
 
Efficiently Scheduling Advance Reservations in Grids 

 
 

Umar Farooq, Shikharesh Majumdar, Eric W. Parsons 
Department of Systems and Computer Engineering 

Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6 
{ufarooq, majumdar}@ sce.carleton.ca, eparsons@acm.org 

 
 
 
 

Carleton University 
Department of Systems and Computer Engineering 

Technical Report SCE-05-14, August 2005. 
© 2005 Umar Farooq, Shikharesh Majumdar and Eric W. Parsons 

 
 
 
 
 
 
 
 
 

Abstract 
Advance reservations (ARs) were introduced for application-level dynamic scheduling of resources in a Grid 
infrastructure. Advance reservations of resources for a specific time in future not only ensure that all resources 
would be simultaneously available at the execution time of the application but also ensure that the QoS constraints 
of the Grid applications would be met. Previous research shows that ARs can meet their objectives but at a 
significant performance cost. In this paper, we argue that laxity in the reservation window of an AR can help 
improve performance of scheduling with advance reservations. Scheduling ARs with given laxities is an NP-Hard 
problem and the paper presents a scalable algorithm for scheduling on-demand and advance reservation requests 
with laxities. The paper then investigates in detail the effect of proportion of advance reservations, laxity and 
distribution of the size of tasks on performance through extensive experimentation. The paper also investigates that 
how much improvement in performance can be gained by task preemption and up to what percentage of overheads 
is preemption justified in scheduling of on-demand and advance reservation requests. We demonstrate how, for 
some workloads, laxity can be exchanged for preemption to achieve high utilization. Finally, the paper studies 
resource level policies to prevent starvation of on-demand requests. 
  
 
 
Key Words: Computational/Data Grids, Resource Management in Grids, Advance Reservations, Grid Scheduler, 
Grid System Performance, Scheduling with Deadlines.   
 

  

 

 



 2

1. INTRODUCTION 
Grid computing aims to provide dynamic, secure and coordinated sharing of heterogeneous resources across 
administrative and geographical boundaries. Virtually everything ranging from computers and networks to databases 
and scientific instruments can be viewed as potential Grid resources and can be shared among Grid users in 
accordance with certain policies and service level agreements. Grid computing applications varies from distributed 
supercomputing [1, 2] to high-throughput computing [3], from data-intensive computing as in high-energy physics 
[4] to collaborative computing [5, 6], from remote medicine to digital sky survey. In addition, in future, enterprise 
computing and utility grids will provide on-demand access to virtually limitless computing, storage and network 
capacities through the formation of virtual organizations. Each virtual organization may spread over multiple 
administrative domains.    
 
Many Grid applications have requirements for heterogeneous resources that are independently controlled or 
administered. Since resources belonging to different administrative domains do not share their schedules, if a user’s 
application needs to access more than one resource simultaneously, the user either has to arrange for it through the 
domain administrators or submit the tasks of the job to queues of different resources without any guarantees that all 
resources would be available simultaneously. In order to address this problem, advance reservations (ARs) were 
introduced as a part of Globus Architecture for Reservation and Allocation (GARA) [7]. Advance reservations of 
resources for a specific time in future ensure that all resources would be simultaneously available at the execution 
time of the application. As by reserving resources in advance, one can provide an upper bound on the response time, 
ARs can also be used for ensuring end-to-end quality of service. For jobs with sequential tasks, the response time of 
the first resource in sequence can become the start time of the reservation for the second resource and so on; thus 
guaranteeing the end-to-end response time.  
 
Despite their attractive features, advance reservations have a downside – they can cause severe performance 
degradation. They result in lower utilization of the resources as they leave fragments of time in resource schedules 
where no tasks can be scheduled. They also increase wait times of the requests that are submitted to the queues of 
the resources instead of being submitted as advance reservations. Such requests are commonly known as on-demand 
requests (ODs) in the Grid community. Sulistio [8] and Smith [9] have studied the performance of ARs. Their 
results show that with only 20% of the tasks arriving as advance reservations, the utilization can go as low as 66% of 
the case where none of the tasks are advance reservations while mean wait times of the on-demand requests can 
increase by 71%. Their analysis is based on the assumption that the deadline to finish the advance reservation 
request is equal to reservation start time plus the worst-case execution time of the task on the resource. However, we 
argue that by having some amount of laxity in the reservation window we can improve the performance of advance 
reservation based scenarios by having more flexibility in task scheduling. Laxity of a task on a certain resource is 
the difference between its deadline and the time at which it would finish executing on that resource if it starts 
executing at its start time. The idea of laxity is not new to the scientific community where task requests are 
commonly specified with a ready time, an execution time and a deadline, and the deadline is usually greater than the 
sum of the ready and execution times. Lavian et al. [10] also follow the same approach for specifying data transfer 
requests in a Grid based dynamic optical network. However, they have not presented any algorithm for scheduling 
such requests.  
 
It is to be noted that the idea of laxity may not work for some scenarios where, for instance, parallel tasks of an 
application running on different resources need to communicate while executing. In such cases, it may be necessary 
to ensure that all parallel tasks are scheduled on different resources at exactly the same time.  For single-task and 
sequential applications and for applications with parallel branches that do not communicate, we can take advantage 
of laxity in the reservation window. Applications with multiple tasks, for instance, can divide their end-to-end 
response time into response times for each phase of the job, each having some laxity.      
 
Scheduling advance reservation requests with a given start time, execution time and a given amount of laxity is an 
NP-Hard problem [11]. Algorithms presented in the real-time domain [11, 12] for solving similar problems have 
different goals – instead of maximizing utilization of the resource they try to minimize the response time of the 
critical task. In addition, these algorithms assume that all tasks to be scheduled are known in advance, which is not 
true for the Grid domain where tasks arrive one by one. Moreover, these algorithms do not scale for large number of 
tasks that are common in the Grid domain. It has been reported in [12] that for a problem size of 100 tasks, the 
algorithm presented in [11] was unable to terminate after generating several tens of thousand of nodes (temporary 



 3

schedules) while the algorithm in [12] generated a few thousand nodes. The number of nodes grows exponentially as 
the problem size increases [12]. These algorithms in their current form thus do not seem capable of scheduling 
thousands of requests in a Grid. Furthermore, the algorithm presented in [11] does not support preemptable tasks 
while the algorithm presented in [12] requires explicit preempt relations between tasks for supporting preemption. 
We have modified the algorithm presented in the real-time domain for making it suitable for the Grid domain. The 
algorithm, that we call the SSS (Scaling through Subset Scheduling) algorithm, is presented in this paper. The SSS 
algorithm can successfully schedule hundreds of thousands of tasks, and is capable of studying scenarios involving 
both non-preemptable and preemptable tasks. The contributions of this paper are as follows: 
  

 It studies in detail scheduling of advance reservations in Grids and argue that notion of laxity can improve its 
performance. 

 It presents a scalable algorithm for scheduling on-demand and advance reservation requests and studies its 
performance. 

 It presents results of the extensive sets of experiments that we have conducted to study in detail the effect of 
proportion of advance reservations, laxity and task preemption on the performance of scheduling with 
advance reservations for a variety of workload parameters. 

 As the proportion of advance reservations increases, system utilization goes down because of the generation 
of time slots in the schedule where no requests can be accommodated. Preempting tasks that can be resumed 
later from the point of interruption can potentially improve performance by filling in small empty time slots in 
the resource schedule. However, overheads are usually associated with task preemption and its resumption. 
This paper investigates that how much improvement in performance can be gained by preempting tasks and 
up to what percentage of overheads is preemption justified in scheduling of on-demand and advance 
reservation requests in Grids.  

 The paper also attempts to answer questions such as “Can laxity be exchanged for preemption to achieve high 
performance?” and “Does the effect of preemption diminish as laxity increases?” 

 Finally, the paper discusses resource level policies to prevent starvation of on-demand requests. 
 
The rest of the paper is organized as follows. Section 2 briefly reviews the related work and presents the system 
model used in the research. In Section 3, we discuss the NP hard problem and present our modified algorithm for 
finding a solution. We provide details on our experimental setup in Section 4. Section 5 studies in detail with the 
help of experimental results the effect of workload parameters, laxity and task preemption on the performance of 
scheduling with advance reservations. We conclude the paper in Section 6 and give directions for future research. 
 
2. BACKGROUND AND RELATED WORK 
Resource management in Grids is a challenging task because a typical Grid application needs multiple 
heterogeneous resources that may span over administrative boundaries. The application needs to satisfy local service 
level agreements of the resources and meet its QoS requirements within its budget constraints. Software 
infrastructures required for resource management and other things such as security, information dissemination and 
remote access are provided through Grid toolkits such as Globus [13] and Legion [14]. For scheduling 
computational and data resources required by Grid applications, Globus Resource Allocation Manager (GRAM) 
[15] was presented as a part of Globus Toolkit. Later, for application-level dynamic scheduling of collection of 
resources, co-allocation and advance reservations were introduced as a part of Globus Architecture for Reservation 
and Allocation (GARA) [7]. Since then advance reservations have been studied in numerous contexts such as 
architecture for ensuring end-to-end quality of service for network applications [16], architecture for data-intensive 
collaboration [17], scheduling of data placement activities [18], job scheduler for clusters and supercomputers [19] 
and Grid based architecture for dynamic optical networks [10].  
 
Smith [9] and Sulistio [8] have investigated the performance of scheduling with advance reservations. Naikastam et 
al. [20] have developed a tool for specifying on-demand and advance reservation requests for dynamic optical 
networks. They also study the performance of different algorithms for choosing appropriate light paths requested by 
ARs [20]. However, as in [8] and [9], it is also assumed in [20] that no reservation request has any laxity. Hence, all 
incoming advance reservation requests that overlap with any of the previously committed reservations are rejected in 
[20]. However, as in [10], this paper considers laxity in the reservation window. 
 



