
DOI: 10.1142/S0218213010000261

August 2, 2010 16:3 WSPC-IJAIT S0218213010000261

International Journal on Artificial Intelligence Tools
Vol. 19, No. 4 (2010) 417–437
c© World Scientific Publishing Company

SEARCH-BASED TESTING OF MULTI-AGENT

MANUFACTURING SYSTEMS FOR DEADLOCKS

BASED ON MODELS

NARIMAN MANI

Department of Electrical and Computer Engineering,

University of Calgary, Calgary, Alberta, Canada

nmani@ucalgary.ca

VAHID GAROUSI

Department of Electrical and Computer Engineering,

University of Calgary, Calgary, Alberta, Canada

vgarousi@ucalgary.ca

BEHROUZ H. FAR

Department of Electrical and Computer Engineering,

University of Calgary, Calgary, Alberta, Canada

far@ucalgary.ca

417

Multi-Agent Systems (MAS) have been extensively used in the automation of manufacturing

systems. However, similar to other distributed systems, autonomous agents’ interaction in the

Automated Manufacturing Systems (AMS) can potentially lead to runtime behavioral failures

including deadlocks. Deadlocks can cause major financial consequences by negatively affecting the

production cost and time. Although the deadlock monitoring techniques can prevent the harmful

effects of deadlocks at runtime, but the testing techniques are able to detect design faults during the

system design and development stages that can potentially lead to deadlock at runtime. In this paper,

we propose a search based testing technique for deadlock detection in multi-agent manufacturing

system based on the MAS design models. MAS design artifacts, constructed using Multi-agent

Software Engineering (MaSE) methodology, are used for extracting test requirements for deadlock

detection. As the case study, the proposed technique is applied to a multi-agent manufacturing

system for verifying its effectiveness. A MAS simulator has been developed to simulate multi-agent

manufacturing system behavior under test and the proposed testing technique has been implemented

in a test requirement generator tool which creates test requirements based on the given design

models.

Keywords: Multi-Agent Systems (MAS); Automated Manufacturing Systems (AMS); software

testing; deadlock; Multi-agent Software Engineering (MaSE).

1. Introduction

Agent based software application is a system composed of multiple interacting intelligent

agents that can perceive, reason, act, and communicate autonomously.
1
 The agent based

software engineering methodologies has been widely used in the automation of

http://dx.doi.org/10.1142/S0218213010000261

N. Mani, V. Garousi & B. H. Far

418

manufacturing systems such as concurrent engineering, collaborative engineering design,

manufacturing enterprise integration, supply chain management, manufacturing planning,

scheduling and control, and material handling. An Automated Manufacturing System

(AMS) is an integrated system of equipments and processes controlled via computer

applications or a network of them that is capable of producing a variety of products with

flexibility and efficiency.
2
 A manufacturing system automated by agent based technology

is composed of several autonomous and intelligent agents that can communicate and

exchange information to manage the product line processes and solve challenging

problems collaboratively.

A system composed of multiple interacting intelligent agents is called Multi-Agent

System (MAS).
3
 Therefore, in this paper we call a manufacturing system automated by

means of several interacting agents as multi-agent manufacturing system. Similar to other

distributed computing systems, multi-agent manufacturing systems are prone to the

conflicts such as deadlock situations, wherein two or more competing agent actions are

waiting for the other to finish, and thus neither ever does. In multi-agent manufacturing

systems, the agents are responsible for managing the production jobs such as resource

allocation to the production tasks. Considering machines and robots as the system

resources in the multi-agent manufacturing systems, deadlock arises when resources are

allocated to the production tasks in a way that makes task flow impossible. This can

cause the major interruption to the manufacturing process by affecting the production

cost and time.
4
 The deadlock monitoring techniques similar to one that we have

previously proposed in Ref. 5 are able to detect deadlock situations in a running system

and warn the system user right before or upon occurrence for taking an appropriate

action. But for reducing the risk of these unwanted emergent behaviors (i.e. deadlocks) at

runtime the MAS environment should be tested for deadlocks while the system is under

development process and before the release. If the testing comes late in the development

process the changes can be expensive specifically if they are fundamental, such as

architectural changes. But with the help of model based testing techniques the system

behavior can be verified and tested during the early stages of development process while

the system is under design.

They are many model-based approaches addressing deadlock problem in manufac-

turing systems. The key benefits of using models at runtime to detect deadlocks in

manufacturing systems is that models can provide a rich semantic base for decision-

making related to deadlock problem. However, to the best of our knowledge, none of the

previously proposed strategies addresses the deadlock problem in the multi-agent

manufacturing systems or in the other words manufacturing systems that have been

automated by using agent based software engineering methodologies. In this paper we

tackle the problem of deadlock in the multi-agent manufacturing systems analyzed and

designed by means of Multi-agents Software Engineering (MaSE) methodology.
6
 MaSE

is one of the Agent Oriented Software Engineering (AOSE)
3
 methodologies that uses

several UML-like models and diagrams to describe the architecture-independent structure

of agents and their interactions.

 Search-Based Testing of Multi-Agent Manufacturing Systems

419

In this paper, we use the same technique that we used in Ref. 5 for extracting the

potential deadlock information from the design models. But instead of using them for

monitoring at runtime, we propose a metamotel for formatting them into test requirement

data that can be used for testing for deadlocks. A test requirement generator tool has been

also implemented which is able to extract the test data from the design artifacts in the

proposed metamodel format. For verifying the efficiency of the testing technique in this

paper, an experiment has been designed by simulating the system under test behavior.

