
TESTING MULTI-AGENT SYSTEMS FOR DEADLOCK DETECTION
BASED ON UML MODELS

Nariman Mani Vahid Garousi Behrouz H. Far

Department of Electrical and Computer Engineering

Schulich School of Engineering, University of Calgary, Canada
{nmani, vgarousi, far}@ucalgary.ca

ABSTRACT

There is a growing demand for Multi-Agent Systems (MAS)
in the software industry. The autonomous agent interaction
in a dynamic software environment can potentially lead to
runtime behavioral failures including deadlock. In order to
bring MAS to the main stream of commercial software
development, the behavior of MAS must be tested and
monitored against the risk of unwanted emergent behaviors
including deadlocks. In this paper, (1) we introduce a
method for preparing test requirements for testing MAS;
and (2) we deploy a MAS monitoring method for deadlock
detection in MAS under test. The first method helps create
test requirements using a resource requirement table from
the MAS analysis and design. The second method monitors
the MAS behavior to detect deadlocks at the run-time. Also,
as model based software techniques such as Multi-agent
Software Engineering (MaSE) are gaining more popularity;
these model based approaches can help MAS developers to
reduce the risk of having unwanted emergent behaviors such
as deadlock in MAS.

Index Terms— Multi-agent system, Software testing,
Deadlock detection, UML.

1. INTRODUCTION

Increasing demand for applications which can communicate
and exchange information to solve problems collaboratively
has led to the growth of distributed software architecture
consisting of several interoperable software systems. One of
the main difficulties of interoperable software systems is
heterogeneity. Heterogeneity reflects the fact that the
services offered by constructed components are independent
from the designers and the design methodology [1].
Different programs written in different languages by
different programmers must operate in a dynamic software
environment. Agent based software engineering is one of
the approaches devised to handle collaboration and
interoperability. An autonomous agent is a computational
entity that can perceive, reason, act, and communicate [2].

Multi-Agent Systems (MAS) consists of autonomous agents
that try to achieve their goals by interacting with each other
by means of high level protocols and languages [1].
However, the agent interaction can potentially lead to
runtime behavioral failures including deadlock. Thus,
testing and monitoring MAS to eliminate the risk of
unwanted emergent behaviors, such as deadlock, is an
essential precondition for bringing MAS to the main stream
of commercial software. Also, as model-based software
development practices are gaining more popularity [3], more
and more MAS are developed using model-based practices
such as the Multi-agent Software Engineering (MaSE)[4].
Thus, model-based testing techniques for deadlock detection
for MAS can be useful since they can help MAS engineers
to eliminate the risks of deadlocks in the MAS development.
 In this paper we focus on proposing a methodology for
testing MAS by preparing test requirements for deadlock
detection. The artifacts used are the models prepared during
the analysis and design stages of a MAS using the MaSE
methodology[4] . Figure 1 illustrates the approach. Using
the procedure explained in Section 5.1, resource
requirement table is constructed based on Control Flow
Paths (CFP) extracted from the MaSE task diagrams. The
resource requirement table is used for searching for potential
deadlocks (Section 5.2). Test requirements for testing MAS
are prepared based on the potential deadlocks. The test
requirements are used to generate the test cases. For
deadlock detection on MAS under test we deploy our MAS
monitoring methodology in [5]. Using the procedure
explained in Section 4, a MAS behavioral model, consists of
UML sequence diagrams, is constructed using MaSE
analysis and design artifacts such as “role sequence
diagram”, “agent class diagram” and “task diagram”. Two
deadlock detection techniques, introduced in Section 6, are
instrumented into the MAS under test’s source code. Test
driver executes the test cases on MAS under test and
runtime deadlocks are detected using the MAS behavioral
model [5].
 The remainder of this paper is structured as follows. The
related works and background are described in Section 2.
The MAS metamodel is introduced in Section 3.
Constructing MAS behavioral model based on the MaSE is

discussed in Section 4. Test requirement preparation is
described in Section 5. MAS monitoring for deadlock
detection is explained in Section 6. Finally conclusions and
future work are given in Section 7. An illustrated example is
used to explain the methodology in the subsequent sections.

Figure 1 – An overview of our approach

2. RELATED WORKS AND BACKGROUND

2.1 MAS Verification and Monitoring
Existing works on MAS verification are categorized into
axiomatic and model checking approaches [2]. In [6],
axiomatic verification is applied to the Beliefs, Desires and
Intentions (BDI) model of MAS using a concurrent temporal
logic programming language. However, it was noticed that
this kind of verification cannot be applied when the BDI
principles are implemented with non-logic based languages
[2]. Also in design by contract [7] pre- and post-conditions
and invariants for the methods or procedures of the code are
defined and verified in runtime. Violating any of them raises
an exception. But as it is also claimed in [2] the problem is
that this technique does not check program correctness‚ it
just informs that a contract has been violated at runtime.
 Model checking approaches seem to be more acceptable
by industry, because of less complexity and better
traceability as compared to axiomatic. Automatic
verification of multi-agent conversations [8] and model
checking MAS with MABLE programming language [9] are
a few examples of model checking approaches that both use
SPIN model checker [10], a verification system for
detection of faults in the design models of software systems.

