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Multi-Agent Systems (MAS) have been extensively used in the automation of manufacturing 

systems. However, similar to other distributed systems, autonomous agents’ interaction in the 

Automated Manufacturing Systems (AMS) can potentially lead to runtime behavioral failures 

including deadlocks. Deadlocks can cause major financial consequences by negatively affecting the 

production cost and time. Although the deadlock monitoring techniques can prevent the harmful 

effects of deadlocks at runtime, but the testing techniques are able to detect design faults during the 

system design and development stages that can potentially lead to deadlock at runtime. In this paper, 

we propose a search based testing technique for deadlock detection in multi-agent manufacturing 

system based on the MAS design models. MAS design artifacts, constructed using Multi-agent 

Software Engineering (MaSE) methodology, are used for extracting test requirements for deadlock 

detection.  As the case study, the proposed technique is applied to a multi-agent manufacturing 

system for verifying its effectiveness. A MAS simulator has been developed to simulate multi-agent 

manufacturing system behavior under test and the proposed testing technique has been implemented 

in a test requirement generator tool which creates test requirements based on the given design 

models. 

Keywords: Multi-Agent Systems (MAS); Automated Manufacturing Systems (AMS); software 

testing; deadlock; Multi-agent Software Engineering (MaSE).  

1.  Introduction 

Agent based software application is a system composed of multiple interacting intelligent 

agents that can perceive, reason, act, and communicate autonomously.
1
 The agent based 

software engineering methodologies has been widely used in the automation of 
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manufacturing systems such as concurrent engineering, collaborative engineering design, 

manufacturing enterprise integration, supply chain management, manufacturing planning, 

scheduling and control, and material handling. An Automated Manufacturing System 

(AMS) is an integrated system of equipments and processes controlled via computer 

applications or a network of them that is capable of producing a variety of products with 

flexibility and efficiency.
2
 A manufacturing system automated by agent based technology 

is composed of several autonomous and intelligent agents that can communicate and 

exchange information to manage the product line processes and solve challenging 

problems collaboratively.  

A system composed of multiple interacting intelligent agents is called Multi-Agent 

System (MAS).
3
 Therefore, in this paper we call a manufacturing system automated by 

means of several interacting agents as multi-agent manufacturing system. Similar to other 

distributed computing systems, multi-agent manufacturing systems are prone to the 

conflicts such as deadlock situations, wherein two or more competing agent actions are 

waiting for the other to finish, and thus neither ever does. In multi-agent manufacturing 

systems, the agents are responsible for managing the production jobs such as resource 

allocation to the production tasks. Considering machines and robots as the system 

resources in the multi-agent manufacturing systems, deadlock arises when resources are 

allocated to the production tasks in a way that makes task flow impossible. This can 

cause the major interruption to the manufacturing process by affecting the production 

cost and time.
4
 The deadlock monitoring techniques similar to one that we have 

previously proposed in Ref. 5 are able to detect deadlock situations in a running system 

and warn the system user right before or upon occurrence for taking an appropriate 

action. But for reducing the risk of these unwanted emergent behaviors (i.e. deadlocks) at 

runtime the MAS environment should be tested for deadlocks while the system is under 

development process and before the release. If the testing comes late in the development 

process the changes can be expensive specifically if they are fundamental, such as 

architectural changes. But with the help of model based testing techniques the system 

behavior can be verified and tested during the early stages of development process while 

the system is under design.  

They are many model-based approaches addressing deadlock problem in manufac-

turing systems. The key benefits of using models at runtime to detect deadlocks in 

manufacturing systems is that models can provide a rich semantic base for decision-

making related to deadlock problem. However, to the best of our knowledge, none of the 

previously proposed strategies addresses the deadlock problem in the multi-agent 

manufacturing systems or in the other words manufacturing systems that have been 

automated by using agent based software engineering methodologies. In this paper we 

tackle the problem of deadlock in the multi-agent manufacturing systems analyzed and 

designed by means of Multi-agents Software Engineering (MaSE) methodology.
6
 MaSE 

is one of the Agent Oriented Software Engineering (AOSE)
3
 methodologies that uses 

several UML-like models and diagrams to describe the architecture-independent structure 

of agents and their interactions. 
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In this paper, we use the same technique that we used in Ref. 5 for extracting the 

potential deadlock information from the design models. But instead of using them for 

monitoring at runtime, we propose a metamotel for formatting them into test requirement 

data that can be used for testing for deadlocks. A test requirement generator tool has been 

also implemented which is able to extract the test data from the design artifacts in the 

proposed metamodel format. For verifying the efficiency of the testing technique in this 

paper, an experiment has been designed by simulating the system under test behavior. 

The experiment shows that the deadlock situation extracted by our testing technique from 

the design models can potentially appear in the running system (i.e. a released system) 

after passing a considerable amount of time from the beginning of the system operating. 

Therefore the testing techniques such as one proposed in this paper can be helpful 

identifying and resolving deadlocks faults in the system during the system design. 

The remainder of this paper is structured as follows. The related work and 

background are described in Section 2. The proposed technique overview in this paper is 

discussed in Section 3. The input design model to our monitoring technique is introduced 

in Section 4. Constructing the machine requirement table used for finding the potential 

deadlocks is discussed in Section 5. An algorithm to extract potential deadlocks from the 

design models is described in Section 6.  The proposed metamodel for test requirement is 

discussed in Section 7. The communication protocol for deadlock detection is discussed 

in Section 8. The case study and the experimental results are discussed in Section 9. 