 4

2.1 System Model 
The abstract simulation model used in this research is based on Grid resources and tasks. A Grid resource may be a 
single CPU or a multiple CPU based computing device, a storage system or a system consisting of both CPU and 
storage devices. A task is a schedulable entity. It can be a Grid application consisting of a single or multiple 
components with precedence relationship among the components. The application is often associated with a start 
time and a deadline by which its processing must be completed. System management consists of two components: 
mapping that concerns the choice of the resource on which the application is to be executed and the scheduling of 
applications mapped to a given resource. This research is concerned with the second component. Using an open 
model we assume that a stream of tasks arrives at a resource and a scheduler is deployed for scheduling of the tasks 
on the resource. In a different scenario, the application may be decomposed into its constituent components each of 
which is characterized by a start time that depends on the precedence relationships and a deadline. Each component 
is then mapped to a specific resource. Note that the decomposition of the end-to-end deadline of the application into 
deadlines for the different components and the techniques for mapping of the application components to resources 
are beyond the scope of this research. Techniques for mapping application’s components to different available 
resources have been studied in several papers [21, 22, 23]. This research concerns the scheduling of the components 
mapped onto a given resource that is subjected to such task arrivals. The components of the different applications, in 
this scenario, are the schedulable task entities.  The results of this research are applicable in both of these scenarios. 
Based on a simulation model of a resource subjected to task arrivals, this paper focuses on task scheduling and the 
impact of laxity on system performance. Proportion of ARs in the total number of task arrivals is varied as one of 
the parameter.  
 
3. SCHEDULING ADVANCE RESERVATION REQUESTS WITH GIVEN LAXITIES 

3.1 Problem Definition 
In order to understand the problem of scheduling advance reservations with given laxities, let us consider the 
following definitions and assumptions. 
 

Ready or Start Time (ti): Ready time is the time at which the task associated with an on-demand request is sent 
to the queue of a resource and it is available to be picked up for execution. Start time of an advance reservation 
request is the time by which the application must make the task associated with the request available to the 
resource. A task can never start executing before its ready or start time. 
 
Service Time (eib):  Service time of a task i on a resource b is the time the task i takes to complete on the 
resource b. For example, in case of data transfer requests service time is the actual time the network takes to 
transfer the data from source to the destination. For compute tasks, service time is the time taken the by task to 
finish executing on a resource. As in [8, 9, 20], we assume that properties of the task such as the number of 
compute cycles in case of a compute task or bytes to be transferred in case of a network task are either known in 
advance or some statistics are available for their calculation. We also assume that when a task is executing on a 
resource, the resource does not execute any other task and hence service time of the task can be calculated by 
using appropriate statistics for the resource and the task.  
  
Deadline (di): Deadline of a task is the absolute deadline before which the task must be finished. Once 
committed a resource ensures that a deadline associated with each AR is met. In case of on-demand requests, 
the deadline to finish the task is assumed to be infinity. We discuss in Section 5.3, how a resource can 
implement policies to prevent starvation of the ODs. 
 
Laxity and Percentage Laxity: Laxity of a task i on a resource b is given by:  

  Laxity   =   di – ti – eib                 (3.1)  

We define percentage laxity L’ of a task i on a resource b as, 

  L’   =   Laxity of task i on resource b / eib             (3.2)     

 
Non-Preemptable and Preemptable Tasks: Non-preemptable tasks are those that cannot be resumed later. 
Hence, if for some reason their execution is interrupted they need to be restarted from beginning. Preemptable 



 5

tasks, on the other hand can be resumed later from the point of interruption. We consider the effect of overheads 
associated with task preemption and its resumption on performance.   
 
Scheduled-Time: Scheduled-time of a certain task is the time at which it is scheduled to start its execution 
under the current schedule of the resource. Different segments of a preemptable task may be scheduled to be 
executed at different times.   

 
A Grid resource would receive requests from different applications for execution of different tasks. The problem for 
a given resource b to solve is: 
 

Problem 1: Given a set of tasks {i, j, …, k} and sets of ready or start times {ti, tj, …, tk}, service times {eib, ejb, 
…, ekb} and deadlines {di, dj, …, dk}, schedule tasks {i, j, …, k} such that each task i starts executing after its 
ready or start time ti and finishes before its deadline di.  

 
3.2 Algorithm for Scheduling Advance Reservation Requests with Given Laxities 
Since in a Grid environment considered in the research new requests arrive continuously, the resource at the arrival 
of every new request tries to find a feasible schedule for the set of tasks already in schedule and the new request. If a 
feasible schedule is found, the request is committed and the new task is added to the set of scheduled tasks. 
Otherwise, the request is rejected. As each task finishes executing on the resource, it is removed from the set of 
scheduled tasks.  
 
It has been shown previously [11] that Problem 1 is an NP-Hard problem. Algorithms presented in the real-time 
domain [11, 12] for solving this problem do not scale for large number of tasks as mentioned in Section 1 and their 
completion times grow exponentially with the number of tasks. These algorithms first find an initial schedule using 
one of the well-known strategies such as the earliest-deadline-first strategy and then improve on the initial solution 
to reduce the lateness of the task that realizes the value of maximum lateness. They use branch and bound technique 
to find the optimal solution. 
 
In order to scale the algorithm for much larger number of tasks in the Grid domain, we present an algorithm in this 
paper that we call the SSS (Scaling through Subset Scheduling) Algorithm. Whenever a new request arrives, the SSS 
algorithm first finds all those tasks in the resource schedule that can affect the feasibility of the new schedule with 
the new request and then tries to work out a feasible schedule for only that subset of tasks S. This prevents the 
completion time of the algorithm from growing exponentially with the number of tasks. Since Problem 1 is an NP-
Hard problem, it is possible to come up with pathological situations (when the set S equals the set of all tasks in the 
system) in which the completion time of the SSS algorithm would grow exponentially with the number of tasks. 
However, we argue that such situations are not likely to arise in the Grid domain.  
 
By definition, S contains at least all those tasks that if not included in S, the resulting new schedule is infeasible 
while a feasible schedule exists. Thus, given the new request and the current resource schedule, the SSS algorithm 
always accommodates the new request in the resource schedule if it is feasible to do so. The discussion on finding 
that subset S is explained later in this section. Once the exact subset of tasks S is known, an initial solution can be 
worked out for that subset and the new request using any of the well-known strategies such as the earliest-deadline-
first and the least-laxity-first. We have modified the SCHRAGE heuristic [24] used in [11], for scenarios involving 
both non-preemptable and preemptable tasks for finding an initial solution. The modified heuristic can be given as a 
sequence of following steps: 
 

Step 1: Declare and initialize variable t and pT equal to 0.  
Step 2: Find among S, all tasks with ti <= t. If no such task exists, set t equal to the earliest ti among all tasks in 

S. 
Step 3: Among all tasks in S with ti <= t, select a task with the earliest di. Break ties by selecting a task with the 

highest eib. If the task selected is preemptable, go to Step 5. 
Step 4: Schedule the selected task at time t and set t = ti + eib. Remove the task from S and go to Step 7.  



 6

Step 5: If eib is the execution time of the selected task and di its deadline, then among all tasks in S with tk <= t + 
eib find all tasks with deadline less than di. If no such task exists, go to Step 4. Otherwise, among that 
set of tasks find a task with the earliest tk and set pT equal to its ready or start time.  

Step 6: Place the task selected in Step 3 from t to pT. Preempt that task at time pT. Update the execution time of 
that task in S as eib = eib – (pT – t). Set t = pT.   

Step 7: If S is not empty, set pT equal to 0 and go to Step 2. Otherwise, the initial solution is complete. 
 
The sequence of steps presented above shows that for non-preemptable tasks we do not remove the task until it 
finishes its execution on the resource even if during its execution a new task with a lower deadline becomes 
available for execution. This is because the task is non-preemptable. For preemptable tasks, we strictly use the 
earliest-deadline-first strategy.  
 
The initial solution, as obtained above, consists of periods of continuous utilization of the resource called blocks 
with idle periods separating the blocks. If the initial solution is feasible, we accept the new request and update the 
overall schedule of the resource. If it is infeasible, we check by calculating lower bounds on the lateness of tasks 
using equations given in [11], whether the lateness of the task that misses its deadline by more time than any other 
task, known as critical task, can be improved. If the lateness of the critical task cannot be improved, the solution is 
called optimal and we reject the new request. If the solution is infeasible but not optimal, we find a subset of tasks 
that if scheduled after the critical task can improve its lateness. Such a subset is known as generating set. It can be 
shown that if the initial solution is calculated using SCHRAGE heuristic or any of its derivates, generating set 
consists of the set of non-preemptable tasks that belongs to the same block as the critical task and have deadlines 
greater than that of the critical task [11]. For each task in the generating set, we can find a new solution by 
scheduling that task after the critical task. This can be done by setting the start or ready time of that task equal to the 
start time of the critical task and then obtaining a new solution using the modified SCHRAGE heuristic. The 
resulting set of solutions where each solution corresponds to each task in the generating set, if infeasible, can further 
be improved by finding their critical tasks and corresponding generating sets. This process is continued and we get a 
tree of solutions with the initial solution at its root. Each solution in a tree is known as a node. This process of node 
generation is continued until either a feasible solution is found or the algorithm determines that no feasible solution 
exists.  
 
In the algorithms presented in the real-time domain, all tasks are known in advance. However, in a Grid domain 
tasks arrive one by one. Hence, if the initial solution is infeasible but there exists more than one feasible solutions 
corresponding to more than one tasks in the generating set, there is no way to find out, selection of which task in 
generating set  to produce the child node can get the maximum benefit later on. This is because some of the tasks 
might have already executed when a certain new request arrives. Selecting a task with the least execution time can 
maximize current utilization of the resource while selecting one with the highest deadline can decrease the 
probability of infeasibility of a potential future schedule. In order to balance the two factors – current utilization and 
flexibility in scheduling – the SSS algorithm first calculates the effective laxity of generating set tasks as seen at the 
start time of the critical task. If i is the critical task and j one of the tasks in the generating set, effective laxity of j at 
ti can be given as dj – ejb – ti. The algorithm then selects the task with the highest effective laxity to produce the child 
node. Note here that the SSS algorithm selects a task with the highest flexibility and hence minimizes the chance of 
an infeasible schedule. At the same time, if two tasks have equal deadlines, a task with a lower execution time would 
be selected to produce a child node. This would increase the current utilization of the resource. 
 
As the number of tasks in the initial solution increases, the number of nodes in the search tree grows exponentially, 
making the process inscalable for large number of tasks. As mentioned earlier, we solve this problem by finding a 
suitable subset of tasks in the current resource schedule before obtaining the initial solution. In order to find that 
subset S, we first create a timeline of all tasks in queue and all advance reservations already committed, using their 
scheduled-times as determined during the previous run of the algorithm. Then we find out a suitable start point and 
end point on that timeline such that all tasks that belong to S lie between these two points. Initially, we set S = {New 
Task} and start point SP and end point EP as follows: 
 
Initially, 

S = {New Task} 
SP = max {current system time, min {ti for all tasks i in S}} 



 7

EP = max {di for all tasks i in S} 
 
Then we add tasks in S during each iteration according to the following rules: 

 If any task i not in S has ti >= SP and its scheduled time < EP, then add i to S. 
 If any task i not in S has scheduled time < EP and it finishes its execution after SP, then add i to S. 

