
Dynamic Scheduling of Lightpaths in Lambda Grids

Umar Farooq, Shikharesh Majumdar, Eric W. Parsons
Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada

Email: {ufarooq, majumdar, eparsons} @ sce.carleton.ca

Abstract - Dynamic optical networks hold the potential of
satisfying very large bandwidth requirements of many of the
Grid applications. However, encapsulation of optical network
elements into manageable Grid resources and dynamic
provisioning of lightpaths is necessary to meet the complex
demand patterns of the Grid applications and to optimize usage
of optical network components. In this paper, we first present a
scalable algorithm for an NP-Hard problem of scheduling on-
demand and advance reservation requests for lightpaths. We
then investigate in detail the effect of proportion of advance
reservations, laxity and distribution of the size of data transfer
requests on performance through extensive experimentation.
The paper also investigates that how much improvement in
performance can be gained by segmenting large data transfer
requests into multiple requests of smaller sizes and up to what
percentage of overheads is segmentation justified in scheduling
of lightpaths. We demonstrate how laxity can be exchanged for
segmentation to achieve high utilization of lightpaths.

I. INTRODUCTION

With the evolution of the Grid, bandwidth requirement of
many applications has increased drastically and is expected to
increase even more rapidly in the near future. Projects such as
Compact Muon Solenoid [1] that currently generate couple of
Terabytes per year are expected to generate 1 Exabytes per
year by 2018 [2]. Other data intensive applications include
high-energy physics projects such as [3] and [4], and
applications such as the digital sky survey and meteorological
forecasting. Many emerging Grid applications such as
interactive HDTV, remote medicine and video games for
Grids will also have very large bandwidth requirements. The
substantial decrease in the price of optical bandwidth since
the industry adoption of Wave Division Multiplexing (WDM)
makes emerging generation of advanced optical networks
with dynamic lightpath provisioning ideal candidates to
satisfy the bandwidth requirements of the aforementioned
applications. This gives rise to the concept of Lambda Grids
– Grids that employ WDM networks and optical switches to
interconnect computing clusters with dynamically
provisioned multi-gigabit rate bandwidth lightpaths. For
Lambda Grids, abstraction and encapsulation of optical
network resources into manageable, schedulable and
dynamically provisioned Grid entities is necessary not only to
meet the constraints and complex demand patterns of the
Grid applications but also to optimize overall resource
consumption of the optical network elements. Moreover, in
order to meet the QoS constraints of Grid applications and to
support co-allocation and co-scheduling of optical network
resources with other Grid resources, optical network elements
would need to be reserved in advance for their guaranteed
availability. Advance reservation of lightpaths is essential for
applications such as remote medicine. The concept of

application-controlled lightpaths for their availability during a
fixed time period is being used in projects such as UCLP [5].

Although WDM and tunable technologies combined with
optical switching can provide dynamic allocation of
bandwidth at the fiber or wavelength/sub-wavelength
granularity, optical networks have been developed with
traditional applications in mind and hence encapsulation of
optical resources into a set of Grid services for their dynamic
allocation and reservation by Grid applications imposes a
number of challenges. Travostino et al. presents Grid network
service architecture for interfacing the Grid to the dynamic
optical network as a service [6]. They encapsulate the optical
network into an OGSI-compliant network service to match
the complex requirements of the data-intensive Grid
applications. They consider data transfer scenarios where a
Grid application requests data transfers between a given
source and destination within a certain future time window.
Network Resource Service reserves the optical network
resource for a specific time in future for each of the incoming
requests. By considering requests for a single lightpath, they
show that requests will need to be rescheduled to
accommodate incoming under constrained requests.
Scheduling data transfer requests with a given size, start time
and a deadline is an NP-Hard problem [7] but authors in [6]
have not presented any algorithm for such scheduling that can
find a feasible schedule, if one exists.

In this paper, we consider the scenario presented in [6] for
advance reservations of lightpaths in a Grid based optical
network and develop a scalable algorithm for scheduling
advance reservation requests with a given size, start time, and
deadline. At the arrival of a new request, the algorithm
reschedules earlier requests if necessary and finds a feasible
schedule if one exits. The algorithm is not limited to the
reservations of lightpaths but can also be applied to the
reservation of other Grid resources where applications
reserve resources for a given size of the task, start time and
laxity. Laxity of a task on a certain resource is the difference
between its deadline and the time at which it would finish
executing on that resource if it starts executing at its start
time. In addition to advance reservation requests, the
algorithm can also schedule best effort jobs that do not
reserve the resources in advance and do not have a deadline
to meet. Such jobs are commonly known as On-Demand
(OD) requests in the Grid community.

Some of our preliminary research on scheduling with
advance reservations in Grids has been published in [8]. In
this paper, we focus on scheduling of lightpaths in the context
of Lambda Grids. The contributions of the paper are listed.
 The paper presents a scalable algorithm for scheduling

on-demand and advance reservation requests with given

5400-7803-9277-9/05/$20.00/©2005 IEEE

sizes, start times and laxities. It presents the results of the
experiments that we have conducted to study the effect
of workload parameters such as proportion of advance
reservations, laxity and mean and variance of the size of
data transfer requests on the performance of the
underlying optical network.

 As the proportion of advance reservations increases,
utilization of the optical network goes down because of
the generation of time slots in the schedule where no
requests can be accommodated. Segmenting data transfer
requests into multiple requests of smaller sizes can
potentially improve performance by filling in small
empty time slots. However, this process involves
switching and other overheads that can be quite
substantial in an optical network. This paper investigates
that how much improvement in performance can be
gained by segmenting data into smaller chunks and up to
what percentage of overheads is segmentation justified in
scheduling of on-demand and advance reservation
requests for lightpaths.

 The paper also attempts to answer questions such as
“Can laxity be exchanged for segmentation to achieve
high performance?” and “Does the effect of
segmentation diminish as laxity increases?”

 Finally, the paper briefly discusses resource level
policies to prevent starvation of on-demand requests.

The rest of the paper is organized as follows. Section II
briefly reviews the related work. In Section III, we discuss
the NP hard problem and present our algorithm for finding a
solution. We provide details on our experimental setup in
Section IV. Section V studies in detail the effect of workload
parameters, laxity and data segmentation on the performance.
We conclude the paper in Section VI.