Finally, Section 10 concludes the paper. 

2.  Background and Related Work 

In this section, the background information required for describing the proposed 

technique in this paper is discussed in Sections 2.1 and 2.2. Then, we discuss the related 

work on deadlock detection in manufacturing systems and the techniques that they used 

in Section 2.3. 

2.1.  Deadlock in automated manufacturing systems 

An automated manufacturing system usually consists of a set of cells, a material handling 

system connecting the cells, and service centers including material warehouse, tools 

room, and equipment repair. A cell can be either a machine, inspector, or a load/unload 

robot. Therefore, an automated manufacturing system can also be defined as a set of 

machines in which parts are automatically transported from one machine to another for 

processing.  The deadlock problem has been already addressed in the Operating Systems 

(OS) and Distributed Database Systems (DDS) contexts. In those contexts, a deadlock 

situation is usually defined as: “A set of processes is deadlocked if each process in the set 

is waiting for an event that only another process in the set can cause”.
7
 In this paper, we 

tackle the challenge of deadlock detection on resources which model physical objects 

(e.g. machines, robots, drives, etc.). In automated manufacturing system, those resources 

are shared by processes (i.e. agent tasks). 
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Coffman et al.
8
 provided four conditions that must be held for a deadlock to occur: 

(1) “Mutual Exclusion” which means each resource can only be assigned to exactly one 

process; (2) “Hold and Wait” in which processes can hold resources and request more; 

(3) “No Preemption” which means resources cannot be forcibly removed from a process; 

and (4) “Circular Wait” which means there must be a circular chain of processes, each 

waiting for a resource held by the next member in the chain. In automated manufacturing 

system, the first three conditions given by Coffman et al.
8
 are always satisfied. Agent 

tasks (i.e. manufacturing processes) use resources (i.e. machines) in an exclusive mode, 

they hold resources while waiting for the next resources specified by their operation 

sequence, and resources cannot be forcibly removed from the parts utilizing them until 

operation is completed. Therefore, a deadlock can only occur if the forth condition (i.e. 

circular wait) is held.
8 

In this paper, we talk the problem of deadlock detection by finding 

the situations that can potentially lead to a circular wait. An example of system deadlock 

involving four machines is illustrated in Figure 1. In this figure, the moving parts (parts 1 

and 2) are shown by white circles while the machines (machines A-D) are shown by grey 

rectangles. Part 1 on machine A has to reach machine D and part 2 on machine D has               

to reach machine A. A deadlock defiantly occurs between machines B and C, when the 

part 1 is moving to machine C and part 2 is moving to machine B. 

 

 

Fig. 1. A deadlock situation involving manufacturing machines and parts. 

2.2.  Agent based development methodology: MaSE 

Artificial Intelligence (AI) techniques have significantly impacted manufacturing 

systems. Many automated manufacturing system application ranging from material 

handling and assembly controllers to long-term planning have been developed by means 

of MAS
9
 technologies. As a result of the growing demand in MAS for industrial 

applications, many AOSE methodologies such as MaSE have been evolved to assist the 

development of agent-based applications.
6
 

MaSE uses several models and diagrams driven from the standard UML
10

 to describe 

the architecture-independent structure of agents and their interactions.
6
 The main focus in 

MaSE is to guide a MAS engineer from an initial set of requirements through the 
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analysis, design and implementation of a working MAS. In MaSE a MAS is viewed as a 

high level abstraction of object oriented design of software where the agents are 

specialized objects that cooperate with each other via conversation and act proactively to 

accomplish individual and system-wide goals instead of calling methods and procedures. 

In the other words, MaSE builds upon logical object oriented techniques and deploys 

them in specifications and design of MAS. There are two major phases in MaSE: analysis 

and design (Table 1). 

Table 1. MaSE methodology phases and steps.6 

MaSE Phases and Steps Associated Models 

1. Analysis Phase 

a. Capturing Goals 

b. Applying Use Cases 

c. Refining Roles 

2. Design Phase 

a. Creating Agent Classes 

b. Constructing Conversations 

c. Assembling Agent Classes 

d. System Design 

 

Goal Hierarchy 

Use Cases, Sequence Diagrams 

Task Diagram, Role Diagram 

 

Agent Class Diagrams 

Conversation Diagrams 

Agent Architecture Diagrams 

Deployment Diagrams  

 

In this paper, we propose our deadlock detection technique by using the MaSE task 

diagrams as the input model. We propose that in the multi-agent manufacturing systems, 

MaSE task diagrams are used for modeling the defined production and assembly jobs.  

More details on MaSE task diagrams as the input to our monitoring technique and using 

them for deadlock detection in automated manufacturing systems designed by MaSE 

methodology are discussed in subsequent sections. 

2.3.  Deadlock detection strategies for automated manufacturing systems 

Four main strategies addressing deadlock issues in manufacturing systems are prevention, 

detection, recovery, and avoidance methods. These strategies can be further categorized 

based on the model used to describe the AMS and, in particular, the interaction between 

jobs and resources. Three modeling methods are usually used: graph-theoretic, automata, 

and Petri nets (PN).  The graph-theoretic approaches such as Ref. 11 are simple and 

intuitive solutions appropriate for describing the interactions between jobs and resources. 

