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ABSTRACT 
 

There is a growing demand for Multi-Agent Systems (MAS) 
in the software industry. The autonomous agent interaction 
in a dynamic software environment can potentially lead to 
runtime behavioral failures including deadlock. In order to 
bring MAS to the main stream of commercial software 
development, the behavior of MAS must be tested and 
monitored against the risk of unwanted emergent behaviors 
including deadlocks. In this paper, (1) we introduce a 
method for preparing test requirements for testing MAS; 
and (2) we deploy a MAS monitoring method for deadlock 
detection in MAS under test. The first method helps create 
test requirements using a resource requirement table from 
the MAS analysis and design. The second method monitors 
the MAS behavior to detect deadlocks at the run-time. Also, 
as model based software techniques such as Multi-agent 
Software Engineering (MaSE) are gaining more popularity; 
these model based approaches can help MAS developers to 
reduce the risk of having unwanted emergent behaviors such 
as deadlock in MAS. 
 

Index Terms— Multi-agent system, Software testing, 
Deadlock detection, UML. 
 

1. INTRODUCTION 
 

Increasing demand for applications which can communicate 
and exchange information to solve problems collaboratively 
has led to the growth of distributed software architecture 
consisting of several interoperable software systems. One of 
the main difficulties of interoperable software systems is 
heterogeneity. Heterogeneity reflects the fact that the 
services offered by constructed components are independent 
from the designers and the design methodology [1]. 
Different programs written in different languages by 
different programmers must operate in a dynamic software 
environment. Agent based software engineering is one of 
the approaches devised to handle collaboration and 
interoperability. An autonomous agent is a computational 
entity that can perceive, reason, act, and communicate [2]. 

Multi-Agent Systems (MAS) consists of autonomous agents 
that try to achieve their goals by interacting with each other 
by means of high level protocols and languages [1]. 
However, the agent interaction can potentially lead to 
runtime behavioral failures including deadlock. Thus, 
testing and monitoring MAS to eliminate the risk of 
unwanted emergent behaviors, such as deadlock, is an 
essential precondition for bringing MAS to the main stream 
of commercial software. Also, as model-based software 
development practices are gaining more popularity [3], more 
and more MAS are developed using model-based practices 
such as the Multi-agent Software Engineering (MaSE)[4]. 
Thus, model-based testing techniques for deadlock detection 
for MAS can be useful since they can help MAS engineers 
to eliminate the risks of deadlocks in the MAS development. 
         In this paper we focus on proposing a methodology for 
testing MAS by preparing test requirements for deadlock 
detection. The artifacts used are the models prepared during 
the analysis and design stages of a MAS using the MaSE 
methodology[4] . Figure 1 illustrates the approach. Using 
the procedure explained in Section 5.1, resource 
requirement table is constructed based on Control Flow 
Paths (CFP) extracted from the MaSE task diagrams. The 
resource requirement table is used for searching for potential 
deadlocks (Section 5.2). Test requirements for testing MAS 
are prepared based on the potential deadlocks. The test 
requirements are used to generate the test cases. For 
deadlock detection on MAS under test we deploy our MAS 
monitoring methodology in [5]. Using the procedure 
explained in Section 4, a MAS behavioral model, consists of 
UML sequence diagrams, is constructed using MaSE 
analysis and design artifacts such as “role sequence 
diagram”, “agent class diagram” and “task diagram”.  Two 
deadlock detection techniques, introduced in Section 6, are 
instrumented into the MAS under test’s source code. Test 
driver executes the test cases on MAS under test and 
runtime deadlocks are detected using the MAS behavioral 
model [5]. 
      The remainder of this paper is structured as follows. The 
related works and background are described in Section 2. 
The MAS metamodel is introduced in Section 3. 
Constructing MAS behavioral model based on the MaSE is 



discussed in Section 4. Test requirement preparation is 
described in Section 5. MAS monitoring for deadlock 
detection is explained in Section 6. Finally conclusions and 
future work are given in Section 7. An illustrated example is 
used to explain the methodology in the subsequent sections. 
 