The experiment shows that the deadlock situation extracted by our testing technique from

the design models can potentially appear in the running system (i.e. a released system)

after passing a considerable amount of time from the beginning of the system operating.

Therefore the testing techniques such as one proposed in this paper can be helpful

identifying and resolving deadlocks faults in the system during the system design.

The remainder of this paper is structured as follows. The related work and

background are described in Section 2. The proposed technique overview in this paper is

discussed in Section 3. The input design model to our monitoring technique is introduced

in Section 4. Constructing the machine requirement table used for finding the potential

deadlocks is discussed in Section 5. An algorithm to extract potential deadlocks from the

design models is described in Section 6. The proposed metamodel for test requirement is

discussed in Section 7. The communication protocol for deadlock detection is discussed

in Section 8. The case study and the experimental results are discussed in Section 9.

Finally, Section 10 concludes the paper.

2. Background and Related Work

In this section, the background information required for describing the proposed

technique in this paper is discussed in Sections 2.1 and 2.2. Then, we discuss the related

work on deadlock detection in manufacturing systems and the techniques that they used

in Section 2.3.

2.1. Deadlock in automated manufacturing systems

An automated manufacturing system usually consists of a set of cells, a material handling

system connecting the cells, and service centers including material warehouse, tools

room, and equipment repair. A cell can be either a machine, inspector, or a load/unload

robot. Therefore, an automated manufacturing system can also be defined as a set of

machines in which parts are automatically transported from one machine to another for

processing. The deadlock problem has been already addressed in the Operating Systems

(OS) and Distributed Database Systems (DDS) contexts. In those contexts, a deadlock

situation is usually defined as: “A set of processes is deadlocked if each process in the set

is waiting for an event that only another process in the set can cause”.
7
 In this paper, we

tackle the challenge of deadlock detection on resources which model physical objects

(e.g. machines, robots, drives, etc.). In automated manufacturing system, those resources

are shared by processes (i.e. agent tasks).

N. Mani, V. Garousi & B. H. Far

420

Coffman et al.
8
 provided four conditions that must be held for a deadlock to occur:

(1) “Mutual Exclusion” which means each resource can only be assigned to exactly one

process; (2) “Hold and Wait” in which processes can hold resources and request more;

(3) “No Preemption” which means resources cannot be forcibly removed from a process;

and (4) “Circular Wait” which means there must be a circular chain of processes, each

waiting for a resource held by the next member in the chain. In automated manufacturing

system, the first three conditions given by Coffman et al.
8
 are always satisfied. Agent

tasks (i.e. manufacturing processes) use resources (i.e. machines) in an exclusive mode,

they hold resources while waiting for the next resources specified by their operation

sequence, and resources cannot be forcibly removed from the parts utilizing them until

operation is completed. Therefore, a deadlock can only occur if the forth condition (i.e.

circular wait) is held.
8

In this paper, we talk the problem of deadlock detection by finding

the situations that can potentially lead to a circular wait. An example of system deadlock

involving four machines is illustrated in Figure 1. In this figure, the moving parts (parts 1

and 2) are shown by white circles while the machines (machines A-D) are shown by grey

rectangles. Part 1 on machine A has to reach machine D and part 2 on machine D has

to reach machine A. A deadlock defiantly occurs between machines B and C, when the

part 1 is moving to machine C and part 2 is moving to machine B.

Fig. 1. A deadlock situation involving manufacturing machines and parts.

2.2. Agent based development methodology: MaSE

Artificial Intelligence (AI) techniques have significantly impacted manufacturing

systems. Many automated manufacturing system application ranging from material

handling and assembly controllers to long-term planning have been developed by means

of MAS
9
 technologies. As a result of the growing demand in MAS for industrial

applications, many AOSE methodologies such as MaSE have been evolved to assist the

development of agent-based applications.
6

MaSE uses several models and diagrams driven from the standard UML
10

 to describe

the architecture-independent structure of agents and their interactions.
6
 The main focus in

MaSE is to guide a MAS engineer from an initial set of requirements through the

2

1

Machine A

Machine CMachine B

1

2

1

Machine D

2

2

1

 Search-Based Testing of Multi-Agent Manufacturing Systems

421

analysis, design and implementation of a working MAS. In MaSE a MAS is viewed as a

high level abstraction of object oriented design of software where the agents are

specialized objects that cooperate with each other via conversation and act proactively to

accomplish individual and system-wide goals instead of calling methods and procedures.

In the other words, MaSE builds upon logical object oriented techniques and deploys

them in specifications and design of MAS. There are two major phases in MaSE: analysis

and design (Table 1).

Table 1. MaSE methodology phases and steps.6

MaSE Phases and Steps Associated Models

1. Analysis Phase

a. Capturing Goals

b. Applying Use Cases

c. Refining Roles

2. Design Phase

a. Creating Agent Classes

b. Constructing Conversations

c. Assembling Agent Classes

d. System Design

Goal Hierarchy

Use Cases, Sequence Diagrams

Task Diagram, Role Diagram

Agent Class Diagrams

Conversation Diagrams

Agent Architecture Diagrams

Deployment Diagrams

In this paper, we propose our deadlock detection technique by using the MaSE task

diagrams as the input model. We propose that in the multi-agent manufacturing systems,

MaSE task diagrams are used for modeling the defined production and assembly jobs.

