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Abstract - Dynamic optical networks hold the potential of 
satisfying very large bandwidth requirements of many of the 
Grid applications. However, encapsulation of optical network 
elements into manageable Grid resources and dynamic 
provisioning of lightpaths is necessary to meet the complex 
demand patterns of the Grid applications and to optimize usage 
of optical network components.  In this paper, we first present a 
scalable algorithm for an NP-Hard problem of scheduling on-
demand and advance reservation requests for lightpaths. We 
then investigate in detail the effect of proportion of advance 
reservations, laxity and distribution of the size of data transfer 
requests on performance through extensive experimentation. 
The paper also investigates that how much improvement in 
performance can be gained by segmenting large data transfer 
requests into multiple requests of smaller sizes and up to what 
percentage of overheads is segmentation justified in scheduling 
of lightpaths. We demonstrate how laxity can be exchanged for 
segmentation to achieve high utilization of lightpaths.    

I. INTRODUCTION 

With the evolution of the Grid, bandwidth requirement of 
many applications has increased drastically and is expected to 
increase even more rapidly in the near future. Projects such as 
Compact Muon Solenoid [1] that currently generate couple of 
Terabytes per year are expected to generate 1 Exabytes per 
year by 2018 [2].  Other data intensive applications include 
high-energy physics projects such as [3] and [4], and 
applications such as the digital sky survey and meteorological 
forecasting. Many emerging Grid applications such as 
interactive HDTV, remote medicine and video games for 
Grids will also have very large bandwidth requirements. The 
substantial decrease in the price of optical bandwidth since 
the industry adoption of Wave Division Multiplexing (WDM) 
makes emerging generation of advanced optical networks 
with dynamic lightpath provisioning ideal candidates to 
satisfy the bandwidth requirements of the aforementioned 
applications. This gives rise to the concept of Lambda Grids 
– Grids that employ WDM networks and optical switches to 
interconnect computing clusters with dynamically 
provisioned multi-gigabit rate bandwidth lightpaths. For 
Lambda Grids, abstraction and encapsulation of optical 
network resources into manageable, schedulable and 
dynamically provisioned Grid entities is necessary not only to 
meet the constraints and complex demand patterns of the 
Grid applications but also to optimize overall resource 
consumption of the optical network elements. Moreover, in 
order to meet the QoS constraints of Grid applications and to 
support co-allocation and co-scheduling of optical network 
resources with other Grid resources, optical network elements 
would need to be reserved in advance for their guaranteed 
availability. Advance reservation of lightpaths is essential for 
applications such as remote medicine. The concept of 

application-controlled lightpaths for their availability during a 
fixed time period is being used in projects such as UCLP [5]. 

Although WDM and tunable technologies combined with 
optical switching can provide dynamic allocation of 
bandwidth at the fiber or wavelength/sub-wavelength 
granularity, optical networks have been developed with 
traditional applications in mind and hence encapsulation of 
optical resources into a set of Grid services for their dynamic 
allocation and reservation by Grid applications imposes a 
number of challenges. Travostino et al. presents Grid network 
service architecture for interfacing the Grid to the dynamic 
optical network as a service [6].  They encapsulate the optical 
network into an OGSI-compliant network service to match 
the complex requirements of the data-intensive Grid 
applications. They consider data transfer scenarios where a 
Grid application requests data transfers between a given 
source and destination within a certain future time window. 
Network Resource Service reserves the optical network 
resource for a specific time in future for each of the incoming 
requests. By considering requests for a single lightpath, they 
show that requests will need to be rescheduled to 
accommodate incoming under constrained requests. 
Scheduling data transfer requests with a given size, start time 
and a deadline is an NP-Hard problem [7] but authors in [6] 
have not presented any algorithm for such scheduling that can 
find a feasible schedule, if one exists. 

In this paper, we consider the scenario presented in [6] for 
advance reservations of lightpaths in a Grid based optical 
network and develop a scalable algorithm for scheduling 
advance reservation requests with a given size, start time, and 
deadline. At the arrival of a new request, the algorithm 
reschedules earlier requests if necessary and finds a feasible 
schedule if one exits. The algorithm is not limited to the 
reservations of lightpaths but can also be applied to the 
reservation of other Grid resources where applications 
reserve resources for a given size of the task, start time and 
laxity.  Laxity of a task on a certain resource is the difference 
between its deadline and the time at which it would finish 
executing on that resource if it starts executing at its start 
time. In addition to advance reservation requests, the 
algorithm can also schedule best effort jobs that do not 
reserve the resources in advance and do not have a deadline 
to meet. Such jobs are commonly known as On-Demand 
(OD) requests in the Grid community.  

Some of our preliminary research on scheduling with 
advance reservations in Grids has been published in [8]. In 
this paper, we focus on scheduling of lightpaths in the context 
of Lambda Grids. The contributions of the paper are listed. 
 The paper presents a scalable algorithm for scheduling 

on-demand and advance reservation requests with given 
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sizes, start times and laxities. It presents the results of the 
experiments that we have conducted to study the effect 
of workload parameters such as proportion of advance 
reservations, laxity and mean and variance of the size of 
data transfer requests on the performance of the 
underlying optical network. 

 As the proportion of advance reservations increases, 
utilization of the optical network goes down because of 
the generation of time slots in the schedule where no 
requests can be accommodated. Segmenting data transfer 
requests into multiple requests of smaller sizes can 
potentially improve performance by filling in small 
empty time slots. However, this process involves 
switching and other overheads that can be quite 
substantial in an optical network. This paper investigates 
that how much improvement in performance can be 
gained by segmenting data into smaller chunks and up to 
what percentage of overheads is segmentation justified in 
scheduling of on-demand and advance reservation 
requests for lightpaths.  

