
Towards Studying the Performance Effects of Design
Patterns for Service Oriented Architecture

Nariman Mani, Dorina C. Petriu, Murray Woodside
Carleton University

Department of Systems and Computer Engineering
1125 Colonel By Drive

Ottawa, Ontario, Canada

{nmani | petriu | cmw}@sce.carleton.ca

ABSTRACT
Patterns employed for the development of a service oriented
system may affect its non-functional properties, including
performance. Service Oriented Architecture (SOA) design
patterns provide generic solutions for many architectural, design
and implementation problems, and any pattern may have an
impact on performance, either positive or negative. This research
considers how to characterize the performance impact of a SOA
design pattern, which includes characterizing some aspects of the
design and usage environment as a whole (for example, the scale
of the workload and the availability of concurrent platforms for
the eventual deployment). The approach uses performance models
to characterize the application and the impact of the pattern on it.
The planned approach exploits the context of model driven
engineering (MDE) to give rapid feedback to developers about the
potential impact of a pattern. Model transformations are used to
generate the performance model, and to propagate the effect of
applying a SOA design pattern to the performance model. The
approach is sketched here with a preliminary case study,
demonstrating its feasibility.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Performance evaluation
(efficiency and effectiveness)

General Terms
Performance, Design, Experimentation, and Verification.

Keywords
Software performance, service-based systems, SOA pattern,
model change, change propagation, LQN.

1. INTRODUCTION2
Service Oriented Architecture (SOA) provides many architectural
benefits to the design of a distributed system including
reusability, adaptability, and maintainability. A service is a
coarse-grained piece of logic providing a distinct business

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICPE’11, March 14–16, 2011, Karlsruhe, Germany.
Copyright 2011 ACM 978-1-4503-0519-8/11/03...$10.00.

function, which autonomously implements the functionality
promised by the contracts it exposes [1, 2].

SOA raises various challenges. The first set of challenges is
related to non functional properties of distributed systems such as
availability, security, scalability, performance, etc. The second set
of challenges is related to issues around the architectural design of
service oriented systems, such as providing service aggregation
and a centralized view in an environment which promotes
autonomy, encapsulation, and privacy.

SOA design patterns as collected for example in [1] help to
address these challenges. Each pattern is specified by:
 Problem: describe the domain of problems that pattern aims

to solve and their impacts.
 Solution: describes the design solution proposed by the

pattern to solve the problem.
 Application Instruction: provides generic guidance on how

to change the design in order to apply the pattern.

This work considers the performance impact of patterns. For
patterns which address a performance problem, we try to
characterize the amount of improvement, and what it depends on
in the pattern and in the larger application. For other patterns
(which may not addressing performance aspects of a design
indirectly), we try to characterize their performance impact, for
instance the throughput impact of overhead introduced by the
pattern.

Using MDE, performance impacts can be evaluated through
performance models [3]. A software design model (SModel) can
be transformed by known techniques (which require some
additional information) to a performance model (PModel) and
evaluated using the existing techniques and methodologies in [3].
This work uses UML-based SModels and Layered Queuing
Network (LQN) PModels created by transformations in the
PUMA framework [3] (see examples in [3]).

It is essential to explore the use of different patterns, to find those
that are effective and avoid those that introduce new problems. To
streamline this process, this paper considers propagating
incremental SModel changes due to the application of a SOA
design pattern, from the SModel to the corresponding PModel of
the system. Using the application instructions provided by the
SOA design patterns, a set of application rules are extracted from
design patterns. The application rules are used to identify the
changes in SModel and the associated changes in the PModel. On
the other hand, the performance model may help indentifying

499

performance problems which will guide the developers to select
appropriate performance-enhancing SOA patterns.

The remainder of this paper is structured as follows. The related
work is discussed in Section 1. An illustrative example is
discussed in Section 1. The proposed approach (overview) and
examples of its applications are discussed in Section 4. Finally we
conclude the paper in Section 5.