 
When S is obtained using the given methodology, all tasks that can affect the feasibility of the new schedule are 
included in S and we call S is complete. We further optimized the algorithm to reduce its completion time and we 
present the optimized algorithm next. 
 

Let TIU be total time units encountered during the algorithm at which the resource was idle and let TIUS be 
total idle time units in the current idle segment of resource schedule. Let SP and EP be the current start point 
and end point respectively and let ti, eib and di be the start time, execution time and deadline of the new task 
request. 
Step 1: Initialize TIU and TIUS = 0 and SP and EP = ti. Set S = {New Task}. 
Step 2: Check if any of the following conditions is true, 
 A. If EP < di and the new task is a preemptable task and TIU equals eib.  
 B. EP is equal to the highest deadline among all tasks in S.  
 C. TIU = x*eib. 
 D. TIUS = y*eib. 
 Where x and y are the tuning parameters for the algorithm. If any of the above conditions is true, break 

out of the algorithm. 
Step 3: If no task is scheduled at EP, increment TIU, TIUS and EP by 1 and go to Step 2. Otherwise, go to step 

4. 
Step 4: Set TIUS = 0. Call the task scheduled at EP, task j. Increment EP by 1 recursively as long as in the 

resource schedule task j is scheduled at EP. If task j is already in S, go to Step 2. Otherwise, add it to S, 
and check if tj < SP. If it is not, go to Step 2. Otherwise, check if j has a finite deadline. If it does not 
have a finite deadline, set SP equal to scheduled-time of j and go to Step 2. 

Step 5: If tj < current system time, add all tasks scheduled between current system time and SP to S and set SP = 
current system time and go to Step 2. Otherwise, add all tasks that are scheduled between tj and SP to S.  

Step 6: Find all tasks scheduled between tj and SP that have a start time less than tj and have a finite deadline. If 
no such task exists set SP = tj and go to Step 2.  

Step 7: Set SP = tj and select among the tasks found in Step 6, the one with the earliest start time and call it task 
j. Go to Step 5. 

 
If S is obtained using the above algorithm, all tasks that are scheduled before start point but after the current system 
time are those that finish their execution before the start time of any of the tasks in S. Hence, they will not affect the 
scheduled-time of any of the tasks in S and hence of the new request. Note that, in Step 4 and Step 6 if the task that 
has a start time less than start point is an OD request we do not set SP equal to its start time. The reason is that an 
OD can be delayed indefinitely and hence it can never make an AR miss its deadline. Note that in the above 
algorithm, the terminating condition A is derived from the fact that a preemptable task can execute whenever the 
resource is idle. Hence, the resulting schedule will always be feasible. Thus by definition, S is complete. If condition 
B is true and the resulting schedule is an infeasible schedule, then the new task cannot be accommodated in the 
current schedule even if we include all the tasks that are scheduled after the end point. The reason is that the tasks 
that are scheduled after the end point can not improve the lateness of the critical task. Hence, for Condition B as 
well, S is complete.  Parameters x and y (x > y) in condition C and D respectively are the tuning parameters for the 
algorithm and depends on the nature and size of tasks in the schedule. No tasks that are scheduled after the end point 
can delay the execution of any of the tasks in S. However, the tasks in S may affect the scheduled time of the tasks 
scheduled after the end point. If such a condition occurs then during the schedule update process, there exist 
conflicts in the resulting schedule. In order to avoid such conflicts, it is advisable to over estimate the end point 
when terminating through conditions C and D. This can be done by suitably selecting x and y. However, if a conflict 
still occurs, we re-obtain S and the new schedule. This process is repeated until no conflict occurs.  



 8

The SSS main algorithm can be written as a sequence of following steps: 
 

Step 1: Whenever a new request arrives, obtain S using the methodology described earlier. 
Step 2: Determine the initial solution using modified SCHARGE heuristic and check it for feasibility and 

optimality. If the initial solution is feasible, go to Step 5. If the initial solution is infeasible and optimal, 
go to Step 6. Otherwise, initialize a new vector of nodes v. Determine the generating set for the initial 
solution and add initial solution to v.  

Step 3: If v is empty, go to Step 6. Otherwise, produce a child node of the last node in v. This is done by setting 
the start or ready time of the task with the highest effective laxity in the generating set equal to ti. 
Remove that task from generating set of last node in v. If the resulting generating set size of that node is 
zero, remove that node from v.  

Step 4: Obtain a solution for the new child node using modified SCHARGE heuristic and check it for feasibility 
and optimality. If the solution is feasible, go to Step 5. If the solution is infeasible but not optimal, 
determine its generating set and add the solution to vector v. Go to Step 3. 

Step 5: Check if the new task is accepted would there be any schedule conflicts during the schedule update 
process. If there are schedule conflicts, re-obtain S using the algorithm given earlier setting initial value 
of end point equal to the current end point and go to step 2. Otherwise, accept the task and break out of 
the algorithm. 

Step 6: Reject the new task. 
 
Note that the SSS algorithm limit the growth of nodes with the number of tasks by, a) running the algorithm for a 
subset of tasks, b) by logically selecting and producing only one node at a time. Selecting and producing only one 
node at a time and removing the nodes that consists of optimal solutions reduces the number of open nodes in 
memory by a large factor. As opposed to at least thousands of nodes, in algorithms presented in [11, 12], for just 100 
tasks, the SSS algorithm never had more than 120 nodes in memory for even 100,000 tasks. We discuss the 
performance of the SSS algorithm in Section 5.4.  
 
3.3. Scheduling Non-Preemptable and Preemptable Advance Reservation Requests with 
Given Laxities and Given Overheads of Task Preemption 
In order to study the specific scenarios in which overheads are associated with task preemption and its resumption, 
we make some modifications in the SSS algorithm. First, the SCHRAGE heuristic [24] is modified in the following 
manner to account for overheads in task preemption. 
 

Step 1: Declare and initialize variables t and pT equal to 0.  
Step 2: Find among S, all tasks with ti <= t. If no such task exists, set t equal to the earliest ti among all tasks in 

S. 
Step 3: Among all tasks in S with ti <= t, select a task with the earliest di. Break ties by selecting a task with the 

highest eib. If the task selected is preemptable, go to Step 5. 
Step 4: Schedule the selected task at time t and set t = ti + eib. Remove the task from S and go to Step 8.  
Step 5: If eib is the execution time of the selected task and di its deadline, then among all tasks in S with tk <= t + 

eib find all tasks with deadline less than di – o, where o is the overhead in terms of time in preempting 
and resuming the selected task. If no such task exists, go to Step 4. Otherwise, among that set of tasks 
find a task with the earliest tk and set pT equal to its ready or start time.  

Step 6: If pT – t > o, go to Step 7. Otherwise, among all tasks in S with tj <= t find all tasks with ejb <= (pT – t). 
If no such task exists set t = pT and pT = 0 and go to Step 2.  Otherwise, select the one with earliest dj 
and go to Step 4. 

 Step 7: Place the task selected in Step 3 from t to pT. Preempt that task at time pT. Update the execution time 
of that task in S as eib = eib – (pT – t). Set t = pT + o.   

Step 8: If S is not empty, set pT = 0 and go to Step 2. Otherwise, the initial solution is complete. 
 
The sequence of steps presented above is similar to the modified SCHRAGE heuristic that we use in the SSS 
algorithm. However, in Step 5 we do not preempt a selected task for another task whose deadline is earlier than that 



 9

of the selected task by a difference less than the overheads involved in preempting and resuming the task. This 
prevents unnecessary missing of deadlines as depicted in Fig. 1. In step 6, we make sure that we do not allocate the 
resource to a task i for less time than that spent in overheads in preempting that task later. Instead, we try to allocate 
the resource to another task j that can finish its execution before another task k with dk < di < dj becomes available 
for execution. 
 

 
 

Figure 1: Scheduling Preemptable Tasks with Overheads 
 
Secondly, we change the condition A in Step 2 of the procedure to determine subset S in the SSS algorithm in the 
following way. 
 

A. If EP < di and the new task is a preemptable task and TIU equals eib + n*o, excluding those segments of idle 
time units which have a size less than o. Here o is the overhead in terms of time in preempting the new task and 
n is the number of times the new task would be preempted if placed in the idle time units after ti. 

 
The rest of the algorithm remains unchanged. 
 
4. EXPERIMENTAL SETUP 
In order to study the performance of scheduling with advance reservations, we wrote a simulator. The scenario 
simulated, along with the assumptions about resources and Grid applications and their parameters, has been 
described in Section 2.1 and Section 3.1.  
 
4.1 Performance Metric 
The following performance metrics have been used for evaluation.  
 

Probability of Blocking (Pb): Pb is the probability that a resource would reject a new task request because it 
cannot accommodate it in its current schedule. It can be calculated as: 

  Pb    =   Total Number of Requests Rejected / Total Number of Requests     (4.1) 
 
Utilization (U): U of a resource is the fraction of the total time the resource is busy executing tasks. This does 
not include the time spent in overheads associated with preempting and resuming a preemptable task. 
 
Mean Response Time of On-Demand Requests (ROD): ROD is the mean time between the submission of an 
on-demand request and its completion. 
 
Mean Response Time of Advance Reservation Requests (RAR): RAR is the mean time between the start time 
of an advance reservation request and the time of completion of the task associated with that request.  
 
Performance of the SSS Algorithm: For determining the performance of the SSS algorithm, the total number 
of nodes N produced to schedule a given number of tasks is determined. The maximum number of nodes in 



 10

memory at any point Nmax is also determined, as it is this number that grows exponentially with the increase in 
number of tasks. 

 
4.2 Workload Parameters 
Following are the workload parameters of interest. 
 

Service Times of Tasks: For some of our experiments, we have used a uniform distribution for the size of the 
tasks. A uniform distribution for modeling size of tasks has been used in other researches on advance 
reservation based scheduling (see [8], for example). The preliminary experiments demonstrated that for 
uniformly distributed size of the tasks, the shape of the curves obtained is independent of the mean as long as 
the ratio of the largest and the smallest size in the distribution remains the same. This research models service 
time of the tasks uniformly distributed between 10 minutes and 90 minutes with a mean of 50 minutes. For data 
transfer requests on a Grid based dynamic optical network, such a distribution of service times corresponds to 
data transfer requests between 10GByte and 100GByte on the OMNInet optical network [10, 25]. For compute 
tasks, such a distribution of execution times corresponds to compute tasks sizes between 500,000 Millions 
Instructions (MI) and 5,000,000 MI to be executed on a compute cluster capable of executing 1000 MI per 
second.  
 