 The paper also attempts to answer questions such as 
“Can laxity be exchanged for segmentation to achieve 
high performance?” and “Does the effect of 
segmentation diminish as laxity increases?” 

 Finally, the paper briefly discusses resource level 
policies to prevent starvation of on-demand requests. 

The rest of the paper is organized as follows. Section II 
briefly reviews the related work. In Section III, we discuss 
the NP hard problem and present our algorithm for finding a 
solution. We provide details on our experimental setup in 
Section IV. Section V studies in detail the effect of workload 
parameters, laxity and data segmentation on the performance. 
We conclude the paper in Section VI.  

II. BACKGROUND AND RELATED WORK 

Advance reservations (ARs) were introduced as a part of 
Globus Architecture for Reservation and Allocation (GARA) 
[9] to guarantee resource availability at the execution time of 
the application. Advance reservations of multiple resources 
for a specific time in future ensure that all resources would be 
simultaneously available at the execution time of the 
application. As by reserving resources in advance one can 
provide an upper bound on the response time, ARs can also 
be used for ensuring end-to-end quality of service. For jobs 
with sequential tasks, the response time of the first resource 
in sequence can become the start time of the reservation for 
the second resource and so on; thus guaranteeing the end-to-
end response time. Advance reservations have been studied in 
numerous contexts such as architecture for ensuring end-to-
end quality of service for network applications [10], 
architecture for data-intensive collaboration [11], scheduling 
of data placement activities [12], job scheduler for clusters 
and supercomputers [13] and Grid based architecture for 
dynamic optical networks [6]. Smith [14] and Sulistio [15] 
have investigated the performance of advance reservations 
based scheduling. Their work, however, assumes that there is 
no laxity in the reservation window. 

Naikastam et al. [16] have developed a tool for specifying 
on-demand and advance reservation requests for dynamic 
optical networks. They also study the performance of 
different algorithms for choosing appropriate light paths 
requested by ARs [16]. Their work also assumes that there is 
no laxity in the reservation window and hence rejects all 
incoming requests that overlap with any of the previously 
committed reservation. However, as in [6], this paper 
considers laxity in the reservation window. The idea of laxity 
is not new to the scientific community where task requests 
are commonly specified with a ready time, an execution time 
and a deadline, and the deadline is usually greater than the 
sum of the ready and execution times.  

Scheduling advance reservation requests with a given start 
time, service time and a given laxity is an NP-Hard problem 
[7]. Algorithms presented in the real-time domain [7, 17] for 
solving similar problems have different goals – instead of 
maximizing utilization of the resource they try to minimize 
the response time of the critical task. In addition, these 
algorithms assume that all tasks to be scheduled are known in 
advance, which is not true for the Grid domain where tasks 
arrive one by one. Moreover, these algorithms do not scale 
for large number of tasks that are common in the Grid 
domain. It has been reported in [17] that for a problem size of 
100 tasks, the algorithm presented in [7] was unable to 
terminate after generating several tens of thousand of nodes 
(temporary schedules) while the algorithm in [17] generated a 
few thousand nodes. The number of nodes grows 
exponentially as the problem size increases [17]. 
Furthermore, the algorithm presented in [7] does not support 
preemptable tasks while the algorithm presented in [17] 
requires explicit preempt relations between tasks for 
supporting preemption. We have modified the algorithm 
presented in the real-time domain for making it suitable for 
the Grid domain. The algorithm is presented in this paper. 
Our modified algorithm can successfully schedule hundreds 
of thousands of tasks, and is capable of studying scenarios 
involving both non-preemptable and preemptable tasks. 

III. SCHEDULING ADVANCE RESERVATION REQUESTS WITH 
GIVEN LAXITIES 

A. Problem Definition 

In order to understand the problem of scheduling advance 
reservations with given laxities, let us consider the following 
definitions and assumptions. 

Ready or Start Time (ti): Ready time is the time at which the 
task associated with an on-demand request is available to be 
picked up for execution. Start time of an advance reservation 
request is the time by which the application must make the 
task associated with the request available to the resource. A 
task can never start executing before its ready or start time. 

Service Time (eib):  Service time of a task i on a resource b is 
the time the task i takes to complete on the resource b. For 
example, in case of data transfer requests service time is the 
actual time the network takes to transfer the data from source 
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to the destination. For compute tasks, service time is the time 
taken the by task to finish executing on a resource. As in [14, 
15, 16], we assume that properties of the task such as the 
number of compute cycles in case of a compute task or bytes 
to be transferred in case of a network task are either known in 
advance or some statistics are available for their calculation. 
We also assume that when a task is executing on a resource, 
the resource does not execute any other task and hence 
service time of the task can be calculated by using 
appropriate statistics for the resource and the task.  

Deadline (di): Deadline of a task is the absolute deadline 
before which the task must be finished. Once committed a 
resource ensures that a deadline associated with each AR is 
met. In case of on-demand requests, the deadline to finish the 
task is assumed to be infinity. We discuss in Section V-C, 
how a resource can implement policies to prevent starvation 
of the ODs. 

Percentage Laxity: Laxity of a task i on a resource b is given 
by:  

Laxity   =   di – ti – eib                (1)  

 We define percentage laxity L’ of a task i on a resource b 
as: 

L’   =   Laxity of task i on resource b / eib         (2)     
Non-Preemptable (Non-Segmentable) and Preemptable 
(Segmentable) Tasks: Non-preemptable tasks are those that 
can not be resumed later. Hence, if for some reason their 
execution is interrupted they need to be restarted from the 
beginning. Preemptable tasks, on the other hand can be 
resumed later from the point of interruption. We consider the 
effect of overheads associated with task preemption and its 
resumption on performance. For network tasks, 
segmentability means the ability to break up data transfer 
request into multiple requests and to be able to schedule 
different chunks of the data at different times. Such 
segmentation might result in switching and other overheads.  