2. RELATED WORK
Beside the patterns which are recognized as the best practices for
software development, Smith and Williams [4] introduced general
performance anti-patterns that exclusively focus on performance
concerns. Anti-patterns are defined as common design mistakes
that consistently occur, causing undesirable results.
There are only a few works on studying the impact of the
patterns/anti-patterns on the performance of software applications.
Cortellessa et al [5] presented an approach, based on anti-patterns,
that aims at identifying performance problems based on OCL
rules in UML models and removing them. Also in their approach,
the identification of an anti-pattern suggests the architectural
alternatives that can remove that specific problem.
Menascé et al [6] presents a framework called SASSY whose goal
is to allow designers to specify the system requirements using a
visual activity-based language and to automatically generate a
base architecture that corresponds to the requirements. The
architecture is optimized with respect to quality of service
requirements (i.e. as measured by several performance metrics
such as execution time and throughput, etc.) through the selection
of the most suitable service providers and application of quality of
service architectural patterns.
Parsons and Murphy [7] introduce an approach for the automatic
detection of performance anti-patterns by extracting the run-time
system design from data collected during monitoring by applying
a number of advanced analysis techniques.
Xu [8] applied rules to performance model results to identify
performance problems and to propose solutions for fixing them,
which resulted in changes at the PModel level.
In this work, we examine the impact of changes made by a SOA
design pattern on the SOA design model (SModel) and identify
the associated performance model (PModel) elements which are
affected by this change. In this paper we illustrate the proposed
approach by performing the necessary steps “by hand”; future
work will attempt to automate the process. To the best of our
knowledge, there have not been any works on studying the
incremental change propagation due to the application of design
patterns from a SModel to a corresponding PModel.

3. ILLUSTRATIVE EXAMPLE
In this section of paper, we present an illustrative example of a
service oriented system in Section 3.1. Using the presented
example, the performance characterizations of the design models
are discussed in Section 3.2.

3.1 Design Model Scenarios
Figure 1 and Figure 2 show UML Sequence Diagrams (SD)
scenarios for product catalogue browsing and shopping services.
Users browse the catalogue and create their own shopping cart
using the “Browsing Service”. Then the user asks for checkout by
using “Shopping Service” to place the order and pay for it. Figure

1 shows the sequence diagram for the browsing scenario in detail.
First, the user sends the request for browsing a specific product
catalogue based on filtration criteria to “Browsing Service”. The
“Browsing Service” sets up the user session and passes its request
to the “Catalogue Service” which is responsible retrieving the
products list from the back-end database and formats them into a
page. The “Catalogue Service” sends the request for retrieving the
products information to back-end database. The “Catalogue
Service” formats the retrieved data into a product catalogue and
sends it to the user for browsing and making the shopping cart.

Figure 1. Browsing Service sequence diagram

Figure 2 shows the message sequence for the shopping scenario.
Once done with browsing the catalogue and creating the shopping
cart, the user asks for check out from the “Shopping Service”. The
“Shopping Service” collects the shopping information (e.g. user,
shipping, and payment information) and sends them to “order
processing service”. The “order processing service” validates the
credit card information user provided send the payment
information to “Payment Processing”. It receives the payment
confirmation and informs the “Shopping Service” that the order
has been placed. “Shopping Service” sends the confirmation to
user.

Figure 2 . Shopping Service sequence diagram

Figure 1 and Figure 2 are a simple version of the SModel for the
service system, which must be augmented by CPU demand data
and a deployment specification which is omitted here for space
reasons.

3.2 Performance Model of the Design
The PModel image of the SModel scenario shown in Figure 1 is
presented in form of the Layered Queuing Network (LQN) [4] in
Figure 3. Each large rectangle represents a LQN task (roughly, a
process), named in a sub-rectangle at its right-hand end. Other
sub-rectangles represent entries (service functions) with their host
CPU demand. Requests to other entries are shown by arrows
labeled by the number of calls, per entry invocation. Tasks

500

correspond to lifelines in the SDs and service functions
correspond to messages between objects. Circles represent
processors, attached to their deployed tasks; as a “default”
deployment one processor is shown per task.