More details on MaSE task diagrams as the input to our monitoring technique and using

them for deadlock detection in automated manufacturing systems designed by MaSE

methodology are discussed in subsequent sections.

2.3. Deadlock detection strategies for automated manufacturing systems

Four main strategies addressing deadlock issues in manufacturing systems are prevention,

detection, recovery, and avoidance methods. These strategies can be further categorized

based on the model used to describe the AMS and, in particular, the interaction between

jobs and resources. Three modeling methods are usually used: graph-theoretic, automata,

and Petri nets (PN). The graph-theoretic approaches such as Ref. 11 are simple and

intuitive solutions appropriate for describing the interactions between jobs and resources.

This allows an efficient deadlock depiction even in complex Resource Allocation

Systems (RAS) and allows the derivation of deadlock detection and avoidance strategies.

Finite state automata can formally model the automated manufacturing systems behavior

and have been used in establishing new deadlock avoidance control techniques such as

Ref. 12. Petri nets (PN) also have been used extensively by researchers for modeling

automated manufacturing systems (e.g. Ref. 13) and to develop suitable deadlock

resolution methods (e.g. Ref. 14). But to the best of our knowledge, despite the growing

demand of MAS applications in design, analysis, and development of automated

N. Mani, V. Garousi & B. H. Far

422

manufacturing systems,
9

there is no deadlock resolution or detection strategy based on

the models created for multi-agent manufacturing systems based on the one of AOSE

methodologies
3
 such as MaSE.

6
In the following sections, we propose a testing technique

for deadlock detection in multi-agent manufacturing systems based on the models

constructed during MaSE methodology analysis phases.

3. The Technique Overview

An overview of the proposed technique in this paper is illustrated in Figure 2. As

Figure 2 shows, the proposed technique has three main phases which are briefly

described in this section of the paper.

Fig. 2. Technique overview.

During the first two phase of the proposed technique (phase 1 and phase 2), the

situations that can potentially lead to a deadlock at runtime (potential deadlocks) are

extracted from the design models and formatted into test requirement data. The system

tester uses this test data to create test cases and execute them using a test driver. But the

deadlock situations forced on the system under test by means of test cases must be

detected for verifying their existence. As a solution for this issue, in phase 3 we use a

simplified version of our monitoring technique published in Ref. 5 which instruments the

 Search-Based Testing of Multi-Agent Manufacturing Systems

423

implemented MAS with a communication protocol capable of detecting deadlocks

occurred on system under test.

The input to the proposed deadlock monitoring technique is the agents’ task diagrams

built during the analysis and design of the MaSE methodology. These diagrams illustrate

the activities performed by several cells (e.g. machines and robots) inside the multi-agent

manufacturing system. During the steps in the first phase, each MaSE task diagram, a

UML-like statechart diagram is converted to a UML activity diagram, from which

Control Flow Paths (CFP) are derived afterwards (Section 4). Those CFPs are used in

phase 2 for extracting the potential deadlock information by means of a dedicated search

algorithm (Section 6). This extraction is performed by the “search for potential deadlock”

unit. Then the potential deadlock information is formatted into test requirement data used

by the tester for test case creation (Section 7). In phase 3, the implemented manufacturing

MAS designed by MaSE methodology is instrumented with a deadlock detection

communication protocol (Section 8). While the test driver is executing the test cases on

the system under test, the communication protocol is able to monitor the entire MAS to

verify the occurrence of the deadlocks.

4. The Input Task Model

In MaSE, a task is a structured set of communications and activities, represented by a

UML-like state diagram which consists of states and transitions.
6

UML’s state machine

diagram is commonly used to describe the behaviour of an object by specifying its

response to the events triggered by the object itself or its external environment.
10

However in MaSE,
6

this diagram is used to represent the behavior of a task associated

to an agent. In a MaSE task diagram, states contain activities that represent internal

reasoning, reading a percept from sensors, or performing actions via actuators. Multiple

activities can be in a single state and are performed in an un-interruptible sequence. Once

in a state, the task remains there until the activities’ sequence is completed.
6

In a multi-

agent manufacturing system, the task diagram is used for representing the flow of

manufacturing activities. An example of a MaSE task diagram created for a specific task

in a multi-agent manufacturing system is shown in Figure 3.

As the task diagram in Figure 3 shows, this task is able to perform its job through two

alternative production lines (flow paths). When the task is initiated by the controller, the

task finds the next available production line and afterwards makes the transportation

robot to load the parts into that line. After performing each set of activities in each state,

the task communicates with the controller agent through the “send” and “receive”

messages and informs it about the task status and its current state.

In addition to the information regarding the flow of activities inside each task

diagram, the task diagram has the information regarding the sequence of resources (i.e.

machines and robots) that are required by the task during the execution of its activities.