 
Figure 1 – An overview of our approach 

 
2. RELATED WORKS AND BACKGROUND 
 
2.1 MAS Verification and Monitoring 
Existing works on MAS verification are categorized into 
axiomatic and model checking approaches [2]. In [6], 
axiomatic verification is applied to the Beliefs, Desires and 
Intentions (BDI) model of MAS using a concurrent temporal 
logic programming language. However, it was noticed that 
this kind of verification cannot be applied when the BDI 
principles are implemented with non-logic based languages 
[2]. Also in design by contract [7] pre- and post-conditions 
and invariants for the methods or procedures of the code are 
defined and verified in runtime. Violating any of them raises 
an exception. But as it is also claimed in [2] the problem is 
that this technique does not check program correctness‚ it 
just informs that a contract has been violated at runtime. 
     Model checking approaches seem to be more acceptable 
by industry, because of less complexity and better 
traceability as compared to axiomatic. Automatic 
verification of multi-agent conversations [8] and model 
checking MAS with MABLE programming language [9] are 
a few examples of model checking approaches that both use 
SPIN model checker [10], a verification system for 
detection of faults in the design models of software systems. 
 

2.2 Deadlock Detection Techniques 
Resource and communication deadlocks models are 
considered in message communication systems. Most 
deadlock models in distributed systems are resource models 
[11-13]. In these models, the competition is on acquiring 
required resources and deadlock happens whenever an entity 
is waiting permanently for a resource which is held by 
another. As indicated in [13], the communication deadlock 
model is general and can be applied to any message 
communication system. The communication model is an 
abstract description of a network of entities which 
communicate via messages. A deadlock detection 

mechanism based on the communication model  deadlock 
for distributes systems and operating systems is provided in 
[13]. In literature a deadlock situation is usually defined as 
“A set of processes is deadlocked if each process in the set 
is waiting for an event that only another process in the set 
can cause” [14]. There are four conditions that are required 
for a deadlock to occur [14]. They are (1) “Mutual  
Exclusion” which means each resource can only be assigned 
to exactly one process; (2) “Hold and Wait” in which 
processes can hold resources and request more; (3) “No 
Preemption” which means resources cannot be forcibly 
removed from a process; and (4) “Circular Wait” which 
means there must be a circular chain of processes, each 
waiting for a resource held by the next member in the chain 
[14]. Similar to other types of the faults there are four 
techniques commonly used to deal with deadlock problem:  
ignorance, detection, prevention, and avoidance [14].  
 
2.3 Agent Based Development Methodology: MaSE 
MaSE uses several models and diagrams driven from the 
standard Unified Modeling Language (UML) to describe the 
architecture-independent structure of agents and their 
interactions [4]. In MaSE a MAS is viewed as a high level 
abstraction of object oriented design of software where the 
agents are specialized objects that cooperate with each other 
via conversation instead of calling methods and procedures.  
There are two major phases in MaSE: analysis and design 
(Table 1). In analysis phase, there are three steps which are 
capturing goals, applying use cases and refining goals. In 
the design phase, there are four steps which are creating 
agent classes, constructing conversations, assembling agent 
classes and system design[4]. 

 
Table 1- MaSE methodology phases and steps [4] 

MaSE Phases and Steps Associated Models 

1. Analysis Phase 
a. Capturing Goals 
b. Applying Use Cases 
c. Refining Roles 
2. Design Phase 
a. Creating Agent Classes 
b. Constructing Conversations 
c. Assembling Agent Classes 
d. System Design 

 
Goal Hierarchy 
Use Cases, Sequence Diagrams 
Concurrent task, Role Diagram 
 
Agent Class Diagrams 
Conversation Diagrams 
Agent Architecture Diagrams 
Deployment Diagrams  

 
3. MAS METAMODEL 
 
Figure 2 shows a metamodel for the MAS structure. In this 
figure, each MAS can be presented by MAS behavioral 
model in terms of sequence diagrams which shows the 
conversations of several agents and the message exchanging 
among them. The way of constructing such kind of 
behavioral model from MaSE design and analysis diagrams 
is introduced in Section 4.  Each MAS consists of several 
agents whose roles are the building blocks used to define 
agent’s classes and capture system goals during the design 



phase. Associated with each role are several tasks and each 
task can be presented by MaSE task diagram [4]. A task 
diagram in MaSE is a UML state machine diagram which 
details how the goal is accomplished in MAS and can be 
represented by a Control Flow Graph (CFG) [15, 16]. A 
CFG is a static representation of a program that represents 
all alternatives of control flow. For example, a cycle in a 
CFG implies iteration. In a CFG, control flow paths (CFPs), 
show the different paths a program may follow during its 
execution. 
 

 
Figure 2- metamodel for MAS  

 
4. CONSTRUCTING MAS BEHAVIORAL 
MODEL 

 
Agents of a MAS communicate by exchanging messages. 
The sequence of messages is useful for understating the 
situation during faults detection conversation. A common 
type of interaction diagrams in UML is a sequence diagram 
in which each agent or role is represented by a lifeline in 
sequence diagram.  