User
[z=30s]

users

Entrynet
[pure delay

1 ms]
Network

Networkp

usersp

EntryServ2
[s=0.5ms]

EntryServ1
[s=0.2ms]

Shopping
&Browsing
Service

EntryPay1
[s=0.8s]

EntryPay2
[s=0.4s]

Order
Processing
Service

Orderp
EntryVisa
[s=100ms]

Entry
MasterCard
[s=100 ms]

Payp

Payment
Processing

EntryCT
[s=1s]

Product
Service

CTp

EntryDCT
[s=50ms]

DB

DBp

1

0.5 0.5

3 1.5

1.5

2

1.5

Shop&B
rowP

0.5

Figure 3. LQN model for Shopping and Browsing Service
Oriented Application

PModel parameters such as the number of invocations of entries
and the mean CPU demands in each entry come from data
provided through performance annotations in the SModel. There
are 3 invocations of EntryPay1 and 1.5 invocations of EntryPay2
per request from shopping service (i.e. EntryServ1). Upon each
invocation, on average, EntryPay1 uses the EntryVisa 1.5 times,
whereas, on average, EntryPay2 uses the EntryMasterCard 0.5
times in average. For every invocation of the browsing service
(i.e. EntryServ2) the product service is invoked 2 times on
average. For every invocation of the product service, the EntryDB
2 is used 1.5 times on average. Results for solving the Figure 3
LQN model (Using LQN solver called LQNS[4]) with 50 users
are shown in Table 1. They show that the “Shopping and
Browsing Service task” is saturated, with utilization parameter
close to 0.99.

Table 1. Performance Analysis Results for 50 users

 Throughput
(req/sec)

Utilization Response Time
(sec)

Entire
System

0.35408 39.3776 141.211 s

Shopping
&
Browsing

0.35408 0.989389 Shopping:
3.43801s
Browsing:
2.1505s

4. PERFORMANCE EFFECT OF A
DESIGN PATTERN
The impact of introducing a design pattern, including a SOA
pattern, comes from its effect on system attributes D, R and S:
 D: CPU demands
 R: available resources

 S: execution sequence, including order, parallelism, and
numbers of calls to service functions.

The pattern may modify existing objects in the design, or
introduce new ones. A direct approach to evaluating a pattern
would be to apply it to the design, find the new PModel image,
evaluate it, and compare.
Here we seek a more efficient process by considering how the
pattern application rules (in the SModel space) imply
corresponding changes in the PModel space. These changes can
be termed the pattern image in the PModel space, and the rules
for introducing them. The pattern image will take the form of new
objects, and PModel parameters representing D, R and S above.

Figure 4 provides a high-level overview of the approach that we
propose in this paper. The top of the figure (not included in the
grey box) shows the direct approach applied to the initial SModel.
The PModel is solved with existing solvers and the analysis
results are produced, as in the example above.

SModel
Model

Transformation
PModel

SOA Pattern
Application rules

SOA Pattern

3. Extracting
the Application Rules

Applying Changes
To PModel

Performance
Analysis
Results

4. Determining the
Pattern Image in PModel:
A. Determining affected

SModel Elements
B. Identifying PModel changes

Non Functional
Properties

Analysis Results

1. Identify the Problem and
2. Choose SOA Design Pattern

Which address the problem

Non Functional
Properties Analysis

Performance
Analysis

PModel
Changes

Figure 4. Technique Overview

The operations in the grey box in Figure 4 describe our main
focus in this research.

1. We begin with a Problem in the SModel that needs to be
fixed by applying SOA patterns. This could be either a
performance problem (to be identified from the Performance
Analysis Results) or other kind of problem (to be identified
from other non-functional requirement analysis).

2. Depending on the type of problem, an appropriate design
pattern is chosen (this is conventional application of patterns
to design).

3. The application rules of the SOA design pattern are
extracted. As mentioned in the introduction section, each
pattern provides a list of generic application rules which
specify the changes that should be made to the design model
in order to address the problem.

4. For the chosen pattern and its application rules, the Pattern
Image in PModel space is determined:

a) Using the application rules of the pattern, the affected
elements in the design model (affected SElements) and
the SModel changes are determined,

b) From these, the affected PModel elements and the
PModel changes are determined, based on the affected
SElements.