On the other hand, in this paper we tackle the problem of deadlock on the resources (i.e.

machines and robots) shared by agents’ tasks. Therefore, in the proposed technique

N. Mani, V. Garousi & B. H. Far

424

Fig. 3. An example input model: A MaSE task diagram for a manufacturing task.

in this paper, we use MaSE task diagrams for extracting the information regarding the

required resources by each agent’s task. This information is obtained during the steps in

phase 1 of the proposed technique in this paper (See Figure 2) by converting the task

diagrams into UML activity diagrams. Figure 4(a) shows the constructed activity diagram

based on the task model provided in Figure 3. Activity diagrams have been in UML since

its early 1.x versions and they are used to describe both sequential and concurrent control

flow and data flow.
15

As it is mentioned in UML 2.0 (Section 12.1 of Ref. 10), the UML

activity diagrams are commonly called Control Flow Graph (CFG). By analysis of the

control flow paths (CFP) in the constructed CFG or activity diagram the resource

requirement flow of the task can be extracted. The procedure is described in more

details in the reminder of this section.

Each state in MaSE task diagram contains the activities representing internal behavior

of the task when it is on that state. Since the order of task’s states is presented in the

MaSE task diagram by the directed transition arrows, the activities within the task, the

sequence of their execution and their execution conditions can be easily driven from the

states and the transition arrows and then they are imported into a new activity diagram.

Furthermore, the transition protocol (i.e. “send” and “receive” message communications)

in MaSE task diagram uses the syntax of trigger [guard]/transmission and the trigger and

 Search-Based Testing of Multi-Agent Manufacturing Systems

425

Fig. 4. (a) Constructed activity diagram based on the Task Diagram (b) Resource Requirement Flow Model.

transmission are limited to send and receive messages
6
 (See Figure 3). Therefore, in the

newly constructed activity diagram, each trigger and [guard] form the MaSE task

diagram should be considered as condition of the transition from the activities in source

state to the activities in destination state. Also, transmission should be considered as a

new activity executed after all activities listed in the source state (See Figure 4(a)). As a

result, using the derived activities from the states and the transitions among them, the

corresponding activity diagram for a MaSE task diagram is created in Figure 4(a). Using

the sequence of activities in the constructed activity diagram (i.e. CFPs), the resources

used by each tasks activity can be extracted and imported into a Resource Requirement

Flow Model (Figure 4(b)). In the Resource Requirement Flow Model presented in

Figure 4(b), the resources (i.e. machines and transport robots) used during the execution

of each CFP are presented. Each manufacturing machine is shown by Mi and each

transport robot by ROi. Between the manufacturing machines and the transport robots

resource types, only the manufacturing machines are selected and considered for tackling

the deadlock problem in this paper. This selection is based on the assumption that the

transport robots are only used for carrying the parts and they are not directly involved in

N. Mani, V. Garousi & B. H. Far

426

the manufacturing jobs such as assembly or modification. Therefore, they can be forcibly

taken from the tasks by the others agents’ requests and be involved in other tasks by

providing them the storages that they can move the carrying parts into them temporarily.

In this case, they do not satisfy the Coffman et al.
8
conditions for a deadlock situation and

they must be ignored for the deadlock detection technique proposed in this paper.

5. Machine Requirements Table

We use the resource requirement information obtained from each CFP in the activity

diagram to find the potential deadlocks inside the design models. But before using this

information for extracting the deadlock information, we organize the gathered the

resource requirement information from the activity diagram into a table called Machine

Requirement Table. As discussed in Section 4, among all the resources types extracted

from the input model, only the manufacturing machine are considered for the process of

deadlock detection in this paper. Therefore, each column in machine requirements table

represents the Sequence of Required Machines (SRM�) by one CFP� . Formally, The SRM

is defined as below:

 |i j j iSRM M M is the jth required Machine of the CFP=〈 〉 (1)

Figure 5 shows an example of a Machine Requirement table created for the case study in

this paper. The first two columns shows the SRMs for the two CFPs extracted from the

constructed activity diagram in Figure 4(a).

Fig. 5. Machine requirement table for manufacturing tasks.

6. Extracting the Potential Deadlocks

The constructed machine requirements table in previous section is used in this section for

extracting potential deadlocks in the system. The deadlocks found from the design

models in this step are called potential deadlock cycles since they can potentially lead to

a deadlock situation at runtime. In this technique, a 	
��
 is said to be dependent on

another 	
��� if there exists a sequence of tasks such as 	
��
, 	
���, …, 	
���

where each task in sequence is idle and waiting for a resource held by the next task in the

sequence. If 	
��
 is dependent on 	
���, then 	
��
 has to remain in idle status as

 Search-Based Testing of Multi-Agent Manufacturing Systems

427

long as 	
��� is idle. 	
��
 is deadlocked if it is dependent on itself or on a task which

is dependent on itself. The deadlock can be extended to a cycle of idle tasks, each

dependent on the next in the cycle. This is called a potential deadlock.

Our search technique uses the machine requirements table and searches for the tasks’

combinations that can potentially lead to a deadlock cycle. These cycles and the

participant agents in it are candidates for potential deadlock cycles and are used for

forming the rest requirements (i.e. Section 7). For describing the procedure of the

proposed search technique in this paper, an illustrated example is provided and shown in

Figure 6.

Fig. 6. An example of potential deadlock of tasks.

