CoV-Based Metrics to Quantify the Regularity of Hard-Core Point Processes for Modeling the Locations of Base Stations

Faraj Lagum, Sebastian S. Szyszkowicz, and Halim Yanikomeroglu

Abstract—Base station locations in wireless networks can be modeled via repulsive random point processes with an amount of regularity that is tunable between that of a triangular lattice and that of a homogeneous Poisson point process. However, it is currently difficult to quantify this regularity, or compare different repulsive point processes.

In this paper, we examine three regularity metrics based on the coefficient of variation (CoV) of geometric properties of point processes and propose the CoV of the nearest neighbour distance as the metric of choice. We also compare three hard-core point processes in terms of their regularity range and the density of the generated points.

Index Terms—Stochastic geometry; hard-core point process; repulsive point process; second-order statistics.

I. INTRODUCTION

RECENT years have seen an increasing interest in point processes (a subset of stochastic geometry) for more realistic modeling of base station (BS) locations in wireless networks. Traditionally, the triangular lattice (hexagonal cells) is used to model the spatial structure of the BSs, and, more recently, the homogeneous Poisson point process (PPP) is also proposed because of its simplicity and analytic tractability [1]–[3]. Both of these models are conceptually simple and can be characterized by a single parameter: the density. However, they are less accurate models and represent two extremes, while the real deployment of the BS locations falls somewhere in between [1]–[4]. Indeed, modeling BS locations using a triangular lattice gives over-optimistic network performance results, while modeling BS locations using the PPP gives the most pessimistic performance estimate [1].

Repulsive point processes (RPPs) have additional parameters apart from their density that can be tuned, with a resulting variation in the amount of regularity (dispersion). Notably, hard-core point processes are characterized by the hard-core distance, which is the closest distance that two points of that process can ever be to each other. RPPs can also be of the soft-core variety, where points can appear arbitrarily close to each other with a certain probability. Having extra parameters increases the complexity of the models but provides control over of the amount of heterogeneity¹.

This work is funded in part by TELUS, Canada, and in part by the Ministry of Higher Education and Scientific Research (MOHESR), Libya, through the Libyan-North American Scholarship Program.

The authors are with the Department of Systems and Computer Engineering, Carleton University, Ottawa, Ontario, Canada. Email: {faraj.lagum, sz, halim}@sce.carleton.ca

¹The heterogeneity could be regularity or clustering [5].

In this paper, we examine three hard-core processes already proposed in wireless literature to model BS locations [6]–[10]. Other RPPs used in the literature include determinantal point process models [11], [12], and the family of Gibbs point processes [2], [4]. RPPs are also useful for modeling HetNets [3] and wireless sensor networks [13].

Motivation: Due to the dependence of the network performance on the BS locations [2], the amount of regularity of the spatial structure of BSs is an important characteristic of wireless cellular networks. Motivated by the lack of an adequate scalar metric to describe the spatial structure of these BSs, we propose using the CoV of particular spatial metrics as scalar metrics to quantify the regularity [5], which are useful as network performance indicators as shown in Section V-B. Classical stochastic geometry metrics such as the nearest neighbour distribution function, the empty space function, and the Ripley K-function are widely used in the literature [2], [4], [11], [12] to capture the spatial structure of wireless networks. However, these metrics are functions where we still need to quantify the difference between them. Qualitative terms such as less (or more) repulsive [7], [10], [12], [13] are also used in the literature to compare the amount of regularity of RPPs. Therefore, finding a precise and meaningful scalar metric to quantify the heterogeneity is a necessity [13].

Contributions: We evaluate these CoV-based metrics for a selected set of hard-core point processes from wireless literature. These point processes have only two tuning parameters: the density and the hard-core distance. This paper's contributions are as follows: (i) We evaluate the use of three CoV-based metrics for quantifying the amount of regularity, (ii) we show that the CoV-based metrics are capable of measuring the amount of regularity of RPPs and that the CoV of the nearest neighbor distance is the most sensitive metric among them, and (iii) we compare the hard-core point processes as models for BS locations in terms of the achievable range of regularity.