II. BACKGROUND AND RELATED WORK

Advance reservations (ARs) were introduced as a part of
Globus Architecture for Reservation and Allocation (GARA)
[9] to guarantee resource availability at the execution time of
the application. Advance reservations of multiple resources
for a specific time in future ensure that all resources would be
simultaneously available at the execution time of the
application. As by reserving resources in advance one can
provide an upper bound on the response time, ARs can also
be used for ensuring end-to-end quality of service. For jobs
with sequential tasks, the response time of the first resource
in sequence can become the start time of the reservation for
the second resource and so on; thus guaranteeing the end-to-
end response time. Advance reservations have been studied in
numerous contexts such as architecture for ensuring end-to-
end quality of service for network applications [10],
architecture for data-intensive collaboration [11], scheduling
of data placement activities [12], job scheduler for clusters
and supercomputers [13] and Grid based architecture for
dynamic optical networks [6]. Smith [14] and Sulistio [15]
have investigated the performance of advance reservations
based scheduling. Their work, however, assumes that there is
no laxity in the reservation window.

Naikastam et al. [16] have developed a tool for specifying
on-demand and advance reservation requests for dynamic
optical networks. They also study the performance of
different algorithms for choosing appropriate light paths
requested by ARs [16]. Their work also assumes that there is
no laxity in the reservation window and hence rejects all
incoming requests that overlap with any of the previously
committed reservation. However, as in [6], this paper
considers laxity in the reservation window. The idea of laxity
is not new to the scientific community where task requests
are commonly specified with a ready time, an execution time
and a deadline, and the deadline is usually greater than the
sum of the ready and execution times.

Scheduling advance reservation requests with a given start
time, service time and a given laxity is an NP-Hard problem
[7]. Algorithms presented in the real-time domain [7, 17] for
solving similar problems have different goals – instead of
maximizing utilization of the resource they try to minimize
the response time of the critical task. In addition, these
algorithms assume that all tasks to be scheduled are known in
advance, which is not true for the Grid domain where tasks
arrive one by one. Moreover, these algorithms do not scale
for large number of tasks that are common in the Grid
domain. It has been reported in [17] that for a problem size of
100 tasks, the algorithm presented in [7] was unable to
terminate after generating several tens of thousand of nodes
(temporary schedules) while the algorithm in [17] generated a
few thousand nodes. The number of nodes grows
exponentially as the problem size increases [17].
Furthermore, the algorithm presented in [7] does not support
preemptable tasks while the algorithm presented in [17]
requires explicit preempt relations between tasks for
supporting preemption. We have modified the algorithm
presented in the real-time domain for making it suitable for
the Grid domain. The algorithm is presented in this paper.
Our modified algorithm can successfully schedule hundreds
of thousands of tasks, and is capable of studying scenarios
involving both non-preemptable and preemptable tasks.

III. SCHEDULING ADVANCE RESERVATION REQUESTS WITH
GIVEN LAXITIES

A. Problem Definition

In order to understand the problem of scheduling advance
reservations with given laxities, let us consider the following
definitions and assumptions.

Ready or Start Time (ti): Ready time is the time at which the
task associated with an on-demand request is available to be
picked up for execution. Start time of an advance reservation
request is the time by which the application must make the
task associated with the request available to the resource. A
task can never start executing before its ready or start time.

Service Time (eib): Service time of a task i on a resource b is
the time the task i takes to complete on the resource b. For
example, in case of data transfer requests service time is the
actual time the network takes to transfer the data from source

541

to the destination. For compute tasks, service time is the time
taken the by task to finish executing on a resource. As in [14,
15, 16], we assume that properties of the task such as the
number of compute cycles in case of a compute task or bytes
to be transferred in case of a network task are either known in
advance or some statistics are available for their calculation.
We also assume that when a task is executing on a resource,
the resource does not execute any other task and hence
service time of the task can be calculated by using
appropriate statistics for the resource and the task.

Deadline (di): Deadline of a task is the absolute deadline
before which the task must be finished. Once committed a
resource ensures that a deadline associated with each AR is
met. In case of on-demand requests, the deadline to finish the
task is assumed to be infinity. We discuss in Section V-C,
how a resource can implement policies to prevent starvation
of the ODs.

Percentage Laxity: Laxity of a task i on a resource b is given
by:

Laxity = di – ti – eib (1)

 We define percentage laxity L’ of a task i on a resource b
as:

L’ = Laxity of task i on resource b / eib (2)
Non-Preemptable (Non-Segmentable) and Preemptable
(Segmentable) Tasks: Non-preemptable tasks are those that
can not be resumed later. Hence, if for some reason their
execution is interrupted they need to be restarted from the
beginning. Preemptable tasks, on the other hand can be
resumed later from the point of interruption. We consider the
effect of overheads associated with task preemption and its
resumption on performance. For network tasks,
segmentability means the ability to break up data transfer
request into multiple requests and to be able to schedule
different chunks of the data at different times. Such
segmentation might result in switching and other overheads.

Scheduled-Time: Scheduled-time of a certain task is the time
at which it is scheduled to start its execution under the current
schedule of the resource. Different segments of a preemptable
task may be scheduled to be executed at different times.

A Grid resource would receive requests from different
applications for execution of different tasks. The problem for
a given resource b to solve is:

Problem 1: Given a set of tasks {i, j, …, k} and sets of ready
or start times {ti, tj, …, tk}, service times {eib, ejb, …, ekb} and
deadlines {di, dj, …, dk}, schedule tasks {i, j, …, k} such that
each task i starts executing after its ready or start time ti and
finishes before its deadline di.

B. Algorithm for Scheduling Advance Reservation Requests
with Laxities

Since in a Grid environment considered in the research
new requests arrive continuously, the resource at the arrival

of every new request tries to find a feasible schedule for the
set of tasks already in schedule and the new request. If a
feasible schedule is found, the request is committed and the
new task is added to the set of scheduled tasks. Otherwise,
the request is rejected. As each task finishes executing on the
resource, it is removed from the set of scheduled tasks.