Scheduled-Time: Scheduled-time of a certain task is the time 
at which it is scheduled to start its execution under the current 
schedule of the resource. Different segments of a preemptable 
task may be scheduled to be executed at different times.   

A Grid resource would receive requests from different 
applications for execution of different tasks. The problem for 
a given resource b to solve is: 

Problem 1: Given a set of tasks {i, j, …, k} and sets of ready 
or start times {ti, tj, …, tk}, service times {eib, ejb, …, ekb} and 
deadlines {di, dj, …, dk}, schedule tasks {i, j, …, k} such that 
each task i starts executing after its ready or start time ti and 
finishes before its deadline di.  

B. Algorithm for Scheduling Advance Reservation Requests 
with Laxities 

Since in a Grid environment considered in the research 
new requests arrive continuously, the resource at the arrival 

of every new request tries to find a feasible schedule for the 
set of tasks already in schedule and the new request. If a 
feasible schedule is found, the request is committed and the 
new task is added to the set of scheduled tasks. Otherwise, 
the request is rejected. As each task finishes executing on the 
resource, it is removed from the set of scheduled tasks.  

 It has been shown previously [7] that Problem 1 is an NP-
Hard problem. Algorithms presented in the real-time domain 
[7, 17] for solving this problem do not scale for large number 
of tasks as mentioned in Section II and their completion times 
grow exponentially with the number of tasks. These 
algorithms first find an initial schedule for the tasks using one 
of the well know strategies such as the earliest-deadline-first 
strategy and then improve on the initial solution to reduce the 
lateness of the task that realizes the value of maximum 
lateness. They use branch and bound technique to find the 
optimal solution. 

In order to scale the algorithm for much larger number of 
tasks in the Grid domain, we present an algorithm in this 
paper that we call the SSS (Scaling through Subset 
Scheduling) Algorithm. Whenever a new request arrives, the 
SSS algorithm first finds all those tasks in the resource 
schedule that can affect the feasibility of the new schedule 
with the new request and then tries to work out a feasible 
schedule for only that subset of tasks S. This prevents the 
completion time of the algorithm from growing exponentially 
with the number of tasks. By definition, S contains at least all 
those tasks that if not included in S, the resulting new 
schedule is infeasible while a feasible schedule exists. Thus, 
given the new request and the current resource schedule, the 
SSS algorithm always accommodates the new request in the 
resource schedule if it is feasible to do so. The discussion on 
finding that subset S is explained later in this section. 

Once the exact subset of tasks S is known, an initial 
solution can be worked out for that subset and the new 
request using any of the well-known strategies such as the 
earliest-deadline-first and the least-laxity-first. We have 
modified the earliest-deadline-first strategy, for scenarios 
involving both non-preemptable and preemptable tasks for 
finding the initial solution. The modified strategy uses work-
conservation principle and can be given as a sequence of 
following steps: 

Step 1: Declare and initialize variable t and pT equal to zero.  
Step 2: Find among S, all tasks with ti <= t. If no such task 

exists, set t equal to the earliest ti among all tasks in S. 
Step 3: Among all tasks in S with ti <= t, select a task with the 

earliest di. Break ties by selecting a task with the highest 
eib. If the task selected is preemptable, go to Step 5. 

Step 4: Schedule the selected task at time t and set t = ti + eib. 
Remove the task from S and go to Step 7.  

Step 5: If eib is the execution time of the selected task and di 
its deadline, then among all tasks in S with tk <= t + eib 
find all tasks with deadline less than di. If no such task 
exists, go to Step 4. Otherwise, among that set of tasks 
find a task with the earliest tk and set pT equal to its ready 
or start time.  
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Step 6: Place the task selected in Step 3 from t to pT. Preempt 
that task at time pT. Update the execution time of that 
task in S as eib = eib – (pT – t). Set t = pT.   

Step 7: If S is not empty, set pT equal to zero and go to Step 
2. Otherwise, the initial solution is complete. 

The sequence of steps presented above shows that for non-
preemptable tasks we do not remove the task until it finishes 
its execution on the resource even if during its execution a 
new task with a lower deadline becomes available for 
execution. This is because the task is non-preemptable. For 
preemptable tasks, we strictly use the earliest-deadline-first 
strategy.  