2.2 Deadlock Detection Techniques
Resource and communication deadlocks models are
considered in message communication systems. Most
deadlock models in distributed systems are resource models
[11-13]. In these models, the competition is on acquiring
required resources and deadlock happens whenever an entity
is waiting permanently for a resource which is held by
another. As indicated in [13], the communication deadlock
model is general and can be applied to any message
communication system. The communication model is an
abstract description of a network of entities which
communicate via messages. A deadlock detection

mechanism based on the communication model deadlock
for distributes systems and operating systems is provided in
[13]. In literature a deadlock situation is usually defined as
“A set of processes is deadlocked if each process in the set
is waiting for an event that only another process in the set
can cause” [14]. There are four conditions that are required
for a deadlock to occur [14]. They are (1) “Mutual
Exclusion” which means each resource can only be assigned
to exactly one process; (2) “Hold and Wait” in which
processes can hold resources and request more; (3) “No
Preemption” which means resources cannot be forcibly
removed from a process; and (4) “Circular Wait” which
means there must be a circular chain of processes, each
waiting for a resource held by the next member in the chain
[14]. Similar to other types of the faults there are four
techniques commonly used to deal with deadlock problem:
ignorance, detection, prevention, and avoidance [14].

2.3 Agent Based Development Methodology: MaSE
MaSE uses several models and diagrams driven from the
standard Unified Modeling Language (UML) to describe the
architecture-independent structure of agents and their
interactions [4]. In MaSE a MAS is viewed as a high level
abstraction of object oriented design of software where the
agents are specialized objects that cooperate with each other
via conversation instead of calling methods and procedures.
There are two major phases in MaSE: analysis and design
(Table 1). In analysis phase, there are three steps which are
capturing goals, applying use cases and refining goals. In
the design phase, there are four steps which are creating
agent classes, constructing conversations, assembling agent
classes and system design[4].

Table 1- MaSE methodology phases and steps [4]

MaSE Phases and Steps Associated Models

1. Analysis Phase
a. Capturing Goals
b. Applying Use Cases
c. Refining Roles
2. Design Phase
a. Creating Agent Classes
b. Constructing Conversations
c. Assembling Agent Classes
d. System Design

Goal Hierarchy
Use Cases, Sequence Diagrams
Concurrent task, Role Diagram

Agent Class Diagrams
Conversation Diagrams
Agent Architecture Diagrams
Deployment Diagrams

3. MAS METAMODEL

Figure 2 shows a metamodel for the MAS structure. In this
figure, each MAS can be presented by MAS behavioral
model in terms of sequence diagrams which shows the
conversations of several agents and the message exchanging
among them. The way of constructing such kind of
behavioral model from MaSE design and analysis diagrams
is introduced in Section 4. Each MAS consists of several
agents whose roles are the building blocks used to define
agent’s classes and capture system goals during the design

phase. Associated with each role are several tasks and each
task can be presented by MaSE task diagram [4]. A task
diagram in MaSE is a UML state machine diagram which
details how the goal is accomplished in MAS and can be
represented by a Control Flow Graph (CFG) [15, 16]. A
CFG is a static representation of a program that represents
all alternatives of control flow. For example, a cycle in a
CFG implies iteration. In a CFG, control flow paths (CFPs),
show the different paths a program may follow during its
execution.

Figure 2- metamodel for MAS

4. CONSTRUCTING MAS BEHAVIORAL
MODEL

Agents of a MAS communicate by exchanging messages.
The sequence of messages is useful for understating the
situation during faults detection conversation. A common
type of interaction diagrams in UML is a sequence diagram
in which each agent or role is represented by a lifeline in
sequence diagram.

We deploy a method for transforming the conversations
of agents from MaSE to UML sequence diagrams. These
sequence diagrams are used in MAS monitoring method for
deadlock detection in MAS under test [5]. The MAS
sequence diagrams is not provided by MaSE per se and must
be constructed using information provided by the MaSE
artifacts such as role diagram and agent class diagrams [2].