We deploy a method for transforming the conversations 
of agents from MaSE to UML sequence diagrams. These 
sequence diagrams are used in MAS monitoring method for 
deadlock detection in MAS under test [5]. The MAS 
sequence diagrams is not provided by MaSE per se and must 
be constructed using information provided by the MaSE 
artifacts such as role diagram and agent class diagrams [2].  

The role sequence diagram in “Applying Use Cases” 
step in analysis phase of MaSE shows the conversations 
between roles assigned to each agent [4]. The agent class 
diagram is created in the “Constructing Agent Classes” step 
of MaSE represents the complete agent system organization 
consisting of agent classes and the high-level relationships 
among them. An agent class is a template for a type of agent 
with the system roles it plays. Multiple assignments of roles 
to an agent demonstrate the ability of agent to play assigned 
roles concurrently or sequentially. The agent class diagram 
in MaSE is similar to agent class diagram in object oriented 
design but the difference is that the agent classes are defined 
by roles, not by attributes and operations. Furthermore, 
relationships are conversations between agents [4]. Figure 3 
shows examples of MaSE role sequence and agent class 
diagram. 

The approach for constructing sequence diagrams based 
on the two above mentioned MaSE diagrams is defined as 
follow [5]. Each role sequence diagram is searched for the 
roles which are listed in the same agent class in the agent 
class diagram. Then, all of the roles in each role sequence 
diagram are categorized based on the agent which they 
belong to. Therefore, each category corresponds to an agent 
class in agent class diagram and the messages which it 
exchanges with other categories are recognizable. On the 
other hand, a new agent sequence diagram can be generated 
from agent class diagram which the lifelines are agents’ 
types. The recognized messages between each two 
categories are entered into agent sequence diagram as a new 
conversation. For example, in Figure 3, the role sequence 
diagram 1 is categorized into three different categories, the 
first one consists of Role 1 and Role 2 and the second one 
consists of Role 3 and Role 4 and the last one consists of 
Role 5. The first one corresponds to agent class 1, the 
second one corresponds into agent class 2, and the third one 
corresponds to agent class 3. The constructed agent 
sequence diagrams from role sequence diagram 1, 2 and 3 
and agent class diagram in Figure 3 are shown in Figure 4. 

 

 
Figure 3- MaSE role sequence and agent class diagrams 

 

 
Figure 4- Constructed agent sequence diagrams 

 
 UML provides ways to model the behavior of an object 

oriented system using different types of diagrams such as 
state machine diagram. UML’s state machine diagram is 
based on finite state machines (FSM) augmented with the 
concepts such as hierarchical and concurrent structure on 



states and the communications mechanism through events 
transitions[3]. UML’s state machine diagram is commonly 
used to describe the behavior of an object by specifying its 
response to the events triggered by the object itself or its 
external environment. State machine diagram has long been 
used as a basis for generating test data [15-17]. In MaSE [4], 
roles are the building blocks used to define agent’s classes 
and capture system goals during the design phase. Every 
goal is associated with a role and every role is played by an 
agent class. Role definitions are captured in a role model 
diagram which includes information on communications 
between roles, the goals associated with each role, the set of 
tasks associated with each role, and interactions between 
role tasks. In MaSE, a task is a structured set of 
communications and activities, represented by a state 
machine diagram [4]. The MaSE’s task diagram is then 
converted to UML’s state machine diagram by converting 
some MaSE’s task diagram notations such as the protocol 
transition, choices, and junctions to the UML notation. 
Using the state machine diagram, the CFG and its associated 
CFPs can be identified [15, 16]. 
 
5. TEST REQUIREMENT PREPARATION  
 
In this section we focus on proposing a methodology for 
testing MAS by preparing test requirements for deadlock 
detection. Test requirements are generated using resource 
requirement table defined in Section 5.1.The resource 
requirement table is used in search for deadlock potentials 
(Section 5.2). The results from search for deadlock 
potentials are used for test requirement generation (Section 
5.3). The test requirements are used by testers to generate 
the test cases for deadlock detection in MAS. 
 
