
A UML-Based Conversion Tool for Monitoring and Testing Multi-Agent Systems

Nariman Mani Vahid Garousi Behrouz H. Far

Department of Electrical and Computer Engineering
Schulich School of Engineering, University of Calgary, Canada

{nmani, vgarousi, far}@ucalgary.ca

Abstract

 The increasing demand for Multi-Agent Systems (MAS) in
the software industry has led to development of several
Agent Oriented Software Engineering (AOSE)
methodologies. The autonomous agents’ interaction in a
dynamic software environment can potentially lead to
runtime behavioral failures such as deadlock. Therefore,
the MAS environment should be tested and monitored
against the unwanted emergent behaviors. The AOSE
methodologies usually do not cover monitoring and testing.
On the other hand model-based software development
practices such as the Unified Modeling Languages (UML)
are commonly used in practice and are equipped with a rich
set of model based testing and monitoring tools. In this
paper, we propose a conversion tool to help MAS engineers
use UML-based monitoring and testing tools to test and
monitor MAS design and analysis artifacts created by Multi-
agent Software Engineering (MaSE) as one of the most
powerful and famous AOSE methodologies.

Index Terms— Multi-agent system, UML, Software

testing, Deadlock detection.

1. Introduction

 As a result of the growing demand in Multi-Agent
Systems (MAS), many Agent Oriented Software
Engineering (AOSE) methodologies have been evolved to
assist the development of agent-based applications. Agent-
based applications consist of the autonomous and intelligent
software (agents) that can communicate and exchange
information to solve challenging problems
collaboratively[1]. An autonomous agent is a computational
entity that can perceive, reason, act, and communicate [2].
A MAS consists of autonomous agents that try to achieve
their goals by interacting with each other by means of high
level protocols and languages [1]. Since the agents’
interactions in MAS environment can potentially lead to
behavioral faults, the MAS environment should be tested
and monitored against the unwanted emergent behaviors.
Also as model-based software development practices such

as the Unified Modeling Languages (UML) [3] are gaining
more popularity, more and more model based (UML-based)
testing and monitoring tools are developed. UML is a
language for specifying, constructing, visualizing, and
documenting artifacts of software object-oriented systems
[3]. There are several advantages to be gained from using
the UML. Firstly, the UML provides high level information
that illustrates the internal behavior of the system, which can
be used efficiently and effectively in testing. Secondly, the
UML has emerged as the de-facto industry standard for
software modeling. Thirdly, the UML includes a set of
models that can provide different levels of capacity and
accuracy for modeling objects, and thus can be used to
satisfy various needs in the real word industry [3].
 The agent paradigm introduces a number of new
abstractions and design/development concepts by means of
AOSE methodologies to software development in
comparison with regular model-based approaches such as
UML. This makes the deployment of UML-based testing
tools for verifying the internal behavior of MAS harder and
sometimes impossible. Thus, conversion models that fill the
gap between the AOSE design/ analysis concepts and the
UML-based testing and monitoring tools can be very useful.
These conversion models can help MAS engineers to deploy
the UML-based testing and monitoring tools to test and
verify the internal behavior of their developed MAS before
bringing them to the main stream of commercial software.
 In this paper we focus on proposing a conversion model
and a prototype tool for adopting the MAS design and
analysis models into standard UML models. We develop our
proposed techniques based on the Multi-agent Software
Engineering (MaSE) methodology design and analysis
models [4] . MaSE is one of the AOSE methodologies
which provides a detailed approach to the analysis and
design of MAS. We show that the output of our proposed
conversion model in this paper can be used in other
applications, such as our previously published monitoring
[5] and testing [6] multi-agent systems techniques for
deadlock detection (Section 6).
 The remainder of this paper is structured as follows. The
related work and background are described in Section 2. A
typical metamodel for MAS is introduced in Section 3.
Constructing MAS behavioral model based on the MaSE