Uniform distribution has a relatively small co-efficient of variation. To study the effect of high variability in the 
sizes of the data transfer requests we have also used a bi-phase hyper-exponential distribution with a co-
efficient of variation of 2. We choose the mean of hyper-exponentially distributed execution time E to be equal 
to 50 minutes which is equal to the mean E of the uniform distribution.     
 
Mean Arrival Rate (λ): The preliminary experiments showed that a low arrival rate, which results in very poor 
utilization of the resource, does not generate interesting results while a very high arrival rate saturates the 
system by generating more requests than a resource can execute. Thus, a mean arrival rate λ of 0.014 requests 
per minute is used. The arrival process followed a Poisson distribution. If all requests are accepted then this 
arrival rate will result in a utilization of 0.7 (= 0.014 * 50). This value of maximum utilization is consistent with 
earlier research on advance reservation based scheduling [9]. 
 
Mean Time between the Arrival of an Advance Reservation Request and its Start Time (TS): Unlike on-
demand requests that submit their tasks to the resource at the time of request, advance reservation requests 
reserve the resource for some time in future. In our experiments, ARs can request to reserve the resource for any 
time between the current system time and the next 12 hours. This time between the arrival of an advance 
reservation request and its start time is modeled as a uniform distribution. Such a distribution is also used in 
other studies such as [9]. The results show that if we change TS, it has a negligible effect on the overall system 
performance.  
 
Proportion of Advance Reservations (PAR): PAR is the proportion of advance reservation requests in the 
total number of requests. We study system performance for different values of PAR by varying it between 0, 
where all requests are on-demand, and 1, where all requests are advance reservations, in the steps of 0.1. Total 
number of requests always remains the same. 
 
Mean Percentage Laxity (L): A uniform distribution for the laxity of tasks is used with the lowest value of the 
distribution fixed at 0. Mean percentage laxity L is varied between 0% and 500%.  
 
Task Preemption: For the experiments, we use both non-preemptable and preemptable tasks. Cases where 
overheads are associated with job preemption and its resumption are also studied.  
 
Priority of Advance Reservations over On-Demand Requests: We have done the experiments for two types 
of scenarios with respect to the priority of advance reservations over on-demand requests. In the first type, ARs 
have high priority and they can delay any number of ODs arbitrarily. Such scenarios can result in large wait 
times for the on-demand requests. In the second type, ARs can delay ODs only to a certain degree. To simulate 
this, we associate a virtual deadline with each on-demand request equal to some multiple of its execution time 
(see Section 5.3).  



 11

 
Table 1 summarizes the cases studied in this paper. The values of the fixed parameters in these experiments are λ = 
0.014 requests/minute, E = 50 minutes and TS = 6 hours. Levels of PAR = 0 to 1 in the steps of 0.1 and levels of L = 
{0, 20, 60,100,150,200,500}% 
 

Table 1: Cases Studied in the Experiments. 

Case 
No. Task Preemption Distribution of Task 

Service  Times 
Virtual Deadline of 

ODS Symbol 

1 No Uniform Infinity NUI 

2 Yes, with and without 
overheads Uniform Infinity PUI 

3 
50% non-preemptable tasks 
and 50% preemptable tasks 

with no overheads 
Uniform Infinity HUI 

4 No Hyper-Exponential Infinity NHI 

5 Yes, with and without 
overheads Hyper-Exponential Infinity PHI 

6 No Uniform ti + 6*eib NUF 

7 Yes, with no overheads Uniform ti + 6*eib PUF 

 
4.3 Accuracy of the Results    
Tests were run long enough, and repeated multiple times, to obtain reasonably small confidence intervals for the 
performance metric. For uniformly distributed E, we obtained confidence intervals of ±1% for Pb, ±0.2% for U and 
±1.5% for ROD and RAR at a confidence level of 99%. For hyper-exponentially distributed E, confidence intervals of 
±3% for Pb, ±0.6% for U and ±5% for ROD and RAR were obtained at a confidence level of 95%. For all graphs to be 
presented in Section 5, the mean of the performance metric is plotted. 
 
5. SYSTEM PERFORMANCE 

5.1 Effect of Proportion of Advance Reservations and Laxity 
This section presents the effect of the proportion of advance reservations and laxity on the performance of 
scheduling advance reservation and on-demand request in Grids. The results for cases 1 to 5 in Table 1 are presented 
in this section. 
 
5.1.1. NUI Case: Non-preemptable Tasks with Uniformly Distributed Service Times and No Bounds on the 
Waiting Times of On-Demand Requests  

Probability of Blocking: Figure 2(a) shows the effect of PAR on Pb. The figure shows that Pb increases with the 
increase in PAR. The reason is that unlike ODs that do not have any deadlines ARs have finite deadlines. As the 
proportion of ARs in the workload increases, it becomes increasingly difficult to schedule them while meeting their 
deadlines. Thus, more and more ARs are rejected which increases Pb. The results show that this increase is not linear 
and there exists a knee on the curve for a given value of laxity after which Pb increases more rapidly. Given the 



 12

mean laxity of the tasks, a resource can limit the ratio of requests it accepts as ARs equal to the value of PAR 
corresponding to the knee of the curve to keep Pb at reasonable levels. 
 
Figure 2(b) shows that with an increase in L, Pb decreases substantially. As expected, laxity can improve the 
performance of scheduling AR requests significantly by providing more flexibility in task scheduling. The effect 
becomes more pronounced with the increase in percentage of ARs. Thus for 80% requests arriving as ARs, L = 
200% can decrease Pb by 82.93% compared to the case in which ARs have no laxity. The curves shown in Figure 
2(b) are characterized by a knee. The knee of the curve, that brings Pb to a small value, is reached for much smaller 
value of L compared to the one required to make Pb exactly equal to 0. 
 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.2 0.4 0.6 0.8 1

PAR

P
b

0% L
20% L
60% L
100% L
150% L
200% L
500% L

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0% 100% 200% 300% 400% 500%

L

P
b

PAR = 0
PAR = 0.2
PAR = 0.4
PAR = 0.6
PAR = 0.8
PAR = 1

 
Figure 2: Probability of Blocking for the NUI Case 

(a) Effect of PAR on Pb (b) Effect of L on Pb 
 
Utilization: Figure 3(a) shows that with the increase in PAR, U decreases. The reason is that the increase in PAR 
increases Pb which decreases the number of tasks in the schedule. Figure 3(b) shows that by having some laxity in 
the tasks we can substantially counter this decrease in U with the increase in PAR. Just like the curves for Pb, the 
curves for U are also characterized by a knee that can act as a suitable operating point. In fact, Pb and U are related 
and the exact relation between them can be given as: 

  U  = λ*(1 – Pb)*(R – W)                (5.1) 

Where R is the mean response time of the tasks accepted and W their mean wait time. Note that R – W is not always 
equal to E since tasks with higher service times have a high probability of being rejected.  
 
Since U and Pb are related, for the rest of the paper, instead of plotting both Pb and U, we present curves only for U. 
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1

PAR

U

0% L
20% L
60% L
100% L
150% L
200% L
500% L

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0% 100% 200% 300% 400% 500%

L

U

PAR = 0
PAR = 0.2
PAR = 0.4
PAR = 0.6
PAR = 0.8
PAR = 1

 
Figure 3: Utilization for the NUI Case 

(a) Effect of PAR on U (b) Effect of L on U 
 



 13

Response Time of Advance Reservations and On-Demand Requests: Figure 4(a) shows that for smaller values 
of L, ROD first increases with the increase in PAR until it reaches a maximum value and then it starts decreasing. The 
reason is that ARs can delay ODs arbitrarily. Thus, as PAR increases, more and more ODs are delayed for longer 
periods. This increases ROD with the increase in PAR until it reaches its maximum value. As PAR increases further, 
due to an increase in Pb, U decreases significantly and this decreases the mean wait time of ODs. Hence, ROD 
decreases. For a given value of PAR, an increase in L (from 0% to 100%) decreases ROD by increasing the wait 
times of ARs. However, as L is increased beyond 100% there is no significant decrease in U with the increase in 
PAR. This increases mean wait times of both ARs and ODs. Hence, for large L values, ROD is observed to increase 
with PAR.  
  
Figure 4(b) shows that for L = 0%, RAR decreases slightly with the increase in PAR. The reason is that for L = 0%, 
mean wait times of ARs is zero. As PAR increases, more and more schedule conflicts occur. Under this situation 
ARs with higher service times have a higher probability of being rejected. As more and more ARs with higher 
service times are rejected, the mean service times of ARs accepted decreases. This decreases the mean response time 
of ARs. As can be seen in the curves, the mean response time of ARs for L = 0% is actually lower than E. As L 
increases, mean wait times of ARs tend to increase which increases RAR with L for the given value of PAR. For L 
values between 0% and 150%, RAR does not change significantly with PAR as the increase in wait time of ARs with 
PAR is balanced by the decrease in the mean service times of ARs accepted. For larger L values, Pb does not 
increase significantly with PAR. This increases the mean wait times of ARs substantially and hence RAR is observed 
to increase with PAR. 
 

100

120

140

160

180

200

220

240

260

0 0.2 0.4 0.6 0.8 1

PAR

R
O

D
 (m

in
ut

es
) 0% L

20% L
60% L
100% L
150% L
200% L
500% L

 

0

10

20

30

40

50

60

70

80

90

100

110

120

0 0.2 0.4 0.6 0.8 1

PAR

R
A

R
 (m

in
ut

es
) 0% L

20% L
60% L
100% L
150% L
200% L
500% L

 
Figure 4: Response Time for the NUI Case 

(a) Effect of PAR on ROD (b) Effect of PAR on RAR 
 
5.1.2. PUI Case: Preemptable Tasks with Uniformly Distributed Service Times and No Bounds on the 
Waiting Times of On-Demand Requests  

In this section, we present results only for the cases in which no overheads are associated with task preemption and 
its resumption. Results with overheads will be presented in Section 5.2.   
 