 It has been shown previously [7] that Problem 1 is an NP-
Hard problem. Algorithms presented in the real-time domain
[7, 17] for solving this problem do not scale for large number
of tasks as mentioned in Section II and their completion times
grow exponentially with the number of tasks. These
algorithms first find an initial schedule for the tasks using one
of the well know strategies such as the earliest-deadline-first
strategy and then improve on the initial solution to reduce the
lateness of the task that realizes the value of maximum
lateness. They use branch and bound technique to find the
optimal solution.

In order to scale the algorithm for much larger number of
tasks in the Grid domain, we present an algorithm in this
paper that we call the SSS (Scaling through Subset
Scheduling) Algorithm. Whenever a new request arrives, the
SSS algorithm first finds all those tasks in the resource
schedule that can affect the feasibility of the new schedule
with the new request and then tries to work out a feasible
schedule for only that subset of tasks S. This prevents the
completion time of the algorithm from growing exponentially
with the number of tasks. By definition, S contains at least all
those tasks that if not included in S, the resulting new
schedule is infeasible while a feasible schedule exists. Thus,
given the new request and the current resource schedule, the
SSS algorithm always accommodates the new request in the
resource schedule if it is feasible to do so. The discussion on
finding that subset S is explained later in this section.

Once the exact subset of tasks S is known, an initial
solution can be worked out for that subset and the new
request using any of the well-known strategies such as the
earliest-deadline-first and the least-laxity-first. We have
modified the earliest-deadline-first strategy, for scenarios
involving both non-preemptable and preemptable tasks for
finding the initial solution. The modified strategy uses work-
conservation principle and can be given as a sequence of
following steps:

Step 1: Declare and initialize variable t and pT equal to zero.
Step 2: Find among S, all tasks with ti <= t. If no such task

exists, set t equal to the earliest ti among all tasks in S.
Step 3: Among all tasks in S with ti <= t, select a task with the

earliest di. Break ties by selecting a task with the highest
eib. If the task selected is preemptable, go to Step 5.

Step 4: Schedule the selected task at time t and set t = ti + eib.
Remove the task from S and go to Step 7.

Step 5: If eib is the execution time of the selected task and di
its deadline, then among all tasks in S with tk <= t + eib
find all tasks with deadline less than di. If no such task
exists, go to Step 4. Otherwise, among that set of tasks
find a task with the earliest tk and set pT equal to its ready
or start time.

542

Step 6: Place the task selected in Step 3 from t to pT. Preempt
that task at time pT. Update the execution time of that
task in S as eib = eib – (pT – t). Set t = pT.

Step 7: If S is not empty, set pT equal to zero and go to Step
2. Otherwise, the initial solution is complete.

The sequence of steps presented above shows that for non-
preemptable tasks we do not remove the task until it finishes
its execution on the resource even if during its execution a
new task with a lower deadline becomes available for
execution. This is because the task is non-preemptable. For
preemptable tasks, we strictly use the earliest-deadline-first
strategy.

The initial solution, as obtained above, consists of periods
of continuous utilization of the resource called blocks with
idle periods separating the blocks. If the initial solution is
feasible, we accept the new request and update the overall
schedule of the resource. If it is infeasible, we check by
calculating lower bounds on the lateness of tasks using
equations given in [7], whether the lateness of the task that
misses its deadline by more time than any other task, known
as critical task, can be improved. If the lateness of the critical
task cannot be improved, the solution is called optimal and
we reject the new request. If the solution is infeasible but not
optimal, we find a subset of tasks that if scheduled after the
critical task can improve its lateness. Such a subset is known
as generating set. It can be shown that if the initial solution is
calculated using earliest-deadline-first strategy or any of its
derivates, generating set consists of the set of non-
preemptable tasks that belongs to the same block as the
critical task and have deadlines greater than that of the critical
task [7]. For each task in the generating set, we can find a
new solution by scheduling that task after the critical task.
This can be done by setting the start or ready time of that task
equal to the start time of the critical task and then obtaining a
new solution using the modified earliest-deadline-first
strategy. The resulting solutions where each solution
corresponds to each task in the generating set, if infeasible,
can further be improved by finding their critical tasks and
corresponding generating sets. This process is continued and
we get a tree of solutions with the initial solution at its root.
Each solution in a tree is known as a node. This process of
node generation is continued until either a feasible solution is
found or the algorithm determines that no feasible solution
exists.
 In the algorithms presented in the real-time domain, all
tasks are known in advance. However, in a Grid domain tasks
arrive one by one. Hence, if the initial solution is infeasible
but there exists more than one feasible solutions
corresponding to more than one tasks in the generating set,
there is no way to know in advance, selection of which task
in generating set to produce the child node can get the
maximum benefit later on. This is because some of the tasks
might have already executed when a certain new request
arrives. Selecting a task with the least execution time can
maximize current utilization of the resource while selecting
one with the highest deadline can decrease the probability of
infeasibility of a potential future schedule. In order to balance

the two factors – current utilization and flexibility in
scheduling – the algorithm first calculates the effective laxity
of generating set tasks as seen at the start time of the critical
task. If i is the critical task and j one of the tasks in the
generating set, effective laxity of j at ti can be given as dj – ejb
– ti. The algorithm then selects the task with the highest
effective laxity to produce the child node. Note here that the
algorithm selects a task with the highest flexibility and hence
minimizes the chance of an infeasible schedule. At the same
time, if two tasks have equal deadlines, a task with a lower
execution time would be selected to produce a child node.
This would increase the current utilization of the resource.

As the number of tasks in the initial solution increases, the
number of nodes in the search tree grows exponentially,
making the process inscalable for large number of tasks. As
mentioned earlier, we solve this problem by finding a suitable
subset of tasks in the current resource schedule before
obtaining the initial solution. In order to find that subset S,
we first create a timeline of all tasks in queue and all advance
reservations already committed, using their scheduled-times
as determined during the previous run of the algorithm. Then
we find out a suitable start point and end point on that
timeline such that all tasks that belong to S lie between these
two points. Initially, we set S = {New Task} and start point
SP and end point EP as follows:

SP = max {current system time, min {ti for all tasks i in
S}}
EP = max {di for all tasks i in S}
Then we add tasks in S during each iteration according to

the following rules:
1. If any job i not in S has ti >= SP and its scheduled-time <
EP, then add i to S.
2. If any job i not in S has a scheduled-time < EP and it
finishes its execution after SP, then add i to S.