2008 20th IEEE International Conference on Tools with Artificial Intelligence

1082-3409/08 $25.00 © 2008 IEEE

DOI 10.1109/ICTAI.2008.114

212

2008 20th IEEE International Conference on Tools with Artificial Intelligence

1082-3409/08 $25.00 © 2008 IEEE

DOI 10.1109/ICTAI.2008.114

212

2008 20th IEEE International Conference on Tools with Artificial Intelligence

1082-3409/08 $25.00 © 2008 IEEE

DOI 10.1109/ICTAI.2008.114

212

Authorized licensed use limited to: Carleton University. Downloaded on December 21, 2009 at 12:18 from IEEE Xplore. Restrictions apply.

analysis and design artifacts is discussed in Section 4.
Constructing agent behavioral model based on the MaSE
task diagram is described in Section 5. We discuss about
conversion model application in monitoring and testing
MAS in Section 6. Also, we provide a quick snapshot of the
developed tool for conversion model in Section 7. Finally
conclusions and future work are given in Section 8.
Hypothetical and concrete examples are provided and used
to explain the methodology in the subsequent sections.

2. Background and related work

 In this paper we build our proposed methodology based
on the MaSE methodology analysis and design artifacts as
one of the AOSE methodologies. In this section, we first
provide an overview of the MaSE methodology and its
recent applications in research and industry (Section 2.1 and
Section 2.2). Then we provide the results of an evaluation
on MaSE methodology and its comparison with other AOSE
methodologies in Section 2.3. Then we discuss other related
works on MAS verification and monitoring and the
methodology which they use in Section 2.4.

2.1. Agent Based Development Methodology: MaSE

 MaSE uses several models and diagrams driven from the
standard Unified Modeling Language (UML) to describe the
architecture-independent structure of agents and their
interactions [4]. The main focus in MaSE is to guide a
MAS engineer from an initial set of requirements through
the analysis, design and implementation of a working MAS.
In MaSE a MAS is viewed as a high level abstraction of
object oriented design of software where the agents are
specialized objects that cooperate with each other via
conversation and act proactively to accomplish individual
and system-wide goals instead of calling methods and
procedures. In other words, MaSE builds upon logical object
oriented techniques and deploys them in specifications and
design of MAS. There are two major phases in MaSE:
analysis and design (Table 1).

Table 1- MaSE methodology phases and steps [4]

MaSE Phases and Steps Associated Models

1. Analysis Phase
a. Capturing Goals
b. Applying Use Cases
c. Refining Roles
2. Design Phase
a. Creating Agent Classes
b. Constructing Conversations
c. Assembling Agent Classes
d. System Design

Goal Hierarchy
Use Cases, Sequence Diagrams
Concurrent task, Role Diagram

Agent Class Diagrams
Conversation Diagrams
Agent Architecture Diagrams
Deployment Diagrams

 In Analysis phase [4], there are three steps which are
capturing goals, applying use cases and refining goals

(Table 1) . The MaSE Analysis phase produces a set of roles
and tasks which describes how a system satisfies its overall
goals. Goals are driven from the detailed requirements and
should be achieved by defined roles. A role describes an
entity that acts inside the system and is responsible for
achieving, or helping to achieve specific system goals. In
general, the main approach of MaSE analysis phase is to
define system goals from a set of requirements and then
define the roles necessary to meet those goals.
 In the Design phase [4], there are four steps which are
Creating Agent Classes, Constructing Conversations,
Assembling Agent Classes and System Design (Table 1) . In
the first step, Creating Agent Classes, the designer assigns
roles to the specific agent types. During the second step,
Constructing Conversation, the conversation between agent
classes are defined while in the third step, Assembling
Agent Classes, the internal architecture and reasoning
processes of the agent classes are designed. Finally, in the
last step, System Design, the designer defines the number
and location of the agents in the deployed system.