Utilization: Figure 5(a) and Figure 5(b) show the effect of PAR and L respectively on the utilization of the resource 
for preemptable tasks. The figures show that the behavior of preemptable tasks is similar to the one obtained for 
non-preemptable tasks and discussed in detail in Section 5.1.1. However, the figure shows that preemptable tasks 
results in slightly higher utilization than non-preemptable tasks. Detailed comparison of Figure 3 and Figure 5 is 
presented in Section 5.2.  
 
Response Time of Advance Reservations and On-Demand Requests: Figure 6(a) and Figure 6(b) show the effect 
of PAR on ROD and RAR respectively for preemptable tasks without overheads. The figures show that PAR affects 
ROD and RAR of preemptable tasks in the same way as that of non-preemptable tasks in Section 5.1.1. Detailed 
comparison of Figure 4 and Figure 6 will be presented in Section 5.2. 
 



 14

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1

PAR

U

0% L
20% L
60% L
100% L
150% L
200% L
500% L

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0% 100% 200% 300% 400% 500%

L

U

PAR = 0
PAR = 0.2
PAR = 0.4
PAR = 0.6
PAR = 0.8
PAR = 1

 
Figure 5: Utilization for the PUI Case 

(a) Effect of PAR on U (b) Effect of L on U 
 

80

120

160

200

240

280

320

0 0.2 0.4 0.6 0.8 1

PAR

R
O

D
 (m

in
ut

es
) 0% L

20% L
60% L
100% L
150% L
200% L
500% L

 

0

10

20

30

40

50

60

70

80

90

100

110

0 0.2 0.4 0.6 0.8 1

PAR

R
A

R
 (m

in
ut

es
) 0% L

20% L
60% L
100% L
150% L
200% L
500% L

 
Figure 6: Response Time for the PUI Case 

(a) Effect of PAR on ROD (b) Effect of PAR on RAR 
 
5.1.3. HUI Case: 50% Hybrid Tasks with Uniformly Distributed Service Times and No Bounds on the 
Waiting Times of On-Demand Requests  

The results obtained with 50% preemptable and 50% non-preemptable tasks are shown in Figure 7 and Figure 8. The 
figures show that results for this case are approximately the mean of the results obtained in Section 5.1.1 and Section 
5.1.2. This shows that when non-preemptable and preemptable tasks are combined, contribution of each type of 
tasks is approximately equal to its proportion among all the tasks. 
 
5.1.4. NHI Case: Non-preemptable Tasks with Hyper-Exponentially Distributed Service Times and No 
Bounds on the Waiting Times of On-Demand Requests  

Utilization: Figure 9(a) and Figure 9(b) respectively show the effect of PAR and L on system utilization when non-
preemptable tasks with hyper-exponentially distributed service times are used. The curves are similar to the one 
obtained with uniformly distributed service times in Section 5.1.1 and just like the curves in Figure 3(a) and Figure 
3(b), these curves are characterized by a knee.  However, the results show that for the given value of PAR and L, U 
for hyper-exponentially distributed service times is lower than that with uniformly distributed service times. The 
difference in U increases with PAR and can be as much as 10.31%. This shows that the variability in the task service 
times can significantly affect system performance and higher variability results in more schedule conflicts and hence 
lower system utilization.  
 
Response Time of Advance Reservations and On-Demand Requests: Figure 10(a) shows that ROD with hyper-
exponentially distributed service times increases almost linearly with the increase in PAR. The reason is that as PAR 
increases, more ODs are delayed to accommodate ARs which increases ROD. Unlike the curves in Figure 4(a), where 



 15

for lower L values ROD decreases with PAR after reaching a certain maximum value, ROD with hyper-exponentially 
distributed service times in Figure 10(a) keeps on increasing with PAR.  In addition, for a given value of PAR and 
L, ROD in Figure 10(a) is substantially higher than that in Figure 4(a). The difference increases with PAR and can 
reach up to 800%. This shows that high variability in task sizes can severely affect the response times of the on-
demand requests. 
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1

PAR

U

0% L
20% L
60% L
100% L
150% L
200% L
500% L

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0% 100% 200% 300% 400% 500%

L

U

PAR = 0
PAR = 0.2
PAR = 0.4
PAR = 0.6
PAR = 0.8
PAR = 1

 
Figure 7: Utilization for the HUI Case 

(a) Effect of PAR on U (b) Effect of L on U 
 

100

120

140

160

180

200

220

240

260

280

0 0.2 0.4 0.6 0.8 1

PAR

R
O

D
 (m

in
ut

es
) 0% L

20% L
60% L
100% L
150% L
200% L
500% L

 

0

10

20

30

40

50

60

70

80

90

100

110

0 0.2 0.4 0.6 0.8 1

PAR

R
A

R
 (m

in
ut

es
) 0% L

20% L
60% L
100% L
150% L
200% L
500% L

 
Figure 8: Response Time for the HUI Case 

(a) Effect of PAR on ROD (b) Effect of PAR on RAR 
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1

PAR

U

0% L
60% L
100% L
200% L
500% L

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0% 100% 200% 300% 400% 500%

L

U

PAR = 0
PAR = 0.2
PAR = 0.4
PAR = 0.6
PAR = 0.8
PAR = 1

 
Figure 9: Utilization for the NHI Case 

(a) Effect of PAR on U (b) Effect of L on U 
 



 16

The curves in Figure 10(b) for response times of hyper-exponentially distributed service times of ARs are similar to 
those in Figure 4(b) with uniformly distributed service times explained in detail in Section 5.1.1. Comparison of 
Figure 10(b) and Figure 4(b) shows that for lower L values RAR for the NHI case is smaller than NUI case and the 
difference can be as much as 21.92%. The reason is that for smaller L values in NHI case there are more schedule 
conflicts due to variability in task sizes. Under such conditions, more tasks with large services times are rejected, 
substantially decreasing the overall execution time of the ARs accepted. Since for low L values mean wait time of 
ARs is small, substantial decrease in mean execution times of the ARs accepted significantly decreases response 
times of the ARs. 
 
For large L values, however, RAR for NHI is higher than that with NUI case and the two can differ by as much as by 
45.64%. The reason is that for high L values wait times of ARs for the NHI case are substantially higher than that 
for NUI case due to high variability in task sizes.    
 

0

200

400

600

800

1000

1200

1400

1600

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

PAR

R
O

D
 (m

in
ut

es
)

0% L
60% L
100% L
200% L
500% L

 

0

20

40

60

80

100

120

140

160

0 0.2 0.4 0.6 0.8 1

PAR

R
A

R
 (m

in
ut

es
)

0% L
60% L
100% L
200% L
500% L

 
Figure 10: Response Time for the NHI Case 

(a) Effect of PAR on ROD (b) Effect of PAR on RAR 
 
5.1.5. PHI Case: Preemptable Tasks with Hyper-Exponentially Distributed Service Times and No Bounds on 
the Waiting Times of On-Demand Requests  

Utilization: Figure 11(a) and Figure 11(b) respectively show the effect of PAR and L on system utilization when 
preemptable tasks with hyper-exponentially distributed service times are used. The curves are similar to the one 
obtained with uniformly distributed service times in Section 5.1.2 and just like the curves in Figure 5(a) and Figure 
5(b), these curves are characterized by a knee.  However, the results show that for the given value of PAR and L, U 
for hyper-exponentially distributed service times is lower than that with uniformly distributed service times. This is 
because of high variability in task sizes as discussed in Section 5.1.4.  
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1

PAR

U

0% L
60% L
100% L
200% L
500% L

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0% 100% 200% 300% 400% 500%

L

U

PAR = 0
PAR = 0.2
PAR = 0.4
PAR = 0.6
PAR = 0.8
PAR = 1

 
Figure 11: Utilization for the PHI Case 

(a) Effect of PAR on U (b) Effect of L on U 
 



 17

Response Time of Advance Reservations and On-Demand Requests: Figure 12(a) shows that the curves for ROD 
for the PHI case are similar to those for PUI case and discussed in detail in Section 5.1.2. However, ROD for PHI 
case is significantly higher than that for PUI case due to variability in task sizes as discussed in Section 5.1.4.  
 
The curves in Figure 12(b) for response times of hyper-exponentially distributed service times of ARs are similar to 
those in Figure 6(b) with uniformly distributed service times explained in detail in Section 5.1.2. Comparison of 
Figure 12(b) and Figure 6(b) yield the same conclusions as the comparison of Figure 10(b) and Figure 4(b) 
discussed in detail in Section 5.1.4. 
 

0

100

200

300

400

500

600

700

800

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

PAR

R
O

D
 (m

in
ut

es
)

0% L
60% L
100% L
200% L
500% L

 

0

10

20

30

40

50

60

70

80

90

100

0 0.2 0.4 0.6 0.8 1

PAR
R

A
R
 (m

in
ut

es
)

0% L
60% L
100% L
200% L
500% L

 
Figure 12: Response Time for the PHI Case 

(a) Effect of PAR on ROD (b) Effect of PAR on RAR 
 
5.2. Effect of Preemption 
This section presents the effect of task preemption on system performance. For network tasks, segmentation can be 
thought of as analogous to preemption for compute tasks. Segmentation means the ability to segment data into 
multiple requests and schedule different chunks of data at different times. 
 
In this section, we compare the results for the NUI case in Table 1 where tasks are non-preemptable with the PUI 
case where tasks are preemptable. Similarly, the NHI case is compared with the PHI case. For the PUI and PHI 
cases, we not only consider the scenario in which no overheads are associated with preemption but also introduce 
overheads O as a percentage of mean service times of the tasks E. O represents time spent in overheads associated 
with task preemption and its resumption. For example, if tasks represent data transfers on a lightpath then O 
represents time spent in path tear down and network reconfiguration. When a client accesses the optical network 
through a control plane mechanism such as Optical Dynamic Intelligent Network Service (ODIN) [26], the total 
time spent in overheads is just less than 1 minute [10] including the ODIN server processing delay, path tear down 
and network reconfiguration. However, if the client accesses the optical network through a customer portal the total 
time spent in overheads can be order of few minutes. This is because in addition to the delays incurred in the control 
plane mechanisms there are delays at the portal server that handles billing and account aspects. We vary O between 
0% of E (0 minutes) representing the ideal case to 30% of E (15 minutes) representing the worst-case scenario.  
 
We first present the results obtained for PAR = 0.4 as we expect less than half of the requests to be ARs in future 
Grid based scenarios. Results for other values of PAR are presented next. In Figure 13, Figure 14 and Figure 15, we 
compare U, ROD and RAR respectively, for preemptable scenarios with those of non-preemptable scenarios. The 
curves show the percentage increase in the performance metric when tasks are preempted compared to the case 
when they are not preempted. 
 