 We update SP and EP after each iteration. The iterations
continue until no new task is added to S. When S is obtained
using the given methodology, all tasks that can affect the
feasibility of the new schedule are included in S and we call S
is complete. We further optimized the algorithm to reduce its
completion time and we present the optimized algorithm
next.

Let TIU be total time units encountered during the
algorithm at which the resource was idle and let TIUS be
total idle time units in the current idle segment of resource
schedule. Let SP and EP be the current start point and end
point respectively and let ti, eib and di be the start time,
execution time and deadline of the new task request.

Step 1: Initialize TIU and TIUS = 0 and SP and EP = ti. Set S
= {New Task}.

Step 2: Check if any of the following conditions is true,
A. If EP < di and the new task is a preemptable task and

TIU equals eib.
B. EP is equal to the highest deadline among all tasks in

S.
C. TIU = x*eib.
D. TIUS = y*eib.

543

Where x and y are the tuning parameters for the
algorithm. If any of the above conditions is true, break out
of the algorithm.

Step 3: If no task is scheduled at EP, increment TIU, TIUS
and EP by 1 and go to Step 2. Otherwise, go to step 4.

Step 4: Set TIUS = 0. Call the task scheduled at EP, task j.
Increment EP by 1 recursively as long as in the resource
schedule task j is scheduled at EP. If task j is already in S,
go to Step 2. Otherwise, add it to S, and check if tj < SP.
If it is not, go to Step 2. Otherwise, check if j has a finite
deadline. If it does not have a finite deadline, set SP equal
to scheduled-time of j and go to Step 2.

Step 5: If tj < current system time, add all tasks scheduled
between current system time and SP to S and set SP =
current system time and go to Step 2. Otherwise, add all
tasks that are scheduled between tj and SP to S.

Step 6: Find all tasks scheduled between tj and SP that have a
start time less than tj and have a finite deadline. If no such
task exists set SP = tj and go to Step 2.

Step 7: Set SP = tj and select among the tasks found in Step 6,
the one with the earliest start time and call it task j. Go to
Step 5.

If S is obtained using the above algorithm, all tasks that are
scheduled before start point but after the current system time
are those that finish their execution before the start time of
any of the tasks in S. Hence, they will not affect the
scheduled-time of any of the tasks in S and hence of the new
request. Note that, in Step 4 and Step 6, if the task that has a
start time less than start point is an OD request we do not set
SP equal to its start time. The reason is that an OD can be
delayed indefinitely and hence can never make an AR miss
its deadline. In the above algorithm, the terminating condition
A is derived from the fact that a preemptable task can execute
whenever the resource is idle. Hence, the resulting schedule
will always be feasible. Thus by definition, S is complete. If
condition B is true and the resulting schedule is an infeasible
schedule, then the new task cannot be accommodated in the
current schedule even if we include all the tasks that are
scheduled after the end point. The reason is that the tasks that
are scheduled after the end point can not improve the lateness
of the critical task. Hence, for Condition B as well, S is
complete. Parameters x and y (x > y) in condition C and D
respectively are the tuning parameters for the algorithm and
depends on the nature and size of tasks in the schedule No
task that is scheduled after the end point can delay the
execution of any of the tasks in S. However, the tasks in S
may affect the scheduled-time of the tasks scheduled after the
end point. If such a condition occurs then during the schedule
update process, there exist conflicts in the resulting schedule.
In order to avoid such conflicts, it is advisable to over
estimate the end point when terminating through conditions C
and D. This can be done by suitably selecting x and y.
However, if a conflict still occurs, we re-obtain S and the new
schedule. This process is repeated until no conflict occurs.

The SSS main algorithm can be written as a sequence of
following steps:

Step 1: Whenever a new request arrives, obtain S using the
methodology described earlier.

Step 2: Determine the initial solution using modified earliest-
deadline-first strategy and check it for feasibility and
optimality. If the initial solution is feasible, go to Step 5.
If the initial solution is infeasible and optimal, go to Step
6. Otherwise, initialize a new vector of nodes v.
Determine the generating set for the initial solution and
add initial solution to v.

Step 3: If v is empty, go to Step 6. Otherwise, produce a child
node of the last node in v. This is done by setting the start
or ready time of the task with the highest effective laxity
in the generating set equal to ti. Remove that task from
generating set of last node in v. If the resulting generating
set size of that node is zero, remove that node from v.

Step 4: Obtain a solution for the new child node using
modified earliest-deadline-first strategy and check it for
feasibility and optimality. If the solution is feasible, go to
Step 5. If the solution is infeasible but not optimal,
determine its generating set and add the solution to vector
v. Go to Step 3.

Step 5: Check if the new task is accepted would there be any
schedule conflicts during the schedule update process. If
there are schedule conflicts, re-obtain S using the
algorithm given earlier, setting initial value of end point
equal to the current end point and go to step 2. Otherwise,
accept the task and break out of the algorithm.

Step 6: Reject the new task.

Note that the SSS algorithm limit the growth of nodes with
the number of tasks by, a) running the algorithm for a subset
of tasks, b) by logically selecting and producing only one
node at a time. This reduces the number of open nodes in
memory by a large factor. As opposed to at least thousands of
nodes, in algorithms presented in [7, 17], for just 100 tasks,
the SSS algorithm never had more than 120 nodes in memory
for even 100,000 tasks. We discuss the performance of the
SSS algorithm in Section V-D.

 In order to study the scenarios in which overheads are
associated with task preemption and its resumption, we make
some modifications in the SSS algorithm. The details of the
algorithm for studying scenarios with overheads are available
in [19].

IV. EXPERIMENTAL SETUP

In order to study the performance of advance reservation
based scheduling of lightpaths in a Grid based dynamic
optical network, we wrote a simulator. The simulation model
models a lightpath as a resource which is subjected to arrivals
of data transfer requests. Each transfer request or task is a
schedulable entity and is associated with a start time and a
deadline by which it must be completed. Using an open
model we assume that a stream of requests arrives at a
resource (lightpath) and a scheduler is deployed for
scheduling of the tasks on the resource. The scheduler
maintains a timeline of the scheduled-times of different
transfer requests and sends update messages to sources of

544

data transfer requests for the current scheduled-time(s) of
their data transfer request(s). At the scheduled-time of a
particular transfer, the source of that transfer initiates the data
transfer. For transfer requests that can be segmented, the
source is informed of the scheduled-times of different
segments of the requests. We assume that the system has
capabilities to break up a data transfer requests into segments
at the source and re-assemble it at the receiver. Note that data
in optical form is not buffered at any point.

