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CoV-Based Metrics to Quantify the Regularity of
Hard-Core Point Processes for Modeling the

Locations of Base Stations
Faraj Lagum, Sebastian S. Szyszkowicz, and Halim Yanikomeroglu

Abstract—Base station locations in wireless networks can be
modeled via repulsive random point processes with an amount
of regularity that is tunable between that of a triangular lattice
and that of a homogeneous Poisson point process. However, it is
currently difficult to quantify this regularity, or compare different
repulsive point processes.

In this paper, we examine three regularity metrics based on
the coefficient of variation (CoV) of geometric properties of point
processes and propose the CoV of the nearest neighbour distance
as the metric of choice. We also compare three hard-core point
processes in terms of their regularity range and the density of
the generated points.

Index Terms—Stochastic geometry; hard-core point process;
repulsive point process; second-order statistics.

I. INTRODUCTION

RECENT years have seen an increasing interest in point
processes (a subset of stochastic geometry) for more

realistic modeling of base station (BS) locations in wireless
networks. Traditionally, the triangular lattice (hexagonal cells)
is used to model the spatial structure of the BSs, and, more
recently, the homogeneous Poisson point process (PPP) is also
proposed because of its simplicity and analytic tractability [1]–
[3]. Both of these models are conceptually simple and can
be characterized by a single parameter: the density. However,
they are less accurate models and represent two extremes,
while the real deployment of the BS locations falls somewhere
in between [1]–[4]. Indeed, modeling BS locations using a
triangular lattice gives over-optimistic network performance
results, while modeling BS locations using the PPP gives the
most pessimistic performance estimate [1].

Repulsive point processes (RPPs) have additional parame-
ters apart from their density that can be tuned, with a resulting
variation in the amount of regularity (dispersion). Notably,
hard-core point processes are characterized by the hard-core
distance, which is the closest distance that two points of that
process can ever be to each other. RPPs can also be of the
soft-core variety, where points can appear arbitrarily close to
each other with a certain probability. Having extra parameters
increases the complexity of the models but provides control
over of the amount of heterogeneity1.
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1The heterogeneity could be regularity or clustering [5].

In this paper, we examine three hard-core processes already
proposed in wireless literature to model BS locations [6]–
[10]. Other RPPs used in the literature include determinantal
point process models [11], [12], and the family of Gibbs point
processes [2], [4]. RPPs are also useful for modeling HetNets
[3] and wireless sensor networks [13].

Motivation: Due to the dependence of the network per-
formance on the BS locations [2], the amount of regularity
of the spatial structure of BSs is an important characteristic
of wireless cellular networks. Motivated by the lack of an
adequate scalar metric to describe the spatial structure of these
BSs, we propose using the CoV of particular spatial metrics as
scalar metrics to quantify the regularity [5], which are useful
as network performance indicators as shown in Section V-
B. Classical stochastic geometry metrics such as the nearest
neighbour distribution function, the empty space function, and
the Ripley K-function are widely used in the literature [2], [4],
[11], [12] to capture the spatial structure of wireless networks.
However, these metrics are functions where we still need to
quantify the difference between them. Qualitative terms such
as less (or more) repulsive [7], [10], [12], [13] are also used
in the literature to compare the amount of regularity of RPPs.
Therefore, finding a precise and meaningful scalar metric to
quantify the heterogeneity is a necessity [13].

Contributions: We evaluate these CoV-based metrics for a
selected set of hard-core point processes from wireless litera-
ture. These point processes have only two tuning parameters:
the density and the hard-core distance. This paper’s contribu-
tions are as follows: (i) We evaluate the use of three CoV-
based metrics for quantifying the amount of regularity, (ii) we
show that the CoV-based metrics are capable of measuring the
amount of regularity of RPPs and that the CoV of the nearest
neighbor distance is the most sensitive metric among them,
and (iii) we compare the hard-core point processes as models
for BS locations in terms of the achievable range of regularity.

The rest of this paper is organized as follows: In Section II,
three hard-core point processes are introduced. In Section III,
three CoV-based metrics are presented. In Section IV, the CoV-
based metrics are evaluated for quantifying the regularity of
simulated realizations of the hard-core point processes. Finally,
we compare a CoV-based metric with function-based metrics
in Section V, before drawing conclusions in Section VI.

II. HARD-CORE POINT PROCESSES

A hard-core point processes X is a RPP where two points
are strictly prohibited from being closer than a predefined
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Fig. 1. The density ratio of MHC-I, MHC-II, and SSI as a function of r̃.

hard-core distance r>0 apart [6], [7], [14].
In this section, we introduce three hard-core point processes.