2.2. MaSE Applications

 MaSE has been successfully used in many agent-based
research and industry applications. The Multi-Agent
Distributed Goal Satisfaction project [7] is a collaborative
effort between Air Force Institute of Technology (AFIT),
the University of Connecticut, and Wright State University
which uses MaSE to design the collaborative agent
framework to integrate different constraint satisfaction and
planning systems. MaSE has been also used successfully in
agent-based heterogeneous database integration system [8]
as well as a multi-agent approach to a biologically based
computer virus immune system [9].

2.3. MaSE Comparison with other AOSE
methodologies

 There have been several methodologies for MAS analysis
and design[2]. In [10], based on the set of criteria in terms of
a hierarchy of dimensions and attributes that can be
considered as empirical software metrics for evaluating
AOSE methodologies, a set of 9 AOSE methodologies are
evaluated. In [10], they were able to rank the evaluated
methodologies according to the estimated mean
effectiveness of the evaluation based on 6 dimensions which
are Agency-related attributes, Modeling-related attributes,
Communication-related attributes, Process-related attributes,
Application-related attributes, and User perception attributes
to support the decision of selecting the most appropriate
methodology. In [10], MaSE is evaluated among 8 other
AOSE methodologies and ranked 1st in 3 of proposed
dimensions which are Modeling-related attributes,
Application-related attributes, and User perception
attributes. Finally, MaSE is ranked 1st in overall ranking of
evaluated AOSE methodologies.

213213213

Authorized licensed use limited to: Carleton University. Downloaded on December 21, 2009 at 12:18 from IEEE Xplore. Restrictions apply.

 In this section, we only compare MaSE against the two
other methodologies, Gaia [11] and Tropos [12]. As in
MaSE, Gaia [11] uses roles as building blocks and both
capture much of the same type of the information in design
phase although in different types of models. The Gaia
generates a high level design and assumes the details will be
developed using other techniques whereas MaSE provides
models and guidance on building the detailed design[2].
Tropos [12], takes a totally different approach in
comparison with MaSE. Tropos focuses on early
requirement which is not addressed in MaSE at all [2].
Although, the Tropos early requirements approach could be
used in MaSE as the goal model in the design phase [2]
[12].

2.4. MAS Verification and Monitoring

 Existing works on MAS verification are categorized into
axiomatic and model checking approaches [2]. In [13],
axiomatic verification is applied to the Beliefs, Desires and
Intentions (BDI) model of MAS using a concurrent temporal
logic programming language. However, it was noticed that
this kind of verification cannot be applied when the BDI
principles are implemented with non-logic based languages
[2]. Also in design by contract [14] pre- and post-conditions
and invariants for the methods or procedures of the code are
defined and verified in runtime. Violating any of them raises
an exception. But as it is also claimed in [2] the problem is
that this technique does not check program correctness‚ it
just informs that a contract has been violated at runtime.
 Model checking approaches seem to be more acceptable
by industry, because of less complexity and better
traceability as compared to axiomatic. Automatic
verification of multi-agent conversations [15] and model
checking MAS with MABLE programming language [16]
are a few examples of model checking approaches that both
use SPIN model checker [17], a verification system for
detection of faults in the design models of software systems.
But none of the mentioned approaches uses UML as their
modeling techniques.

3. MAS Metamodel

 Figure 1 shows a typical metamodel for the MAS
structure. In this figure, each MAS can be presented by
MAS behavioral model in terms of UML sequence diagrams
which shows the conversations of several agents and the
message exchanging among them (Section 4). The way of
constructing such kind of behavioral model from MaSE
design and analysis diagrams is proposed in Section 4.
 On the other hand, each MAS consists of several agents
whose roles are the building blocks used to define agent’s
classes and capture system goals during the design phase.
Associated with each role are several tasks and each task
can be presented by MaSE task diagram [4]. Each task

diagram in MaSE can be converted to a UML state machine
diagram which details how the goal is accomplished by a
specific agent in a MAS and can be represented by a Control
Flow Graph (CFG) [18] . More details on deriving CFG
from MaSE task diagrams are provided in Section 5. A CFG
is a static representation of a program that represents all
alternatives of control flow. For example, a cycle in a CFG
implies iteration. In a CFG, control flow paths (CFPs), show
the different paths a program may follow during its
execution.