5.1 Resource Requirement Table for Agents  
As discussed in Section 4, the behavior of each agent can be 
presented by the several MaSE task diagrams each reflecting 
a task assigned to a specific role of an agent. Each task 
consists of several CFPs that represent the different runs of 
the MaSE task diagram represented by UML state machine 
diagram. During the execution of each CFP, several 
resources are held and acquired by an agent. We define 
resource requirement table for each agent which shows the 
resource requirement for different tasks which are assigned 
to different roles of an agent (see Figure 5). Each row in 
resource requirement table shows the Required Resource Set 
ሺܴ ௜ܵ௝ሻ during execution steps of a specific ܨܥ ௜ܲ. If the 
required resources needed by a particular  ܨܥ ௜ܲ are changed 
during its execution, a new set of the required resources on 
that stage is added to the resource requirement table for that 
CFP. Each column in resource requirement table represents 
the Sequence of Required resource Sets (ܴܵ ௜ܵ) by one ܨܥ ௜ܲ 
. We present the SRS formal definition as below: 

 
ܴܵ ௜ܵ  ൌ ൏ ܴ ௜ܵ௝ |ܴ ௜ܵ௝ ݅ܨܥ ݄݁ݐ ݂݋ ݐ݁ݏ ݁ܿݎݑ݋ݏ݁ݎ ݀݁ݎ݅ݑݍ݁ݎ ݄ݐ݆ ݄݁ݐ ݏ ௜ܲ ൐ 

And 

ܴ ௜ܵ௝ ൌ ሼ ܴ௣|ܴ௣ is a required resource by ܨܥ ௜ܲ} 
      The metamodel in Figure 6 depicts the definition of 
resource requirement tables and its elements. 

 

 
Figure 5- An example for Resource Requirement Table for 

Agent 
 

 
Figure 6- Resource requirement table metamodel 

 
5.2 Search for Potential Deadlocks 

In order to prepare the test requirement for deadlock 
detection between the CFPs, we first describe a scenario in 
which a deadlock happens. Figure 7 shows an example of 
resource allocations and resource requests (wait-for graph 
[18] ) in deadlock situation.  

 

 
Figure 7- Resource allocations and requirements in deadlock 

situation (wait-for graph) 
 
For explanation simplicity, we consider a situation that 

the RS set for each CFP has only one member .Each CFP 
holds one and request for acquiring the next required 
resource. The required resource may have already been 
acquired by another resource and the requestor has to wait 
for that resource. In resource model, ܨܥ ଵܲ is said to be 
dependent on another ܨܥ ௞ܲ if there exists a sequence of 
CFPs such as  ܨܥ ଵܲ, ܨܥ ଶܲ, …, ܨܥ ௞ܲ where each CFP in 
sequence is idle and each CFP in sequence except the first 
one holds a resource for which the previous CFP is waiting. 



If ܨܥ ଵܲ is dependent on ܨܥ ௞ܲ, then ܨܥ ଵܲ has to remain in 
idle status as long as ܨܥ ௞ܲ is idle. ܨܥ ଵܲ is deadlocked if it is 
dependent on itself or on a CFP which is dependent on 
itself. The deadlock can be extended to a cycle of idle CFPs, 
each dependent on the next in the cycle. Therefore, the 
deadlock detection approach is to declare the existence of 
that cycle.  

The information for each ܴܵ ௜ܵ  for each ܨܥ ௜ܲ can be 
retrieved from the resource requirement table defined in 
Section 5.1. In the Figure 7 wait-for graph [18], each 
resource set (each resource set has just one member in this 
example) in the cycle will be in sequence of required 
resource sets (SRS) of two CFPs. One CFP is holding the 
resource set and the other one requesting for acquiring it. As 
an example, ሼܴଵሽ is required by both ܨܥ ଵܲ and ܨܥ ଷܲ as it is 
shown below: 

 
ሼܴଵሽ א   ܴܵ ଵܵ ൌ൏ ሼRଵሽ, ሼRଶሽ ൐  ܽ݊݀ ܴܵܵଷ ൌ൏ ሼRଷ},{Rଵሽ ൐ 

 
The procedure of finding potential deadlocks in the 

behavioral model of MAS is defined as follow. The 
sequence of required resources set by a ܨܥ ௜ܲ ሺܴܵ ௜ܵ) is 
retrieved for the all the CFPs in the MAS from the resource 
requirement table (Section 5.1). For each CFP, we assume 
that it is holding one of its required resource sets ሺܴ ௜ܵ௝ሻ. 
ܴ ௜ܵ,௝ represents the jth required resource set of the ܴܵ ௜ܵ. 
Then, the next required resource set by that CFP, ܰ݁ݐݔ௜ is 
identified using the ܴܵ ௜ܵ for ܨܥ ௜ܲ.We search inside the 
SRSs for other CFPs that require at least one resource from 
 ௜ and assume in the worst case, they are holding it. Weݐݔ݁ܰ
repeat this procedure until we find one CFP requiring a 
resource which is held by the CFP that we have already 
traversed by our procedure. In this case a deadlock cycle is 
detected. We consider this cycle as a potential deadlock 
cycle.  

