the QoS 
constraints of the job. This resource selection is done 
is such a way that the accommodation of this job 
produces the minimum impact on laxity of the jobs 
already in the schedule of the resource. If in order to 
accommodate the new job the resource has to re-
schedule a number of jobs pushing them towards their 
deadlines, we say the impact on laxity was high. On 
the other hand, if the resource can accommodate the 
job without significant re-scheduling, we call the 
impact on laxity was low. Thus, if we always select 
the resource that has minimum impact on laxity to 
accommodate a job we would have a higher 
probability of finding out a feasible schedule for later 
arrivals by utilizing the spare laxity.  Quantitatively, 
we measure the impact on laxity by subtracting from 
cumulative remaining laxity of the jobs in schedule 
before the new task was accommodated the 
cumulative remaining laxity of the jobs after the new 
job is accommodated.  

If ti represents the earliest start time of job i, ei its 
runtime on the resource and di its deadline then the 
laxity LXi of the job on the resource can be given as: 

LXi  =  di – ei – ti  (3.1)  
Since it is not always possible to schedule a job at 

its earliest start time due to the other jobs in schedule, 
the remaining laxity RLi of a job i measures the 
“laxity” of the job at its scheduled-time si at which it is 
currently scheduled to start. Thus,  

RLi  =  di – ei – si   (3.2) 
Let aj represent the arrival time of the job j, Є 

represents the set of jobs in the resource schedule that 
are scheduled to start after aj and si(j-1) and si(j) 
respectively represent the scheduled-time of a job i in 
Є before and after the job j is accommodated in the 
system. Then the impact on laxity, ζ, of the new job j 
is calculated as: 

ζ  =  ∑(For all jobs i in Є) [(di – ei – si(j-1)) –  
(di – ei – si(j) )]  (3.3) 

   =  ∑(For all jobs i in Є) RLi(j-1) –   
∑(For all jobs i in Є) RLi(j)  (3.4) 

If all resources are identical, the algorithm selects 
the resource that reports the smallest value of ζ. 
Otherwise, ζ is scaled with respect to the relative 
speeds of the resources and the algorithm selects the 
resource that results in smallest value of scaled ζ. Due 
to space limitations, discussion on scaling ζ is not 
presented in this paper. If more than one resource has 
same value of ζ, ties are broken by selecting the one 
that reports the minimum completion time.  



4. Experimental setup 
 
For the simulation experiments, we model 64-node 

IBM SP2 supercomputers as Grid resources. Shared 
resource model is simulated in which different 
applications can run on SP2 concurrently by running 
tasks of different jobs on different nodes. The Grid 
applications are modeled as parallel non-preemptable 
rigid jobs requesting any where from 1 to 64 nodes 
depending on their number of tasks. The applications 
submit their requirements along with their QoS 
constraints to MMC. The Matchmaker in MMC uses 
algorithms presented in Section 3.1 to find a suitable 
match. Since different tasks of the parallel job may 
need to communicate during execution, once a suitable 
cluster has been selected all tasks of the job are gang 
scheduled on the cluster. If the job needs to be re-
scheduled to improve cluster utilization all tasks of the 
job are always re-scheduled as a gang. 

For efficient gang scheduling with QoS constraints 
within a cluster, RLC employs our algorithm for AR 
scheduling with shared resource model [10]. This 
algorithm is capable of handling both non-preemptable 
and preemptable parallel rigid jobs. It can work for 
computing, network and storage resources and is 
capable of scheduling tasks of a job as a gang. The 
algorithm employs the earliest-deadline-first heuristic. 
If we consider the modeled resource to be a computing 
cluster, the algorithm selects nodes of the cluster to 
run the tasks of a particular job in such a way that 
fragmentation in the resource schedule is minimized. 
It is also capable of dealing with inaccuracies in user’s 
estimations of the runtimes of the jobs. The algorithm 
has been described and analyzed in detail in [10].  

4.1. Performance metrics    
The paper uses the following performance metrics.  

4.1.1. Percentage of work rejected (WR). WR 
measures the percentage of the work rejected by the 
system because it cannot be accommodated without 
violating QoS constraints of some of the jobs. Total 
work of a job is defined as the sum of the runtimes of 
all of its tasks. Since in our model the tasks are always 
gang-scheduled, runtimes of all the tasks can be 
considered equal. Hence, total work of a job can also 
be computed by multiplying the size of the job 
(number of tasks) by its runtime. WR is the ratio of the 
sum of the total work of all the jobs rejected and the 
sum of the total work of all the jobs submitted. 