Figure 1- A metamodel for MAS

4. Constructing MAS behavioral model

 The agents of a MAS communicate by exchanging
messages. The sequence of messages is useful for
understating the situation during faults detection
conversations. A common type of interaction diagrams in
UML is a sequence diagram in which each agent or role is
represented by a lifeline in sequence diagram.

We use a method for transforming the conversations of
agents from MaSE to UML sequence diagrams. These
sequence diagrams are used in MAS monitoring method for
deadlock detection in MAS under test [5]. The MAS
sequence diagrams is not provided by MaSE per se and must
be constructed using information provided by the MaSE
artifacts such as role diagram and agent class diagrams [2].

The role sequence diagram in “Applying Use Cases”
step in analysis phase of MaSE shows the conversations
between roles assigned to each agent [4]. The agent class
diagram is created in the “Constructing Agent Classes” step
of MaSE. It represents the complete agent system
organization consisting of agent classes and the high-level
relationships among them. An agent class is a template for a
type of agent with the system roles it plays. Multiple
assignments of roles to an agent demonstrate the ability of
agent to play assigned roles concurrently or sequentially.
The agent class diagram in MaSE is similar to agent class
diagram in object oriented design but the difference is that
the agent classes are defined by roles, not by attributes and
operations. Furthermore, relationships are conversations
between agents [4]. Figure 2 and 3 show the hypothetical

214214214

Authorized licensed use limited to: Carleton University. Downloaded on December 21, 2009 at 12:18 from IEEE Xplore. Restrictions apply.

examples of MaSE role sequence and agent class diagram
and the constructed behavioral model from them.
 The approach for constructing sequence diagrams based
on the two above mentioned MaSE diagrams is defined as
follows. Each role sequence diagram is searched for the
roles which are listed in the same agent class in the agent
class diagram. Then, all of the roles in each role sequence
diagram are categorized based on the agent which they
belong to. Therefore, each category corresponds to an agent
class in agent class diagram and the messages which it
exchanges with other categories are recognizable. On the
other hand, a new agent sequence diagram can be generated
from agent class diagram which the lifelines are agents’
types. The recognized messages between each two
categories are entered into agent sequence diagram as a new
conversation.

Figure 2- MaSE role sequence and agent class diagrams

Figure 3- Constructed agent sequence diagrams

For example, in Figure 2, the role sequence diagram 1 is

categorized into three different categories, the first one
consists of Role 1 and Role 2 and the second one consists of
Role 3 and Role 4 and the last one consists of Role 5. The
first one corresponds to agent class 1, the second one
corresponds into agent class 2, and the third one corresponds
to agent class 3. The constructed agent sequence diagrams

from role sequence diagram 1, 2 and 3 and agent class
diagram in Figure 2 are shown in Figure 3.

Figure 4 and 5 represent a concrete example of
constructing a MAS behavioral model from “role sequence
diagram” and “agent class diagram” of “detection and
notification of host’s violations and logins “. In Figure 4, the
“Agent Class diagram” with 5 agent classes and their roles
and two “Role sequence diagrams” are provided. The
constructed behavioral model from mentioned MaSE’s
diagrams is shown in Figure 5

Figure 4- “Role sequence diagram” and “agent class

diagram” for “detection and notification of host’s violations
and logins”

Figure 5- Constructed agent sequence diagrams for

“detection and notification of host’s violations and logins”

5. Constructing agent behavioral model

 UML provides ways to model the behavior of an object
oriented system using different types of diagrams such as
state machine diagram. UML’s state machine diagram is
based on finite state machines (FSM) augmented with the

215215215

Authorized licensed use limited to: Carleton University. Downloaded on December 21, 2009 at 12:18 from IEEE Xplore. Restrictions apply.

concepts such as hierarchical and concurrent structure on
states and the communications mechanism through events
transitions. UML’s state machine diagram is commonly
used to describe the behavior of an object by specifying its
response to the events triggered by the object itself or its
external environment. State machine diagram has long been
used as a basis for generating test data [19-21].