We explain the procedure with an example shown in 
Figure 8. For explanation simplicity, we consider a situation 
that the RS set for each CFP has only one member .We start 
the procedure from ܨܥ ଵܲ and assume that it holds its first 
resource set {ܴଵሽ . The next required resource set by ܨܥ ଵܲ is 
ሼܴଶሽ . We assign the next required resource set by ܨܥ ଵܲ , 
 ଵ as ሼܴଶሽ and search the CFPs which has at least oneݐݔ݁ܰ
resource from ܰ݁ݐݔଵ ( in this case just ሼܴଶሽ) as the required 
resource in their sequence of required resources sets ܴܵ ௜ܵ. 
ܨܥ ଶܲ is found and it is assumed that in the worst situation it 
holds ܴଶ. So, if ܨܥ ଶܲ holds ܴଶ, the next resource set 
required by ܨܥ ଶܲ is ሼܴଷሽ according to the ܴܵܵଶ. The search 
is started again for finding the CFPs which require ܴଷ as the 
required resource. ܨܥ ଷܲ is found and it is assumed that it 
holds ܴଷ . So, the next resource set required by ܨܥ ଷܲ if it 
holds ܴ଺ is ሼܴଵሽ . We find out that ܴଵ has been already 
assumed to be held by ܨܥ ଵܲ when we wanted to start the 
procedure. Therefore, a deadlock potential cycle is detected.  

The pseudocode of searching for the potential deadlock 
cycles is shown in Figure 10. In finding the potential cycles 

function we define potential deadlock cycle data structure 
 ௥ which illustrates r-th potential݈݁ܿݕܥ݇ܿ݋݈݀ܽ݁ܦ݈ܽ݅ݐ݊݁ݐ݋ܲ
deadlock in the MAS as below: 
 

ܨܥ)} =௥݈݁ܿݕܥ݇ܿ݋݈݀ܽ݁ܦ݈ܽ݅ݐ݊݁ݐ݋ܲ ௜ܲ,, ܴܵ௣,ܴܵ௤ሻ | ܨܥ ௜ܲ is 
holding required resource set ܴܵ௣   and requesting for acquiring 

required resource set  ܴܵ௤} 
 
      So, bases on the explained procedure the potential 
deadlock cycle, ݈ܲ݁ܿݕܥ݇ܿ݋݈݀ܽ݁ܦ݈ܽ݅ݐ݊݁ݐ݋ଵ for the example 
provided in Figure 8 is created as follow: 
 

 =ଵ݈݁ܿݕܥ݇ܿ݋݈݀ܽ݁ܦ݈ܽ݅ݐ݊݁ݐ݋ܲ
ܨܥ)} ଵܲ,, ሼܴଵሽ, ሼܴଶሽሻ, ሺܨܥ ଶܲ,, ሼܴଶሽ, ሼܴଷሽሻ, ሺܨܥ ଷܲ,, ሼܴଷሽ, ሼܴଵሽሻ } 
 
These potential deadlocks which are found by the 

explained procedure are used for test requirement generation 
in the Section 5.3. 

 

 
Figure 8- An example of finding deadlock potentials in the 

behavioral model of MAS 
 

5.3 Test Requirement 
We define the test requirement metamodel for testing MAS 
for deadlock detection and for each deadlock cycle in Figure 
9.  As it can be seen in Figure 9 test requirement for 
deadlock detection for a single deadlock cycle is divided 
into two parts. The first part is the Hold Set (HS) which 
represents the resource holdings in the MAS and is defined 
as below: 



 
Hold Set: HS= {(ܨܥ ௜ܲ, ܴܵ௣,ሻ| ܨܥ ௜ܲ is holding required resource set    

ܴܵ௣,} 
 

Figure 9 - Test requirement metamodel 
 

The second part is the Circular Request Sequence (CRS) 
which shows the sequence of resource requests in the MAS 
and since it represents a cycle of requests we call it Circular 
Requests Sequence. It is defined as follow: 