This allows an efficient deadlock depiction even in complex Resource Allocation 

Systems (RAS) and allows the derivation of deadlock detection and avoidance strategies.  

Finite state automata can formally model the automated manufacturing systems behavior 

and have been used in establishing new deadlock avoidance control techniques such as 

Ref. 12. Petri nets (PN) also have been used extensively by researchers for modeling 

automated manufacturing systems (e.g. Ref. 13) and to develop suitable deadlock 

resolution methods (e.g. Ref. 14). But to the best of our knowledge, despite the growing 

demand of MAS applications in design, analysis, and development of automated 
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manufacturing systems,
9 

there is no deadlock resolution or detection strategy based on  

the models created for multi-agent manufacturing systems based on the one of AOSE 

methodologies
3
 such as MaSE.

6 
In the following sections, we propose a testing technique 

for deadlock detection in multi-agent manufacturing systems based on the models 

constructed during MaSE methodology analysis phases. 

3.  The Technique Overview 

An overview of the proposed technique in this paper is illustrated in Figure 2. As              

Figure 2 shows, the proposed technique has three main phases which are briefly 

described in this section of the paper.  

 

 

Fig. 2. Technique overview. 

During the first two phase of the proposed technique (phase 1 and phase 2), the 

situations that can potentially lead to a deadlock at runtime (potential deadlocks) are 

extracted from the design models and formatted into test requirement data.  The system 

tester uses this test data to create test cases and execute them using a test driver. But the 

deadlock situations forced on the system under test by means of test cases must be 

detected for verifying their existence. As a solution for this issue, in phase 3 we use a 

simplified version of our monitoring technique published in Ref. 5 which instruments the 
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implemented MAS with a communication protocol capable of detecting deadlocks 

occurred on system under test.  

The input to the proposed deadlock monitoring technique is the agents’ task diagrams 

built during the analysis and design of the MaSE methodology. These diagrams illustrate 

the activities performed by several cells (e.g. machines and robots) inside the multi-agent 

manufacturing system. During the steps in the first phase, each MaSE task diagram, a 

UML-like statechart diagram is converted to a UML activity diagram, from which 

Control Flow Paths (CFP) are derived afterwards (Section 4). Those CFPs are used in 

phase 2 for extracting the potential deadlock information by means of a dedicated search 

algorithm (Section 6). This extraction is performed by the “search for potential deadlock” 

unit. Then the potential deadlock information is formatted into test requirement data used 

by the tester for test case creation (Section 7). In phase 3, the implemented manufacturing 

MAS designed by MaSE methodology is instrumented with a deadlock detection 

communication protocol (Section 8). While the test driver is executing the test cases on 

the system under test, the communication protocol is able to monitor the entire MAS to 

verify the occurrence of the deadlocks. 

4.  The Input Task Model 

In MaSE, a task is a structured set of communications and activities, represented by a 

UML-like state diagram which consists of states and transitions.
6 

UML’s state machine 

diagram is commonly used to describe the behaviour of an object by specifying its 

response to the events triggered by the object itself or its external environment.
10

  

However in MaSE,
6 

this diagram is used to represent the behavior of a task associated            

to an agent. In a MaSE task diagram, states contain activities that represent internal 

reasoning, reading a percept from sensors, or performing actions via actuators. Multiple 

activities can be in a single state and are performed in an un-interruptible sequence. Once 

in a state, the task remains there until the activities’ sequence is completed.
6 

In a multi-

agent manufacturing system, the task diagram is used for representing the flow of 

manufacturing activities.  An example of a MaSE task diagram created for a specific task 

in a multi-agent manufacturing system is shown in Figure 3. 

As the task diagram in Figure 3 shows, this task is able to perform its job through two 

alternative production lines (flow paths). When the task is initiated by the controller, the 

task finds the next available production line and afterwards makes the transportation 

robot to load the parts into that line. After performing each set of activities in each state, 

the task communicates with the controller agent through the “send” and “receive” 

messages and informs it about the task status and its current state. 

In addition to the information regarding the flow of activities inside each task 

diagram, the task diagram has the information regarding the sequence of resources (i.e. 

machines and robots) that are required by the task during the execution of its activities. 

On the other hand, in this paper we tackle the problem of deadlock on the resources (i.e. 

machines and robots) shared by agents’ tasks. Therefore, in the proposed technique 
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Fig. 3. An example input model: A MaSE task diagram for a manufacturing task. 

in this paper, we use MaSE task diagrams for extracting the information regarding the 

required resources by each agent’s task. This information is obtained during the steps in 

phase 1 of the proposed technique in this paper (See Figure 2) by converting the task 

diagrams into UML activity diagrams. Figure 4(a) shows the constructed activity diagram 

based on the task model provided in Figure 3. Activity diagrams have been in UML since 

its early 1.x versions and they are used to describe both sequential and concurrent control 

flow and data flow.
15 

As it is mentioned in UML 2.0 (Section 12.1 of Ref. 10), the UML 

activity diagrams are commonly called Control Flow Graph (CFG). By analysis of the 

control flow paths (CFP) in the constructed CFG or activity diagram the resource 

requirement flow of the task can be extracted. The procedure is described in more           

details in the reminder of this section. 