The initial solution, as obtained above, consists of periods 
of continuous utilization of the resource called blocks with 
idle periods separating the blocks. If the initial solution is 
feasible, we accept the new request and update the overall 
schedule of the resource. If it is infeasible, we check by 
calculating lower bounds on the lateness of tasks using 
equations given in [7], whether the lateness of the task that 
misses its deadline by more time than any other task, known 
as critical task, can be improved. If the lateness of the critical 
task cannot be improved, the solution is called optimal and 
we reject the new request. If the solution is infeasible but not 
optimal, we find a subset of tasks that if scheduled after the 
critical task can improve its lateness. Such a subset is known 
as generating set. It can be shown that if the initial solution is 
calculated using earliest-deadline-first strategy or any of its 
derivates, generating set consists of the set of non-
preemptable tasks that belongs to the same block as the 
critical task and have deadlines greater than that of the critical 
task [7]. For each task in the generating set, we can find a 
new solution by scheduling that task after the critical task. 
This can be done by setting the start or ready time of that task 
equal to the start time of the critical task and then obtaining a 
new solution using the modified earliest-deadline-first 
strategy. The resulting solutions where each solution 
corresponds to each task in the generating set, if infeasible, 
can further be improved by finding their critical tasks and 
corresponding generating sets. This process is continued and 
we get a tree of solutions with the initial solution at its root. 
Each solution in a tree is known as a node. This process of 
node generation is continued until either a feasible solution is 
found or the algorithm determines that no feasible solution 
exists.  
 In the algorithms presented in the real-time domain, all 
tasks are known in advance. However, in a Grid domain tasks 
arrive one by one. Hence, if the initial solution is infeasible 
but there exists more than one feasible solutions 
corresponding to more than one tasks in the generating set, 
there is no way to know in advance, selection of which task 
in generating set  to produce the child node can get the 
maximum benefit later on. This is because some of the tasks 
might have already executed when a certain new request 
arrives. Selecting a task with the least execution time can 
maximize current utilization of the resource while selecting 
one with the highest deadline can decrease the probability of 
infeasibility of a potential future schedule. In order to balance 

the two factors – current utilization and flexibility in 
scheduling – the algorithm first calculates the effective laxity 
of generating set tasks as seen at the start time of the critical 
task. If i is the critical task and j one of the tasks in the 
generating set, effective laxity of j at ti can be given as dj – ejb 
– ti. The algorithm then selects the task with the highest 
effective laxity to produce the child node. Note here that the 
algorithm selects a task with the highest flexibility and hence 
minimizes the chance of an infeasible schedule. At the same 
time, if two tasks have equal deadlines, a task with a lower 
execution time would be selected to produce a child node. 
This would increase the current utilization of the resource. 

As the number of tasks in the initial solution increases, the 
number of nodes in the search tree grows exponentially, 
making the process inscalable for large number of tasks. As 
mentioned earlier, we solve this problem by finding a suitable 
subset of tasks in the current resource schedule before 
obtaining the initial solution. In order to find that subset S, 
we first create a timeline of all tasks in queue and all advance 
reservations already committed, using their scheduled-times 
as determined during the previous run of the algorithm. Then 
we find out a suitable start point and end point on that 
timeline such that all tasks that belong to S lie between these 
two points. Initially, we set S = {New Task} and start point 
SP and end point EP as follows: 

SP = max {current system time, min {ti for all tasks i in 
S}} 
EP = max {di for all tasks i in S} 
Then we add tasks in S during each iteration according to 

the following rules: 
1. If any job i not in S has ti >= SP and its scheduled-time < 
EP, then add i to S. 
2. If any job i not in S has a scheduled-time < EP and it 
finishes its execution after SP, then add i to S. 

 We update SP and EP after each iteration. The iterations 
continue until no new task is added to S. When S is obtained 
using the given methodology, all tasks that can affect the 
feasibility of the new schedule are included in S and we call S 
is complete. We further optimized the algorithm to reduce its 
completion time and we present the optimized algorithm 
next. 

Let TIU be total time units encountered during the 
algorithm at which the resource was idle and let TIUS be 
total idle time units in the current idle segment of resource 
schedule. Let SP and EP be the current start point and end 
point respectively and let ti, eib and di be the start time, 
execution time and deadline of the new task request. 

Step 1: Initialize TIU and TIUS = 0 and SP and EP = ti. Set S 
= {New Task}. 

Step 2: Check if any of the following conditions is true, 
A. If EP < di and the new task is a preemptable task and 

TIU equals eib.  
B. EP is equal to the highest deadline among all tasks in 

S.  
C. TIU = x*eib. 
D. TIUS = y*eib. 
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Where x and y are the tuning parameters for the 
algorithm. If any of the above conditions is true, break out 
of the algorithm. 

Step 3: If no task is scheduled at EP, increment TIU, TIUS 
and EP by 1 and go to Step 2. Otherwise, go to step 4. 

Step 4: Set TIUS = 0. Call the task scheduled at EP, task j. 
Increment EP by 1 recursively as long as in the resource 
schedule task j is scheduled at EP. If task j is already in S, 
go to Step 2. Otherwise, add it to S, and check if tj < SP. 
If it is not, go to Step 2. Otherwise, check if j has a finite 
deadline. If it does not have a finite deadline, set SP equal 
to scheduled-time of j and go to Step 2. 

Step 5: If tj < current system time, add all tasks scheduled 
between current system time and SP to S and set SP = 
current system time and go to Step 2. Otherwise, add all 
tasks that are scheduled between tj and SP to S.  

Step 6: Find all tasks scheduled between tj and SP that have a 
start time less than tj and have a finite deadline. If no such 
task exists set SP = tj and go to Step 2.  

Step 7: Set SP = tj and select among the tasks found in Step 6, 
the one with the earliest start time and call it task j. Go to 
Step 5. 