The rest of this paper is organized as follows: In Section II, three hard-core point processes are introduced. In Section III, three CoV-based metrics are presented. In Section IV, the CoV-based metrics are evaluated for quantifying the regularity of simulated realizations of the hard-core point processes. Finally, we compare a CoV-based metric with function-based metrics in Section V, before drawing conclusions in Section VI.

II. HARD-CORE POINT PROCESSES

A hard-core point processes X is a RPP where two points are strictly prohibited from being closer than a predefined

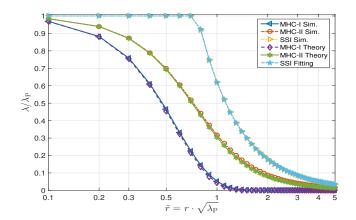


Fig. 1. The density ratio of MHC-I, MHC-II, and SSI as a function of \tilde{r} .

hard-core distance r > 0 apart [6], [7], [14].

In this section, we introduce three hard-core point processes. In general, generation of these three hard-core point processes begins with generating a PPP, and then removing points that violate the hard-core condition. Different ways of generating and removing points lead to different RPPs with different densities.

a) Matérn Hard-Core Process of Type I (MHC-I): The MHC-I is generated as follows: From a PPP Φ with density $\lambda_{\rm P}$, simultaneously remove all points that are closer than r from each other. The density of the MHC-I is $\lambda = \lambda_{\rm P} \cdot e^{-\lambda_{\rm P} \pi r^2}$ [7], and its normalization by $\lambda_{\rm P}$ is

$$\frac{\lambda}{\lambda_{\rm P}} = e^{-\pi \tilde{r}^2},\tag{1}$$

where $\tilde{r}=r\sqrt{\lambda_{\rm P}}$ is the normalized hard-core distance.

b) Matérn Hard-Core Process of Type II (MHC-II): The MHC-II is generated by following three steps: First, generate a PPP Φ with density $\lambda_{\rm P}$. Second, associate a mark U_i which is an independent uniform random variable on [0,1] to each point $x_i \in \Phi$. Then, simultaneously remove all points that have higher marks than their neighbours within a distance r. The density of the MHC-II is $\lambda = \frac{1-e^{-\lambda_{\rm P}\pi r^2}}{\pi r^2}$ [7], and its normalized density is

$$\frac{\lambda}{\lambda_{\rm P}} = \frac{1 - e^{-\lambda_{\rm P}\pi r^2}}{-\lambda_{\rm P}\pi r^2} = \frac{1 - e^{-\pi\tilde{r}^2}}{\pi\tilde{r}^2}.$$
 (2)

c) Simple Sequential Inhibition (SSI): Given the required density of points $\lambda_{\rm P}$ in a domain, candidate points are generated sequentially using a PPP. Points are discarded if they are within a distance r from any previously accepted point. The process terminates when the required density is attained or when adding more point becomes impossible [7], [15]. The density of the accepted points is λ . We are not aware of any closed-form expression for the SSI density, but we find a good fit:

$$\frac{\lambda}{\lambda_{\rm P}} = \min\left\{1, \quad 0.61 \cdot \tilde{r}^{-1.79}\right\}. \tag{3}$$

The density ratios as a function of \tilde{r} for MHC-I, MHC-II, and SSI are shown in Fig. 1.

III. COV-BASED METRICS

In statistics, the coefficient of variation (CoV) of a random quantity is defined as the ratio of its standard deviation to its mean. The CoVs of three spatial metrics have been introduced in [5] to characterize the heterogeneity of mobile user locations. The three spatial metrics are also meaningful in the context of BS locations: the Voronoi tessellation represents the cell area associated with each BS under the assumption the users always connect to the nearest BS [14], while the Delaunay triangulation connects each BS to its strongest interfering BSs, and the nearest neighbour characterizes the dominating interfering BS and has been of interest in measuring the regularity of RPPs [13].