Each state in MaSE task diagram contains the activities representing internal behavior 

of the task when it is on that state. Since the order of task’s states is presented in the 

MaSE task diagram by the directed transition arrows, the activities within the task, the 

sequence of their execution and their execution conditions can be easily driven from the 

states and the transition arrows and then they are imported into a new activity diagram.   

Furthermore, the transition protocol (i.e. “send” and “receive” message communications) 

in MaSE task diagram uses the syntax of trigger [guard]/transmission and the trigger and 
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Fig. 4. (a) Constructed activity diagram based on the Task Diagram (b) Resource Requirement Flow Model. 

transmission are limited to send and receive messages
6
 (See Figure 3). Therefore, in the 

newly constructed activity diagram, each trigger and [guard] form the MaSE task 

diagram should be considered as condition of the transition from the activities in source 

state to the activities in destination state. Also, transmission should be considered as a 

new activity executed after all activities listed in the source state (See Figure 4(a)). As a 

result, using the derived activities from the states and the transitions among them, the 

corresponding activity diagram for a MaSE task diagram is created in Figure 4(a). Using 

the sequence of activities in the constructed activity diagram (i.e. CFPs), the resources 

used by each tasks activity can be extracted and imported into a Resource Requirement 

Flow Model (Figure 4(b)). In the Resource Requirement Flow Model presented in 

Figure 4(b), the resources (i.e. machines and transport robots) used during the execution 

of each CFP are presented. Each manufacturing machine is shown by Mi and each 

transport robot by ROi. Between the manufacturing machines and the transport robots 

resource types, only the manufacturing machines are selected and considered for tackling 

the deadlock problem in this paper. This selection is based on the assumption that the 

transport robots are only used for carrying the parts and they are not directly involved in 
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the manufacturing jobs such as assembly or modification. Therefore, they can be forcibly 

taken from the tasks by the others agents’ requests and be involved in other tasks by 

providing them the storages that they can move the carrying parts into them temporarily. 

In this case, they do not satisfy the Coffman et al.
8 
conditions for a deadlock situation and 

they must be ignored for the deadlock detection technique proposed in this paper.   

5.  Machine Requirements Table 

We use the resource requirement information obtained from each CFP in the activity 

diagram to find the potential deadlocks inside the design models. But before using this 

information for extracting the deadlock information, we organize the gathered the 

resource requirement information from the activity diagram into a table called Machine 

Requirement Table.  As discussed in Section 4, among all the resources types extracted 

from the input model, only the manufacturing machine are considered for the process of 

deadlock detection in this paper. Therefore, each column in machine requirements table 

represents the Sequence of Required Machines (SRM�) by one CFP� . Formally, The SRM 

is defined as below: 

 |i j j iSRM M M  is the jth required Machine of  the CFP=〈 〉                       (1) 

Figure 5 shows an example of a Machine Requirement table created for the case study in 

this paper.  The first two columns shows the SRMs for the two CFPs extracted from the 

constructed activity diagram in Figure 4(a). 

 

 

Fig. 5. Machine requirement table for manufacturing tasks. 

6.  Extracting the Potential Deadlocks 

The constructed machine requirements table in previous section is used in this section for 

extracting potential deadlocks in the system. The deadlocks found from the design 

models in this step are called potential deadlock cycles since they can potentially lead to 

a deadlock situation at runtime. In this technique, a 	
��
 is said to be dependent on 

another 	
���  if there exists a sequence of tasks such as  	
��
, 	
���, …, 	
���  

where each task in sequence is idle and waiting for a resource held by the next task in the 

sequence. If 	
��
 is dependent on 	
���, then 	
��
 has to remain in idle status as 
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long as 	
��� is idle. 	
��
 is deadlocked if it is dependent on itself or on a task which 

is dependent on itself. The deadlock can be extended to a cycle of idle tasks, each 

dependent on the next in the cycle. This is called a potential deadlock. 

Our search technique uses the machine requirements table and searches for the tasks’ 

combinations that can potentially lead to a deadlock cycle. These cycles and the 

participant agents in it are candidates for potential deadlock cycles and are used for 

forming the rest requirements (i.e. Section 7). For describing the procedure of the 

proposed search technique in this paper, an illustrated example is provided and shown in 

Figure 6.  

 

 

Fig. 6. An example of potential deadlock of tasks. 

The provided example in Figure 6 shows three tasks of a multi-agent manufacturing 

system. Each task runs a CFP from its activity diagram (i.e. CFG). Associated to each 

CFP is a SRM (SRM1, SRM2, and SRM3) representing the sequence of required resource 

by task on that CFP. The proposed search technique works as follow: starting from Task1, 

the search technique assumes that it holds its first requested machine in the SRM1 which 

is M1 and adds M1 to a SofarTraversed list (i.e. SofarTraversed = 〈M1〉). Therefore, the 

next machine that the Task1 will request for it after holding M1 is M2. In this stage, the 

technique searches inside the other SRMs (SRM1, SRM2) to find out if there is any other 

Task1

Task1 Holds M1

Task2 HoldsM2

Task2 

Task3  Holds M3

Task3 

Is held by Task2 

Is held by  Task3 

Is held by Task3  

Task1  Requests M2

Task2 Requests M3

Task3  Requests M1

M1

M2

M5

M4

M2

M3

M7

M3

M1

Sequence of 

Required Machines 

by Task1 (SRM1)

Sequence of 

Required Machines 

by Task2 (SRM2)

Sequence of 

Required Machines 

by Task3 (SRM3)
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request for M2 from the other tasks as well. It finds that Task2 has M2 as a requested 

machine in its SRM (SRM2) and therefore it may compete with Task1 for acquiring M2. 