The role sequence diagram in “Applying Use Cases”
step in analysis phase of MaSE shows the conversations
between roles assigned to each agent [4]. The agent class
diagram is created in the “Constructing Agent Classes” step
of MaSE represents the complete agent system organization
consisting of agent classes and the high-level relationships
among them. An agent class is a template for a type of agent
with the system roles it plays. Multiple assignments of roles
to an agent demonstrate the ability of agent to play assigned
roles concurrently or sequentially. The agent class diagram
in MaSE is similar to agent class diagram in object oriented
design but the difference is that the agent classes are defined
by roles, not by attributes and operations. Furthermore,
relationships are conversations between agents [4]. Figure 3
shows examples of MaSE role sequence and agent class
diagram.

The approach for constructing sequence diagrams based
on the two above mentioned MaSE diagrams is defined as
follow [5]. Each role sequence diagram is searched for the
roles which are listed in the same agent class in the agent
class diagram. Then, all of the roles in each role sequence
diagram are categorized based on the agent which they
belong to. Therefore, each category corresponds to an agent
class in agent class diagram and the messages which it
exchanges with other categories are recognizable. On the
other hand, a new agent sequence diagram can be generated
from agent class diagram which the lifelines are agents’
types. The recognized messages between each two
categories are entered into agent sequence diagram as a new
conversation. For example, in Figure 3, the role sequence
diagram 1 is categorized into three different categories, the
first one consists of Role 1 and Role 2 and the second one
consists of Role 3 and Role 4 and the last one consists of
Role 5. The first one corresponds to agent class 1, the
second one corresponds into agent class 2, and the third one
corresponds to agent class 3. The constructed agent
sequence diagrams from role sequence diagram 1, 2 and 3
and agent class diagram in Figure 3 are shown in Figure 4.

Figure 3- MaSE role sequence and agent class diagrams

Figure 4- Constructed agent sequence diagrams

 UML provides ways to model the behavior of an object

oriented system using different types of diagrams such as
state machine diagram. UML’s state machine diagram is
based on finite state machines (FSM) augmented with the
concepts such as hierarchical and concurrent structure on

states and the communications mechanism through events
transitions[3]. UML’s state machine diagram is commonly
used to describe the behavior of an object by specifying its
response to the events triggered by the object itself or its
external environment. State machine diagram has long been
used as a basis for generating test data [15-17]. In MaSE [4],
roles are the building blocks used to define agent’s classes
and capture system goals during the design phase. Every
goal is associated with a role and every role is played by an
agent class. Role definitions are captured in a role model
diagram which includes information on communications
between roles, the goals associated with each role, the set of
tasks associated with each role, and interactions between
role tasks. In MaSE, a task is a structured set of
communications and activities, represented by a state
machine diagram [4]. The MaSE’s task diagram is then
converted to UML’s state machine diagram by converting
some MaSE’s task diagram notations such as the protocol
transition, choices, and junctions to the UML notation.
Using the state machine diagram, the CFG and its associated
CFPs can be identified [15, 16].

5. TEST REQUIREMENT PREPARATION

In this section we focus on proposing a methodology for
testing MAS by preparing test requirements for deadlock
detection. Test requirements are generated using resource
requirement table defined in Section 5.1.The resource
requirement table is used in search for deadlock potentials
(Section 5.2). The results from search for deadlock
potentials are used for test requirement generation (Section
5.3). The test requirements are used by testers to generate
the test cases for deadlock detection in MAS.

5.1 Resource Requirement Table for Agents
As discussed in Section 4, the behavior of each agent can be
presented by the several MaSE task diagrams each reflecting
a task assigned to a specific role of an agent. Each task
consists of several CFPs that represent the different runs of
the MaSE task diagram represented by UML state machine
diagram. During the execution of each CFP, several
resources are held and acquired by an agent. We define
resource requirement table for each agent which shows the
resource requirement for different tasks which are assigned
to different roles of an agent (see Figure 5). Each row in
resource requirement table shows the Required Resource Set
ሺܴ ௜ܵ௝ሻ during execution steps of a specific ܨܥ ௜ܲ. If the
required resources needed by a particular ܨܥ ௜ܲ are changed
during its execution, a new set of the required resources on
that stage is added to the resource requirement table for that
CFP. Each column in resource requirement table represents
the Sequence of Required resource Sets (ܴܵ ௜ܵ) by one ܨܥ ௜ܲ
. We present the SRS formal definition as below:

ܴܵ ௜ܵ ൌ ൏ ܴ ௜ܵ௝ |ܴ ௜ܵ௝ ݅ܨܥ ݄݁ݐ ݂݋ ݐ݁ݏ ݁ܿݎݑ݋ݏ݁ݎ ݀݁ݎ݅ݑݍ݁ݎ ݄ݐ݆ ݄݁ݐ ݏ ௜ܲ ൐

And

ܴ ௜ܵ௝ ൌ ሼ ܴ௣|ܴ௣ is a required resource by ܨܥ ௜ܲ}
 The metamodel in Figure 6 depicts the definition of
resource requirement tables and its elements.