The provided example in Figure 6 shows three tasks of a multi-agent manufacturing

system. Each task runs a CFP from its activity diagram (i.e. CFG). Associated to each

CFP is a SRM (SRM1, SRM2, and SRM3) representing the sequence of required resource

by task on that CFP. The proposed search technique works as follow: starting from Task1,

the search technique assumes that it holds its first requested machine in the SRM1 which

is M1 and adds M1 to a SofarTraversed list (i.e. SofarTraversed = 〈M1〉). Therefore, the

next machine that the Task1 will request for it after holding M1 is M2. In this stage, the

technique searches inside the other SRMs (SRM1, SRM2) to find out if there is any other

Task1

Task1 Holds M1

Task2 HoldsM2

Task2

Task3 Holds M3

Task3

Is held by Task2

Is held by Task3

Is held by Task3

Task1 Requests M2

Task2 Requests M3

Task3 Requests M1

M1

M2

M5

M4

M2

M3

M7

M3

M1

Sequence of

Required Machines

by Task1 (SRM1)

Sequence of

Required Machines

by Task2 (SRM2)

Sequence of

Required Machines

by Task3 (SRM3)

N. Mani, V. Garousi & B. H. Far

428

request for M2 from the other tasks as well. It finds that Task2 has M2 as a requested

machine in its SRM (SRM2) and therefore it may compete with Task1 for acquiring M2.

In this stage, the technique assumes that in the worst case scenario, the M2 has been held

by Task2 and the Task1 has to wait for it and then add the M2 to the SofarTraversed list

(i.e. SofarTraversed = 〈M1, M2〉). Therefore, if the Task2 is holding M2 then the next

requested machine by Task2 from SRM2 will be M3. In this stage, the technique searches

the SRM1 and SRM2 to find any match for M3. A match is found in SRM3 and again the

technique assumes that M3 is held by Task3 and Task2 has to wait for it. M3 is added to

the SofarTraversed list (i.e. SofarTraversed = 〈M1, M2, M3〉). After M3, the next requested

machine by Task3 is M1. The technique finds a match for M1 in SRM1. The technique has

to assume that the M1 is held by Task1 and Task3 has to wait for it. But, the technique

finds out that M1 has been already added in to SofarTraversed and this means that the M1

has been already traversed by our proposed technique. In this stage, technique finds a

cycle of holds and requests which can potentially lead to a deadlock at runtime. The

technique reports this cycle as a potential deadlock. This procedure is repeated by

initiating the search from all other the SRMs and the resources inside them till the entire

potential deadlocks are found. A possible pseudo-code for the technique discussed in this

section is presented in Figure 7.

In Figure 7 pseudo-code, first the traversed SRM (SRMi), held machine (Mi),

and requested machine (Mi+1) are added into a thus far traversed list called

SofarTraversedList (lines 3-5). Then, if the newly added items into the

SofarTraversedList make a cycle with the existing items in it, the created

SofarTraversedList is printed as a poetical deadlock cycle (lines 8-10). Otherwise, the

requested machine (Mi+1) is searched in the all other SRMs except the existing SRMs in

Fig. 7. Pseudo-code for finding the potential deadlocks.

 Search-Based Testing of Multi-Agent Manufacturing Systems

429

SofarTraversedList to find a match (lines 12-19). If any match found, the requested

machine (Mi+1 or Next) is assumed as a held machine and the next required machine in

the SRM that the match is found in it is assumed as the requested machine

(NextRequiredMachine) and the same procedure is called again till a cycle is found or all

the SRM are traversed without any found match.

7. Test Requirement Metamodel

The extracted potential deadlock cycle in Section 6 are used for generating the test

requirements. In Section 6 we described a deadlock cycle based on tasks which are

running the different CFPs inside the system. As it’s discussed in Section 5 (Figure 5),

there are tasks associated to each agent in the system. Also, each task can have different

CFPs associated to it. An example of deadlock cycle in agent point of view can be

represented as below:

 Deadlock Cycle = 〈(Agent1, M4, M7), (Agent3, M7, M 5), (Agent4, M5, M4)〉

 = (Agent3, M7, M5), (Agent4, M5, M4), 〈(Agent1, M4, M7)〉

 = 〈(Agent4, M5, M4), (Agent3, M7, M5), (Agent1, M4,M7)〉

For specifying the order of the items in the cycle, we identified the elements in 〈 〉

notation. (Agent1, M4, M7) means that Agent1 is holding R4 and the next resource (i.e.

manufacturing machine) that it plans to take is R7. Since a cycle can be started from any

element inside it, the equivalent version of each cycle is indicated in the above example

too. But presenting the deadlock cycles in this format does not give us the information

about the CFPs and Tasks participated in the deadlock situation (i.e. as its discussed

associated with each agent are different tasks and associated to each task are different

CFPs). Therefore, in this section, we define a test requirement metamodel based on the

involved CFPs information and since the relationship between agents, tasks, and CFPs

are indicated in the machine requirement table (e.g. Figure 5) different presentations can

be easily interpreted to each other. The test requirements contain the required information

for the tester to create the test cases.

Each test requirement describes a potential deadlock situation by indicating the

following information: (1) the resources held by each CFP at the time of deadlock, (2) the

amount of time that each resource is supposed to be used, (3) resources requested (as the

next required resource) by each CFP at the time of deadlock, (4) the start time of

operation of each CFP based on the time that the whole system started working, and (5)

the time that the deadlock occurs based on the amount of time passed from the start time

of the CFP operation until deadlock happens. Based on the required information for

describing a deadlock situation, we proposed the metamodel for a test requirement for

deadlock in Figure 8.