4.1.2. Probability of blocking (Pb). Pb is the 
probability that a system would reject a new job 
because it cannot be accommodated without violating 
QoS constraints of some of the jobs. It can be 
calculated as: 

Pb = Total Number of Requests Rejected / Total 
Number of Requests   (4.1) 

4.1.3. Utilization (U). U of a resource is the fraction 
of the total time the resource is busy executing jobs. It 
is calculated as follows: 

U = Sum of the Busy Units of Time of All the 
Nodes in the Cluster / (Total Duration of Simulation * 
Total Number of Nodes in the Cluster) (4.2) 

4.1.4. Fairness (Q). Q measures the ability of the 
matchmaking algorithm to treat small and large jobs 
equally. It is defined as the average total work of all 
jobs rejected divided by the average total work of all 
jobs submitted.  A value of 1 for Q means that the 
matchmaking algorithm treats small and large jobs 
equally, a value greater than 1 means more large jobs 
are rejected than small jobs while a values less than 1 
means comparatively more small jobs are rejected.   

4.1.5. Mean response time of on-demand requests 
(ROD). ROD is the mean time between the submission 
of an on-demand request and its completion. 

4.1.6. Mean response time of advance reservation 
requests (RAR). RAR is the mean time between the 
earliest start time of an AR request and the time of 
completion of the job associated with that request.  

4.2. Workload model 
We generated jobs using a synthetic workload 

model for rigid jobs proposed in [15]. The workload 
model is based on the traces collected from San Diego 
Supercomputer Center’s Intel Paragon Machine, a 
CM-5 machine at Las Alamos National Lab and IBM 
SP2 machine at the Swedish Royal Institute of 
Technology. Since the Grid resources modeled in this 
paper are IBM SP2 machines, we additionally 
analyzed traces collected from SP2 at Cornell Theory 
Center and SP2 at San Diego Supercomputer Center to 
calculate the parameters for the workload model.  The 
workload model models the runtime of the jobs using 
hyper-gamma distribution with a mean of 
approximately 2200 seconds and the size of the jobs 
using two-phase uniform distribution with a mean of 
approximately 8.4 nodes. The correlation between the 
size of the job and its runtime is also modeled and 
described in detail in [15]. Since it is not always 
possible to accurately predict the runtimes of the jobs, 
in Section 5.3 we discuss how our framework deals 
with inaccuracies in user-estimated runtimes.     

We used an open model in which a stream of jobs 
arrives on the system. As in [15], the arrival process is 
modeled with a Gamma distribution. We multiplied 
the arrival time of the jobs with a constant number to 
generate different load conditions. The details of the 
parameters are discussed in [10]. 



4.3. Workload parameters 
Following are the workload parameters of interest. 

4.3.1. Proportion of advance reservations (PAR). 
PAR is the proportion of AR requests in the total 
number of requests. We study the performance of the 
matchmaking algorithms at different values of PAR. 
The time between the arrival of an AR and its start 
time is modeled as a uniform distribution. ARs can 
request to reserve the resource for any time between 
the current system time and the next 12 hours. 

4.3.2. Mean percentage laxity (L). We define 
percentage laxity of an AR as the ratio of its laxity and 
its runtime. A uniform distribution for the laxity of 
ARs is used with the lowest value of the distribution 
fixed at 0. Mean percentage laxity L is varied between 
0% and 1000%.  

Theoretically, ODs have no deadlines. However, to 
prevent starvation of ODs, we associate a large 
deadline with ODs equivalent to 2 days.  

4.3.3. Total number of clusters (N). In order to study 
the effect of the size of the selection window, we vary 
the total number of clusters in the system. However, 
only the results obtained with N = 4 are presented in 
this paper.  

4.4. Accuracy of results 
Tests were run long enough and repeated multiple 

times, to obtain reasonably small confidence intervals 
for the performance metrics. We obtained confidence 
intervals of ±5% for WR  and Q, ±3 % for U, RAR and 
ROD, and ±10.0% for Pb at a confidence level of 95%. 
For all graphs to be presented in Section 5, the mean 
of the performance metric is plotted. 

5. Experimental results 
5.1. Impact of laxity 

This section presents the impact of laxity on the 
performance of the system. The results shown in 
Figure 2 were obtained with PAR = 1 and N = 4.  

As expected, Figure 2(a) shows that with the 
increase in laxity, percentage of work rejected WR 
decreases significantly. The figure also shows that the 
matchmaking algorithm can significantly affect system 
performance justifying the use of an intelligent 
Matchmaker at MMC. At L = 1000%, the spread in 
WR is over 25% of WR of RAN. The comparison of 
the algorithms shows that when L is increased beyond 
a certain point, MLI performs better than all other 
algorithms. At L = 1000%, it results in WR which is 
only 89.2% of the next best algorithm (IMCT). 
Although not shown in the figure due to space 
limitations, the results also show that MLI increases U 

of each cluster by 2% over that of the next best 
algorithm. The performance of MLI can be attributed 
to the economical use of jobs laxity. 

Surprisingly, MaxU and FF perform better than 
MinU, resulting in lower WR and higher U. This is 
because these algorithms always concentrate the load 
on a subset of clusters and hence leave enough 
capacity on some of the other clusters to accommodate 
large jobs when they arrive. This shows that the 
techniques that are known to perform well in ordinary 
application-to-resource mapping do not perform well 
for AR based scenarios. Although not shown in figure 
to avoid cluttering, the performance of NF is close to 
that of RAN. 
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Figure 2. Impact of laxity on performance  

Figure 2(b) shows that MLI results in the lowest 
RAR values. IMCT results in a significantly higher RAR 
than all other algorithms. This is because that often 
minimum completion time for the new job is reported 
by that cluster in which, in order to accommodate the 
new job in the schedule, the shared resource scheduler 



ends up pushing jobs already in the schedule towards 
their deadlines. This tends to increase the response 
time of the previously scheduled jobs. As this greedy 
algorithm often selects such a cluster the overall 
response time of the jobs in the system increases. 