Figure 5- An example for Resource Requirement Table for

Agent

Figure 6- Resource requirement table metamodel

5.2 Search for Potential Deadlocks

In order to prepare the test requirement for deadlock
detection between the CFPs, we first describe a scenario in
which a deadlock happens. Figure 7 shows an example of
resource allocations and resource requests (wait-for graph
[18]) in deadlock situation.

Figure 7- Resource allocations and requirements in deadlock

situation (wait-for graph)

For explanation simplicity, we consider a situation that

the RS set for each CFP has only one member .Each CFP
holds one and request for acquiring the next required
resource. The required resource may have already been
acquired by another resource and the requestor has to wait
for that resource. In resource model, ܨܥ ଵܲ is said to be
dependent on another ܨܥ ௞ܲ if there exists a sequence of
CFPs such as ܨܥ ଵܲ, ܨܥ ଶܲ, …, ܨܥ ௞ܲ where each CFP in
sequence is idle and each CFP in sequence except the first
one holds a resource for which the previous CFP is waiting.

If ܨܥ ଵܲ is dependent on ܨܥ ௞ܲ, then ܨܥ ଵܲ has to remain in
idle status as long as ܨܥ ௞ܲ is idle. ܨܥ ଵܲ is deadlocked if it is
dependent on itself or on a CFP which is dependent on
itself. The deadlock can be extended to a cycle of idle CFPs,
each dependent on the next in the cycle. Therefore, the
deadlock detection approach is to declare the existence of
that cycle.

The information for each ܴܵ ௜ܵ for each ܨܥ ௜ܲ can be
retrieved from the resource requirement table defined in
Section 5.1. In the Figure 7 wait-for graph [18], each
resource set (each resource set has just one member in this
example) in the cycle will be in sequence of required
resource sets (SRS) of two CFPs. One CFP is holding the
resource set and the other one requesting for acquiring it. As
an example, ሼܴଵሽ is required by both ܨܥ ଵܲ and ܨܥ ଷܲ as it is
shown below:

ሼܴଵሽ א ܴܵ ଵܵ ൌ൏ ሼRଵሽ, ሼRଶሽ ൐ ܽ݊݀ ܴܵܵଷ ൌ൏ ሼRଷ},{Rଵሽ ൐

The procedure of finding potential deadlocks in the

behavioral model of MAS is defined as follow. The
sequence of required resources set by a ܨܥ ௜ܲ ሺܴܵ ௜ܵ) is
retrieved for the all the CFPs in the MAS from the resource
requirement table (Section 5.1). For each CFP, we assume
that it is holding one of its required resource sets ሺܴ ௜ܵ௝ሻ.
ܴ ௜ܵ,௝ represents the jth required resource set of the ܴܵ ௜ܵ.
Then, the next required resource set by that CFP, ܰ݁ݐݔ௜ is
identified using the ܴܵ ௜ܵ for ܨܥ ௜ܲ.We search inside the
SRSs for other CFPs that require at least one resource from
 ௜ and assume in the worst case, they are holding it. Weݐݔ݁ܰ
repeat this procedure until we find one CFP requiring a
resource which is held by the CFP that we have already
traversed by our procedure. In this case a deadlock cycle is
detected. We consider this cycle as a potential deadlock
cycle.

We explain the procedure with an example shown in
Figure 8. For explanation simplicity, we consider a situation
that the RS set for each CFP has only one member .We start
the procedure from ܨܥ ଵܲ and assume that it holds its first
resource set {ܴଵሽ . The next required resource set by ܨܥ ଵܲ is
ሼܴଶሽ . We assign the next required resource set by ܨܥ ଵܲ ,
 ଵ as ሼܴଶሽ and search the CFPs which has at least oneݐݔ݁ܰ
resource from ܰ݁ݐݔଵ (in this case just ሼܴଶሽ) as the required
resource in their sequence of required resources sets ܴܵ ௜ܵ.
ܨܥ ଶܲ is found and it is assumed that in the worst situation it
holds ܴଶ. So, if ܨܥ ଶܲ holds ܴଶ, the next resource set
required by ܨܥ ଶܲ is ሼܴଷሽ according to the ܴܵܵଶ. The search
is started again for finding the CFPs which require ܴଷ as the
required resource. ܨܥ ଷܲ is found and it is assumed that it
holds ܴଷ . So, the next resource set required by ܨܥ ଷܲ if it
holds ܴ଺ is ሼܴଵሽ . We find out that ܴଵ has been already
assumed to be held by ܨܥ ଵܲ when we wanted to start the
procedure. Therefore, a deadlock potential cycle is detected.