A. Performance Metric

The following performance metrics have been used for
evaluation.

Probability of Blocking (Pb): Pb is the probability that a data
transfer request would be rejected because it cannot be
accommodated in the current schedule without violating the
deadlines of any of the requests. It can be calculated as:

Pb = Total Number of Requests Rejected / Total Number
of Requests (3)

Utilization (U): U of a lightpath is the fraction of the total
time the lightpath is transferring data. This does not include
the time spent in switching and other overheads associated
with data segmentation.

Mean Response Time of On-Demand Requests (ROD): ROD is
the mean time between the submission of an on-demand
request and its completion.

Mean Response Time of Advance Reservation Requests (RAR):
RAR is the mean time between the start time of an advance
reservation request and the time of completion of the task
associated with that request.

B. Workload Parameters

Following are the workload parameters of interest.

Service Times of Tasks: For some of our experiments, we
have used a uniform distribution for the size of the data
transfer requests. A uniform distribution for modeling size of
tasks has been used in other researches on advance
reservation based scheduling (see [15], for example). This
research models service time of the tasks uniformly
distributed between 10 minutes and 90 minutes with a mean
of 50 minutes. For data transfer requests on a Grid based
dynamic optical network such a distribution of service times
corresponds to data transfer requests between 10GByte and
100GByte on the OMNInet optical network [6, 18].

Uniform distribution has a relatively small co-efficient of
variation. To study the effect of high variability in the sizes of
the data transfer requests we have also used a bi-phase hyper-
exponential distribution with a co-efficient of variation of 2.
We choose the mean of hyper-exponentially distributed
execution time E to be equal to 50 minutes which is equal to
the mean E of the uniform distribution.

Mean Arrival Rate (λ): The preliminary experiments showed
that a low arrival rate, which results in poor utilization of the

lightpath, does not generate interesting results while a very
high arrival rate saturates the system by generating more
requests than the lightpath can handle. Thus, a mean arrival
rate λ of 0.014 requests per minute is used. The arrival
process followed a Poisson distribution. If all requests are
accepted then this arrival rate results in a utilization of 0.7 (=
0.014 * 50). This value of maximum utilization is consistent
with earlier research on AR based scheduling [14].

Time between the Arrival of an Advance Reservation Request
and its Start Time (TS): Unlike on-demand requests that
submit their tasks to the resource at the time of request,
advance reservation requests reserve the resource for some
time in future. In our experiments, ARs can request to reserve
the lightpath for any time between the current system time
and the next 12 hours. This time between the arrival of an
advance reservation request and its start time is modeled as a
uniform distribution. Such a distribution is also used in other
studies such as [14]. The results show that if we change TS, it
has a negligible effect on the overall system performance.

Proportion of Advance Reservations (PAR): PAR is the
proportion of advance reservation requests in the total
number of requests. We study system performance for
different values of PAR by varying it between 0, where all
requests are on-demand, and 1, where all requests are
advance reservations, in the steps of 0.1. Total number of
requests always remains the same.

Mean Percentage Laxity (L): A uniform distribution for the
laxity of tasks is used with the lowest value of the distribution
fixed at 0. Mean percentage laxity L is varied between 0%
and 500%.

Data Segmentation: For the experiments, we consider two
scenarios with respect to data segmentation. In the first
scenario, all data transfer requests are non-segmentable and
each time the lightpath is allocated for the complete duration
of the request. In the second scenario, data is segmented if
necessary to improve the utilization of the lightpath. In this
scenario, the scheduler schedules different chunks of the
request at different times. We consider switching and other
overheads for the scenario with data segmentation.

Priority of Advance Reservations over On-Demand Requests:
We have done the experiments for two types of scenarios
with respect to the priority of advance reservations over on-
demand requests. In the first type, ARs have high priority and
they can delay any number of ODs arbitrarily. Such scenarios
can result in large wait times for the on-demand requests. In
the second type, ARs can delay ODs only to a certain degree.
In this paper, we present results only for the first type of
scenario. The results for the second type are available in [19].

C. Accuracy of the Results

Tests were run long enough, and repeated multiple times,
to obtain reasonably small confidence intervals for the
performance metric. For uniformly distributed E, we obtained
confidence intervals of ±1% for Pb, ±0.2% for U and ±1.5%

545

for ROD and RAR at a confidence level of 99%. For hyper-
exponentially distributed E, confidence intervals of ±3% for
Pb, ±0.6% for U and ±5% for ROD and RAR were obtained at a
confidence level of 95%. For all graphs to be presented in
Section V, the mean of the performance metric is plotted.

Table 1 summarizes the cases studied in this paper. The
values of the fixed parameters in these experiments are λ =
0.014 requests/minute, E = 50 minutes and TS = 6 hours.
Levels of PAR = 0 to 1 in the steps of 0.1 and levels of L =
{0, 20, 60,100,150,200,500}%

TABLE 1
CASES STUDIED IN THE EXPERIMENTS.

Case
No. Data Segmentation Distribution of Task

Service Times Symbol

1 No Uniform NU

2 Yes, with and
without overheads Uniform SU

3 No Hyper-Exponential NH

4 Yes, with and
without overheads Hyper-Exponential SH

V. SYSTEM PERFORMANCE

A. Effect of Proportion of Advance Reservations and Laxity

 This section presents the effect of the proportion of
advance reservations and laxity on the performance of
scheduling advance reservation and on-demand request for
lightpaths in a Grid based dynamic optical network. Due to
space limitation, we only briefly discuss the NU case in Table
1 in this section. Results and details for other cases are
available in [19].
 Some of the results for the NU case have been published in
[8] but in order to explain the results in the next sections they
are also included in this paper.