 
Circular Requests Sequence: CRS = < ܴ݁ݍଵ,   <௡ݍܴ݁ ,…,ଶݍܴ݁

ܨܥ) = ௜ݍܴ݁ ௜ܲ, ܴܵ௤ሻ|ܨܥ ௜ܲ requests for acquiring required resource 
set ܴܵ௤  

 
     In Figure 8 example, the test requirement based on the 
potential deadlock cycle ( ݈ܲ݁ܿݕܥ݇ܿ݋݈݀ܽ݁ܦ݈ܽ݅ݐ݊݁ݐ݋ଵ) found 
in the Section 5.2 is prepared as below: 
 

HS= {(ܨܥ ଵܲ,, ሼܴଵሽሻ, ሺܨܥ ଶܲ,, ሼܴଶሽሻ, ሺܨܥ ଷܲ,, ሼܴଷሽሻሽ 
CRS = <ሺܨܥ ଵܲ,, ሼܴଶሽሻ, ሺܨܥ ଶܲ,, ሼܴଷሽሻ, ሺܨܥ ଷܲ,, ሼܴଵሽሻ> 

 
SoFarTraversed= {(ܨܥ ௜ܲ,, ܴܵ௣,ܴܵ௤ሻ | ܨܥ ௜ܲ is holding required resource set ܴܵ௣  and 
requesting for acquiring required resource set  ܴܵ௤} 
FindPotentialDeadlocks( ܴܵ ௜ܵ, ܴ ௜ܵ௝  )     
{ 
ܴܵ ) ௜= NextRequiredResourceSetݐݔ݁ܰ   ௜ܵ, ܴ ௜ܵ௝  ) 
  Add  (ܨܥ ௜ܲ,, ܴ ௜ܵ௝,ܰ݁݅ݐݔሻ to SoFarTraversed list 
  Add ( ܨܥ ௜ܲ, ܴ ௜ܵ௝  ) to the HS set 
If there is any ܨܥ ௝ܲ  other than SoFarTraversed in MAS ܰ݁ݐݔ௜ is in its  ܴܵ ௝ܵ 
  Then For each ܨܥ ௝ܲ  in MAS that ܰ݁ݐݔ௜ is in its  ܴܵ ௝ܵ 

• Assume that each ܨܥ ௝ܲ  holds  ܰ݁ݐݔ௜ 
• Find the next required resource set for each of them (ܰ݁ݐݔ௝) 
• Search in HS to see if the  ܰ݁ݐݔ௝ that they require has been already assumed 

to be held 
• If   ܰ݁ݐݔ௝ exists in HS 

      Then so  add  SoFarTraversed+(ܨܥ ௝ܲ,, ,௜ݐݔ݁ܰ  ௝ሻ  as a newݐݔ݁ܰ
 ௥   , Return݈݁ܿݕܥ݇ܿ݋݈݀ܽ݁ܦ݈ܽ݅ݐ݊݁ݐ݋ܲ

Else 
      Call FindPotentialDeadlock ( ܴܵ ௝ܵ, ܰ݁ݐݔ௝) 

             End if 
       End For 
  Else 
        Return 
  End if 
} 
Main () 
{ 
For all   ܴܵ ௜ܵ  in MAS 
            For all ܴ ௜ܵ௝, in each   ܴܵ ௜ܵ         
                     FindPotentialDeadlocks ( ܴܵ ௜ܵ, ܴ ௜ܵ௝  )  
}    
Figure 10- A pseudo-code for searching potential deadlocks  
 
5.4 Testing MAS for Deadlock Detection 
The test requirement prepared in Section 5.3 is used by a 
tester to generate the test cases for deadlock detection. In 

each test case the hold (HS in test requirement) and request 
(CRS test requirement) situations should be created and the 
system is tested to check if deadlock happens. Generated 
test cases are executed using the test driver. In this step, a 
deadlock detection methodology for executing system at 
runtime is required to detect the deadlocks and report them 
as fault. Our monitoring method for deadlock detection [5] 
can be used as the deadlock detection methodology to 
monitor the system behavior at runtime to detect deadlocks. 
This methodology focuses on model based deadlock 
detection by checking MAS communication for existence of 
deadlock. During the next section (Section 6) the method 
and its application to our approach in this paper is presented. 
 
6. MAS MONITORING FOR DEADLOCK 
DETECTION 

 
MAS monitoring for deadlock detection [5] is a model 
based deadlock detection which checks MAS 
communication for existence of deadlocks. The artifacts 
used are the models prepared during the analysis and design 
stages of a MAS using the MaSE methodology[4]. An 
overview of monitoring approach is also illustrated Figure 1. 
In the MAS monitoring the source code of the system is 
instrumented with two deadlock detection techniques 
discussed in this section to enable runtime deadlock 
detection in MAS under test. 
 