The pseudocode of searching for the potential deadlock
cycles is shown in Figure 10. In finding the potential cycles

function we define potential deadlock cycle data structure
 ௥ which illustrates r-th potential݈݁ܿݕܥ݇ܿ݋݈݀ܽ݁ܦ݈ܽ݅ݐ݊݁ݐ݋ܲ
deadlock in the MAS as below:

ܨܥ)} =௥݈݁ܿݕܥ݇ܿ݋݈݀ܽ݁ܦ݈ܽ݅ݐ݊݁ݐ݋ܲ ௜ܲ,, ܴܵ௣,ܴܵ௤ሻ | ܨܥ ௜ܲ is
holding required resource set ܴܵ௣ and requesting for acquiring

required resource set ܴܵ௤}

 So, bases on the explained procedure the potential
deadlock cycle, ݈ܲ݁ܿݕܥ݇ܿ݋݈݀ܽ݁ܦ݈ܽ݅ݐ݊݁ݐ݋ଵ for the example
provided in Figure 8 is created as follow:

 =ଵ݈݁ܿݕܥ݇ܿ݋݈݀ܽ݁ܦ݈ܽ݅ݐ݊݁ݐ݋ܲ
ܨܥ)} ଵܲ,, ሼܴଵሽ, ሼܴଶሽሻ, ሺܨܥ ଶܲ,, ሼܴଶሽ, ሼܴଷሽሻ, ሺܨܥ ଷܲ,, ሼܴଷሽ, ሼܴଵሽሻ }

These potential deadlocks which are found by the

explained procedure are used for test requirement generation
in the Section 5.3.

Figure 8- An example of finding deadlock potentials in the

behavioral model of MAS

5.3 Test Requirement
We define the test requirement metamodel for testing MAS
for deadlock detection and for each deadlock cycle in Figure
9. As it can be seen in Figure 9 test requirement for
deadlock detection for a single deadlock cycle is divided
into two parts. The first part is the Hold Set (HS) which
represents the resource holdings in the MAS and is defined
as below:

Hold Set: HS= {(ܨܥ ௜ܲ, ܴܵ௣,ሻ| ܨܥ ௜ܲ is holding required resource set

ܴܵ௣,}

Figure 9 - Test requirement metamodel

The second part is the Circular Request Sequence (CRS)
which shows the sequence of resource requests in the MAS
and since it represents a cycle of requests we call it Circular
Requests Sequence. It is defined as follow:

Circular Requests Sequence: CRS = < ܴ݁ݍଵ, <௡ݍܴ݁ ,…,ଶݍܴ݁

ܨܥ) = ௜ݍܴ݁ ௜ܲ, ܴܵ௤ሻ|ܨܥ ௜ܲ requests for acquiring required resource
set ܴܵ௤

 In Figure 8 example, the test requirement based on the
potential deadlock cycle (݈ܲ݁ܿݕܥ݇ܿ݋݈݀ܽ݁ܦ݈ܽ݅ݐ݊݁ݐ݋ଵ) found
in the Section 5.2 is prepared as below:

HS= {(ܨܥ ଵܲ,, ሼܴଵሽሻ, ሺܨܥ ଶܲ,, ሼܴଶሽሻ, ሺܨܥ ଷܲ,, ሼܴଷሽሻሽ
CRS = <ሺܨܥ ଵܲ,, ሼܴଶሽሻ, ሺܨܥ ଶܲ,, ሼܴଷሽሻ, ሺܨܥ ଷܲ,, ሼܴଵሽሻ>

SoFarTraversed= {(ܨܥ ௜ܲ,, ܴܵ௣,ܴܵ௤ሻ | ܨܥ ௜ܲ is holding required resource set ܴܵ௣ and
requesting for acquiring required resource set ܴܵ௤}
FindPotentialDeadlocks(ܴܵ ௜ܵ, ܴ ௜ܵ௝)
{
ܴܵ) ௜= NextRequiredResourceSetݐݔ݁ܰ ௜ܵ, ܴ ௜ܵ௝)
 Add (ܨܥ ௜ܲ,, ܴ ௜ܵ௝,ܰ݁݅ݐݔሻ to SoFarTraversed list
 Add (ܨܥ ௜ܲ, ܴ ௜ܵ௝) to the HS set
If there is any ܨܥ ௝ܲ other than SoFarTraversed in MAS ܰ݁ݐݔ௜ is in its ܴܵ ௝ܵ
 Then For each ܨܥ ௝ܲ in MAS that ܰ݁ݐݔ௜ is in its ܴܵ ௝ܵ