If S is obtained using the above algorithm, all tasks that are 
scheduled before start point but after the current system time 
are those that finish their execution before the start time of 
any of the tasks in S. Hence, they will not affect the 
scheduled-time of any of the tasks in S and hence of the new 
request. Note that, in Step 4 and Step 6, if the task that has a 
start time less than start point is an OD request we do not set 
SP equal to its start time. The reason is that an OD can be 
delayed indefinitely and hence can never make an AR miss 
its deadline. In the above algorithm, the terminating condition 
A is derived from the fact that a preemptable task can execute 
whenever the resource is idle. Hence, the resulting schedule 
will always be feasible. Thus by definition, S is complete. If 
condition B is true and the resulting schedule is an infeasible 
schedule, then the new task cannot be accommodated in the 
current schedule even if we include all the tasks that are 
scheduled after the end point. The reason is that the tasks that 
are scheduled after the end point can not improve the lateness 
of the critical task. Hence, for Condition B as well, S is 
complete.  Parameters x and y (x > y) in condition C and D 
respectively are the tuning parameters for the algorithm and 
depends on the nature and size of tasks in the schedule No 
task that is scheduled after the end point can delay the 
execution of any of the tasks in S. However, the tasks in S 
may affect the scheduled-time of the tasks scheduled after the 
end point. If such a condition occurs then during the schedule 
update process, there exist conflicts in the resulting schedule. 
In order to avoid such conflicts, it is advisable to over 
estimate the end point when terminating through conditions C 
and D. This can be done by suitably selecting x and y. 
However, if a conflict still occurs, we re-obtain S and the new 
schedule. This process is repeated until no conflict occurs.  

The SSS main algorithm can be written as a sequence of 
following steps: 

Step 1: Whenever a new request arrives, obtain S using the 
methodology described earlier. 

Step 2: Determine the initial solution using modified earliest-
deadline-first strategy and check it for feasibility and 
optimality. If the initial solution is feasible, go to Step 5. 
If the initial solution is infeasible and optimal, go to Step 
6. Otherwise, initialize a new vector of nodes v. 
Determine the generating set for the initial solution and 
add initial solution to v.  

Step 3: If v is empty, go to Step 6. Otherwise, produce a child 
node of the last node in v. This is done by setting the start 
or ready time of the task with the highest effective laxity 
in the generating set equal to ti. Remove that task from 
generating set of last node in v. If the resulting generating 
set size of that node is zero, remove that node from v.  

Step 4: Obtain a solution for the new child node using 
modified earliest-deadline-first strategy and check it for 
feasibility and optimality. If the solution is feasible, go to 
Step 5. If the solution is infeasible but not optimal, 
determine its generating set and add the solution to vector 
v. Go to Step 3. 

Step 5: Check if the new task is accepted would there be any 
schedule conflicts during the schedule update process. If 
there are schedule conflicts, re-obtain S using the 
algorithm given earlier, setting initial value of end point 
equal to the current end point and go to step 2. Otherwise, 
accept the task and break out of the algorithm. 

Step 6: Reject the new task. 

Note that the SSS algorithm limit the growth of nodes with 
the number of tasks by, a) running the algorithm for a subset 
of tasks, b) by logically selecting and producing only one 
node at a time. This reduces the number of open nodes in 
memory by a large factor. As opposed to at least thousands of 
nodes, in algorithms presented in [7, 17], for just 100 tasks, 
the SSS algorithm never had more than 120 nodes in memory 
for even 100,000 tasks. We discuss the performance of the 
SSS algorithm in Section V-D.  

 In order to study the scenarios in which overheads are 
associated with task preemption and its resumption, we make 
some modifications in the SSS algorithm. The details of the 
algorithm for studying scenarios with overheads are available 
in [19]. 

IV. EXPERIMENTAL SETUP 

In order to study the performance of advance reservation 
based scheduling of lightpaths in a Grid based dynamic 
optical network, we wrote a simulator. The simulation model 
models a lightpath as a resource which is subjected to arrivals 
of data transfer requests. Each transfer request or task is a 
schedulable entity and is associated with a start time and a 
deadline by which it must be completed. Using an open 
model we assume that a stream of requests arrives at a 
resource (lightpath) and a scheduler is deployed for 
scheduling of the tasks on the resource. The scheduler 
maintains a timeline of the scheduled-times of different 
transfer requests and sends update messages to sources of 
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data transfer requests for the current scheduled-time(s) of 
their data transfer request(s). At the scheduled-time of a 
particular transfer, the source of that transfer initiates the data 
transfer. For transfer requests that can be segmented, the 
source is informed of the scheduled-times of different 
segments of the requests. We assume that the system has 
capabilities to break up a data transfer requests into segments 
at the source and re-assemble it at the receiver. Note that data 
in optical form is not buffered at any point.  

A. Performance Metric 

The following performance metrics have been used for 
evaluation.  

Probability of Blocking (Pb): Pb is the probability that a data 
transfer request would be rejected because it cannot be 
accommodated in the current schedule without violating the 
deadlines of any of the requests. It can be calculated as: 

Pb    =   Total Number of Requests Rejected / Total Number 
of Requests                    (3) 

Utilization (U): U of a lightpath is the fraction of the total 
time the lightpath is transferring data. This does not include 
the time spent in switching and other overheads associated 
with data segmentation. 

Mean Response Time of On-Demand Requests (ROD): ROD is 
the mean time between the submission of an on-demand 
request and its completion. 

Mean Response Time of Advance Reservation Requests (RAR): 
RAR is the mean time between the start time of an advance 
reservation request and the time of completion of the task 
associated with that request.  

B. Workload Parameters 

Following are the workload parameters of interest. 

Service Times of Tasks: For some of our experiments, we 
have used a uniform distribution for the size of the data 
transfer requests. A uniform distribution for modeling size of 
tasks has been used in other researches on advance 
reservation based scheduling (see [15], for example). This 
research models service time of the tasks uniformly 
distributed between 10 minutes and 90 minutes with a mean 
of 50 minutes. For data transfer requests on a Grid based 
dynamic optical network such a distribution of service times 
corresponds to data transfer requests between 10GByte and 
100GByte on the OMNInet optical network [6, 18].  