As it is illustrated in Figure 8, each test requirement consists of: (1) a Held Set (HS)

contains the resources held by each CFP at the time of deadlock and the amount of that

N. Mani, V. Garousi & B. H. Far

430

Fig. 8. Test requirement metamodel.

the resources were supposed to be used, (2) a Timing Set (TS) contains each CFP’s start

time of operation and the time that deadlock occurs, and (3) a Circular Ordered list of

Requests (COLR) which contains cycle of the resource requests by each CFP at the time

of deadlock in system.

The information for the Held Set (HS) and Circular Request Sequence (COLR) are

extracted by the search algorithm discussed in Section 6. But the information in the

Timing Set (TS) has to be calculated based on the existing data. The amount of time that

a resource is supposed to be used by a specific CFP is indicated by the system designer in

the MAS design and analysis specification. Therefore, in the timing set, the CFP start

time of operation (i.e. the time that each CFP should start its operation to be participated

in the deadlock situation) and the time that deadlock occurs can be calculated using

following information: (1) the sequence of required resources by each CFP in the

resource requirement table when the deadlock occurs, and (2) the amount of time that

resource (machine) is supposed to be used by the CFP. The required data for the former is

provided by the search algorithm (i.e. discussed in Section 6) and the latter one is

provided by the system designer in the specification. The formal definition of each item

in the test requirement is provided as below:

Held Set: HS= {(CFPi, Mp, RUTp) |CFPi is holding required machine Mp for

RUTp (Resource Usage Time) Seconds}

Circular Ordered List of Requests: COLR = 〈Req1, Req2, …, Reqn〉

While Reqi = (CFPi, Mq)|CFPi requests for acquiring required machine set Mq)

Timing Set: TS = {(CFPi, CFPStartTimei, DeadlockTimei)|CFPi starts its operation after

CFPStartTimei, seconds from the start time of MAS and deadlock occurs after DeadlockTimei

seconds from the start time of CFP operation}

The test requirement should be able to present a deadlock situation by presenting

each deadlock cycle. In this paper we specify this cycle by presenting the resource

request in a circular ordered list format. As it is shown in above definitions, we use the

〈Req1, Req2,…, Reqn〉 notation for presenting the circular ordered list which each Req is a

 Search-Based Testing of Multi-Agent Manufacturing Systems

431

2-tuple. Two elements inside the Req respectively represent the CFP and the resource that

it request. As an example, a test requirement generated for a deadlock cycle and its

interpretation to the participated agents is shown below:

Formatted test requirement (indicating participated CFPs):

HS = {(CFP3, M4, 2), (CFP4, M7, 2), (CFP6, M4, 2)}

COLR = 〈(CFP3, M7), (CFP4, M5), {(CFP6, M4)〉=

〈(CFP4, M5), (CFP6, M4), (CFP3, M7),〉 = 〈(CFP6, M4), (CFP3, M7), (CFP4, M5),〉

TimingSet = {(CFP3, 2,4), (CFP4, 0, 6), (CFP6, 4, 2)}

Deadlock cycle (indicating participated agents):

〈(Agent1, M4, M7), (Agent3, M7, M5), (Agent4, M5, M4)〉

(Agent3, M7, M5), (Agent4, M5, M4), 〈(Agent1, M4, M7)〉 =

〈(Agent4, M5, M4), (Agent3, M7, M5), (Agent1, M4, M7)〉

In above example, HS shows the combination of the CFPs and held resources at the

time of deadlock. For example, a triple such as (CFP3, M4, 2) in HS indicates that CFP3

was holding M4 and M4 was supposed to be used by CFP3 for 2 seconds. In this paper we

indicate the CFP start time of operation based on the time that MAS starts its operation.

Also, the time that the deadlock occurs shows the amount of time that passed from the

start of CFP operation until deadlock happens. For example in the timing set

(i.e.”TimingSet”), (CFP3, 2, 4) indicates that for being participated in a deadlock

situation, CFP3 has to start its operation 2 seconds after the MAS starts its operation and

the deadlock occurs 4 seconds after CFP3 is run by its agent.

8. A Communication Protocol for Deadlock Detection

The potential deadlock cycles extracted by the search technique represents the situation

that can lead to a deadlock at runtime. They are formatted into test requirement data and

used for creating test cases by system tester. The system tester executes the test cases

which each forces a deadlock situation into the system. While the system is under test, a

technique is required to detect the deadlocks occurs on system under the test. We

proposed a runtime monitoring technique for deadlock detection in Ref. 5. The technique

in Ref. 5 is a deadlock detection protocol which is able to use the deadlock knowledge

extracted from the design models and propagate a deadlock detection query to the

possibly participated agents in a deadlock situation to detect deadlocks at runtime.

In this paper, we use a simplified version of that technique which is basically just a

deadlock detection query without any knowledge of the potential deadlocks and agents.

The query is propagated to the all the agents in the systems by an agent whenever it is

suspected to be involved in a deadlock situation. In this deadlock detection protocol, each

agent is associated with a set of dependent agents called the “dependency set”. Each

agent identifies its dependency set based on the agents that it was recently in conversation

with and it’s expecting to receive replies for the requests that it has made to them.

Whenever an agent is suspected to be involved in a deadlock situation (after spending a

defined amount of time in an idle mode), it propagates a deadlock detection query to its

N. Mani, V. Garousi & B. H. Far

432

dependency set. Assuming each CFP is running by an agent in multi-agent manufacturing

system, an agent in a dependency set can change its status from idle to active upon

receiving any message from one of the other members of its dependency set. A nonempty

set of agents are considered as deadlocked if all agents in that set are permanently idle.