We propose using the CoV of each of these three spatial metrics as a measure of the amount of regularity of the BS locations. The CoVs of the spatial metrics are normalized by a constant factor so that the CoV of the PPP is always 1.

a) CoV of the Areas of Voronoi Tessellation Cells: Considering the areas of the cells of the Voronoi tessellation [7] of a set of points as the spatial metric, the CoV is

$$C_{\rm V} = \frac{1}{k_{\rm V}} \cdot \frac{\sigma_{\rm V}}{\mu_{\rm V}}, \qquad k_{\rm V} \cong 0.529,$$
 (4)

where μ_V is the mean and σ_V is the standard deviation of the Voronoi cell areas, and k_V is a normalization factor [5].

b) CoV of the Lengths of Delaunay Triangulation Edges: Taking the edges of the Delaunay triangulation [7] of a set of points as the spatial metric, the CoV of the lengths of the Delaunay triangulation edges (C_D) is

$$C_{\rm D} = \frac{1}{k_{\rm D}} \cdot \frac{\sigma_{\rm D}}{\mu_{\rm D}}, \qquad k_{\rm D} \cong 0.492, \tag{5}$$

where μ_D is the mean and σ_D is the standard deviation of the Delaunay edge lengths, and k_D is found in [5].

c) CoV of the Distance to the Nearest Neighbour: The nearest neighbour distance is the distance from a typical point to its nearest neighbour [16]. Taking it as a spatial metric, the CoV is

$$C_{\rm N} = \frac{1}{k_{\rm N}} \cdot \frac{\sigma_{\rm N}}{\mu_{\rm N}}, \qquad k_{\rm N} = \sqrt{\frac{4-\pi}{\pi}} \cong 0.5227, \quad (6)$$

where μ_N is the mean and σ_N is the standard deviation of the nearest neighbour distribution; and k_N is derived² from [16].

The CoV-based metrics take the value of 0 for a triangular lattice and 1 for a PPP. Values between 0 and 1 are found for RPPs, as will be seen in the next section, while values above 1 are found for processes with clustering [5]. Practical models for the BS locations should have a CoV between 0 and 1. The CoVs are unit-less quantities and are invariant under scaling of the measured point process, and can thus be adjusted independently of its density λ .

IV. EVALUATION OF COV-BASED METRICS FOR HARD-CORE POINT PROCESSES

We generate spatial patterns of BS locations using the point processes defined in Section II and measure their amount of regularity using the metrics defined in Section III.

²In [5], the value for $k_{\rm N}$ is erroneously given as 0.653.

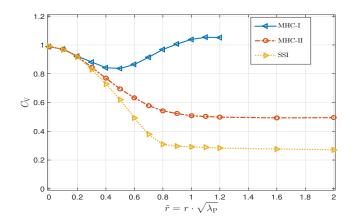


Fig. 2. The CoV of the areas of the Voronoi tessellation cells as a function of the normalized hard-core distance for hard-core point processes.

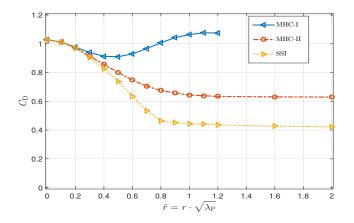


Fig. 3. The CoV of the lengths of the Delaunay triangulation edges as a function of the normalized hard-core distance for hard-core point processes.

The density λ is fixed to be 100 points in a $1\,\mathrm{km}^2$ square domain. \tilde{r} is swept over a wide range to change the regularity of the RPP, which is captured using the CoV-based metrics. For each RPP and metric combination, a Monte-Carlo simulation is performed with 1000 realizations. The ensemble mean of the CoV-based metrics of the resulting points as a function of \tilde{r} is shown in Figs. 2, 3, and 4.

We observe that the SSI process has the widest CoV ranges³ and achieves the highest density ratio, making it the most attractive RPP. Conversely, the MHC-I process is the least desirable among the investigated RPPs. It has the lowest density ratio, making it inefficient in generating a given number of points, and its CoV values fluctuate in a narrow range around 1. We interpret this behaviour as being caused by the nature of the MHC-I process itself: Removing all points that violate the hard-core condition creates large holes in the generated pattern when the hard-core distance is large, causing some of the remaining points to cluster, relatively speaking. Since cluster processes were shown [5] to have CoVs greater than 1, this clustering increases the CoV value of MHC-I.