Probability of Blocking: Fig. 1 shows that with an increase in
PAR, Pb increases. This is because that unlike ODs that do
not have any deadlines ARs have finite deadlines. As the
proportion of ARs in the workload increases, it becomes
increasingly difficult to schedule them while meeting their
deadlines. Thus, more and more ARs are rejected. The results
show that this increase is not linear and there exists a knee on
the curve for a given value of laxity after which Pb increases
more rapidly. Given the mean laxity of the tasks, a resource
can limit the ratio of requests it accepts as ARs equal to the
value of PAR corresponding to the knee of the curve to keep
Pb at reasonable levels. The figure also shows that with an
increase in L, Pb decreases substantially. As expected, laxity
can improve the performance of scheduling AR requests for
lightpaths significantly by providing more flexibility in task
scheduling. The effect becomes more pronounced with the
increase in percentage of ARs. Thus for 80% requests
arriving as ARs, L = 200% can decrease Pb by 82.93%
compared to the case in which ARs have no laxity.

Utilization: Pb and U are related to each other as follows:

U = λ*(1 – Pb)*(R – W) (4)

Where R is the mean response time of the tasks accepted
and W their mean wait time. Note that R – W is not always
equal to E since tasks with higher service times have a high
probability of being rejected.

Thus, as Pb increases with the increase in PAR, U
decreases. The results available in [8] shows that by having
some laxity in the tasks we can substantially counter the
decrease in U with the increase in PAR. Just like the curves
for Pb, the curves for U are also characterized by a knee that
can act as a suitable operating point [8].

Since U and Pb are related, for the rest of the paper, we
present curves only for U.

Response Time of Advance Reservations and On-Demand
Requests: In Fig. 2(a), for smaller values of L, ROD first
increases with the increase in PAR until it reaches a
maximum value and then it starts decreasing. This is because
ARs can delay ODs arbitrarily. Thus, with an increase in
PAR, mean wait of ODs increases. This increases ROD with
the increase in PAR until it reaches its maximum value. As
PAR increases further, U decreases significantly and this
decreases the mean wait time of ODs. Hence, ROD decreases.
For a given value of PAR, increase in L (from 0% to 100%)
decreases ROD by increasing the wait times of ARs. However,
as L is increased beyond 100% there is no significant
decrease in U with the increase in PAR. This increases mean
wait times of both ARs and ODs. Hence, for large L values,
ROD is observed to increase with PAR.
 Fig. 2(b) shows that for L = 0%, RAR decreases slightly
with the increase in PAR. This is because with an increase in
PAR more schedule conflicts occur which increases the
probability of blocking of ARs with higher service times. As
ARs with higher service times are rejected, the mean service
times of ARs accepted decreases. This decreases RAR. As L
increases, mean wait times of ARs tend to increase which
increases RAR with L for the given value of PAR. For L
values between 0% and 150%, RAR does not change
significantly with PAR as the increase in wait time of ARs
with PAR is balanced by the decrease in the mean service
times of ARs accepted. For larger L values, Pb does not
increase significantly with PAR. This increases the mean wait
times of ARs substantially and hence RAR is observed to
increase with PAR.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.2 0.4 0.6 0.8 1

PAR

P b

0% L
20% L
60% L
100% L
150% L
200% L
500% L

Fig. 1: Probability of Blocking for the NU Case (From [8])

546

 (a)

100

120

140

160

180

200

220

240

260

0 0.2 0.4 0.6 0.8 1

PAR

R
O

D
 (m

in
ut

es
) 0% L

20% L
60% L
100% L
150% L
200% L
500% L

(b)

0

10

20

30

40

50

60

70

80

90

100

110

120

0 0.2 0.4 0.6 0.8 1

PAR

R
AR

 (m
in

ut
es

) 0% L
20% L
60% L
100% L
150% L
200% L
500% L

Fig. 2: Response Time for the NU Case (From [8])

(a) Effect of PAR on ROD (b) Effect of PAR on RAR

B. Effect of Data Segmentation

 This section presents the effect of data segmentation on the
performance. We, thus, compare the results for the NU and
NH cases in Table 1 where data is not segmented with the SU
and SH cases where data is segmented. For the SU and SH
cases, we not only consider the scenario in which no
overheads are associated with data segmentation but also
introduce overheads O as a percentage of mean service times
E of the tasks. O represents time spent in overheads such as
path tear down and network reconfiguration. When a client
accesses the optical network through a control plane
mechanism such as Optical Dynamic Intelligent Network
Service (ODIN) [20], the total time spent in overheads is just
less than 1 minute [6] including the ODIN server processing
delay, path tear down and network reconfiguration. However,
if the client accesses the optical network through a customer
portal the total time spent in overheads can be order of few
minutes as in addition to the delays incurred in the control
plane mechanisms there are delays at the portal server that
handles billing and account aspects. We vary O between 0%
of E (0 minutes) representing the ideal case to 30% of E (15
minutes) representing the worst case scenario.

The results presented in this section are for PAR = 0.4 as
we expect less than half of the requests to be ARs in future
Grid based scenarios. Results for other values of PAR are
available in [19]. In Fig. 3, Fig. 4 and Fig. 5 we show the
percentage increase in U, ROD and RAR respectively, when
data is segmented compared to the case when it is not
segmented.

(a)
PAR = 0.4

-0.2%

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

0% 100% 200% 300% 400% 500%

L

Pe
rc

en
ta

ge
 In

cr
ea

se
 in

 U

O = 0% of E O = 10% of E O = 20% of E O = 30% of E

(b)

PAR = 0.4

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

0% 100% 200% 300% 400% 500%

L

Pe
rc

en
ta

ge
 In

cr
ea

se
 in

 U

O = 0% of E O = 10% of E O = 20% of E O = 30% of E

Fig. 3: Effect of Data Segmentation on Utilization

(a) Effect on U for Uniformly Distributed Service Times (b) Effect on U for
Hyper-Exponentially Distributed Service Times

Fig. 3(a) shows that for a given L, U in the SU case is
higher than that with the NU case. The reason is that
segments of data in the SU case can be scheduled on small
slots of idle periods where non-segmentable requests can not
be accommodated. This decreases Pb and increases U.
However, the results show that for uniformly distributed
service times of tasks with low co-efficient of variation, this
effect is not very pronounced and the effect diminishes as
overheads are introduced. The difference in utilization in Fig.
3(a) peaks at 1.05% when no overheads are associated with
data segmentation. Results presented in Fig. 3(b) for the
hyper-exponentially distributed service times are similar to
Fig. 3(a) but show that when the variability between the
service times is large, the improvement in U is much more
pronounced with a peak at 3.15%.