An agent is called permanently idle, if it never receive a message from its dependency set

to change its status. An agent can determine if it is deadlocked by initiating a deadlock

detection query messages to its dependency set when it enters the idle state. If it figures

out that it won’t receive any message from its dependency set to change its status, it

declares itself as deadlocked (permanently idle). Upon receiving a query by an idle agent

in dependency set, it forwards the query to its own dependency set too if it has not done

already. Figure 9 shows an example of deadlock detection conversations among agents.

The query conversation messages are shown by continues arrows and the replies are

shown by dashed arrows. In this example, Agent 1 initiates two deadlock detection

queries to its dependency set: Agent 2, Agent 3, and Agent 4. Agent 2 can reply to the

query immediately by informing Agent 1 about its state since it is not involved in any

other dependency set. Agent 3 and Agent 4 are involved in other dependency sets and

they pass the query to their own dependency set before informing Agent 1 about their

status. Agent 3 and Agent 4 answer the Agent 1’s query upon receiving the replies from

their dependency set. Based on the replies received, Agent 1 can identify whether its

status can be changed from idle to active or not.

Fig. 9. Deadlock detection conversation.

9. Case Study and Experimental Results

We performed an experiment for showing the effectiveness of our technique based on a

multi-agent manufacturing system with capability of running four different CFPs

concurrently by four agents at each time. Figure 10 shows a snapshot of the tool

implemented based on the search algorithm discussed in Section 6 and test requirement

metamodel in Section 7. The tool user interface is divided to three different panes. The

 Search-Based Testing of Multi-Agent Manufacturing Systems

433

machine requirement table constructed for the case study in this paper (i.e. discussed in

Section 5) is used as an input for this tool (Pane 1 in Figure 10). The system tester is able

to assign CFPs to each of dedicated four agents in the system and presses search for

potential deadlock button (Pane 2 in Figure 10). Then the tool applies the proposed

algorithm in Section 6 to the assigned CFPs and finds the potential deadlocks. The tool

also interprets the deadlock cycles into the test requirements format proposed in Section 7

and shows them with timing information in data grid (Pane 3 in Figure 10).

Fig.10. Tool for extracting potential deadlock cycles and generating the test requirements.

N. Mani, V. Garousi & B. H. Far

434

For verifying the fact that the extracted potential deadlocks can lead to an actual

deadlock at runtime, we developed a simulator which imitates the MAS behaviour in a

deadlock condition. A snapshot of the implemented simulator is shown in Figure 11.

Using the simulator, a tester is able to verify the behaviour of MAS in the potential

deadlocks situations extracted by our proposed algorithm. Figure 11 snapshot shows the

behaviour of MAS based on the one of test requirements generated by the potential

deadlock extractor tool shown in Figure 10 (TR# 0). The tester defines the specification

of a test requirement for the simulator (i.e. information such as start time of each CFP and

the sequence of required machines (SRM) for each one) and presses “Run Agents” button

(Pane 1 in Figure 11). The simulator imitates that situation and verifies if a deadlock

occurs. The monitoring unit is also embedded in the simulator (Pane 2 in Figure 11).

So when a deadlock happens the monitoring unit detect it and report to the user. As

Figure 11 shows that the monitoring unit detect a deadlock in the system after agents 2,

3, and 4 getting involved in a deadlock cycle. The status of each machine (i.e. locked or

free and also if it’s locked the locker agent) and each agent is also reported on the real

time windows on the tool user interface with proper messages (Pane 3 and Pane 4 in

Figure 11).

Fig. 11. MAS behavior simulator.

 Search-Based Testing of Multi-Agent Manufacturing Systems

435

For showing the effectiveness of the system, we performed another experiment in

which random input are generated for the discussed simulator to imitate a running MAS

till a deadlock happens. Random tasks and CFPs are assigned to the agents and

monitoring unit is watching the MAS for deadlocks. This experiment shows that time to a

deadlock situation in a running system can be very long and unexpected. This verifies the

importance of exiting the testing techniques such as the one proposed in this paper. The

results are shown in Table 2.

The experiment is repeated for 9 times and for more accuracy with three different

probability distribution functions for random input generation (i.e. equal, normal, and

exponential). The second column of the table shows number of simulation runs for each

experiment. In each experiment run, a CFP with resources is assigned to each agent with

random start times. The third column shows the estimated simulation time based on the

time for each run (i.e. in this case study 32 seconds for each run). The fourth column

indicates if a deadlock occurs in a specific experiment or not. As it can be concluded

from Table 2, deadlocks can appear in the system in a quite long time since their start

time. Since the source of this type of behavioral fault is from the design level of the

system, it would be very cost effective if these faults can be extracted in the system

before the release and during the development process. Our testing technique gives the

system tester the opportunity to test a multi-agent manufacturing system for deadlocks

while the system is under development.

Table 2. Experiment results — Time to deadlock based on random inputs.