In MaSE [4], roles are the building blocks used to define
agent’s classes and capture system goals during the design
phase. Every goal is associated with a role and every role is
played by an agent class. Role definitions are captured in a
role model diagram which includes information on
communications between roles, the goals associated with
each role, the set of tasks associated with each role, and
interactions between role tasks. In MaSE, a task is a
structured set of communications and activities, represented
by a state machine diagram which consist of states and
transitions[4]. States include the processing that goes on
internal to the agent and transitions allow communication
between agents or between tasks [4].

In this section, we first provide a comparison between
MaSE task diagram and UML 2.0 state machine diagram
and the differences in their transition protocol in Section
5.1. Then we discuss the procedure of deriving the activity
diagram and its associated CFG from MaSE task diagram in
Section 5.2.

5.1. MaSE task diagram vs. UML 2.0 state machine
diagram

 A transition in MaSE task diagram which as it is
mentioned is state machine diagram uses the syntax of
trigger [guard] / transmission, interpreted as if an event
trigger is received and the condition guard holds, then the
message transmission is sent [4]. In this transition notation
all items are optional. However the UML 2.0 specification(
Section 15.3 of [3]) proposed the syntax of [precondition]
event / [post condition] for transition protocol in state
machine diagram. The transition protocol specifies that
when the associated (referred) operation is called because of
an event in the origin state under the initial condition (pre
condition or guard), then the destination state must be
reached under the final condition (post condition) [3].
According to the above mentioned interpretation of the
transition protocol in both MaSE task diagram and UML 2.0
state machine the trigger in MaSE task diagram can be
considered as event in UML 2.0 state machine. Also, the
[Guard] in MaSE task diagram can be considered as the
[precondition] in UML 2.0 state machine diagram. Also,
since the UML specification does not prescribe a syntax
format for [post condition] (Section 15.3 of [3]), the
transmission can be interpreted as the [post condition] in
which the destination state must be reached under that.
According to the mentioned mapping for protocol transition,
MaSE task diagram can be converted to the UML 2.0 state

machine diagram. Using the state machine diagram, the
CFG and its associated CFPs can be identified [19, 20].

5.2. Deriving CFG from MaSE Task Diagram

 As it is mentioned in Section 3, Control Flow Graph
(CFG) [18] represents all alternatives of control flow in a
program. The concept of CFG has been extensively
deployed in the software engineering and particularly in the
software testing community (e.g. [22, 23]).
 UML has adopted a Petri-net like semantics for control
and object flow modeling referred to as Activity Diagrams.
Activity diagrams have been in UML since its early 1.x
versions and they are used to describe both sequential and
concurrent control flow and data flow [18]. As it is claimed
by UML 2.0 (Section 12.1 of [3]), the UML activity
diagrams are commonly called control flow and object flow
models.
 Figure 6 shows a task diagram for the Assign to
Reviewers task. In MaSE Tasks diagram, states may contain
activities that represent internal reasoning, reading a percept
from sensors, or performing actions via actuators [4].
Multiple activities can be in a single state and are performed
in an uninterruptable sequence [4]. Once in a state, the task
remains there until the activity sequence is completed [4].

Figure 6- (a) MaSE task diagram for Assign to

Reviewers, (b) the corresponding activity diagram and (c)
the associated CFG

 So, the activities within tasks diagrams, their sequences,
and their execution conditions can be driven from the states
and the corresponding activity diagram for a MaSE task
diagram can be created. Since the activity modeling is
commonly called the control flow and object flow models
[3] the corresponding CFG is also created by constructing
the activity diagram. Also, since the protocol transition in
MaSE task diagram uses the syntax of trigger [guard] /
transmission and the trigger and transmission are limited to
send and receive messages [4], trigger should be considered
as the last activity of the source state and transmission
should be considered as the first activity of destination state.