6.1 Deadlock Detection in Resource Deadlock Model  
Resource model of MAS consists of agents, resources and 
controller agents. A controller agent is associated with a set 
of agents and a set of resources which it manages [5]. 
Agents request for acquiring resources from their controller. 
Also, the controller can communicate with other controllers 
in case of requesting resources from other controllers. In [5]  
a gateway agent is proposed as a translator of the 
controllers’ communications. In, a communication protocol 
is defined for controller agents to communicate, acquire 
resources and handle behavioral faults such as deadlock.  

Whenever agent ܣ௔ in controller ܥ௜  needs to acquire a 
resource ܴ௜ associated to another controller ܥ௝, it sends its 
request to its controller  ܥ௜.  ܥ௜ communicates with 
controller ܥ௝ regarding the requested resource ܴ௜. If the 
required resource is available,   ܥ௝ provides that resource for 
agent ܣ௔ in controller ܥ௜ .But if it is hold by another agent 
 ௜ܥ ௕ to controllerܣ ௜ provides the identification of agentܥ ,௕ܣ
. So, each controller agent has information about the internal 
resource allocation inside its set and the external resources 
that each agent in its set has already acquired or wants to 
acquire.  
         In order to determine for an idle agent ܣ௔ whether it is 
in deadlock state or not, a communication is initiated by its 
controller agent. In deadlock detection communication, 
controller agents send an investigator message to each other. 
An investigator message is of the form  



,ሺ݊ݎ݋ݐܽ݃݅ݐݏ݁ݒ݊ܫ ݉, ܽ, ܾ, ,ݎ ܿሻ denoting that it is initiated by 
controller of agent  ܣ௔ for process ௡ܲ and transaction ௠ܶ 
regarding agent ܣ௕  which requested to acquire resource ܴ௥ 
that it is currently held by  ܣ௖ . It follows that if ܥ௜ receives 
,ሺ݊ݎ݋ݐܽ݃݅ݐݏ݁ݒ݊ܫ ݉, ܽ, ܾ, ,ݎ ܽሻ from another controller for any 
possible b and r and if ܴ௥ is one of the resources which is 
held by  ܣ௔, a circular wait is detected and ܥ௜ declare ܣ௔ as 
deadlocked.  

Figure 11 shows the message communication between 
controllers for deadlock detection for the wait-for graph 
scenario discussed in Figure 7 (Section 5). Agent ܣଵ is 
holding resource ܴଵ associated to its controller ܥଵ and 
requested to acquire ܴଶ associated to controller ܥଶ.  ܣଶ in 
 ଷ inܣ  .ଷܥ ଶ is holding ܴଶ and requested to acquire ܴଷ fromܥ
 ଷ is holding ܴଷ and requested to acquire to acquire  ܴଷܥ
which is held by  ܣଵ . According to our assumptions for 
resource deadlock model, three of four deadlock conditions 
are true in this example which are  (1) “Mutual  Exclusion”; 
(2) “Hold and Wait”; (3) “No Preemption”. Also as it can be 
seen in Figure 11 the fourth condition circular wait can be 
detected after receiving ݎ݋ݐܽ݃݅ݐݏ݁ݒ݊ܫሺ݊, ݉, ,1ܣ  ,3ܣ ܴ3,  1ሻ byܣ
 ଷ  and is heldܣ  ଵ and identifying that ܴଷ requested byܥ
by ܣଵ. So all the four condition of deadlock is true and 
 .ଵ as deadlockedܣ  ଵ can declareܥ

 
6.2 Deadlock Detection in Communication Deadlock 
Model  
In the communication deadlock model of MAS there is no 
controller agent or resources. Associated with each idle 
agent is a set of dependent agents which is called its 
dependency set. Each agent in that set can change its state 
about one particular task from idle to executing upon 
receiving a message from one of the members of its 
dependency set regarding that task.  We define a nonempty 
set of agents as deadlocked if all agents in that set are 
permanently idle regarding a special task. An agent is called 
permanently idle, if it never receive a message from its 
dependency set to change its state. In the more precise 
definition, a none empty set of agents S is called deadlock if 
and only if all agents in S  are in idle state, the dependency 
set of every agent in S is a subset of S and there are no 
active conversation between agents in S. Based on this 
definition, all agents in the set can be called permanently 
idle, if the dependency set of each agent such as  ܣ௜  is in S, 
so they are all in idle state, and also if there is not any 
trigger message in transit between agents just because there 
is no active conversation.  
       An idle agent can determine if it is deadlocked by 
initiating a deadlock detection conversation with its 
dependency set when it enters to idle state. An agent ܣ௜ is 
deadlock if and only if it initiates a query conversation to all 
the agents in its dependency set and receives reply to every 
query that it sent. The dependency set for each agent is 
identified using the MAS behavioral model constructed in 
Section 4. The purpose of initiating this query is to find out 

if the agent ܣ௜ belongs to a deadlock set S with the 
mentioned conditions above. On receiving a query by an 
idle agent in dependency set, it should forward the query to 
its dependency set if it has not done already. 
 