Our results also show that (i) the amount of regularity of hard-core point processes is tunable and can be quantified

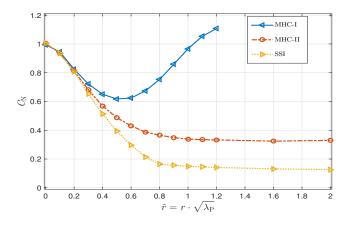


Fig. 4. The CoV of the distance to the nearest neighbour as a function of the normalized hard-core distance for hard-core point processes.

 $\label{table I} \textbf{CoV-Based Metrics Floor for Hard-Core Point Processes}$

		$C_{ m V}$	C_{D}	$C_{ m N}$
CoV floor	MHC-I	0.84	0.91	0.62
	MHC-II	0.49	0.63	0.33
	SSI	0.27	0.42	0.13

using CoV-based metrics and (ii) the useful tuning range of these RPPs is $\tilde{r} < 1$, i.e., where the CoVs are sensitive to changes in \tilde{r} .

The ranges of the CoV-based metrics are summarized in Table I. The $C_{\rm N}$ metric provides the widest value range, making it the most sensitive to changes in the amount of regularity of the RPP.

V. Comparison of C_{N} to two function-based metrics

In this section, we show the relation between C_N and two function-based metrics, including network performance.

A. Ripley's K-function

Ripley's K-function⁴ K(r) is defined as the ratio of the mean number of extra points within distance r from a randomly chosen point (not included in the counting) to the density of the spatial pattern [6], [13]. It characterizes the regularity/clustering of a point process. The L-function, $L(r) = \sqrt{(K(r)/\pi)}$, is a normalized form of K(r). While L(r) = r for a PPP, a spatial pattern with L(r) < r is repulsive.

As shown in Fig. 5, RPPs with the same $C_{\rm N}$ value have similar L-function and hard-core distance r, apart from the MHC-I in the second regime (where the CoV value increases with \tilde{r}). This indicates that matching using Ripley's functions is not always possible as the curves can have very different shapes.

³Indeed, in [10], the SSI is observed to be more dispersive than MHC-II.

⁴The K-functions of MHC-I and MHC-II are known in a complicated integral form [6].

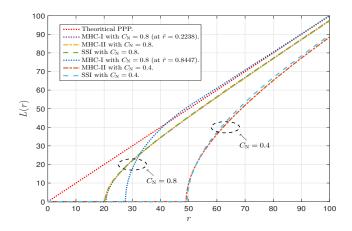


Fig. 5. Normalized Ripley's K-function for different RPPs and $C_{\rm N}$ values.

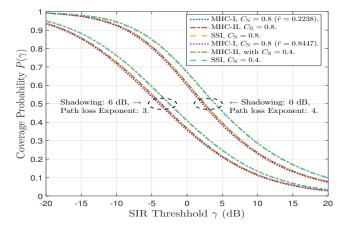


Fig. 6. The coverage probability for different hard-core models with constant density at different $C_{\rm N}$ values and channel environments.

B. Coverage Probability

The coverage probability $P(\gamma)$ is the probability that a typical user achieves a signal-to-interference ratio (SIR) higher than a given SIR threshold γ . We compare the downlink coverage probability where the BSs are deployed according to hardcore point processes introduced in section II with different amounts of regularity as measured using C_N . The following assumptions are used to evaluate the coverage probability: (i) the average density is 100 BSs in 1 km², (ii) all BSs transmit the same power. (iii) mobile users are uniformly distributed over the entire domain and each of them is associated to its nearest BS, (iv) the frequency reuse factor is 1, (v) all channels have Rayleigh fading and (vi) the thermal noise is ignored. We also assumed two channel models: one with a path loss exponent of $\alpha = 3$ and 6 dB lognormal shadowing, and one with $\alpha = 4$ and no shadowing. Fig. 6 shows that different RPPs with the same $C_{\rm N}$ in different channel environments behave alike regarding coverage probability. This is true even for MHC-I in the second regime.

 $C_{\rm N}$ is an additional factor that affects the network performance. The spatial pattern with a low $C_{\rm N}$ value has a better performance than the one with a high $C_{\rm N}$ value. BSs deployed according to the same density and $C_{\rm N}$ have very similar SIR performance, regardless of the hard-core process chosen.