• Assume that each ܨܥ ௝ܲ holds ܰ݁ݐݔ௜
• Find the next required resource set for each of them (ܰ݁ݐݔ௝)
• Search in HS to see if the ܰ݁ݐݔ௝ that they require has been already assumed

to be held
• If ܰ݁ݐݔ௝ exists in HS

 Then so add SoFarTraversed+(ܨܥ ௝ܲ,, ,௜ݐݔ݁ܰ ௝ሻ as a newݐݔ݁ܰ
 ௥ , Return݈݁ܿݕܥ݇ܿ݋݈݀ܽ݁ܦ݈ܽ݅ݐ݊݁ݐ݋ܲ

Else
 Call FindPotentialDeadlock (ܴܵ ௝ܵ, ܰ݁ݐݔ௝)

 End if
 End For
 Else
 Return
 End if
}
Main ()
{
For all ܴܵ ௜ܵ in MAS
 For all ܴ ௜ܵ௝, in each ܴܵ ௜ܵ
 FindPotentialDeadlocks (ܴܵ ௜ܵ, ܴ ௜ܵ௝)
}
Figure 10- A pseudo-code for searching potential deadlocks

5.4 Testing MAS for Deadlock Detection
The test requirement prepared in Section 5.3 is used by a
tester to generate the test cases for deadlock detection. In

each test case the hold (HS in test requirement) and request
(CRS test requirement) situations should be created and the
system is tested to check if deadlock happens. Generated
test cases are executed using the test driver. In this step, a
deadlock detection methodology for executing system at
runtime is required to detect the deadlocks and report them
as fault. Our monitoring method for deadlock detection [5]
can be used as the deadlock detection methodology to
monitor the system behavior at runtime to detect deadlocks.
This methodology focuses on model based deadlock
detection by checking MAS communication for existence of
deadlock. During the next section (Section 6) the method
and its application to our approach in this paper is presented.

6. MAS MONITORING FOR DEADLOCK
DETECTION

MAS monitoring for deadlock detection [5] is a model
based deadlock detection which checks MAS
communication for existence of deadlocks. The artifacts
used are the models prepared during the analysis and design
stages of a MAS using the MaSE methodology[4]. An
overview of monitoring approach is also illustrated Figure 1.
In the MAS monitoring the source code of the system is
instrumented with two deadlock detection techniques
discussed in this section to enable runtime deadlock
detection in MAS under test.

6.1 Deadlock Detection in Resource Deadlock Model
Resource model of MAS consists of agents, resources and
controller agents. A controller agent is associated with a set
of agents and a set of resources which it manages [5].
Agents request for acquiring resources from their controller.
Also, the controller can communicate with other controllers
in case of requesting resources from other controllers. In [5]
a gateway agent is proposed as a translator of the
controllers’ communications. In, a communication protocol
is defined for controller agents to communicate, acquire
resources and handle behavioral faults such as deadlock.

Whenever agent ܣ௔ in controller ܥ௜ needs to acquire a
resource ܴ௜ associated to another controller ܥ௝, it sends its
request to its controller ܥ௜. ܥ௜ communicates with
controller ܥ௝ regarding the requested resource ܴ௜. If the
required resource is available, ܥ௝ provides that resource for
agent ܣ௔ in controller ܥ௜ .But if it is hold by another agent
 ௜ܥ ௕ to controllerܣ ௜ provides the identification of agentܥ ,௕ܣ
. So, each controller agent has information about the internal
resource allocation inside its set and the external resources
that each agent in its set has already acquired or wants to
acquire.
 In order to determine for an idle agent ܣ௔ whether it is
in deadlock state or not, a communication is initiated by its
controller agent. In deadlock detection communication,
controller agents send an investigator message to each other.
An investigator message is of the form

,ሺ݊ݎ݋ݐܽ݃݅ݐݏ݁ݒ݊ܫ ݉, ܽ, ܾ, ,ݎ ܿሻ denoting that it is initiated by
controller of agent ܣ௔ for process ௡ܲ and transaction ௠ܶ
regarding agent ܣ௕ which requested to acquire resource ܴ௥
that it is currently held by ܣ௖ . It follows that if ܥ௜ receives
,ሺ݊ݎ݋ݐܽ݃݅ݐݏ݁ݒ݊ܫ ݉, ܽ, ܾ, ,ݎ ܽሻ from another controller for any
possible b and r and if ܴ௥ is one of the resources which is
held by ܣ௔, a circular wait is detected and ܥ௜ declare ܣ௔ as
deadlocked.