list= getReviewres(papers)

MakeAssigments

<reviewer,paps>= RemoveTop(list)

RequestReviews

Wait
Receive (Decline() ,reviewer)

papers= update (papers,paps,reviews)

UpdatePaperList

Receive (Accept() ,reviewer)

Send (ReviewPapers(papers,reviewer))
[size>0]

Receive (MakeAssigns(papers), practitioners)

A

B

C

[size=0]/Send (AssigmentComplete, practitioner)

A

B

C

MakeAssigments

RequestReviews
[accepted=False]

UpdatePaperList

[accepted=True]

[size>0]

A

B

C

[size=0]

(a) (b) (c)

216216216

Authorized licensed use limited to: Carleton University. Downloaded on December 21, 2009 at 12:18 from IEEE Xplore. Restrictions apply.

 In this way, the trigger message is considered as the
activity that after completing its execution the control flow
will be transferred to the first activity of destination state
(transmission). Figure 6 shows (a) the Assign to Reviewers
task for the Assigner role and (b) its corresponding activity
diagram and (c) the associated Control Flow Graph (CFG).
 The task is initiated upon receipt of a make Assigns
message from a Practitioner agent, which includes a list of
papers to be assigned. After the message is received, the
task goes to the Make Assignments state where it computes
a list of reviewers for the papers. Once this list is defined,
the task transitions to the “RequestReviews” state where the
top reviewer/papers tuple is taken off the list. A
“ReviewPapers” message is then sent to the reviewer
effectively requesting that the agent provide a review for the
associated papers, which is denoted by the “paps”
parameter. The task remains in the Wait state until a reply
from the reviewer is received. If the reviewer declines (via a
decline message), the task returns to the “MakeAssignment”
state where it computes a new list of reviewers for the
remaining papers. If the reviewer accepts the request via an
accept message, the task transitions to the
“UpdatePaperList” state where the list of papers is updated
by adding the name of the reviewer to the papers that they
will be reviewing. If the list is not empty, the task returns to
the “RequestReviews” state to make a request of the next
reviewer on the list. If the size of the reviewers list is empty,
the task ends by sending an “AssignmentComplete”
message to the Practitioner agent.
 In Figure 6 case, the Wait state is omitted in the
corresponding activity diagram since it only can be
considered as a state in state machine diagram and there is
no activity assigned to it in MaSE task diagram.

6. Conversion model application in monitoring
and testing MAS for deadlock detection

 Figure 7 shows the role and application of the proposed
conversion model in our monitoring [5] and testing [6] MAS
for deadlock detection methodology. The grey boxes
demonstrate the activities which are involved in conversion
task.
 The artifacts used are the models prepared during the
analysis and design stages of a MAS using the MaSE
methodology [4] . As it can be seen in Figure 7, using the
procedure explained in [6], resource requirement table is
constructed based on Control CFPs extracted from the
MaSE task diagrams. The resource requirement table is used
for searching for potential deadlocks [6]. Test requirements
for testing MAS are prepared based on the potential
deadlocks. The test requirements are used to generate the
test cases. For deadlock detection on MAS under test we
deploy our MAS monitoring methodology in [5]. Using the
procedure explained in Section 4, a MAS behavioral model,
consists of UML sequence diagrams, is constructed using
MaSE analysis and design artifacts. Two deadlock

detection techniques, introduced in [5], are instrumented
into the MAS under test’s source code. Test driver executes
the test cases on MAS under test and runtime deadlocks are
detected using the MAS behavioral model [5] [6].

Figure 7- Conversion model application in Testing and
Monitoring MAS for deadlock detection

7. The developed tool for conversion model

 Figure 8 demonstrates a snapshot of the developed tool
for conversion model. Window 1, the Console, displays
events that occur during tool operation such as diagram
creation notifications, Error Messages, and Exceptions.
Window 2, the MaSE Artifact Tree, shows all of the MaSE
artifacts that are in the current conversion project (Inputs).
This view can be modified by the “Add MaSE Diagrams”
and the “Remove MaSE Diagram” at the bottom of the tool
window. Window 3, the MaSE Artifact Viewer, shows the
XML (XML is chosen as the input and output format for
this tool) version of each selected MaSE artifacts in MaSE
artifact tree.