Uniform distribution has a relatively small co-efficient of 
variation. To study the effect of high variability in the sizes of 
the data transfer requests we have also used a bi-phase hyper-
exponential distribution with a co-efficient of variation of 2. 
We choose the mean of hyper-exponentially distributed 
execution time E to be equal to 50 minutes which is equal to 
the mean E of the uniform distribution.     

Mean Arrival Rate (λ): The preliminary experiments showed 
that a low arrival rate, which results in poor utilization of the 

lightpath, does not generate interesting results while a very 
high arrival rate saturates the system by generating more 
requests than the lightpath can handle. Thus, a mean arrival 
rate λ of 0.014 requests per minute is used. The arrival 
process followed a Poisson distribution. If all requests are 
accepted then this arrival rate results in a utilization of 0.7 (= 
0.014 * 50). This value of maximum utilization is consistent 
with earlier research on AR based scheduling [14]. 

Time between the Arrival of an Advance Reservation Request 
and its Start Time (TS): Unlike on-demand requests that 
submit their tasks to the resource at the time of request, 
advance reservation requests reserve the resource for some 
time in future. In our experiments, ARs can request to reserve 
the lightpath for any time between the current system time 
and the next 12 hours. This time between the arrival of an 
advance reservation request and its start time is modeled as a 
uniform distribution. Such a distribution is also used in other 
studies such as [14]. The results show that if we change TS, it 
has a negligible effect on the overall system performance.  

Proportion of Advance Reservations (PAR): PAR is the 
proportion of advance reservation requests in the total 
number of requests. We study system performance for 
different values of PAR by varying it between 0, where all 
requests are on-demand, and 1, where all requests are 
advance reservations, in the steps of 0.1. Total number of 
requests always remains the same. 

Mean Percentage Laxity (L): A uniform distribution for the 
laxity of tasks is used with the lowest value of the distribution 
fixed at 0. Mean percentage laxity L is varied between 0% 
and 500%.  

Data Segmentation: For the experiments, we consider two 
scenarios with respect to data segmentation. In the first 
scenario, all data transfer requests are non-segmentable and 
each time the lightpath is allocated for the complete duration 
of the request. In the second scenario, data is segmented if 
necessary to improve the utilization of the lightpath. In this 
scenario, the scheduler schedules different chunks of the 
request at different times. We consider switching and other 
overheads for the scenario with data segmentation.  

Priority of Advance Reservations over On-Demand Requests: 
We have done the experiments for two types of scenarios 
with respect to the priority of advance reservations over on-
demand requests. In the first type, ARs have high priority and 
they can delay any number of ODs arbitrarily. Such scenarios 
can result in large wait times for the on-demand requests. In 
the second type, ARs can delay ODs only to a certain degree. 
In this paper, we present results only for the first type of 
scenario. The results for the second type are available in [19]. 

C. Accuracy of the Results    

Tests were run long enough, and repeated multiple times, 
to obtain reasonably small confidence intervals for the 
performance metric. For uniformly distributed E, we obtained 
confidence intervals of ±1% for Pb, ±0.2% for U and ±1.5% 
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for ROD and RAR at a confidence level of 99%. For hyper-
exponentially distributed E, confidence intervals of ±3% for 
Pb, ±0.6% for U and ±5% for ROD and RAR were obtained at a 
confidence level of 95%. For all graphs to be presented in 
Section V, the mean of the performance metric is plotted. 

Table 1 summarizes the cases studied in this paper. The 
values of the fixed parameters in these experiments are λ = 
0.014 requests/minute, E = 50 minutes and TS = 6 hours. 
Levels of PAR = 0 to 1 in the steps of 0.1 and levels of L = 
{0, 20, 60,100,150,200,500}% 

TABLE 1  
CASES STUDIED IN THE EXPERIMENTS.  

Case 
No. Data Segmentation Distribution of Task 

Service  Times Symbol 

1 No Uniform NU 

2 Yes, with and 
without overheads  Uniform SU 

3  No Hyper-Exponential NH 

4 Yes, with and 
without overheads Hyper-Exponential SH 

V. SYSTEM PERFORMANCE  

A. Effect of Proportion of Advance Reservations and Laxity  

 This section presents the effect of the proportion of 
advance reservations and laxity on the performance of 
scheduling advance reservation and on-demand request for 
lightpaths in a Grid based dynamic optical network. Due to 
space limitation, we only briefly discuss the NU case in Table 
1 in this section. Results and details for other cases are 
available in [19]. 
 Some of the results for the NU case have been published in 
[8] but in order to explain the results in the next sections they 
are also included in this paper.  

Probability of Blocking: Fig. 1 shows that with an increase in 
PAR, Pb increases. This is because that unlike ODs that do 
not have any deadlines ARs have finite deadlines. As the 
proportion of ARs in the workload increases, it becomes 
increasingly difficult to schedule them while meeting their 
deadlines. Thus, more and more ARs are rejected. The results 
show that this increase is not linear and there exists a knee on 
the curve for a given value of laxity after which Pb increases 
more rapidly. Given the mean laxity of the tasks, a resource 
can limit the ratio of requests it accepts as ARs equal to the 
value of PAR corresponding to the knee of the curve to keep 
Pb at reasonable levels. The figure also shows that with an 
increase in L, Pb decreases substantially. As expected, laxity 
can improve the performance of scheduling AR requests for 
lightpaths significantly by providing more flexibility in task 
scheduling. The effect becomes more pronounced with the 
increase in percentage of ARs. Thus for 80% requests 
arriving as ARs, L = 200% can decrease Pb by 82.93% 
compared to the case in which ARs have no laxity.  