Figure 2(c) shows that when L is small, Q is many 
times higher than 1 showing that many of the jobs 
with large total works are rejected as they cannot be 
accommodated in the system. As L increases, there is 
more flexibility in scheduling and Q approaches 1. As 
FF and MaxU keep enough spare capacity on some of 
the clusters to accommodate large jobs, their Q is 
lower and they are fairer to large jobs than the other 
algorithms. Since with MLI the load is more balanced 
among the clusters, it results in values of Q higher 
than those achieved by FF and MaxU.   

Pb curves (not presented in this paper due to space 
limitations) show that Pb does not change significantly 
with the increase in L. It can be shown that Pb = WR / 
Q and hence as both WR and Q decreases at almost the 
same rate with the increase in L, Pb tends to remain 
constant. MLI results in the lowest Pb values. 

5.2. Effect of mixed workload 
This section presents the results obtained by using a 

mix of advance reservation and on-demand (OD) 
requests. The results shown in Figure 3 were obtained 
with PAR = 0.5 and N = 4. 

Figure 3 shows that trends of the curves for WR, Q 
and RAR are the same as in Figure 2 with PAR = 1. 
However, with 50% ODs in Figure 3(a) WR is 
significantly lower (by up to 66.74%). This is because 
ODs have less QoS constraints and hence provide 
more flexibility in scheduling. The graphs show that 
when ODs are introduced along with ARs the choice 
of the matchmaking algorithm becomes even more 
important. For L = 1000%, the spread of WR in Figure 
3(a) is 46.5% of WR obtained with the worst algorithm 
which in this case is MaxU. The figure shows that FF 
and MaxU that perform well for PAR = 1, perform 
very poorly when there are a significant number of 
ODs in the system. However, MLI still performs the 
best among all the algorithms. IMCT gives 
comparable performance as far as WR, U and ROD are 
concerned; however, IMCT gives worst RAR for the 
reasons described in Section 5.1. 

5.3. Impact of inaccuracies in user-estimated 
runtimes 

It is not always possible to accurately predict the 
runtimes of the jobs but our framework is capable of 
dealing with inaccuracies in user-estimated runtimes. 
The inaccuracies in runtimes are dealt with at the 
Scheduler level in the RLC component of our 
framework. In our framework, the schedulability 

analysis at the time of admission is always done using 
the user-estimated runtimes. However, if a job finishes 
earlier than its estimated runtime the scheduling 
process is triggered to utilize the extra time left in the 
schedule by the finishing job. If a job takes longer to 
finish than its estimated runtime, the schedulability 
analysis is triggered to see if a small quantum of time 
can be allocated to the job without violating the QoS 
constraints of the other jobs in schedule. If the job still 
does not finish in the extra time, the job can be 
allocated more than one quanta if doing so does not 
result in violation of the QoS constraints of other jobs. 
Otherwise, the job is aborted. The detailed discussion 
on dealing with inaccuracies and the corresponding 
performance results are currently under investigation. 

 
6. Conclusions 

 
Providing QoS guarantees to the applications in a 

multi-institutional Grid is a challenging task because 
there are multiple stakeholders – resource owners and 
resource consumers – each with different objectives. 
Although advance reservations can provide QoS 
guarantees for the applications, they may result in poor 
system performance for resource owners if resource 
management is not done carefully. This paper presents 
a framework for resource management with ARs that 
not only provides QoS guarantees for the applications 
but also ensures high utilization of the resources. The 
paper focused on the Matchmaker component of the 
framework, presented several algorithms for 
matchmaking and investigated their performance in 
detail. 

The results show that the choice of the 
matchmaking algorithm can significantly affect system 
performance. For the parameters used in the 
experiments, using a suitable matchmaking algorithm 
can reduce WR by as much as 46.5%. This justifies the 
use of intelligence in matching. The results also show 
that traditional mapping algorithms used in Grid 
technologies such as MinU and NF do not perform 
well when ARs are introduced in the system. The MLI 
algorithm proposed by this paper exploits the current 
system state and performs better than every other 
algorithm in terms of lower WR, RAR and ROD and 
higher U for a wide range of workload parameters. 
MLI gives the best performance even when a 
significant number of ODs are introduced in the 
system. The high performance of MLI can be 
attributed to the intelligent use of laxity of jobs. 

Among other algorithms that give good 
performance are FF and MaxU when PAR is high and 
IMCT when PAR is low. MaxU and FF are most fair 
to small and large jobs and for large L result in values 
of Q close to 1. 
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Figure 3. Effect of mixed workload on 

performance  
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