Figure 8- The developed tool for conversion model

 Window 4, the UML Artifact Tree, shows the UML
diagram artifacts generated as the output of conversion

217217217

Authorized licensed use limited to: Carleton University. Downloaded on December 21, 2009 at 12:18 from IEEE Xplore. Restrictions apply.

model and finally window 5, The UML Artifact Viewer,
demonstrates the XML version of the selected UML artifact
in UML Artifact Tree.

8. Conclusion and future work

 In this paper, we proposed a conversion model for
adopting the MAS design and analysis models into standard
UML models. This conversion tool helps MAS engineers
use UML-based monitoring and testing tools to test and
monitor MAS design and analysis artifacts created by Multi-
agent Software Engineering (MaSE) as one of the most
powerful and famous AOSE methodologies. We provided
the results of an evaluation on MaSE methodology in
Section 2.3 which shows that MaSE is ranked 1st among 8
other AOSE methodologies. We proposed a typical
metamodel for MAS in section 3. In this metamodel we
suggested a behavioral model for entire MAS and a
behavioral model for the agents inside the MAS. An
approach for constructing MAS behavioral model from
MaSE role sequence diagrams and agent class diagram is
presented in Section 4. Also, using the procedure explained
in Section 5.2, we proposed agent behavioral model by
extracting the Control Flow graph (CFG) and its associated
Control Flow Paths (CFP) from the MaSE task diagrams in
analysis phase of MaSE. In Section 6, we discussed the
application of our constructed behavioral model of MAS
and the behavioral model of agent in our previous
monitoring [5] and testing [6] multi-agent systems for
deadlock detection techniques. As the future work, we plan
to apply our conversion model to a few more MAS case
studies to evaluate its effectiveness and efficiency in
monitoring and testing MAS techniques.

9. Acknowledgement

 Nariman Mani, Vahid Garousi and Behrouz H. Far were
supported by a discovery grant from NSERC. Vahid
Garousi was further supported by an Alberta Ingenuity New
Faculty Award. Haysam Alsayed, Lucian Aron, Tatyana
Rabinovitch, and Brooks Riley helped the MAS-UML tool
development. The authors acknowledge their effort and
thank them collectively.

10. References

[1] M. R. Genesereth and P. K. Ketchpel, "Software agents

" Commun. ACM vol. 37 pp. 48-53, 1994.
[2] F. Bergenti, M.P.Gleizes, and F. Zambonelli,

Methodologies and Software Engineering for Agent
System vol. 11. New York: Kluwer Academic
Publishers, 2004.

[3] Object Management Group (OMG), "UML 2.1.1
Superstructure Specification," 2007.

[4] S. A. DeLoach, "The MaSE Methodology," in
Methodologies and Software Eng. for Agent System.
vol. 11, F. Bergenti, M.P.Gleizes, and F. Zambonelli,
Eds. New York: Kluwer Academic Publishers, 2004,
pp. 107-147.

[5] N. Mani, V. Garousi, and B. Far, "Monitoring Multi-
agent Systems for Deadlock Detection Based on UML
Models," in 21st IEEE Canadian Conference on
Electrical and Computer Engineering (CCECE08) -
Computer Systems and Applications Niagara Falls ,
Canada, 2008.

[6] N. Mani, V. Garousi, and B. Far, "Testing Multi-Agent
Systems for Deadlock Detection Based on UML
Models," in The 14th International Conference on
Distributed Multimedia Systems (DMS08) Boston,
USA, 2008.

[7] G. M. Saba and E. Santos, "The Multi-Agent
Distributed Goal Satisfaction System," in ICSC
Symposium on Multi-Agents and Mobile Agents in
Virtual Organizations and E-Commerce, 2000.