In general, generation of these three hard-core point processes
begins with generating a PPP, and then removing points that
violate the hard-core condition. Different ways of generating
and removing points lead to different RPPs with different
densities.

a) Matérn Hard-Core Process of Type I (MHC-I): The
MHC-I is generated as follows: From a PPP Φ with density
λP, simultaneously remove all points that are closer than r
from each other. The density of the MHC-I is λ=λP·e−λPπr

2

[7], and its normalization by λP is

λ

λP
= e−πr̃

2

, (1)

where r̃=r
√
λP is the normalized hard-core distance.

b) Matérn Hard-Core Process of Type II (MHC-II): The
MHC-II is generated by following three steps: First, generate
a PPP Φ with density λP. Second, associate a mark Ui which
is an independent uniform random variable on [0,1] to each
point xi ∈ Φ. Then, simultaneously remove all points that
have higher marks than their neighbours within a distance r.
The density of the MHC-II is λ = 1−e−λPπr

2

πr2 [7], and its
normalized density is

λ

λP
=

1− e−λPπr
2

−λPπr2
=

1− e−πr̃2

πr̃2
. (2)

c) Simple Sequential Inhibition (SSI): Given the required
density of points λP in a domain, candidate points are gen-
erated sequentially using a PPP. Points are discarded if they
are within a distance r from any previously accepted point.
The process terminates when the required density is attained
or when adding more point becomes impossible [7], [15]. The
density of the accepted points is λ. We are not aware of any
closed-form expression for the SSI density, but we find a good
fit:

λ

λP
= min

{
1, 0.61 · r̃−1.79

}
. (3)

The density ratios as a function of r̃ for MHC-I, MHC-II,
and SSI are shown in Fig. 1.

III. COV-BASED METRICS

In statistics, the coefficient of variation (CoV) of a random
quantity is defined as the ratio of its standard deviation
to its mean. The CoVs of three spatial metrics have been
introduced in [5] to characterize the heterogeneity of mobile
user locations. The three spatial metrics are also meaningful in
the context of BS locations: the Voronoi tessellation represents
the cell area associated with each BS under the assumption the
users always connect to the nearest BS [14], while the Delau-
nay triangulation connects each BS to its strongest interfering
BSs, and the nearest neighbour characterizes the dominating
interfering BS and has been of interest in measuring the
regularity of RPPs [13].

We propose using the CoV of each of these three spatial
metrics as a measure of the amount of regularity of the BS
locations. The CoVs of the spatial metrics are normalized by
a constant factor so that the CoV of the PPP is always 1.

a) CoV of the Areas of Voronoi Tessellation Cells :
Considering the areas of the cells of the Voronoi tessellation
[7] of a set of points as the spatial metric, the CoV is

CV =
1

kV
· σV
µV

, kV ∼= 0.529, (4)

where µV is the mean and σV is the standard deviation of the
Voronoi cell areas, and kV is a normalization factor [5].

b) CoV of the Lengths of Delaunay Triangulation Edges:
Taking the edges of the Delaunay triangulation [7] of a set of
points as the spatial metric, the CoV of the lengths of the
Delaunay triangulation edges (CD) is

CD =
1

kD
· σD
µD

, kD ∼= 0.492, (5)

where µD is the mean and σD is the standard deviation of the
Delaunay edge lengths, and kD is found in [5].

c) CoV of the Distance to the Nearest Neighbour: The
nearest neighbour distance is the distance from a typical point
to its nearest neighbour [16]. Taking it as a spatial metric, the
CoV is

CN =
1

kN
· σN
µN

, kN =

√
4− π
π
∼= 0.5227, (6)

where µN is the mean and σN is the standard deviation of the
nearest neighbour distribution; and kN is derived2 from [16].

The CoV-based metrics take the value of 0 for a triangular
lattice and 1 for a PPP. Values between 0 and 1 are found
for RPPs, as will be seen in the next section, while values
above 1 are found for processes with clustering [5]. Practical
models for the BS locations should have a CoV between 0 and
1. The CoVs are unit-less quantities and are invariant under
scaling of the measured point process, and can thus be adjusted
independently of its density λ.

IV. EVALUATION OF COV-BASED METRICS FOR
HARD-CORE POINT PROCESSES

We generate spatial patterns of BS locations using the point
processes defined in Section II and measure their amount of
regularity using the metrics defined in Section III.

2In [5], the value for kN is erroneously given as 0.653.
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Fig. 2. The CoV of the areas of the Voronoi tessellation cells as a function
of the normalized hard-core distance for hard-core point processes.

r̃ = r ·

√

λP

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
D

0

0.2

0.4

0.6

0.8

1

1.2

MHC-I

MHC-II

SSI

Fig. 3. The CoV of the lengths of the Delaunay triangulation edges as a
function of the normalized hard-core distance for hard-core point processes.