Utilization: Figure 13(a) shows that for a given L, U in the PUI case where tasks are preempted is higher than that 
with the NUI case. The reason is that segments of tasks can be scheduled on small slots of idle periods where non-
preemptable requests cannot be accommodated. This decreases Pb and increases U. However, the results show that 
for uniformly distributed service times of tasks with low co-efficient of variation this effect is not very pronounced 
for PAR = 0.4 and the effect diminishes as overheads are introduced. The difference in utilization in Figure 13(a) 



 18

peaks at 1.05% when no overheads are associated with preemption. Results presented in Figure 13(b) for the hyper-
exponentially distributed service times are similar to Figure 13(a) but show that when the variability between the 
service times is large, the improvement in U is much more pronounced with a peak at 3.15%.  
Figure 13 also show that difference in utilization is a non-linear function of laxity with maxima near L = 70%. The 
reason is that with L = 0%, even in the PUI and PHI cases none of the requests can be preempted, as preemption for 
a non-zero time would make them miss their deadline. As L increases, more and more requests can be preempted for 
non-zero times thus accommodating more requests and the difference in U increases until it reaches its maximum 
value. For very high L values, most of the requests even with non-preemptable scenarios can be successfully 
scheduled and hence the option of preemption does not bring a substantial difference in U. This shows that laxity 
can be exchanged for segmentation for achieving high utilization. 
 

PAR = 0.4

-0.2%

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

0% 100% 200% 300% 400% 500%

L

Pe
rc

en
ta

ge
 In

cr
ea

se
 in

 U

O = 0% of E O = 10% of E O = 20% of E O = 30% of E

 

PAR = 0.4

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

0% 100% 200% 300% 400% 500%

L

P
er

ce
nt

ag
e 

In
cr

ea
se

 in
 U

O = 0% of E O = 10% of E O = 20% of E O = 30% of E

 
Figure 13: Effect of Task Preemption on Utilization for PAR = 0.4 

(a) Effect on U for Uniformly Distributed Service Times   
(b) Effect on U for Hyper-Exponentially Distributed Service Times 

 
Response Time of Advance Reservations and On-Demand Requests: Figure 14(a) shows that for lower L values, 
ROD in the PUI case is lower than that in the NUI case. This is because in the PUI case, the OD requests need not be 
delayed to accommodate ARs as their segments can be scheduled in small idle slots in the resource schedule. 
However, with the increase in L difference in ROD starts decreasing until it becomes zero and then it starts increasing 
in the opposite direction i.e. ROD for the PUI case starts becoming higher compared to that in the NUI case. On the 
other hand, in Figure 15(a) with the increase in L, RAR with the PUI case becomes smaller and smaller compared to 
that with the NUI case. This shows that in the PUI case many OD requests with infinite deadlines are preempted by 
the scheduler for AR requests with smaller deadlines. This is because the SSS scheduler gives priority to the tasks 
with earlier deadlines while finding an initial solution. On the other hand, in the NUI case as L increases, 
comparatively less number of ODs needs to be re-scheduled at a later time to accommodate ARs. For higher L 
values, this results in ROD for the PUI case to be higher than that for the NUI case while RAR for the PUI case to be 
smaller than that for the NUI case.  
 
The results in Figure 14(b) and Figure 15(b) are similar to those in Figure 14(a) and Figure 15(a) respectively. 
However, in Figure 14 (b), initially ROD with the PHI case is so small in comparison to the NHI case that although 
the difference between ROD with the PHI case and that with the NHI case becomes smaller and smaller with the 
increase in L, ROD with the PHI case never becomes higher than that in the NH case even when 30% overheads are 
associated with preemption. 
 
The results thus show that for PAR = 0.4, task preemption can result in an improvement in performance in terms of 
higher unitization and lower response times if the co-efficient of variation of the size of data transfer requests is 
high. However, preemption is not justified for uniformly distributed task service times with low co-efficient of 
variation.  
 
Figure 16, Figure 17 and Figure 18 compares U, ROD and RAR respectively, for preemptable scenarios with those of 
non-preemptable scenarios for PAR = 0.1. The results are similar to those for PAR = 0.4 but shows that for PAR = 
0.1, improvement in U and ROD are smaller compared to PAR = 0.4. On the other hand, results in Figure 19, Figure 



 19

20 and Figure 21 for PAR = 1.0 shows that for high PAR values the effect of preemption becomes more pronounced 
with improvement in utilization of up to 5.25% for uniformly distributed service times and up to 18.1% for hyper-
exponentially distributed service times. This suggests that in addition to the characteristics of the tasks such as the 
distribution of service times, proportion of advance reservations among the total requests should also be taken into 
account to decide about task preemption in compute tasks and data segmentation in network tasks.  
 

PAR = 0.4

-30%

-20%

-10%

0%

10%

20%

30%

40%

0% 100% 200% 300% 400% 500%

L

P
er

ce
nt

ag
e 

In
cr

ea
se

 in
 R

O
D

O = 0% of E O = 10% of E O = 20% of E O = 30% of E

 

PAR = 0.4

-70%

-60%

-50%

-40%

-30%

-20%

-10%

0%
0% 100% 200% 300% 400% 500%

L

P
er

ce
nt

ag
e 

In
cr

ea
se

 in
 R

O
D

O = 0% of E O = 10% of E O = 20% of E O = 30% of E

 
Figure 14: Effect of Task Preemption on Response Time of On-Demand Requests for PAR = 0.4 

(a) Effect on ROD for Uniformly Distributed Service Times   
(b) Effect on ROD for Hyper-Exponentially Distributed Service Times 

 
PAR = 0.4

-18%

-16%

-14%

-12%

-10%

-8%

-6%

-4%

-2%

0%
0% 100% 200% 300% 400% 500%

L

Pe
rc

en
ta

ge
 In

cr
ea

se
 in

 R
A

R

O = 0% of E O = 10% of E O = 20% of E O = 30% of E

 

PAR = 0.4

-45%

-40%

-35%

-30%

-25%

-20%

-15%

-10%

-5%

0%

5%

0% 100% 200% 300% 400% 500%

L

Pe
rc

en
ta

ge
 In

cr
ea

se
 in

 R
A

R

O = 0% of E O = 10% of E O = 20% of E O = 30% of E

 
Figure 15: Effect of Task Preemption on Response Time of Advance Reservation Requests for PAR = 0.4   

(a) Effect on RAR for Uniformly Distributed Service Times    
(b) Effect on RAR for Hyper-Exponentially Distributed Service Times 

 
5.3. Preventing Starvation of On-Demand Requests 
Results in Section 5.1 show that with the increase in PAR, response time of on-demand requests increases 
significantly. The effect is more pronounced for higher L values. A very high response time for ODs will encourage 
all users to submit their tasks as ARs which would increase PAR. For lower L values, this would decrease their 
response time but at a cost of low utilization of the resource (see for example, Figure 3 and Figure 5). For higher L 
values, with the increase in PAR, there would not only be a slight decrease in U but also a tremendous increase in 
the response time of all requests (see for example, Figure 4 and Figure 6). In order to prevent these situations 
resulting from potential starvation of on-demand requests a resource should guarantee a reasonable response time 
for the tasks submitted as ODs. To ensure this a resource can associate a virtual deadline with all ODs and during 
the scheduling process can make sure that most of ODs meet their deadlines. In order to study this, we associated a 
hard deadline with every OD and ensured that each OD accepted meets its deadline. The deadline chosen for ODs 
was equal to 6 times its execution time as this is equivalent to 500%L for ARs. This would provide us with a direct 
comparison of ODs and ARs for equal deadlines.  
 



 20

 
PAR = 0.1

-0.10%

-0.05%

0.00%

0.05%

0.10%

0.15%

0.20%

0% 100% 200% 300% 400% 500%

L

Pe
rc

en
ta

ge
 In

cr
ea

se
 in

 U

O = 0% of E O = 10% of E O = 20% of E O = 30% of E

 

PAR = 0.1

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

0% 100% 200% 300% 400% 500%

L

P
er

ce
nt

ag
e 

In
cr

ea
se

 in
 U

O = 0% of E O = 10% of E O = 20% of E O = 30% of E

 
Figure 16: Effect of Task Preemption on Utilization for PAR = 0.1 

(a) Effect on U for Uniformly Distributed Service Times   
(b) Effect on U for Hyper-Exponentially Distributed Service Times 

 
PAR = 0.1

-10%

-8%

-6%

-4%

-2%

0%

2%

4%

6%

8%

10%

0% 100% 200% 300% 400% 500%

L

P
er

ce
nt

ag
e 

In
cr

ea
se

 in
 R

O
D

O = 0% of E O = 10% of E O = 20% of E O = 30% of E

 

PAR = 0.1

-8%

-6%

-4%

-2%

0%

2%

4%

6%

0% 100% 200% 300% 400% 500%

L

P
er

ce
nt

ag
e 

In
cr

ea
se

 in
 R

O
D

O = 0% of E O = 10% of E O = 20% of E O = 30% of E

 
Figure 17: Effect of Task Preemption on Response Time of On-Demand Requests for PAR = 0.1 

(a) Effect on ROD for Uniformly Distributed Service Times   
(b) Effect on ROD for Hyper-Exponentially Distributed Service Times 

 
PAR = 0.1

-24%

-21%

-18%

-15%

-12%

-9%

-6%

-3%

0%
0% 100% 200% 300% 400% 500%

L

P
er

ce
nt

ag
e 

In
cr

ea
se

 in
 R

A
R

O = 0% of E O = 10% of E O = 20% of E O = 30% of E

 

PAR = 0.1

-35%

-30%

-25%

-20%

-15%

-10%

-5%

0%
0% 100% 200% 300% 400% 500%

L

P
er

ce
nt

ag
e 

In
cr

ea
se

 in
 R

A
R

O = 0% of E O = 10% of E O = 20% of E O = 30% of E

 
Figure 18: Effect of Task Preemption on Response Time of Advance Reservation Requests for PAR = 0.1   

(a) Effect on RAR for Uniformly Distributed Service Times    
(b) Effect on RAR for Hyper-Exponentially Distributed Service Times 

 
 
 



 21

PAR = 1.0

-1.0%

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

0% 100% 200% 300% 400% 500%

L

Pe
rc

en
ta

ge
 In

cr
ea

se
 in

 U
O = 0% of E O = 10% of E O = 20% of E O = 30% of E

 