Fig. 3 also show that difference in utilization is a non-
linear function of laxity with maxima near L = 70%. The
reason is that with L = 0%, even in the SU and SH cases none
of the requests can be “preempted” (segmented), as
preemption for a non-zero time would make them miss their
deadline. As L increases, more and more requests can be
preempted for non-zero times thus accommodating more
requests and the difference in U increases until it reaches its
maximum value. For very high L values, most of the requests
even with non-segmentable scenarios can be successfully
scheduled and hence the option of segmentation does not
bring a substantial difference in U. This shows that laxity can
be exchanged for segmentation for achieving high utilization.

547

(a)
PAR = 0.4

-30%

-20%

-10%

0%

10%

20%

30%

40%

0% 100% 200% 300% 400% 500%

L

Pe
rc

en
ta

ge
 In

cr
ea

se
 in

 R
O

D

O = 0% of E O = 10% of E O = 20% of E O = 30% of E

(b)

PAR = 0.4

-70%

-60%

-50%

-40%

-30%

-20%

-10%

0%
0% 100% 200% 300% 400% 500%

L

Pe
rc

en
ta

ge
 In

cr
ea

se
 in

 R
O

D

O = 0% of E O = 10% of E O = 20% of E O = 30% of E

Fig. 4: Effect of Data Segmentation on Response Time of ODs

(a) Effect on ROD for Uniformly Distributed Service Times (b) Effect on ROD
for Hyper-Exponentially Distributed Service Times

Fig. 4(a) shows that for lower L values, ROD in the SU case
is lower than that in the NU case. This is because in the SU
case, the OD requests need not be delayed to accommodate
ARs as their segments can be scheduled in small idle slots in
the lightpath schedule. With the increase in L, difference in
ROD starts decreasing until it becomes zero and then it starts
increasing in the opposite direction i.e. ROD for the SU case
starts becoming higher compared to that in the NU case. On
the other hand, in Fig. 5(a) with the increase in L, RAR with
the SU case becomes smaller and smaller compared to that
with the NU case. This shows that in the SU case many OD
requests with infinite deadlines are “preempted” (segmented)
by the scheduler for AR requests with smaller deadlines. This
is because the scheduler employs modified earliest-deadline-
first strategy to find an initial solution. On the other hand, in
the NU case as L increases, comparatively less number of
ODs needs to be re-scheduled to a later time to accommodate
ARs. For higher L values, this results in ROD for the SU case
to be higher than that for the NU case while RAR for the SU
case to be smaller than that for the NU case.

The results in Fig. 4(b) and Fig. 5(b) are similar to those in
Fig. 4(a) and Fig. 5(a) respectively. However, in Fig. 4(b)
initially ROD with the SH case is so small in comparison to
the NH case that although the difference between ROD with
the SH case and that with the NH case becomes smaller and
smaller with the increase in L, ROD with the SH case never
becomes higher than that in the NH case even when 30%
overheads are associated with segmentation.

(a)
PAR = 0.4

-18%

-16%

-14%

-12%

-10%

-8%

-6%

-4%

-2%

0%
0% 100% 200% 300% 400% 500%

L

Pe
rc

en
ta

ge
 In

cr
ea

se
 in

 R
A

R

O = 0% of E O = 10% of E O = 20% of E O = 30% of E

(b)

PAR = 0.4

-45%

-40%

-35%

-30%

-25%

-20%

-15%

-10%

-5%

0%

5%

0% 100% 200% 300% 400% 500%

L

Pe
rc

en
ta

ge
 In

cr
ea

se
 in

 R
A

R

O = 0% of E O = 10% of E O = 20% of E O = 30% of E

Fig. 5: Effect of Data Segmentation on Response Time of ARs

(a) Effect on RAR for Uniformly Distributed Service Times (b) Effect on RAR
for Hyper-Exponentially Distributed Service Times

The results thus show that data segmentation can result in
an improvement in performance in terms of higher unitization
and lower response times if the co-efficient of variation of the
size of data transfer requests is high. However, segmentation
is not justified for uniformly distributed task service times
with low co-efficient of variation.

C. Preventing Starvation of On-Demand Requests

Results in Section V-A show that with the increase in PAR,
ROD increases significantly. The effect is more pronounced
for higher L values. A very high response time for ODs will
encourage all users to submit their tasks as ARs which would
increase PAR. For lower L values, this would decrease their
response time but at a cost of low utilization of the lightpath.
For higher L values, with the increase in PAR, there would
not only be a slight decrease in U but also a tremendous
increase in the response time of all requests (see Fig. 2). In
order to prevent these situations resulting from potential
starvation of on-demand requests a resource should guarantee
a reasonable response time for the tasks submitted as ODs.
To ensure this a resource can associate a virtual deadline with
all ODs and during the scheduling process can make sure that
most of ODs meet their deadlines. In order to study this, we
associated a deadline with ODs and ensured that each OD
accepted meets its deadline. Our results show that associating
a virtual deadline with ODs can effectively decrease the
response time of ODs without significantly decreasing U or
substantially increasing RAR. The results are available in [19].

548

D. Performance of the SSS Algorithm

The SSS algorithm for scheduling advance reservation
requests with laxities successfully scheduled hundreds of
thousands of tasks. The results show that the mean number of
nodes produced to schedule given number of tasks depends
on PAR and L in addition to the distribution of service times
of the tasks. Maximum numbers of nodes open at one time,
for 100,000 tasks never exceeded 120. Detailed analysis of
the performance of the algorithm is available in [19].

VI. CONCLUSIONS

Dynamic optical networks hold the potential of satisfying
very large bandwidth requirements of many of the Grid
applications. However, encapsulation of optical network
elements into manageable Grid resources and dynamic
provisioning of lightpaths is necessary to meet the demands
of the Grid applications and to optimize usage of optical
network components. In this paper, we presented an
algorithm to dynamically schedule on-demand and advance
reservation requests for lightpaths. The results show that the
algorithm is scalable and suits well the needs of the Grid
domain.