The density λ is fixed to be 100 points in a 1 km2 square
domain. r̃ is swept over a wide range to change the regularity
of the RPP, which is captured using the CoV-based metrics. For
each RPP and metric combination, a Monte-Carlo simulation
is performed with 1000 realizations. The ensemble mean of
the CoV-based metrics of the resulting points as a function of
r̃ is shown in Figs. 2, 3, and 4.

We observe that the SSI process has the widest CoV
ranges3 and achieves the highest density ratio, making it
the most attractive RPP. Conversely, the MHC-I process is
the least desirable among the investigated RPPs. It has the
lowest density ratio, making it inefficient in generating a given
number of points, and its CoV values fluctuate in a narrow
range around 1. We interpret this behaviour as being caused
by the nature of the MHC-I process itself: Removing all points
that violate the hard-core condition creates large holes in the
generated pattern when the hard-core distance is large, causing
some of the remaining points to cluster, relatively speaking.
Since cluster processes were shown [5] to have CoVs greater
than 1, this clustering increases the CoV value of MHC-I.

Our results also show that (i) the amount of regularity of
hard-core point processes is tunable and can be quantified

3Indeed, in [10], the SSI is observed to be more dispersive than MHC-II.
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Fig. 4. The CoV of the distance to the nearest neighbour as a function of
the normalized hard-core distance for hard-core point processes.

TABLE I
COV-BASED METRICS FLOOR FOR HARD-CORE POINT PROCESSES

CV CD CN

CoV floor
MHC-I 0.84 0.91 0.62
MHC-II 0.49 0.63 0.33

SSI 0.27 0.42 0.13

using CoV-based metrics and (ii) the useful tuning range of
these RPPs is r̃ < 1, i.e., where the CoVs are sensitive to
changes in r̃.

The ranges of the CoV-based metrics are summarized in
Table I. The CN metric provides the widest value range,
making it the most sensitive to changes in the amount of
regularity of the RPP.

V. COMPARISON OF CN TO TWO FUNCTION-BASED
METRICS

In this section, we show the relation between CN and two
function-based metrics, including network performance.

A. Ripley’s K-function

Ripley’s K-function4 K(r) is defined as the ratio of the
mean number of extra points within distance r from a
randomly chosen point (not included in the counting) to
the density of the spatial pattern [6], [13]. It characterizes
the regularity/clustering of a point process. The L-function,
L(r) =

√
(K(r)/π), is a normalized form of K(r). While

L(r) = r for a PPP, a spatial pattern with L(r) < r is
repulsive.

As shown in Fig. 5, RPPs with the same CN value have
similar L-function and hard-core distance r, apart from the
MHC-I in the second regime (where the CoV value increases
with r̃). This indicates that matching using Ripley’s functions
is not always possible as the curves can have very different
shapes.

4The K-functions of MHC-I and MHC-II are known in a complicated
integral form [6].
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density at different CN values and channel environments.

B. Coverage Probability

The coverage probability P (γ) is the probability that a
typical user achieves a signal-to-interference ratio (SIR) higher
than a given SIR threshold γ. We compare the downlink cover-
age probability where the BSs are deployed according to hard-
core point processes introduced in section II with different
amounts of regularity as measured using CN. The following
assumptions are used to evaluate the coverage probability: (i)
the average density is 100 BSs in 1 km2, (ii) all BSs transmit
the same power. (iii) mobile users are uniformly distributed
over the entire domain and each of them is associated to its
nearest BS, (iv) the frequency reuse factor is 1, (v) all channels
have Rayleigh fading and (vi) the thermal noise is ignored.
We also assumed two channel models: one with a path loss
exponent of α = 3 and 6 dB lognormal shadowing, and one
with α = 4 and no shadowing. Fig. 6 shows that different
RPPs with the same CN in different channel environments
behave alike regarding coverage probability. This is true even
for MHC-I in the second regime.
CN is an additional factor that affects the network perfor-

mance. The spatial pattern with a low CN value has a better
performance than the one with a high CN value. BSs deployed
according to the same density and CN have very similar SIR
performance, regardless of the hard-core process chosen.

VI. CONCLUSION

We proposed three different CoV-based metrics to measure
the amount of regularity of three spatial point processes used
in cellular networks to model the locations of BSs. These
metrics are also applicable to all stationary point processes,
in any field of study. We found that CN is the most sensitive
for the regularity of RPPs. Different BS location models
with the same density and CN value have very similar SIR
performance. Our results also show that the MHC-I process
is undesirable for modeling points with regularity, whereas
both the MHC-II and SSI processes are useful when their
normalized hard-core distance is less than 1, SSI being the
best in terms of the range of regularity and density ratio.

Given real deployments of BS locations, an interesting
extension is to investigate whether the CoV-based metrics
could work as a tool for fitting them to RPP models. Another
extension could include other RPPs as well as other scalar
metrics such as the variance of nearest neighbour distribution
and its noise figure [13].
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