In this stage, the technique assumes that in the worst case scenario, the M2 has been held 

by Task2 and the Task1 has to wait for it and then add the M2 to the SofarTraversed list 

(i.e. SofarTraversed = 〈M1, M2〉). Therefore, if the Task2 is holding M2 then the next 

requested machine by Task2 from SRM2 will be M3. In this stage, the technique searches 

the SRM1 and SRM2 to find any match for M3. A match is found in SRM3 and again the 

technique assumes that M3 is held by Task3 and Task2 has to wait for it. M3 is added to 

the SofarTraversed list (i.e. SofarTraversed = 〈M1, M2, M3〉). After M3, the next requested 

machine by Task3 is M1. The technique finds a match for M1 in SRM1. The technique has 

to assume that the M1 is held by Task1 and Task3 has to wait for it. But, the technique 

finds out that M1 has been already added in to SofarTraversed and this means that the M1 

has been already traversed by our proposed technique. In this stage, technique finds a 

cycle of holds and requests which can potentially lead to a deadlock at runtime. The 

technique reports this cycle as a potential deadlock. This procedure is repeated by 

initiating the search from all other the SRMs and the resources inside them till the entire 

potential deadlocks are found. A possible pseudo-code for the technique discussed in this 

section is presented in Figure 7.  

In Figure 7 pseudo-code, first the traversed SRM (SRMi), held machine (Mi),                     

and requested machine (Mi+1) are added into a thus far traversed list called 

SofarTraversedList (lines 3-5). Then, if the newly added items into the 

SofarTraversedList make a cycle with the existing items in it, the created 

SofarTraversedList is printed as a poetical deadlock cycle (lines 8-10). Otherwise, the 

requested machine (Mi+1) is searched in the all other SRMs except the existing SRMs in 

 

 

Fig. 7. Pseudo-code for finding the potential deadlocks. 
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SofarTraversedList to find a match (lines 12-19). If any match found, the requested 

machine (Mi+1 or Next) is assumed as a held machine and the next required machine in 

the SRM that the match is found in it is assumed as the requested machine 

(NextRequiredMachine) and the same procedure is called again till a cycle is found or all 

the SRM are traversed without any found match. 

7.  Test Requirement Metamodel 

The extracted potential deadlock cycle in Section 6 are used for generating the test 

requirements. In Section 6 we described a deadlock cycle based on tasks which are 

running the different CFPs inside the system. As it’s discussed in Section 5 (Figure 5), 

there are tasks associated to each agent in the system. Also, each task can have different 

CFPs associated to it. An example of deadlock cycle in agent point of view can be 

represented as below: 

  Deadlock Cycle = 〈(Agent1, M4, M7), (Agent3, M7, M 5), ( Agent4, M5, M4)〉  

 = (Agent3, M7, M5), (Agent4, M5, M4), 〈(Agent1, M4, M7)〉 

 = 〈(Agent4, M5, M4), (Agent3, M7, M5), (Agent1, M4,M7)〉 

For specifying the order of the items in the cycle, we identified the elements in 〈  〉 

notation. (Agent1, M4, M7) means that Agent1 is holding R4 and the next resource (i.e. 

manufacturing machine) that it plans to take is R7. Since a cycle can be started from any 

element inside it, the equivalent version of each cycle is indicated in the above example 

too. But presenting the deadlock cycles in this format does not give us the information 

about the CFPs and Tasks participated in the deadlock situation (i.e. as its discussed 

associated with each agent are different tasks and associated to each task are different 

CFPs). Therefore, in this section, we define a test requirement metamodel based on the 

involved CFPs information and since the relationship between agents, tasks, and CFPs 

are indicated in the machine requirement table (e.g. Figure 5) different presentations can 

be easily interpreted to each other. The test requirements contain the required information 

for the tester to create the test cases.   

Each test requirement describes a potential deadlock situation by indicating the 

following information: (1) the resources held by each CFP at the time of deadlock, (2) the 

amount of time that each resource is supposed to be used, (3) resources requested (as the 

next required resource) by each CFP at the time of deadlock, (4) the start time of 

operation of each CFP based on the time that the whole system started working, and (5) 

the time that the deadlock occurs based on the amount of time passed from the start time 

of the CFP operation until deadlock happens.  Based on the required information for 

describing a deadlock situation, we proposed the metamodel for a test requirement for 

deadlock in Figure 8. 

As it is illustrated in Figure 8, each test requirement consists of: (1) a Held Set (HS) 

contains the resources held by each CFP at the time of deadlock and the amount of that 
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Fig. 8. Test requirement metamodel. 

the resources were supposed to be used, (2) a Timing Set (TS) contains each CFP’s start 

time of operation and the time that deadlock occurs, and (3) a Circular Ordered list of 

Requests (COLR) which contains cycle of the resource requests by each CFP at the time 

of deadlock in system.  