The performance results obtained using the algorithm show
that laxity in the reservation window can significantly
improve the performance of the network by reducing the
probability of blocking and increasing lightpath utilization.
The effect is more pronounced for the cases where proportion
of advance reservations is high. When Pb is plotted against
PAR, there exists a knee on the curve for a given value of
laxity after which Pb increases more rapidly. Given the mean
laxity of the tasks, the network can limit the ratio of requests
it accepts as ARs equal to the value of PAR at the knee of the
curve to keep Pb at reasonable levels.

We also investigated the effect of data segmentation on
system performance. The results show that choice of
segmentation depends largely on the distribution of the task
service times. When the variance between the service times is
small, there is no significant advantage in segmenting data.
For the values of the parameters in the experiments,
maximum increase in utilization for uniformly distributed
task service times is 1.05% and it diminishes as overheads of
segmentation are considered. For hyper-exponentially
distributed task service times with a co-efficient of variation
of 2, the effect of data segmentation is much more
pronounced. In our experiments, for hyper-exponentially
distributed service times, data segmentation resulted in an
increase in utilization of up to 3.15% and substantial decrease
of up to 60.7% in ROD and up to 43.38% in RAR.

The results also show that the improvement in performance
with segmentation is sensitive to L. With the workload
parameters in the experiments, maximum improvement in
utilization is achieved near L = 70%. At higher L values,
difference in utilization diminishes. This suggests that laxity
can be exchanged for data segmentation to achieve high
utilization of lightpaths.

REFERENCES

[1] The compact Muon Solenoid Project. http://cmsinfo.cern.ch/
[2] PPDG Deliverables to CMS. http://www.ppdg.net/archives/ppdg/2001/

doc00017.doc
[3] K. Marzullo, M. Ogg, A. Ricciardi, A. Amoroso, F. Calkins, E.

Rothfus, “Nile: Wide-area computing for high energy physics,” in the
Proc. of the 7th ACM SIGOPS European Workshop, Connemara,
Ireland, Sept. 1996.

[4] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Foster, C.
Kesselman, S. Meder, V. Nefedova, D. Quesnel, S. Tuecke, “Secure,
Efficient Data Transport and Replica Management for High-
Performance Data-Intensive Computing,” in the Proc. of the IEEE
Mass Storage Conference, San Diego, CA, pp. 13-28, April 2001.

[5] User Controlled Lightpaths. http://www.canarie.ca/canet4/uclp/
[6] T. Lavian, S. Merrill, H. Cohen, D. Hoang, J. Mambretti, S. Figueira,

D. Cutrell, S. Naiksatam, F. Travostino, “A Grid Network Service
Architecture for Dynamic Optical Networks,” submitted to the Journal
of Grid Computing, special issue on High Performance Networking.

[7] G. McMahon, M. Florian, “On Scheduling with Ready Times and Due
Dates To Minimize Maximum Lateness”, Operations Research, vol.
23, no. 3, pp. 475-482, May-June, 1975.

[8] U. Farooq, S. Majumdar, E. W. Parsons, “Impact of Laxity on
Scheduling with Advance Reservations in Grids”, in the Proc. of the
13th IEEE International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems, Atlanta,
Georgia, USA, September, 2005.

[9] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, A. Roy, “A
Distributed Resource Management Architecture that Supports Advance
Reservations and Co-Allocation,” in the Proc. of the 7th International
Workshop on Quality of Service, London, UK, May 1999.

[10] I. Foster, A. Roy, V. Sander, “A Quality of Service Architecture that
Combines Resource Reservation and Application Adaptation,” in the
Proc. of the 8th International Workshop on Quality of Service,
Pittsburgh, PA, USA, pp. 181-188, June 2000.

[11] I. Foster, J. Vockler, M. Wilde, Y. Zhao, “The Virtual Data Grid: A
New Model and Architecture for Data-Intensive Collaboration,” in the
Proc.s of the First CIDR - Biennial Conference on Innovative Data
Systems Research, Asilomar, CA, USA, Jan. 2003.

[12] T. Kosar and M. Livny, “Stork: Making Data Placement a First Class
Citizen in the Grid,” in Proc. of 24th IEEE International Conference on
Distributed Computing Systems, Tokyo, Japan, March 2004.

[13] The Maui Scheduling System. http://www.mhpcc.edu/ maui.
[14] W. Smith, I. Foster, V. Taylor, “On Scheduling with Advanced

Reservations,” in the Proc. of the IEEE/ACM 14th International
Parallel and Distributed Processing Symposium, Cancun, Mexico, May
2000.

[15] A. Sulistio, R. Buyya, “A Grid Simulation Infrastructure Supporting
Advance Reservation,” in the Proc. of the 16th International
Conference on Parallel and Distributed Computing and Systems,
Cambridge, Boston, USA, Nov. 2004.

[16] S. Figueira, N. Kaushik, S. Naiksatam, S. A. Chiappari, N. Bhatnagar,
“Advance Reservation of Light-paths in Optical-Network Based
Grids,” in the Proc. of 1st International Workshop on Networks for
Grid, San Jose, CA, USA, Oct. 2004.

[17] J. Xu, D. Parnas, “Scheduling Processes With Release Times,
Deadlines, Precedence And Exclusion Relations,” IEEE Transactions
on Software Engineering, vol. 16, no. 3, pp. 360-369, 1990.

[18] S. Figueira, S. Naiksatam, H. Cohen, D. Cutrell, D. Gutierrez, D. B.
Hoang, T. Lavian, J. Mambretti, S. Merrill, F. Travostino, “DWDM-
RAM: Enabling Grid Services with Dynamic Optical Networks,” in the
Proc. of the 4th IEEE International Symposium on Cluster Computing
and the Grid, Chicago, IL, USA, April 2004.

[19] U. Farooq, S. Majumdar, E. W. Parsons, “Efficiently Scheduling
Advance Reservations in Grids,” Technical Report SCE-05-14,
Department of Systems and Computer Engineering, Carleton
University, Ottawa, Canada, August 2005.

[20] J. Mambretti, J. Weinberger, J. Chen, E. Bacon, F. Yeh, D. Lillethun,
B. Grossman, Y. Gu, M. Mazzuco, “The Photonic TeraStream:
Enabling Next Generation Applications Through Intelligent Optical
Networking at iGrid 2002,” Journal of Future Comp. Systems, pp.897-
908, Aug. 2003.

549

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