 
Figure 11 - deadlock detection example in resource 

deadlock model  
 

           Each query has the form 
,ሺ݊ݕݎ݁ݑܳ݊݋݅ݐܿ݁ݐ݁ܦ݇ܿ݋݈݀ܽ݁ܦ ݉, ݅, ܽ, ܾሻ denoting this message 
belongs to ݄݉ݐ deadlock detection communication initiated 
for ݄݊ݐ communication in MAS by agent ܣ௜  which is sent 
from agent  ܣ௔ to agent ܣ௕ .Each agent ܣ௞ keeps the latest 
deadlock detection communication which it has been 
participated in it by ݉݉݋ܥݐܿ݁ݐ݁ܦ݇ܿ݋݈݀ܽ݁ܦݐݏ݁ݐܽܮሺ݅ሻ 
denoting the latest deadlock detection communication 
number that ܣ௞ was participated in it and initiated by ܣ௜. 
The state of each agent (idle/executing) also is stored 
by ܵ݁ݐܽݐሺ݊, ݉, ݅ሻ denoting the state of agent ܣ௞ for ݄݉ݐ 
deadlock detection communication initiated by   ܣ௜ for ݄݊ݐ 
communication in MAS. Also the number of replies which 
should be received by an agent for ݄݉ݐ deadlock detection 
communication initiated by   ܣ௜ for ݄݊ݐ communication in 
MAS is stored in  ܰݏ݈݁݅݌ܴ݂ܱ݁݉ݑሺ݅ሻ.  

We present the following scenario as an example for 
deadlock detection in the communication deadlock model of 
a hypothetical MAS with the sequence diagrams shown in 
Figure 4 (Section 4). In this scenario, agent ܣଵ is executing 
and has not received any message in one of its 
communications (in this case the communication in Agent 
SD 1) for a defined time T from its dependency set {ܣଶ, 
 ଵܣ ଷ are both in waiting state andܣ ଶ andܣ ଷ}. This is sinceܣ
is not aware of it. After the defined time T , ܣଵ identifies 
itself as an idle agent and initiates a deadlock detection 
conversation with each agent in its dependency set. An 
agent ܣଵ declare itself as deadlocked if and only if it 
initiates a query conversation to all the agents in its 
dependency set and receives reply to every query that it had 
sent.  

The complete deadlock detection scenario for the 
mentioned scenario is shown as a sequence diagram in 
Figure 12. ܣଵ initiates two query conversations with its 
dependency set which are ܣଶ and ܣଷ . ܣଶ and ܣଷ propagate 
the queries to their own dependency set which are{ ܣଵ, ܣଷ } 
for ܣଶ  and { ܣଵ , ܣଶ} for ܣଷ . Respectively  ܣଶ and ܣଷ 
receive reply from their own dependency sets. Thus they 
both replies to ܣଵ which is the initiator of deadlock queries 



in this scenario. So, ܣଵ receives reply for all quires which it 
had initiated to its dependency set. So, is declares itself as 
deadlocked. 

 

 
Figure 12 – A deadlock detection scenario in 

communication deadlock model using our technique 
 

7. CONCLUSION AND FUTURE WORK 
 

In this paper, we presented a methodology for test 
requirement generation and monitoring the behavior of 
MAS. The methodology is used to detect deadlocks as one 
of the unwanted emergent behaviors. Test requirements for 
deadlock detection are prepared using a resource 
requirement table. The test requirements are used by a tester 
in test case generation process. Test cases are executed 
using a test driver on the MAS under test. For deadlock 
detection in the MAS under test, a MAS monitoring 
methodology is proposed using our work in [5]. The source 
code of the system is instrumented with specific instructions 
in terms of deadlock detection techniques to enable runtime 
deadlock detection. As the future work, we plan to automate 
the test case generation process based on the test 
requirement for deadlock detection in MAS. Also, our 
methodology will be applied to a few more MAS case 
studies to evaluate its coverage, effectiveness and 
efficiency. 
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