The information for the Held Set (HS) and Circular Request Sequence (COLR) are 

extracted by the search algorithm discussed in Section 6. But the information in the 

Timing Set (TS) has to be calculated based on the existing data. The amount of time that 

a resource is supposed to be used by a specific CFP is indicated by the system designer in 

the MAS design and analysis specification. Therefore, in the timing set, the CFP start 

time of operation (i.e. the time that each CFP should start its operation to be participated 

in the deadlock situation) and the time that deadlock occurs can be calculated using 

following information: (1) the sequence of required resources by each CFP in the 

resource requirement table when the deadlock occurs, and (2) the amount of time that 

resource (machine) is supposed to be used by the CFP. The required data for the former is 

provided by the search algorithm (i.e. discussed in Section 6) and the latter one is 

provided by the system designer in the specification.  The formal definition of each item 

in the test requirement is provided as below: 

Held Set: HS= {(CFPi, Mp, RUTp) |CFPi is holding required machine Mp for  

RUTp (Resource Usage Time) Seconds} 

Circular Ordered List of Requests: COLR = 〈Req1, Req2, …, Reqn〉 

While Reqi = (CFPi, Mq)|CFPi requests for acquiring required machine set Mq) 

Timing Set: TS = {(CFPi, CFPStartTimei, DeadlockTimei)|CFPi starts its operation after 

CFPStartTimei, seconds from the start time of MAS and deadlock occurs after DeadlockTimei 

seconds from the start time of CFP operation} 

The test requirement should be able to present a deadlock situation by presenting  

each deadlock cycle. In this paper we specify this cycle by presenting the resource 

request in a circular ordered list format. As it is shown in above definitions, we use the 

〈Req1, Req2,…, Reqn〉 notation for presenting the circular ordered list which each Req is a 
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2-tuple. Two elements inside the Req respectively represent the CFP and the resource that 

it request. As an example, a test requirement generated for a deadlock cycle and its 

interpretation to the participated agents is shown below: 

Formatted test requirement (indicating participated CFPs): 

 

HS = {(CFP3, M4, 2), (CFP4, M7, 2), (CFP6, M4, 2)} 

COLR = 〈(CFP3, M7), (CFP4, M5), {(CFP6, M4)〉=  

〈(CFP4, M5), (CFP6, M4), (CFP3, M7),〉 = 〈(CFP6, M4), (CFP3, M7), (CFP4, M5),〉 

TimingSet = {(CFP3, 2,4), (CFP4, 0, 6), (CFP6, 4, 2)} 

 

Deadlock cycle (indicating participated agents): 

〈(Agent1, M4, M7), (Agent3, M7, M5), (Agent4, M5, M4)〉  

(Agent3, M7, M5), (Agent4, M5, M4), 〈(Agent1, M4, M7)〉 = 

〈(Agent4, M5, M4), (Agent3, M7, M5), (Agent1, M4, M7)〉 

In above example, HS shows the combination of the CFPs and held resources at the 

time of deadlock. For example, a triple such as (CFP3, M4, 2) in HS indicates that CFP3 

was holding M4 and M4 was supposed to be used by CFP3 for 2 seconds. In this paper we 

indicate the CFP start time of operation based on the time that MAS starts its operation. 

Also, the time that the deadlock occurs shows the amount of time that passed from the 

start of CFP operation until deadlock happens. For example in the timing set 

(i.e.”TimingSet”), (CFP3, 2, 4) indicates that for being participated in a deadlock 

situation, CFP3  has to  start its operation 2 seconds after the MAS starts its operation and 

the deadlock occurs 4 seconds after CFP3 is run by its agent. 

8.  A Communication Protocol for Deadlock Detection 

The potential deadlock cycles extracted by the search technique represents the situation 

that can lead to a deadlock at runtime. They are formatted into test requirement data and 

used for creating test cases by system tester. The system tester executes the test cases 

which each forces a deadlock situation into the system. While the system is under test, a 

technique is required to detect the deadlocks occurs on system under the test. We 

proposed a runtime monitoring technique for deadlock detection in Ref. 5. The technique 

in Ref. 5 is a deadlock detection protocol which is able to use the deadlock knowledge 

extracted from the design models and propagate a deadlock detection query to the 

possibly participated agents in a deadlock situation to detect deadlocks at runtime.  

In this paper, we use a simplified version of that technique which is basically just a 

deadlock detection query without any knowledge of the potential deadlocks and agents. 

The query is propagated to the all the agents in the systems by an agent whenever it is 

suspected to be involved in a deadlock situation. In this deadlock detection protocol, each 

agent is associated with a set of dependent agents called the “dependency set”. Each 

agent identifies its dependency set based on the agents that it was recently in conversation 

with and it’s expecting to receive replies for the requests that it has made to them. 

Whenever an agent is suspected to be involved in a deadlock situation (after spending a 

defined amount of time in an idle mode), it propagates a deadlock detection query to its 
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dependency set. Assuming each CFP is running by an agent in multi-agent manufacturing 

system, an agent in a dependency set can change its status from idle to active upon 

receiving any message from one of the other members of its dependency set. A nonempty 

set of agents are considered as deadlocked if all agents in that set are permanently idle. 