Figure 11 shows the message communication between
controllers for deadlock detection for the wait-for graph
scenario discussed in Figure 7 (Section 5). Agent ܣଵ is
holding resource ܴଵ associated to its controller ܥଵ and
requested to acquire ܴଶ associated to controller ܥଶ. ܣଶ in
 ଷ inܣ .ଷܥ ଶ is holding ܴଶ and requested to acquire ܴଷ fromܥ
 ଷ is holding ܴଷ and requested to acquire to acquire ܴଷܥ
which is held by ܣଵ . According to our assumptions for
resource deadlock model, three of four deadlock conditions
are true in this example which are (1) “Mutual Exclusion”;
(2) “Hold and Wait”; (3) “No Preemption”. Also as it can be
seen in Figure 11 the fourth condition circular wait can be
detected after receiving ݎ݋ݐܽ݃݅ݐݏ݁ݒ݊ܫሺ݊, ݉, ,1ܣ ,3ܣ ܴ3, 1ሻ byܣ
 ଷ and is heldܣ ଵ and identifying that ܴଷ requested byܥ
by ܣଵ. So all the four condition of deadlock is true and
 .ଵ as deadlockedܣ ଵ can declareܥ

6.2 Deadlock Detection in Communication Deadlock
Model
In the communication deadlock model of MAS there is no
controller agent or resources. Associated with each idle
agent is a set of dependent agents which is called its
dependency set. Each agent in that set can change its state
about one particular task from idle to executing upon
receiving a message from one of the members of its
dependency set regarding that task. We define a nonempty
set of agents as deadlocked if all agents in that set are
permanently idle regarding a special task. An agent is called
permanently idle, if it never receive a message from its
dependency set to change its state. In the more precise
definition, a none empty set of agents S is called deadlock if
and only if all agents in S are in idle state, the dependency
set of every agent in S is a subset of S and there are no
active conversation between agents in S. Based on this
definition, all agents in the set can be called permanently
idle, if the dependency set of each agent such as ܣ௜ is in S,
so they are all in idle state, and also if there is not any
trigger message in transit between agents just because there
is no active conversation.
 An idle agent can determine if it is deadlocked by
initiating a deadlock detection conversation with its
dependency set when it enters to idle state. An agent ܣ௜ is
deadlock if and only if it initiates a query conversation to all
the agents in its dependency set and receives reply to every
query that it sent. The dependency set for each agent is
identified using the MAS behavioral model constructed in
Section 4. The purpose of initiating this query is to find out

if the agent ܣ௜ belongs to a deadlock set S with the
mentioned conditions above. On receiving a query by an
idle agent in dependency set, it should forward the query to
its dependency set if it has not done already.

Figure 11 - deadlock detection example in resource

deadlock model

 Each query has the form
,ሺ݊ݕݎ݁ݑܳ݊݋݅ݐܿ݁ݐ݁ܦ݇ܿ݋݈݀ܽ݁ܦ ݉, ݅, ܽ, ܾሻ denoting this message
belongs to ݄݉ݐ deadlock detection communication initiated
for ݄݊ݐ communication in MAS by agent ܣ௜ which is sent
from agent ܣ௔ to agent ܣ௕ .Each agent ܣ௞ keeps the latest
deadlock detection communication which it has been
participated in it by ݉݉݋ܥݐܿ݁ݐ݁ܦ݇ܿ݋݈݀ܽ݁ܦݐݏ݁ݐܽܮሺ݅ሻ
denoting the latest deadlock detection communication
number that ܣ௞ was participated in it and initiated by ܣ௜.
The state of each agent (idle/executing) also is stored
by ܵ݁ݐܽݐሺ݊, ݉, ݅ሻ denoting the state of agent ܣ௞ for ݄݉ݐ
deadlock detection communication initiated by ܣ௜ for ݄݊ݐ
communication in MAS. Also the number of replies which
should be received by an agent for ݄݉ݐ deadlock detection
communication initiated by ܣ௜ for ݄݊ݐ communication in
MAS is stored in ܰݏ݈݁݅݌ܴ݂ܱ݁݉ݑሺ݅ሻ.

We present the following scenario as an example for
deadlock detection in the communication deadlock model of
a hypothetical MAS with the sequence diagrams shown in
Figure 4 (Section 4). In this scenario, agent ܣଵ is executing
and has not received any message in one of its
communications (in this case the communication in Agent
SD 1) for a defined time T from its dependency set {ܣଶ,
 ଵܣ ଷ are both in waiting state andܣ ଶ andܣ ଷ}. This is sinceܣ
is not aware of it. After the defined time T , ܣଵ identifies
itself as an idle agent and initiates a deadlock detection
conversation with each agent in its dependency set. An
agent ܣଵ declare itself as deadlocked if and only if it
initiates a query conversation to all the agents in its
dependency set and receives reply to every query that it had
sent.

The complete deadlock detection scenario for the
mentioned scenario is shown as a sequence diagram in
Figure 12. ܣଵ initiates two query conversations with its
dependency set which are ܣଶ and ܣଷ . ܣଶ and ܣଷ propagate
the queries to their own dependency set which are{ ܣଵ, ܣଷ }
for ܣଶ and { ܣଵ , ܣଶ} for ܣଷ . Respectively ܣଶ and ܣଷ
receive reply from their own dependency sets. Thus they
both replies to ܣଵ which is the initiator of deadlock queries

in this scenario. So, ܣଵ receives reply for all quires which it
had initiated to its dependency set. So, is declares itself as
deadlocked.