5. The identified changes are applied to give the transformed
PModel and its performance analysis.

501

In this paper we apply two specific SOA patterns, “Functional
Decomposition” (Sections 4.1) and “Asynchronous Queuing” and
(Section 4.2) to the case study system designed for this research
(scenarios shown in Figure 1 and Figure 2), online shopping
system. These two patterns are briefly presented here. A more
detailed discussion on patterns is in [1].

4.1 The Performance Effects of Functional
Decomposition Pattern
In general, functional decomposition pattern [1] discusses how to
design a service solution for a large business problem without
having to build a standalone body of solution logic.

Problem: To serve a large and complex business task, a
corresponding amount of solution logic (service) needs to be
created, resulting in a self-contained application with traditional
governance and reusability constraints.

Solution: The large business task should be broken down into a
set of smaller, related tasks, leading to a corresponding set of
smaller, related services which satisfy those tasks.

Application Instruction: The large services in SOA which carry
a very high load should be identified and be broken down into a
set of smallest services, each satisfying a functionality of the large
service. The affected element here is the “large” service. This
may be large in terms of complexity, but also for performance
purposes it may be large in the sense of heavily utilized, so that its
thread resources are saturated.

The Pattern Image in PModel space is to break down the task
implementing the large service, into one task for each service
function (or, break it down as much as feasible).

Pattern Image Application Rule:

Condition: For the selected “large” service with multiple
service functions,

Actions: Split the task associated to service into smaller tasks,
one for each entry of the large task. The entries of the smaller
tasks have the same properties as they had before.

The “Functional Decomposition” design pattern is now applied to
the service oriented design model described in Section 3. In Table
1 it can be seen that the Shopping and Browsing Service is a
“large” task in the sense of high utilization (The task shown by
grey color in Figure 3). The SElement which is affected by this
pattern would be Shopping and Browsing Service use case in the
sequence diagram (See Figure 1 and Figure 2). Figure 5 shows the
Shopping Service sequence diagram after applying the pattern to
the SModel.

Figure 5. Shopping Service sequence diagram after applying
Function Decomposition Design Pattern

The image PElement is the Shopping and Browsing task in the
PModel, which will be partitioned. The PModel change can be
described by these application rules:
a) Add a new task
b) Move the second entry with all its connections to the new

task.
c) Name the new task for its entry name
d) Name the original task for its remaining entry name

Figure 6 shows the changed LQN model, and Table 2 shows the
performance effect found by solving the PModel. Table 2 shows
considerable improvements in the throughput, utilization, and
response time of the whole system. The effect of the change is
strong because the Shopping and Browsing Task was in fact the
bottleneck in the performance model.

Table 2. Performance Analysis Results Summary for 50 users
after applying Function Decomposition Design Pattern

 Throughput
(req/sec)

Utilization Response Time
(sec)

Entire
System

0.555463 33.1209 90.015s

Shopping
and
Browsing

0.277731 0.99173 Shopping:
3.57083s

0.277731 0.59726 Browsing:
2.150s

In general: the component to be decomposed points directly to
the corresponding decomposition in the PModel.

User
[z=30s]

users

Entrynet
[pure delay

1 ms]
Network

Networkp

usersp

EntryServ2
[s=0.5ms]

EntryServ1
[s=0.2ms]

Browsing
Service

EntryPay1
[s=0.8s]

EntryPay2
[s=0.4s]

Order
Processing
Service

Orderp
EntryVisa
[s=100ms]

Entry
MasterCard
[s=100 ms]

Payp

Payment
Processing

EntryCT
[s=1s]

Product
Service

CTp

EntryDCT
[s=50ms]

DB

DBp

1

0.5 0.5

3 1.5

1.5

2

1.5

BrowP

Browsing
Service

ShopP

0.5

Figure 6. The LQN Model after Applying the Functional
Decomposition Pattern

4.2 The Performance Effects of Asynchronous
Queuing Pattern
A different kind of pattern provides a second look at the process.
The Asynchronous Queuing [1] pattern introduces capabilities
allowing a service and its consumers to accommodate failures
independently and avoid unnecessarily blocking resources.