[8] J. T. McDonald, M. L. Talbert, and S. A. DeLoach,
"Heterogeneous Database Integration Using Agent
Oriented Information Systems," in Proceedings of the
International Conference on Artificial Intelligence,
2000.

[9] P. K. Harmer and G. B. Lamont, "An Agent
Architecture for a Computer Virus Immune System," in
Genetic and Evolutionary Computation Conference,
2000.

[10] A. Elamy and B. Far, "A Statistical Approach for
Evaluating and Assembling Agent-Oriented Software
Engineering Methodologies," in Agent-Oriented
Information Systems IV. vol. 4898/2008 Berlin /
Heidelberg: Springer, 2008, pp. 105-122.

[11] M. Wooldridge, N. R. Jennings, and D. Kinny, "The
Gaia Methodology for Agent-Oriented Analysis and
Design," Autonomous Agents and Multi-Agent Systems,
vol. 3, pp. 285-312, 2000.

[12] F. Giunchiglia, J. Mylopoulos, and A. Perini, "The
tropos software development methodology: processes,
models and diagrams," in Proceedings of the first
international joint conference on Autonomous agents
and multiagent systems, Italy, 2002, pp. 35 - 36

[13] M. J. Wooldridge and P. Ciancarini, "Agent-Oriented
Software Engineering: The State of the Art," in Proc. of
the Workshop on Agent-Oriented Soft. Eng., 2000, pp.
1-28.

[14] B. Meyer, "Applying Design by Contract," IEEE
Computer, vol. 25, pp. 40–51, 1992.

[15] H. L. Timothy and S. A. DeLoach, "Automatic
Verification of Multiagent Conversations," in the
Annual Midwest Artificial Intelligence and Cognitive
Science Fayetteville, 2000.

[16] M. J. Wooldridge, M. Fisher, M. Huget, and S. Parsons,
"Model Checking Multi-Agent Systems with MABLE,"

218218218

Authorized licensed use limited to: Carleton University. Downloaded on December 21, 2009 at 12:18 from IEEE Xplore. Restrictions apply.

in Proc. of the Int. Joint Conf. on Autonomous Agents
and Multiagent Systems, 2002, pp. 952–959.

[17] G. J. Holzmann, "The Model Checker Spin," IEEE
Trans. on Soft. Eng., vol. 23, pp. 279–295, 1997.

[18] V. Garousi, L. Briand, and Y. Labiche, "Control Flow
Analysis of UML 2.0 Sequence Diagrams," in Model
Driven Architecture – Foundations and Applications.
vol. LNCS 3748/2005: Springer Berlin / Heidelberg,
2005, pp. 160-174.

[19] T. S. Chow, "Testing Software Design Modeled by
Finite-State Machines," IEEE Trans. on Software Eng.,
vol. 4, pp. 178-187 1978.

[20] H. S. Hong, Y. G. Kim, S. D. Cha, D. H. Bae, and H.
Ural, "A test sequence selection method for
statecharts," Software Testing, Verification and
Reliability, vol. 10, pp. 203 - 227, 2000.

[21] L. C. Briand, Y. Labiche, and Q. Lin, "Improving
Statechart Testing Criteria Using Data Flow
Information," in Proc. of the 16th IEEE Int. Symposium
on Software Reliability Engineering, Washington, DC,
USA, 2005, pp. 95 - 104

[22] A. T. Chusho, "Test data selection and quality
estimation based on the concept of essential branches
for path testing," IEEE Transaction on Software
Engineering, vol. 13, pp. 509-517, 1987.

[23] A. Bertolino and M. Marre, "Automatic Generation of
Path Covers Based on the Control Flow Analysis of
Computer Programs," IEEE Transaction on Software
Engineering, vol. 20, pp. 885-899, 1994.

219219219

Authorized licensed use limited to: Carleton University. Downloaded on December 21, 2009 at 12:18 from IEEE Xplore. Restrictions apply.