Figure 12 – A deadlock detection scenario in

communication deadlock model using our technique

7. CONCLUSION AND FUTURE WORK

In this paper, we presented a methodology for test
requirement generation and monitoring the behavior of
MAS. The methodology is used to detect deadlocks as one
of the unwanted emergent behaviors. Test requirements for
deadlock detection are prepared using a resource
requirement table. The test requirements are used by a tester
in test case generation process. Test cases are executed
using a test driver on the MAS under test. For deadlock
detection in the MAS under test, a MAS monitoring
methodology is proposed using our work in [5]. The source
code of the system is instrumented with specific instructions
in terms of deadlock detection techniques to enable runtime
deadlock detection. As the future work, we plan to automate
the test case generation process based on the test
requirement for deadlock detection in MAS. Also, our
methodology will be applied to a few more MAS case
studies to evaluate its coverage, effectiveness and
efficiency.

8 . REFERENCES

[1] M. R. Genesereth and P. K. Ketchpel, "Software agents

" Commun. ACM vol. 37 pp. 48-53, 1994.
[2] F. Bergenti, M.P.Gleizes, and F. Zambonelli,

Methodologies and Software Engineering for Agent
System vol. 11. New York: Kluwer Academic
Publishers, 2004.

[3] Object Management Group (OMG), "UML 2.1.1
Superstructure Specification," 2007.

[4] S. A. DeLoach, "The MaSE Methodology," in
Methodologies and Software Eng. for Agent System.
vol. 11, F. Bergenti, M.P.Gleizes, and F. Zambonelli,
Eds. New York: Kluwer Academic Publishers, 2004,
pp. 107-147.

[5] N. Mani, V. Garousi, and B. Far, "Monitoring Multi-
agent Systems for Deadlock Detection Based on UML
Models," in IEEE CCECE 08 - Computer Systems and
Applications, 2008.

[6] M. J. Wooldridge and P. Ciancarini, "Agent-Oriented
Software Engineering: The State of the Art," in Proc. of
the Workshop on Agent-Oriented Soft. Eng., 2000, pp.
1-28.

[7] B. Meyer, "Applying Design by Contract," IEEE
Computer, vol. 25, pp. 40–51, 1992.

[8] H. L. Timothy and S. A. DeLoach, "Automatic
Verification of Multiagent Conversations," in the
Annual Midwest Artificial Intelligence and Cognitive
Science Fayetteville, 2000.

[9] M. J. Wooldridge, M. Fisher, M. Huget, and S. Parsons,
"Model Checking Multi-Agent Systems with MABLE,"
in Proc. of the Int. Joint Conf. on Autonomous Agents
and Multiagent Systems, 2002, pp. 952–959.

[10] G. J. Holzmann, "The Model Checker Spin," IEEE
Trans. on Soft. Eng., vol. 23, pp. 279–295, 1997.

[11] V. Gligor and S. Shattuck, "Deadlock detection in
distributed systems," IEEE Trans. Soft. Eng., pp. 435-
440, 1980.

[12] B. Goldman, "Deadlock detection in computer
networks," Massachusetts Institute of Technology,
Cambridge, Mass., Tech. Rep. MIT-LCS-TR185, 1977.

[13] K. M. Chandy, J. Misra, and L. M. Haas, "Distributed
Deadlock Detection," ACM Trans. on Computer
Systems, vol. 1, pp. 144-156, 1983.

[14] A. Tanenbaum, Modern Operating Systems. Englewood
Cliffs: Prentice Hall Inc., 1992.

[15] T. S. Chow, "Testing Software Design Modeled by
Finite-State Machines," IEEE Trans. on Software Eng.,
vol. 4, pp. 178-187 1978.

[16] H. S. Hong, Y. G. Kim, S. D. Cha, D. H. Bae, and H.
Ural, "A test sequence selection method for
statecharts," Software Testing, Verification and
Reliability, vol. 10, pp. 203 - 227, 2000.

[17] L. C. Briand, Y. Labiche, and Q. Lin, "Improving
Statechart Testing Criteria Using Data Flow
Information," in Proc. of the 16th IEEE Int. Symposium
on Software Reliability Engineering, Washington, DC,
USA, 2005, pp. 95 - 104

[18] D.A. Menasce and R.R. Muntz, "Locking and Deadlock
Detection in Distributed Data Bases," IEEE
Transactions on Software Eng., vol. 5, pp. 195-202,
1979.