An agent is called permanently idle, if it never receive a message from its dependency set 

to change its status. An agent can determine if it is deadlocked by initiating a deadlock 

detection query messages to its dependency set when it enters the idle state. If it figures 

out that it won’t receive any message from its dependency set to change its status, it 

declares itself as deadlocked (permanently idle). Upon receiving a query by an idle agent 

in dependency set, it forwards the query to its own dependency set too if it has not done 

already. Figure 9 shows an example of deadlock detection conversations among agents. 

The query conversation messages are shown by continues arrows and the replies are 

shown by dashed arrows. In this example, Agent 1 initiates two deadlock detection 

queries to its dependency set: Agent 2, Agent 3, and Agent 4. Agent 2 can reply to the 

query immediately by informing Agent 1 about its state since it is not involved in any 

other dependency set. Agent 3 and Agent 4 are involved in other dependency sets and 

they pass the query to their own dependency set before informing Agent 1 about their 

status. Agent 3 and Agent 4 answer the Agent 1’s query upon receiving the replies from 

their dependency set. Based on the replies received, Agent 1 can identify whether its 

status can be changed from idle to active or not. 

 

 

Fig. 9. Deadlock detection conversation. 

9.  Case Study and Experimental Results 

We performed an experiment for showing the effectiveness of our technique based on a 

multi-agent manufacturing system with capability of running four different CFPs 

concurrently by four agents at each time. Figure 10 shows a snapshot of the tool 

implemented based on the search algorithm discussed in Section 6 and test requirement 

metamodel in Section 7.  The tool user interface is divided to three different panes. The 
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machine requirement table constructed for the case study in this paper (i.e. discussed in 

Section 5) is used as an input for this tool (Pane 1 in Figure 10). The system tester is able 

to assign CFPs to each of dedicated four agents in the system and presses search for 

potential deadlock button (Pane 2 in Figure 10). Then the tool applies the proposed 

algorithm in Section 6 to the assigned CFPs and finds the potential deadlocks.  The tool 

also interprets the deadlock cycles into the test requirements format proposed in Section 7 

and shows them with timing information in data grid (Pane 3 in Figure 10).  

 

Fig.10. Tool for extracting potential deadlock cycles and generating the test requirements. 
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For verifying the fact that the extracted potential deadlocks can lead to an actual 

deadlock at runtime, we developed a simulator which imitates the MAS behaviour in a 

deadlock condition. A snapshot of the implemented simulator is shown in Figure 11. 

Using the simulator, a tester is able to verify the behaviour of MAS in the potential 

deadlocks situations extracted by our proposed algorithm.  Figure 11 snapshot shows the 

behaviour of MAS based on the one of test requirements generated by the potential 

deadlock extractor tool shown in Figure 10 (TR# 0). The tester defines the specification 

of a test requirement for the simulator (i.e. information such as start time of each CFP and 

the sequence of required machines (SRM) for each one) and presses “Run Agents” button 

(Pane 1 in Figure 11).  The simulator imitates that situation and verifies if a deadlock 

occurs. The monitoring unit is also embedded in the simulator (Pane 2 in Figure 11).               

So when a deadlock happens the monitoring unit detect it and report to the user. As 

Figure 11 shows that the monitoring unit detect a deadlock in the system after agents 2,  

3, and 4 getting involved in a deadlock cycle. The status of each machine (i.e. locked or 

free and also if it’s locked the locker agent) and each agent is also reported on the real 

time windows on the tool user interface with proper messages (Pane 3 and Pane 4 in 

Figure 11).  

 

Fig. 11. MAS behavior simulator. 
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For showing the effectiveness of the system, we performed another experiment in 

which random input are generated for the discussed simulator to imitate a running MAS 

till a deadlock happens. Random tasks and CFPs are assigned to the agents and 

monitoring unit is watching the MAS for deadlocks. This experiment shows that time to a 

deadlock situation in a running system can be very long and unexpected. This verifies the 

importance of exiting the testing techniques such as the one proposed in this paper. The 

results are shown in Table 2. 

The experiment is repeated for 9 times and for more accuracy with three different 

probability distribution functions for random input generation (i.e. equal, normal, and 

exponential). The second column of the table shows number of simulation runs for each 

experiment. In each experiment run, a CFP with resources is assigned to each agent with 

random start times. The third column shows the estimated simulation time based on the 

time for each run (i.e. in this case study 32 seconds for each run). The fourth column 

indicates if a deadlock occurs in a specific experiment or not. As it can be concluded 

from Table 2, deadlocks can appear in the system in a quite long time since their start 

time. Since the source of this type of behavioral fault is from the design level of the 

system, it would be very cost effective if these faults can be extracted in the system 

before the release and during the development process. Our testing technique gives the 

system tester the opportunity to test a multi-agent manufacturing system for deadlocks 

while the system is under development.  

Table 2. Experiment results — Time to deadlock based on random inputs. 