Utilization: Pb and U are related to each other as follows: 

U  = λ*(1 – Pb)*(R – W)              (4) 

Where R is the mean response time of the tasks accepted 
and W their mean wait time. Note that R – W is not always 
equal to E since tasks with higher service times have a high 
probability of being rejected.  

Thus, as Pb increases with the increase in PAR, U 
decreases. The results available in [8] shows that by having 
some laxity in the tasks we can substantially counter the 
decrease in U with the increase in PAR. Just like the curves 
for Pb, the curves for U are also characterized by a knee that 
can act as a suitable operating point [8].  

Since U and Pb are related, for the rest of the paper, we 
present curves only for U. 

Response Time of Advance Reservations and On-Demand 
Requests: In Fig. 2(a), for smaller values of L, ROD first 
increases with the increase in PAR until it reaches a 
maximum value and then it starts decreasing. This is because 
ARs can delay ODs arbitrarily. Thus, with an increase in 
PAR, mean wait of ODs increases. This increases ROD with 
the increase in PAR until it reaches its maximum value. As 
PAR increases further, U decreases significantly and this 
decreases the mean wait time of ODs. Hence, ROD decreases. 
For a given value of PAR, increase in L (from 0% to 100%) 
decreases ROD by increasing the wait times of ARs. However, 
as L is increased beyond 100% there is no significant 
decrease in U with the increase in PAR. This increases mean 
wait times of both ARs and ODs. Hence, for large L values, 
ROD is observed to increase with PAR.  
 Fig. 2(b) shows that for L = 0%, RAR decreases slightly 
with the increase in PAR. This is because with an increase in 
PAR more schedule conflicts occur which increases the 
probability of blocking of ARs with higher service times. As 
ARs with higher service times are rejected, the mean service 
times of ARs accepted decreases. This decreases RAR. As L 
increases, mean wait times of ARs tend to increase which 
increases RAR with L for the given value of PAR. For L 
values between 0% and 150%, RAR does not change 
significantly with PAR as the increase in wait time of ARs 
with PAR is balanced by the decrease in the mean service 
times of ARs accepted. For larger L values, Pb does not 
increase significantly with PAR. This increases the mean wait 
times of ARs substantially and hence RAR is observed to 
increase with PAR. 
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Fig. 1: Probability of Blocking for the NU Case (From [8]) 
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Fig. 2: Response Time for the NU Case (From [8]) 

(a) Effect of PAR on ROD  (b) Effect of PAR on RAR 

B. Effect of Data Segmentation 

 This section presents the effect of data segmentation on the 
performance. We, thus, compare the results for the NU and 
NH cases in Table 1 where data is not segmented with the SU 
and SH cases where data is segmented. For the SU and SH 
cases, we not only consider the scenario in which no 
overheads are associated with data segmentation but also 
introduce overheads O as a percentage of mean service times 
E of the tasks. O represents time spent in overheads such as 
path tear down and network reconfiguration. When a client 
accesses the optical network through a control plane 
mechanism such as Optical Dynamic Intelligent Network 
Service (ODIN) [20], the total time spent in overheads is just 
less than 1 minute [6] including the ODIN server processing 
delay, path tear down and network reconfiguration. However, 
if the client accesses the optical network through a customer 
portal the total time spent in overheads can be order of few 
minutes as in addition to the delays incurred in the control 
plane mechanisms there are delays at the portal server that 
handles billing and account aspects. We vary O between 0% 
of E (0 minutes) representing the ideal case to 30% of E (15 
minutes) representing the worst case scenario.  

The results presented in this section are for PAR = 0.4 as 
we expect less than half of the requests to be ARs in future 
Grid based scenarios. Results for other values of PAR are 
available in [19]. In Fig. 3, Fig. 4 and Fig. 5 we show the 
percentage increase in U, ROD and RAR respectively, when 
data is segmented compared to the case when it is not 
segmented.  
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Fig. 3: Effect of Data Segmentation on Utilization 

(a) Effect on U for Uniformly Distributed Service Times (b) Effect on U for 
Hyper-Exponentially Distributed Service Times 

Fig. 3(a) shows that for a given L, U in the SU case is 
higher than that with the NU case. The reason is that 
segments of data in the SU case can be scheduled on small 
slots of idle periods where non-segmentable requests can not 
be accommodated. This decreases Pb and increases U. 
However, the results show that for uniformly distributed 
service times of tasks with low co-efficient of variation, this 
effect is not very pronounced and the effect diminishes as 
overheads are introduced. The difference in utilization in Fig. 
3(a) peaks at 1.05% when no overheads are associated with 
data segmentation. Results presented in Fig. 3(b) for the 
hyper-exponentially distributed service times are similar to 
Fig. 3(a) but show that when the variability between the 
service times is large, the improvement in U is much more 
pronounced with a peak at 3.15%.  

Fig. 3 also show that difference in utilization is a non-
linear function of laxity with maxima near L = 70%. The 
reason is that with L = 0%, even in the SU and SH cases none 
of the requests can be “preempted” (segmented), as 
preemption for a non-zero time would make them miss their 
deadline. As L increases, more and more requests can be 
preempted for non-zero times thus accommodating more 
requests and the difference in U increases until it reaches its 
maximum value. For very high L values, most of the requests 
even with non-segmentable scenarios can be successfully 
scheduled and hence the option of segmentation does not 
bring a substantial difference in U. This shows that laxity can 
be exchanged for segmentation for achieving high utilization. 
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Fig. 4: Effect of Data Segmentation on Response Time of ODs 

(a) Effect on ROD for Uniformly Distributed Service Times (b) Effect on ROD 
for Hyper-Exponentially Distributed Service Times 