Experiment #

Number of

Generated Inputs

(Simulation Runs)

Estimated

Simulation

Time (≈ hrs)

Deadlock

Detection

Probability

Distribution

Function

Parameters for

Probability

Distribution Function

1 47855 425 No Deadlock

Equal Domain = [0,5] 2 36454 324 Found

3 47820 425 No Deadlock

4 41453 368 Found

Normal

Mu(µ) = 2.5

Sigma (σ) = 0.85

Domain ≈ [0,5]

5 43361 385 Found

6 47893 425 No Deadlock

7 47414 421 No Deadlock

Exponential
Lambda (λ)= 0.7

Domain ≈ [0,5]
8 47863 425 No Deadlock

9 37351 332 Found

10. Conclusion

Previously in Ref. 5 we proposed a runtime technique for monitoring multi-agent

manufacturing systems for deadlocks based on their design model. In Ref. 5 a search

algorithm was proposed for extracting the potential deadlock cycles from the design

models which were used for system monitoring (Section 6). Although the monitoring

technique can be helpful to warn the system user upon deadlock occurrences in the

released systems, but the testing techniques can be more useful by reporting the existence

N. Mani, V. Garousi & B. H. Far

436

of the deadlocks while the system is under design and development. This can save lots of

time and effort from the system developers. Therefore, using the same searching

algorithm in Ref. 5, in this paper we format the extracted potential deadlocks into test

requirements that can be used for testing a multi-agent manufacturing system under the

development. A metamodel for test requirement is proposed which contains the adequate

data required for testing deadlock situations (Section 7). For the case study part of this

paper, a tool has been developed that is able to find the potential deadlock cycles using

the design model information and creates the test requirements based on the test

requirement metamodel (Section 9). The tool was also used for generating the test

requirement for a case study multi-agent manufacturing system with four agents.

Furthermore, a simulator has been developed which is able to imitate the behaviour of a

MAS under test and shows that the extracted deadlock situations can lead to deadlocks at

runtime. Another experiment has been also performed using the implemented simulator

and a random input generator for imitating a running MAS and measuring the time to an

unexpected deadlock. That experiment verified that the time to a deadlock in the system

is unpredictable and testing techniques for deadlocks can save money and time by

detecting deadlock using the design models while the system is under development.

Acknowledgment

The authors were supported by discovery grants from NSERC. Vahid Garousi was

further supported by an Alberta Ingenuity New Faculty Award no. 200600673.

References

1. M. R. Genesereth and P. K. Ketchpel, “Software agents,” Commun. ACM, vol. 37 (7), pp. 48-

53, 1994.

2. K. Kumaran, W. Chang, H. Cho, and R. A. Wysk, “A structured approach to deadlock

detection, avoidance and resolution in flexible manufacturing systems,” International Journal

of Production Research, vol. 32 (10), pp. 2361-2379, Oct. 1994.

3. F. Bergenti, M. P. Gleizes, and F. Zambonelli, Methodologies and Software Engineering for

Agent System (New York: Kluwer Academic Publishers, 2004).

4. M. P. Fanti and M. Zhou, “Deadlock control methods in automated manufacturing system,”

IEEE Transactions on Systems, Man and Cybernetics, vol. 34 (1), pp. 5-22, Jan. 2004.

5. N. Mani, V. Garousi, and B. H. Far, “Runtime Monitoring of Multi-Agent Manufacturing

Systems for Deadlock Detection Based on Models” in the 21st IEEE International Conference

on Tools with Artificial Intelligence (ICTAI 09), Newark, New Jersey, USA, 2009, pp. 292-

299.

6. S. A. DeLoach, “The MaSE Methodology,” in Methodologies and Software Eng. for Agent

System, F. Bergenti, M. P. Gleizes, and F. Zambonelli, Eds. (Boston: Kluwer Academic

Publishers, 2004), pp. 107-147.

7. A. Tanenbaum, Modern Operating Systems (Englewood Cliffs: Prentice Hall Inc., 1992).

8. E. G. Coffman, M. J. Elphick, and A. Shoshani, “System deadlocks,” ACM Comput. Surv.,

vol. 3, pp. 67–78, June 1971.

9. Weiming Shen, D. H. Norrie, and Jean-Paul Barthès, Multi-agent Systems for Concurrent

Intelligent Design and Manufacturing (London: Taylor & Francis Press, 2001).

 Search-Based Testing of Multi-Agent Manufacturing Systems

437

10. Objet Management Group (OMG), “UML 2.1.2 Superstructure Specification,” November

2007.

11. N. Z. Gebraeel and M. A. Lawley, “Deadlock detection, prevention, and avoidance for

automated tool sharing systems,” IEEE Trans. Robot. Automat., vol. 17, pp. 342-356, June

2001.

12. S. A. Reveliotis and P. M. Ferreira, “Deadlock avoidance policies for automated manufac-

turing cells,” IEEE Trans. Robot. Automat., vol. 12, pp. 845–857, 1996.

13. A. A. Desrochers and R. Y. Al-Jaar, Applications of Petri Nets in Manufacturing Systems

(New York: IEEE, 1995).

14. F. Chu and X. Xie, “Deadlock analysis of Petri nets using siphons and mathematical

programming,” IEEE Trans. Robot. Automat., vol. 13, pp. 793-804, Dec. 1997.

15. V. Garousi, L. Briand, and Y. Labiche, “Control Flow Analysis of UML 2.0 Sequence

Diagrams,” in Model Driven Architecture — Foundations and Applications, vol. 3748/2005,

Berlin/Heidelberg: Springer 2005, pp. 160-174.