PAR = 1.0

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

0% 100% 200% 300% 400% 500%

L

P
er

ce
nt

ag
e 

In
cr

ea
se

 in
 U

O = 0% of E O = 10% of E O = 20% of E O = 30% of E

 
Figure 19: Effect of Task Preemption on Utilization for PAR = 1.0 

(a) Effect on U for Uniformly Distributed Service Times   
(b) Effect on U for Hyper-Exponentially Distributed Service Times 

 
PAR = 1.0

0%

5%

10%

15%

20%

25%

30%

35%

40%

0% 100% 200% 300% 400% 500%

L

P
er

ce
nt

ag
e 

In
cr

ea
se

 in
 R

O
D

O = 0% of E O = 10% of E O = 20% of E O = 30% of E

 

PAR = 1.0

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 100% 200% 300% 400% 500%

L

P
er

ce
nt

ag
e 

In
cr

ea
se

 in
 R

O
D

O = 0% of E O = 10% of E O = 20% of E O = 30% of E

 
Figure 20: Effect of Task Preemption on Response Time of On-Demand Requests for PAR = 1.0 

(a) Effect on ROD for Uniformly Distributed Service Times   
(b) Effect on ROD for Hyper-Exponentially Distributed Service Times 

 
PAR = 1.0

-2%

0%

2%

4%

6%

8%

10%

12%

14%

16%

0% 100% 200% 300% 400% 500%

L

P
er

ce
nt

ag
e 

In
cr

ea
se

 in
 R

A
R

O = 0% of E O = 10% of E O = 20% of E O = 30% of E

 

PAR = 1.0

-40%

-35%

-30%

-25%

-20%

-15%

-10%

-5%

0%

5%

10%

15%

0% 100% 200% 300% 400% 500%

L

Pe
rc

en
ta

ge
 In

cr
ea

se
 in

 R
A

R

O = 0% of E O = 10% of E O = 20% of E O = 30% of E

 
Figure 21: Effect of Task Preemption on Response Time of Advance Reservation Requests for PAR = 1.0   

(a) Effect on RAR for Uniformly Distributed Service Times    
(b) Effect on RAR for Hyper-Exponentially Distributed Service Times 

 
In this section, we present the results obtained by associating virtual deadlines with on-demand requests. The results 
correspond to cases 6 and 7 in Table 1.  
 



 22

5.3.1 NUF Case: Non-preemptable Tasks with Uniformly Distributed Service Times and Bounds on the 
Waiting Times of On-Demand Requests  

Utilization: Figure 22(a) shows that for the NUF case, PAR affects U in a similar fashion as it affects U in the NUI 
case (discussed in detail in Section 5.1.1). Figure 22(b) shows the percentage decrease in U in the NUF case 
compared to the NHI case. The figure shows that the utilization achieved with a given PAR and L in this case is 
slightly lower than that in the NUI case. This is the cost a resource incurs in reducing the response time of ODs. 
However, Figure 22(b) shows that the difference in U is for a given PAR and L is never more than 3.11% and it 
almost reduces to zero for higher L values.  
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1

PAR

U

0% L
20% L
60% L
100% L
150% L
200% L
500% L

 

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

0 0.2 0.4 0.6 0.8 1

PAR

P
er

ce
nt

ag
e 

D
ec

re
as

e 
in

 U

0% L
20% L
60% L
100% L
150% L
200% L
500% L

 
Figure 22: Effect of Associating a Virtual Deadline with ODs on U for Non-Preemptable Tasks 

(a) Effect of PAR on U for the NUF Case   
(b) Percentage Decrease in U in the NUF Case Compared to the NUI Case 

 
Response Time of Advance Reservations and On-Demand Requests: Figure 23(a) shows the effect of PAR on 
ROD. The figure shows that for L values less than 100% the behavior is similar to that obtained in the NUI case 
shown in Figure 4(a). However, ROD in Figure 23(a) for higher L values is significantly lower than ROD in Figure 
4(a). This is shown in Figure 23(b) where the percentage decrease in ROD in the NUF case compared to that in the 
NUI case is plotted. The difference in ROD in Figure 23(b) increases with L for a given value of PAR. For L = 500% 
and PAR = 0.9, the difference in ROD is as much as 60.22%. Unlike in Figure 4(a) where for L values above 150%, 
ROD for a given value of PAR increases with L, in Figure 8(a) ROD actually decreases with L for a given value of 
PAR. This is because as L increases, deadlines of ARs become comparable to that of ODs and hence ODs start 
getting as much priority as ARs by the SSS scheduler which gives priority to tasks with earlier deadlines when 
finding an initial solution.  
 

100

105

110

115

120

125

130

0 0.2 0.4 0.6 0.8 1

PAR

R
O

D
 (m

in
ut

es
) 0% L

20% L
60% L
100% L
150% L
200% L
500% L

 

0%

10%

20%

30%

40%

50%

60%

70%

0 0.2 0.4 0.6 0.8 1

PAR

P
er

ce
nt

ag
e 

D
ec

re
as

e 
in

 R
O

D

0% L
20% L
60% L
100% L
150% L
200% L
500% L

 
Figure 23: Effect of Associating a Virtual Deadline with ODs on ROD for Non-Preemptable Tasks 

(a) Effect of PAR on ROD for the NUF Case   
(b) Percentage Decrease in ROD in the NUF Case Compared to the NUI Case 

 



 23

Effect of PAR on RAR is given in Figure 24 which shows that for L values up to 200%, RAR for a given PAR and L is 
approximately the same as in Figure 4(b). However, for L = 500% with low PAR values, RAR is significantly higher 
(up to 50%) than that in the NUI case. For higher PAR values, the difference approaches zero. For L = 500%, RAR in 
Figure 24 is almost equal to ROD in Figure 23(a) for a given value of PAR. This shows that if tasks have equal 
deadlines there is no significant advantage in terms of reduction in response time by reserving the resources in 
advance. From this result, we can also deduce that changing the minimum time between the arrival of an advance 
reservation request and its start time does not change the overall performance.  
 

0

10

20

30

40

50

60

70

80

90

100

110

0 0.2 0.4 0.6 0.8 1

PAR

R
A

R
 (m

in
ut

es
) 0% L

20% L
60% L
100% L
150% L
200% L
500% L

 
Figure 24: Effect of PAR on RAR for the NUF Case   

 
5.3.2. PUF Case: Preemptable Tasks with Uniformly Distributed Service Times and Bounds on the Waiting 
Times of On-Demand Requests  

The results obtained by associating virtual deadlines with ODs for preemptable tasks are shown in Figure 25, Figure 
26 and Figure 27. The results are similar to those discussed in Section 5.3.1 for non-preemptable tasks. 
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1

PAR

U

0% L
20% L
60% L
100% L
150% L
200% L
500% L

 

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40%

1.60%

1.80%

2.00%

0 0.2 0.4 0.6 0.8 1

PAR

P
er

ce
nt

ag
e 

D
ec

re
as

e 
in

 U

0% L
20% L
60% L
100% L
150% L
200% L
500% L

 
Figure 25: Effect of Associating a Virtual Deadline with ODs on U for Preemptable Tasks 

(a) Effect of PAR on U for the PUF Case   
(b) Percentage Decrease in U in the PUF Case Compared to the PUI Case 

 
The results presented in this section thus show that associating a virtual deadline with ODs can effectively decrease 
the response time of ODs without significantly decreasing U or substantially increasing RAR.  
 
5.4 Performance of the SSS Algorithm 
The SSS algorithm for scheduling advance reservation requests with laxity successfully scheduled hundreds of 
thousands of tasks. The results show that the total number of nodes produced to schedule given number of tasks 
depends on PAR and L in addition to the properties of the tasks such as the variability in service times of the tasks. 
For the NUI case in Table 1, the total numbers of nodes N produced to schedule 100,000 tasks are shown in Figure 



 24

28. The figure shows that comparatively, large number of nodes N is produced for PAR values between 0.4 to 0.6. 
However, even for these values of PAR, with the workload parameters in our experiments, average number of nodes 
produced was less than 1 node per task. Maximum numbers of nodes open at one time Nmax for 100,000 tasks with 
uniformly distributed service times never exceeded 21.  
 

90

95

100

105

110

115

120

125

130

135

140

0 0.2 0.4 0.6 0.8 1

PAR

R
O

D
 (m

in
ut

es
) 0% L

20% L
60% L
100% L
150% L
200% L
500% L

 

0%

10%

20%

30%

40%

50%

60%

70%

0 0.2 0.4 0.6 0.8 1

PAR

Pe
rc

en
ta

ge
 D

ec
re

as
e 

in
 R

O
D

0% L
20% L
60% L
100% L
150% L
200% L
500% L

 
Figure 26: Effect of Associating a Virtual Deadline with ODs on ROD for Preemptable Tasks 

(a) Effect of PAR on ROD for the PUF Case   
(b) Percentage Decrease in ROD in the PUF Case Compared to the PUI Case 

 

0

10

20

30

40

50

60

70

80

90

100

110

0 0.2 0.4 0.6 0.8 1

PAR

R
A

R
 (m

in
ut

es
) 0% L

20% L
60% L
100% L
150% L
200% L
500% L

 
Figure 27: Effect of PAR on RAR for the PUF Case   

 

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 0.2 0.4 0.6 0.8 1

PAR

N

0% L
20% L
60% L
100% L
150% L
200% L
500% L

 
Figure 28: Effect of PAR on the Total Number of Nodes N Produced to Schedule 100,000 Tasks in the NUI 

Case 
 



 25

For uniformly distributed service times of the tasks, it took our simulator, written in JAVA (JDK 1.4.2) and running 
on a RedHat Linux 7.2 machine with 2.4 GHz Pentium IV processor and 512 MB of RAM, on average 24 seconds 
to schedule 100,000 tasks. This converts to per task average of 0.24 milliseconds. Note that in addition to the SSS 
algorithm, several other modules, such as the workload generator, for the simulator were also running on the 
machine at the same time. Therefore, the actual time taken by the SSS algorithm to schedule a task is even smaller. 
Since in a Grid environment each task on average is of the order of at least few minutes, we can conclude that 
dynamic scheduling of tasks with the SSS algorithm is feasible in Grids even for a fairly high arrival rate. 
 
Comparatively, larger number of nodes N was produced for the hyper-exponentially distributed service time. 
Nevertheless, even for such a distribution, maximum numbers of nodes open at one time Nmax for 100,000 tasks 
never exceeded 120. Thus, Nmax and N produced by the SSS algorithm are much smaller than those of other 
algorithms where at least thousands of nodes are produced to schedule just 100 tasks [11, 12].   
 