Fig. 4(a) shows that for lower L values, ROD in the SU case 
is lower than that in the NU case. This is because in the SU 
case, the OD requests need not be delayed to accommodate 
ARs as their segments can be scheduled in small idle slots in 
the lightpath schedule. With the increase in L, difference in 
ROD starts decreasing until it becomes zero and then it starts 
increasing in the opposite direction i.e. ROD for the SU case 
starts becoming higher compared to that in the NU case. On 
the other hand, in Fig. 5(a) with the increase in L, RAR with 
the SU case becomes smaller and smaller compared to that 
with the NU case. This shows that in the SU case many OD 
requests with infinite deadlines are “preempted” (segmented) 
by the scheduler for AR requests with smaller deadlines. This 
is because the scheduler employs modified earliest-deadline-
first strategy to find an initial solution. On the other hand, in 
the NU case as L increases, comparatively less number of 
ODs needs to be re-scheduled to a later time to accommodate 
ARs. For higher L values, this results in ROD for the SU case 
to be higher than that for the NU case while RAR for the SU 
case to be smaller than that for the NU case.  

The results in Fig. 4(b) and Fig. 5(b) are similar to those in 
Fig. 4(a) and Fig. 5(a) respectively. However, in Fig. 4(b) 
initially ROD with the SH case is so small in comparison to 
the NH case that although the difference between ROD with 
the SH case and that with the NH case becomes smaller and 
smaller with the increase in L, ROD with the SH case never 
becomes higher than that in the NH case even when 30% 
overheads are associated with segmentation. 
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Fig. 5: Effect of Data Segmentation on Response Time of ARs 

(a) Effect on RAR for Uniformly Distributed Service Times (b) Effect on RAR 
for Hyper-Exponentially Distributed Service Times 

The results thus show that data segmentation can result in 
an improvement in performance in terms of higher unitization 
and lower response times if the co-efficient of variation of the 
size of data transfer requests is high. However, segmentation 
is not justified for uniformly distributed task service times 
with low co-efficient of variation.  

C. Preventing Starvation of On-Demand Requests 

Results in Section V-A show that with the increase in PAR, 
ROD increases significantly. The effect is more pronounced 
for higher L values. A very high response time for ODs will 
encourage all users to submit their tasks as ARs which would 
increase PAR. For lower L values, this would decrease their 
response time but at a cost of low utilization of the lightpath. 
For higher L values, with the increase in PAR, there would 
not only be a slight decrease in U but also a tremendous 
increase in the response time of all requests (see Fig. 2). In 
order to prevent these situations resulting from potential 
starvation of on-demand requests a resource should guarantee 
a reasonable response time for the tasks submitted as ODs. 
To ensure this a resource can associate a virtual deadline with 
all ODs and during the scheduling process can make sure that 
most of ODs meet their deadlines. In order to study this, we 
associated a deadline with ODs and ensured that each OD 
accepted meets its deadline. Our results show that associating 
a virtual deadline with ODs can effectively decrease the 
response time of ODs without significantly decreasing U or 
substantially increasing RAR. The results are available in [19]. 
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D. Performance of the SSS Algorithm 

The SSS algorithm for scheduling advance reservation 
requests with laxities successfully scheduled hundreds of 
thousands of tasks. The results show that the mean number of 
nodes produced to schedule given number of tasks depends 
on PAR and L in addition to the distribution of service times 
of the tasks. Maximum numbers of nodes open at one time, 
for 100,000 tasks never exceeded 120. Detailed analysis of 
the performance of the algorithm is available in [19]. 

VI. CONCLUSIONS 

Dynamic optical networks hold the potential of satisfying 
very large bandwidth requirements of many of the Grid 
applications. However, encapsulation of optical network 
elements into manageable Grid resources and dynamic 
provisioning of lightpaths is necessary to meet the demands 
of the Grid applications and to optimize usage of optical 
network components.  In this paper, we presented an 
algorithm to dynamically schedule on-demand and advance 
reservation requests for lightpaths. The results show that the 
algorithm is scalable and suits well the needs of the Grid 
domain.  

The performance results obtained using the algorithm show 
that laxity in the reservation window can significantly 
improve the performance of the network by reducing the 
probability of blocking and increasing lightpath utilization. 
The effect is more pronounced for the cases where proportion 
of advance reservations is high. When Pb is plotted against 
PAR, there exists a knee on the curve for a given value of 
laxity after which Pb increases more rapidly. Given the mean 
laxity of the tasks, the network can limit the ratio of requests 
it accepts as ARs equal to the value of PAR at the knee of the 
curve to keep Pb at reasonable levels.  

We also investigated the effect of data segmentation on 
system performance. The results show that choice of 
segmentation depends largely on the distribution of the task 
service times. When the variance between the service times is 
small, there is no significant advantage in segmenting data. 
For the values of the parameters in the experiments, 
maximum increase in utilization for uniformly distributed 
task service times is 1.05% and it diminishes as overheads of 
segmentation are considered. For hyper-exponentially 
distributed task service times with a co-efficient of variation 
of 2, the effect of data segmentation is much more 
pronounced. In our experiments, for hyper-exponentially 
distributed service times, data segmentation resulted in an 
increase in utilization of up to 3.15% and substantial decrease 
of up to 60.7% in ROD and up to 43.38% in RAR.   

The results also show that the improvement in performance 
with segmentation is sensitive to L. With the workload 
parameters in the experiments, maximum improvement in 
utilization is achieved near L = 70%. At higher L values, 
difference in utilization diminishes. This suggests that laxity 
can be exchanged for data segmentation to achieve high 
utilization of lightpaths.  
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