502

Problem: When the service functionality requires that consumers
interact with it synchronously, the performance, reliability, or
availability can be affected.

Solution: The requestor can be provided with an intermediate
response confirming that the request will be taken care of latter.
While keeping the user informed about the task status, the request
will be processed without the requestor waiting and blocked. The
requester must pick up the response when it is ready.

Application Instruction: The task portion that can be processed
without blocking the requestor should be identified and postponed
to after an intermediate response message to the requestor.

Application Rule

For the SModel:
Condition: If there is any task with a long processing time in
the system
Actions: Provide the requestor with an intermediate response
and postpone the rest of processing after sending the
intermediate response.

This is a kind of delayed synchronous interaction.

The Order Processing Service is a good candidate for applying
this pattern. Its requestor is the Shopping Service. It has a long
processing time because it waits for the functions for Visa and for
MasterCard. They use the Payment Processing Service which in
both cases has a long service time (100 ms) compared to other
processes in the system.

To apply the pattern we divide the Order Processing functions
into a part which is synchronous with the shopping service, and
an asynchronous part making the final call to payment processing.
The final confirmation is returned asynchronously to the shopping
service and the user. The sequence of execution in Figure 5 must
be modified as indicated in Figure 7. As it can be seen in Figure
7, the reply from “Payment Processing” is sent back directly to
the Shopping Service asynchronously in the form of “Confirm
Payment” message.

Figure 7. Shopping Service sequence diagram after applying
Asynchronous Queuing Design Pattern

For the PModel: LQN can describe delayed synchronous
interactions by a “second phase of service” (see [4]). Any entry
may have some of its work in second phase, asynchronous with
its caller. A final interaction to return data is a separate message.

In applying the pattern, the associated PModel elements for
PlaceOrder are EntryPay1 and EntryPay2 (for orders to Visa and
MasterCard) in the “Order Processing Service” task. Their CPU
demand (just for illustration) be assumed equally divided between
the first phase to validate the payment information, and the

second phase to handle the processing request. The calls for
payment processing are made in the second phase.

The last asynchronous interaction with the Payment server is
approximated in LQN by a forwarding interaction. The pattern is:
an asynchronous request from Order processing to payment
processing, leading to an asynchronous message to the Shopping
Service with the result. Where there is more than one request to
Payment processing (as with 1.5 requests to VISA processing, on
average), the additional requests (on average 0.5 requests) are
modeled as synchronous, with the last request being forwarded
(See Figure 8). Figure 8 shows a synchronous request to
EntryVISA with parameter 0.5 and a forwarding request (dashed
arrow) with probability 1.0

The resulting PModel in gives the performance analysis results in
Table 3. The response time is only marginally reduced by using
this pattern. This is explained also by noting that the critical path
for completing a Check Out request is unchanged in Figure 7; if
we look deeper we find that concurrency limitations in the design
prevent this pattern from being effective.

In general the corresponding PModel elements for this pattern are
easily identified. The SModel increment is resolved in the
behavior specification, and transferred via demand and call
parameters into the PModel.

User
[z=30s]

users

Entrynet
[pure delay

1 ms]
Network

Networkp

usersp

EntryServ2
[s=0.5ms]

EntryServ1
[s=0.2ms]

Browsing
Service

ShopP

EntryPay1
[s=0.4s]
[s=0.4s]

EntryPay2
[s=0.2s]
[s=0.2s]

Order
Processing
Service

Orderp
EntryVisa
[s=100ms]

Entry
MasterCard
[s=100 ms]

Payp

Payment
Processing

EntryCT
[s=1s]

Product
Service

CTp

EntryDCT
[s=50ms]

DB

DBp

1

0.5 0.5

3 1.5

0.5
1

2

1.5

Shopping
Service

BrowP

0.5

Figure 8. The LQN Model after Applying Asynchronous
Queuing Design Pattern

Table 3. Performance Analysis Results for 50 users, for the
LQN model with the “Asynchronous Queuing” pattern