VI. CONCLUSION

We proposed three different CoV-based metrics to measure the amount of regularity of three spatial point processes used in cellular networks to model the locations of BSs. These metrics are also applicable to all stationary point processes, in any field of study. We found that $C_{\rm N}$ is the most sensitive for the regularity of RPPs. Different BS location models with the same density and $C_{\rm N}$ value have very similar SIR performance. Our results also show that the MHC-I process is undesirable for modeling points with regularity, whereas both the MHC-II and SSI processes are useful when their normalized hard-core distance is less than 1, SSI being the best in terms of the range of regularity and density ratio.

Given real deployments of BS locations, an interesting extension is to investigate whether the CoV-based metrics could work as a tool for fitting them to RPP models. Another extension could include other RPPs as well as other scalar metrics such as the variance of nearest neighbour distribution and its noise figure [13].

ACKNOWLEDGEMENTS

The authors thank Dr. Rainer Schoenen, Hamburg University of Applied Sciences, Germany, for valuable discussions.

REFERENCES

- J. Andrews, F. Baccelli, and R. Ganti, "A tractable approach to coverage and rate in cellular networks," *IEEE Trans. Commun.*, vol. 59, no. 11, pp. 3122–3134, Nov. 2011.
- [2] A. Guo and M. Haenggi, "Spatial stochastic models and metrics for the structure of base stations in cellular networks," *IEEE Trans. Wireless Commun.*, vol. 12, no. 11, pp. 5800–5812, Nov. 2013.
- [3] J. Andrews, "Seven ways that HetNets are a cellular paradigm shift," *IEEE Commun. Mag.*, vol. 51, no. 3, pp. 136–144, Mar. 2013.
- [4] D. Taylor, H. Dhillon, T. Novlan, and J. Andrews, "Pairwise interaction processes for modeling cellular network topology," in *IEEE Global Commun. Conference (GLOBECOM)*, Dec. 2012, pp. 4524–4529.
- [5] M. Mirahsan, R. Schoenen, and H. Yanikomeroglu, "HetHetNets: Heterogeneous traffic distribution in heterogeneous wireless cellular networks," *IEEE J. Sel. Areas Commun.*, vol. 33, no. 10, pp. 2252–2265, Oct. 2015.
- [6] M. Haenggi, "Mean interference in hard-core wireless networks," *IEEE Commun. Lett.*, vol. 15, no. 8, pp. 792–794, Aug. 2011.
- [7] —, Stochastic Geometry for Wireless Networks. Cambridge University Press, 2012.
- [8] A. Ibrahim, T. ElBatt, and A. El-Keyi, "Coverage probability analysis for wireless networks using repulsive point processes," in *IEEE PIMRC*, Sept. 2013, pp. 1002–1007.
- [9] T. V. Nguyen and F. Baccelli, "On the spatial modeling of wireless networks by random packing models," in *IEEE INFOCOM*, Mar. 2012, pp. 28–36.
- [10] A. Busson and G. Chelius, "Point processes for interference modeling in CSMA/CA ad-hoc networks," in *PE-WASUN*, Oct. 2009, pp. 33–40.
- [11] Y. Li, F. Baccelli, H. Dhillon, and J. Andrews, "Fitting determinantal point processes to macro base station deployments," in *IEEE Global Commun. Conference (GLOBECOM)*, Dec. 2014, pp. 3641–3646.
- [12] N. Deng, W. Zhou, and M. Haenggi, "The Ginibre point process as a model for wireless networks with repulsion," *IEEE Trans. Wireless Commun.*, vol. 14, no. 1, pp. 107–121, Jan. 2015.
- [13] R. Ganti and M. Haenggi, "Regularity in sensor networks," in *Int. Zurich Seminar Commun.*, 2006, pp. 186–189.
- [14] H. ElSawy, E. Hossain, and M. Haenggi, "Stochastic geometry for modeling, analysis, and design of multi-tier and cognitive cellular wireless networks: A survey," *IEEE Commun. Surveys Tuts.*, vol. 15, no. 3, pp. 996–1019, July 2013.
- [15] P. J. Diggle, Statistical Analysis of Spatial and Spatio-Temporal Point Patterns, 3rd ed. Chapman and Hall/CRC, 2013.
- [16] P. M. Dixon, "Nearest neighbor methods," Encyclopedia of environmetrics, 2002.