 

Experiment # 

Number of 

Generated Inputs 

(Simulation Runs) 

Estimated 

Simulation 

Time (≈ hrs) 

Deadlock 

Detection 

Probability 

Distribution 

Function 

Parameters for 

Probability 

Distribution Function 

1 47855 425 No Deadlock 

Equal Domain = [0,5] 2 36454 324 Found 

3 47820 425 No Deadlock 

4 41453 368 Found 

Normal 

Mu(µ) = 2.5 

Sigma (σ) = 0.85 

Domain ≈ [0,5] 

5 43361 385 Found 

6 47893 425 No Deadlock 

7 47414 421 No Deadlock 

Exponential 
Lambda (λ)= 0.7 

Domain ≈ [0,5] 
8 47863 425 No Deadlock 

9 37351 332 Found 

10.  Conclusion 

Previously in Ref. 5 we proposed a runtime technique for monitoring multi-agent 

manufacturing systems for deadlocks based on their design model. In Ref. 5 a search 

algorithm was proposed for extracting the potential deadlock cycles from the design 

models which were used for system monitoring (Section 6). Although the monitoring 

technique can be helpful to warn the system user upon deadlock occurrences in the 

released systems, but the testing techniques can be more useful by reporting the existence 
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of the deadlocks while the system is under design and development. This can save lots of 

time and effort from the system developers. Therefore, using the same searching 

algorithm in Ref. 5, in this paper we format the extracted potential deadlocks into test 

requirements that can be used for testing a multi-agent manufacturing system under the 

development. A metamodel for test requirement is proposed which contains the adequate 

data required for testing deadlock situations (Section 7). For the case study part of this 

paper, a tool has been developed that is able to find the potential deadlock cycles using 

the design model information and creates the test requirements based on the test 

requirement metamodel (Section 9). The tool was also used for generating the test 

requirement for a case study multi-agent manufacturing system with four agents. 

Furthermore, a simulator has been developed which is able to imitate the behaviour of a 

MAS under test and shows that the extracted deadlock situations can lead to deadlocks at 

runtime. Another experiment has been also performed using the implemented simulator 

and a random input generator for imitating a running MAS and measuring the time to an 

unexpected deadlock. That experiment verified that the time to a deadlock in the system 

is unpredictable and testing techniques for deadlocks can save money and time by 

detecting deadlock using the design models while the system is under development.   

Acknowledgment 

The authors were supported by discovery grants from NSERC. Vahid Garousi was 

further supported by an Alberta Ingenuity New Faculty Award no. 200600673. 

References 

1. M. R. Genesereth and P. K. Ketchpel, “Software agents,” Commun. ACM, vol. 37 (7), pp. 48-

53, 1994. 

2. K. Kumaran, W. Chang, H. Cho, and R. A. Wysk, “A structured approach to deadlock 

detection, avoidance and resolution in flexible manufacturing systems,” International Journal 

of Production Research, vol. 32 (10), pp. 2361-2379, Oct. 1994. 

3. F. Bergenti, M. P. Gleizes, and F. Zambonelli, Methodologies and Software Engineering for 

Agent System (New York: Kluwer Academic Publishers, 2004). 

4. M. P. Fanti and M. Zhou, “Deadlock control methods in automated manufacturing system,” 

IEEE Transactions on Systems, Man and Cybernetics, vol. 34 (1), pp. 5-22, Jan. 2004. 

5. N. Mani, V. Garousi, and B. H. Far, “Runtime Monitoring of Multi-Agent Manufacturing 

Systems for Deadlock Detection Based on Models” in the 21st IEEE International Conference 

on Tools with Artificial Intelligence (ICTAI 09), Newark, New Jersey, USA, 2009, pp. 292-

299. 

6. S. A. DeLoach, “The MaSE Methodology,” in Methodologies and Software Eng. for Agent 

System, F. Bergenti, M. P. Gleizes, and F. Zambonelli, Eds. (Boston: Kluwer Academic 

Publishers, 2004), pp. 107-147. 

7. A. Tanenbaum, Modern Operating Systems (Englewood Cliffs: Prentice Hall Inc., 1992). 

8. E. G. Coffman, M. J. Elphick, and A. Shoshani, “System deadlocks,” ACM Comput. Surv.,           

vol. 3, pp. 67–78, June 1971. 

9. Weiming Shen, D. H. Norrie, and Jean-Paul Barthès, Multi-agent Systems for Concurrent 

Intelligent Design and Manufacturing (London: Taylor & Francis Press, 2001). 



 Search-Based Testing of Multi-Agent Manufacturing Systems  

 

437

10. Objet Management Group (OMG), “UML 2.1.2 Superstructure Specification,” November 

2007. 

11. N. Z. Gebraeel and M. A. Lawley, “Deadlock detection, prevention, and avoidance for 

automated tool sharing systems,” IEEE Trans. Robot. Automat., vol. 17, pp. 342-356, June 

2001. 

12. S. A. Reveliotis and P. M. Ferreira, “Deadlock avoidance policies for automated manufac-

turing cells,” IEEE Trans. Robot. Automat., vol. 12, pp. 845–857, 1996. 

13. A. A. Desrochers and R. Y. Al-Jaar, Applications of Petri Nets in Manufacturing Systems 

(New York: IEEE, 1995). 

14. F. Chu and X. Xie, “Deadlock analysis of Petri nets using siphons and mathematical 

programming,” IEEE Trans. Robot. Automat., vol. 13, pp. 793-804, Dec. 1997. 

15. V. Garousi, L. Briand, and Y. Labiche, “Control Flow Analysis of UML 2.0 Sequence 

Diagrams,” in Model Driven Architecture — Foundations and Applications, vol. 3748/2005, 

Berlin/Heidelberg: Springer 2005, pp. 160-174. 

 