 Throughput Utilization Response Time

Entire
System

0.610423 31.687 81.9105s

Shopping
and
Browsing

0.305212 0.996745 Shopping: 3.26575
0.305212 0.656358 Browsing:

: 2.1505s

503

4.3 Result Analysis
The system throughput and response time comparison for the
initial model and two applied design patterns are shown in Figure
9 and Figure 10. The graphs show the system throughput and
response time under an increasing load (i.e., the numbers of users
is changing from 1 to 120 users). As it can be interpreted from the
graphs, there is large difference in the system throughput and
system response times between the initial state and after the
patterns are applied. However, the first pattern has a considerable
effect, while the second pattern (Asynchronous Queuing) makes a
small additional improvement. The designers may conclude that
the application of the second pattern is not warranted. On the
other hand, additional analysis may show that using other patterns
first (for example to increase concurrency) may make
Asynchronous Queuing more effective.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 10 20 50 75 100 120

System Throughput Comparison

Asynchronous Queuing
Pattern

Functional
Decomposition Pattern

Initial Model

users

R
eq
ue
st
s/
Se
co
nd
s

Figure 9. System Throughput Comparison

0

50

100

150

200

250

300

350

400

1 10 20 50 75 100 120

System Response Time Comparison

Asynchronous
Queuing

Functional
Decomposition

Initial Model

Seconds

users

Figure 10. Response Time Comparison

5. CONCLUSION
In this paper, we proposed an approach which propagates changes
due to the application of design patterns from the design model of
SOA system (SModel) to the associated performance model
(PModel) in form of layered queuing network. The proposed
approach extracts a set of application rules from the SOA patterns

application instructions and uses them for determining the
changes to SModel elements, which are then propagated to the
associated PModel structural and behavioral elements.

These are preliminary experiments in research which will
describe the possible pattern images for the PModel space for
different SOA patterns, and to determine the pattern image
application rules for the PModel. The examples have
demonstrated feasibility and have shown the nature of the pattern
image for two patterns, applied in certain cases. These are by no
means definitive and a general approach is still to be developed.
However the examples show that some pattern applications are
effective and some are not. An ideal future system will partly
automate the change propagation into the PModel for well-
understood patterns, and will screen automatically for
improvements.

6. Acknowledgements
This work was partially supported by the Centre of Excellence for
Research in Adaptive Systems (CERAS) and by the Natural
Sciences and Engineering Research Council (NSERC).

REFERENCES
[1] T. Erl, SOA Design Patterns, Boston, MA, Prentice Hall

/PearsonPTR , 2009

[2] A. Rotem-Gal-Oz, E.Bruno, and U. Dahan, SOA Patterns
(Early Access Edition), Manning Publications, June 2007

[3] M.Woodside, D. C. Petriu, D.B. Petriu. H. Shen, T. Israr, J.
Merseguer, “Performance by Unified Model Analysis
(PUMA)”, Proc. ACM Workshop on Software and
Performance WOSP'05, Palma, Illes Balears, Spain , 2005,
pp. 1-12

[4] C. U. Smith and L.G. Williams, Performance Solutions.
Addison Wesley, 2002.

[5] V. Cortellessa, A.D. Marco, R. Eramo, A. Pierantonio, C.
Trubiani, "Digging into UML models to remove performance
antipatterns", Proc. of 2010 ICSE Workshop on Quantitative
Stochastic Models in the Verification and Design of
Software Systems, Cape Town, South Africa, pp.9-16, 2010.

[6] D. A. Menascé, J. M. Ewing, H. Gomaa, S. Malex , J. P.
Sousa , “A framework for utility-based service oriented
design in SASSY”, Proc 1st WOSP/SIPEW Int Conf on
Performance Engineering, San Jose, CA, pp. 27-36 , 2010.

[7] T. Parsons, J.Murphy, “Detecting Performance Antipatterns
in Component Based Enterprise Systems”, Journal of Object
Technology , Vol. 7(3), 2008.

[8] J. Xu , “Rule-based automatic software performance
diagnosis and improvement”, Proc 7th Intl Workshop on
Software and Performance, Princeton, NJ, pp. 1-12, 2008.

504