6. CONCLUSIONS 
In this paper, we argued that the notion of laxity in the reservation window can help improve system performance 
when scheduling with advance reservation and on-demand requests. The paper presented the SSS algorithm for an 
NP-Hard problem of scheduling on-demand and advance reservation request with laxities. The results show that the 
SSS algorithm is scalable and can successfully schedule hundreds of thousands of tasks even for a fairly high arrival 
rate. The number of nodes produced to schedule large number of tasks in the SSS algorithm is many times smaller 
than that produced by other algorithms in the real-time domain for solving similar problems.   
 
The performance results obtained using the algorithm show that laxity in the reservation window can significantly 
improve system performance by reducing the probability of blocking and increasing utilization. The effect is more 
pronounced for the cases where proportion of advance reservations is high. When Pb is plotted against PAR, there 
exists a knee on the curve for a given value of laxity after which Pb increases more rapidly. Given the mean laxity of 
the tasks, the network can limit the ratio of requests it accepts as ARs equal to the value of PAR at the knee of the 
curve to keep Pb at reasonable levels. When Pb is plotted against L, the curves are characterized by a knee that can 
act as a suitable operating point. The knee is reached for much smaller value of L compared to the one required to 
make Pb exactly equal to 0.   
 
The paper also investigated the effect of task preemption on system performance. The results in Section 5.2 show 
that choice of preemption depends largely on the distribution of the task service times and the proportion of advance 
reservations. For low PAR values, when the variance between the service times is small, there is no significant 
advantage in task preemption. For PAR = 0.4, with the values of the parameters in the experiments , maximum 
increase in utilization for uniformly distributed task service times is 1.05% and it diminishes as overheads of 
preemption are considered. For hyper-exponentially distributed task service times with a co-efficient of variation of 
2, the effect of task preemption is much more pronounced. In our experiments, for hyper-exponentially distributed 
service times, for PAR = 0.4, task preemption resulted in an increase in utilization of up to 3.15% and substantial 
decrease of up to 60.7% in ROD and up to 43.38% in RAR. For higher values of PAR, the improvement in utilization 
and response times is much more significant. 
 
The results in Section 5.2 also show that the improvement in performance with preemption is sensitive to L. With 
the workload parameters in the experiments, maximum improvement in utilization is achieved at L = 70%. At higher 
L values, difference in utilization diminishes. This suggests that laxity can be exchanged for preemption to achieve 
high system utilization.  
 
As proportion of advance reservations increases, response time of the on-demand requests increases substantially. 
The effect is more pronounced for higher L values. A very high response time for ODs will encourage all users to 
submit their tasks as ARs which would increase PAR. For lower L values, this would decrease their response time 
but at a cost of low utilization of the resource (see for example, Figure 3 and Figure 5). For higher L values, with the 
increase in PAR, there would not only be a slight decrease in U but also a tremendous increase in the response time 
of all requests (see for example, Figure 4 and Figure 6). In order to prevent these situations resulting from potential 
starvation of on-demand requests a resource, we presented a very simple policy of associating a virtual deadline with 
ODs. The results in Section 5.3 show that this policy can effectively decrease the response time of ODs without 
significantly decreasing U or substantially increasing RAR. For higher L values, percentage decrease in utilization 



 26

diminishes while the percentage decrease in ROD increases substantially. The policy is thus especially suitable for 
high L values.  
 
The results in Section 5.3 also show that if tasks have equal deadlines there is no significant advantage in terms of 
reduction in response time by reserving the resources in advance. From this result, we can also deduce that changing 
the minimum time between the arrival of an advance reservation request and its start time does not change the 
overall performance.  
   
7. REFERENCES 
 
[1] M. Norman, P. Beckman, G. Bryan, J. Dubinski, D. Gannon, L. Hernquist, K. Keahey, J. Ostriker, J. Shalf, J. 

Welling, S. Yang, “Galaxies Collide on the I-WAY: An Example of Heterogeneous Wide-Area Collaborative 
Supercomputing,” in The International Journal of Supercomputer Applications, Volume 10, No. 2, pp.131-
140, 1996. 

[2] J. Nieplocha, R. Harrison, “Shared Memory NUMA Programming on the I-WAY,” in the Proceedings of the 
5th IEEE Symposium on High Performance Distributed Computing, Syracuse, New York, USA, August 1996, 
pp. 432-441. 

[3] Michael J. Litzkow, Miron Livny, Matt W. Mutka, “Condor: A Hunter of Idle Workstations,” in the 
Proceedings of the 8th IEEE International Conference of Distributed Computing Systems, San Jose, CA, USA, 
June 1988, pp. 104-111. 

[4] K. Marzullo, M. Ogg, A. Ricciardi, A. Amoroso, F. Calkins, E. Rothfus, “Nile: Wide-area Computing for 
High Energy Physics,” in the Proceedings of the 7th ACM SIGOPS European Workshop, Connemara, Ireland, 
September 1996. 

[5] Glen H. Wheless, Cathy M. Lascara, Arnoldo Valle-Levinson, Donald P. Brutzman, William Sherman, 
William L. Hibbard, Brian E. Paul, “Virtual Chesapeake Bay: Interacting with a Coupled Physical/Biological 
Mode,” in IEEE Computer Graphics and Applications, Volume 16, No. 4, pp. 42-43, July 1996. 

[6] Maria Roussos, Andrew Johnson, Jason Leigh, Christina Valsilakis, Craig Barnes, Thomas Moher, “NICE: 
Combining Constructionism, Narrative and Collaboration in a Virtual Learning Environment,” in Computer 
Graphics, Volume 31, No. 3, pp. 62-63, August 1997. 

[7] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, A. Roy, “A Distributed Resource Management 
Architecture that Supports Advance Reservations and Co-Allocation,” in the Proceedings of the 7th 
International Workshop on Quality of Service, London, UK, May 1999. 

[8] A. Sulistio, R. Buyya, “A Grid Simulation Infrastructure Supporting Advance Reservation,” in the 
Proceedings of the 16th International Conference on Parallel and Distributed Computing and Systems, 
Cambridge, Boston, USA, November 2004. 

[9] W. Smith, I. Foster, V. Taylor, “Scheduling with Advanced Reservations,” in the Proceedings of the 
IEEE/ACM 14th International Parallel and Distributed Processing Symposium, Cancun, Mexico, May 2000. 

[10] T. Lavian, S. Merrill, H. Cohen, D. Hoang, J. Mambretti, S. Figueira, D. Cutrell, S. Naiksatam, F. Travostino, 
“A Grid Network Service Architecture for Dynamic Optical Networks,” submitted to the Journal of Grid 
Computing, special issue on High Performance Networking. 

[11] G. McMahon, M. Florian, “On Scheduling with Ready Times and Due Dates To Minimize Maximum 
Lateness”, in Operations Research, Volume 23, No. 3, pp. 475-482, May-June, 1975.     

[12]  J. Xu, D. Parnas, “Scheduling Processes With Release Times, Deadlines, Precedence And Exclusion 
Relations,” in IEEE Transactions on Software Engineering, Volume 16, No. 3, pp. 360-369, 1990. 

[13] The Globus Toolkit. http://www.globus.org. 

[14] The Legion Project. http://legion.virginia.edu 



 27

[15] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, and S. Tuecke, “A Resource 
Management Architecture for Metacomputing Systems,” in the Proceedings of the 4th IPPS/SPDP Workshop 
on Job Scheduling Strategies for Parallel Processing, Orlando, FL, USA, March 1998, pp. 62-82. 

[16] I. Foster, A. Roy, V. Sander, “A Quality of Service Architecture that Combines Resource Reservation and 
Application Adaptation,” in the Proceedings of the 8th International Workshop on Quality of Service, 
Pittsburgh, PA, USA, June 2000, pp. 181-188. 

[17] I. Foster, J. Vockler, M. Wilde, Y. Zhao, “The Virtual Data Grid: A New Model and Architecture for Data-
Intensive Collaboration,” in the Proceedings of the First CIDR - Biennial Conference on Innovative Data 
Systems Research, Asilomar, CA, USA, January 2003. 

[18] T. Kosar and M. Livny, “Stork: Making Data Placement a First Class Citizen in the Grid,” in the Proceedings 
of the 24th IEEE International Conference on Distributed Computing Systems, Tokyo, Japan, March 2004. 

[19] The Maui Scheduling System. http://www.mhpcc.edu/maui. 

[20] S. Figueira, N. Kaushik, S. Naiksatam, S. A. Chiappari, N. Bhatnagar, “Advance Reservation of Light-paths 
in Optical-Network Based Grids,” in the Proceedings of the 1st  International Workshop on Networks for Grid, 
San Jose, CA, USA, October 2004. 

[21] D. A. Menasce, E. Casalicchio, “A Framework for Resource Allocation in Grid Computing”, in the 
Proceedings of the 12th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer 
and Telecommunication Systems, Volendam, The Netherlands, October 2004, pp. 259-267.   

[22] H. Casanova, G. Obertelli, F. Berman, R. Wolski, “The Apples Parameters Sweep Template: User-Level 
Middleware for The Grid,” in the Proceedings of the ACM/IEEE Conference on Super Computing, 
Washington D.C., USA, 2000. 

[23] X. H. Sun, M. Wu, “Grid Harvest Service: A System for Long-Term Application-Level Task Scheduling,” in 
the Proceedings of International Parallel and Distributed Processing Symposium, Nice, France, April 2003.  

[24] L. Schrage, “Obtaining Optimal Solutions to Resource Constrained Network Scheduling Problems,” 
Unpublished Manuscript, March 1971. 

[25] S. Figueira, S. Naiksatam, H. Cohen, D. Cutrell, D. Gutierrez, D. B. Hoang, T. Lavian, J. Mambretti, S. 
Merrill, F. Travostino, “DWDM-RAM: Enabling Grid Services with Dynamic Optical Networks,” in the 
Proceedings. of the 4th IEEE International Symposium on Cluster Computing and the Grid, Chicago, IL, USA, 
April 2004. 

[26] J. Mambretti, J. Weinberger, J. Chen, E. Bacon, F. Yeh, D. Lillethun, B. Grossman, Y. Gu, M. Mazzuco, “The 
Photonic TeraStream: Enabling Next Generation Applications Through Intelligent Optical Networking at 
iGrid 2002,” in Journal of Future Computer Systems, pp.897-908, August 2003. 

 
 


