

978-1-4244-1643-1/08/$25.00 ©2008 IEEE

MONITORING MULTI-AGENT SYSTEMS FOR DEADLOCK DETECTION
BASED ON UML MODELS

Nariman Mani, Vahid Garousi, Behrouz H. Far

Department of Electrical and Computer Engineering

Schulich School of Engineering, University of Calgary, Canada
{nmani, vgarousi, far}@ucalgary.ca

ABSTRACT

There is an increasing demand for Multi-Agent Systems (MAS) in
the software industry. In order to bring MAS to the main stream of
commercial software development, the behavior of MAS must be
monitored and verified against the risk of unwanted emergent
behaviors including deadlocks. In this paper, we introduce a
methodology for efficient monitoring of MAS to detect resource
and communication deadlocks. In this methodology, we construct a
behavioral model of a MAS under analysis and use it for deadlock
detection. The behavioral models are in the form of UML 2.0
sequence diagrams which are built from the modeling artifacts of
the Multi-agent Software Engineering (MaSE) methodology. To
detect MAS deadlocks at runtime based on UML sequence
diagrams, we adapt and refine existing resource and
communication deadlock detection techniques to the context of
MAS. A monitoring scenario example of our methodology is
presented.

Index Terms—Monitoring, Multi-agent system, Deadlock
detection, UML.

1. INTRODUCTION

In software industry there is an increasing demand for applications
which can communicate and exchange information to solve
problems collaboratively. This has led to the growth of distributed
software architecture consisting of several interoperable software
systems. One of the main difficulties of interoperable software
systems is heterogeneity. Different programs are written in
different languages and by different programmers and must operate
in dynamic software environment. Agent based software
engineering is one of the approaches devised to handle
collaboration and interoperability. Organizations that have
successfully implemented agent technologies include
DaimlerChrysler, and IBM [1]. A MAS consists of autonomous
software agents that try to achieve their goals by interacting with
each other by means of high level protocols and languages [2] .
However, the agent interaction can potentially lead to runtime
behavioral faults including deadlock.

In order to bring MAS to the main stream of commercial
software the internal behavior of the MAS must be monitored and
verified to eliminate the risk of unwanted emergent behavior.
Monitoring and verification usually consists of checking for
communication faults such as deadlocks, infinite loops, livelocks
and other communication pitfalls. As model-based software
development practices are getting more popularity [3], more and
more MAS are developed using model-based practices such as the

Multi-agent Software Engineering (MaSE)[4]. Thus, model-based
monitoring techniques in the context of MAS can be useful since
they can use the existing models which have been built for analysis
and design of MAS and can help MAS engineers to make sure
deadlocks are detected as soon as they occur at runtime. As
discussed in [5], there are only a few model based techniques to
detect MAS deadlocks at runtime.

In this paper we focus on model based deadlock detection by
checking MAS communication for existence of deadlock. The
artifacts used are the models prepared during the analysis and
design stages of a MAS using the MaSE methodology[4]. Figure 1
illustrates our approach. Using the procedure explained in Section
3, a MAS behavioral model, consists of UML sequence diagrams,
is constructed based on “role sequence diagram” and “agent class
diagram” built during the MaSE analysis and design stages. Two
deadlock detection techniques (see Section 4) are then
instrumented into the MAS source code. The MAS monitoring
module runs the instrumented MAS system and uses MAS
behavioral model at the runtime to detect deadlocks. The reported
deadlock faults based on the runtime system feedbacks are
provided by MAS monitoring module as the result which can be
used for debugging and corrections purposes. The methodology
can be used as a monitoring method for deadlock detection in both
testing phase of MAS development and MAS deployment.

Figure 1- An overview of MAS deadlock monitoring methodology

The remainder of this paper is structured as follows. The

related work and background are described in section 2.
Constructing MAS behavioral model based on the MaSE is
discussed in section 3, deadlock detection techniques in resource
and communication deadlock models are introduced in section 4.
Finally conclusions are given in section 5. An illustrated example
of agent behavioral model in terms of sequence diagrams is
constructed in section 3 and is used to explain the methodology in
the subsequent sections.

001611

Authorized licensed use limited to: Carleton University. Downloaded on December 21, 2009 at 12:28 from IEEE Xplore. Restrictions apply.

2. RELATED WORK AND BACKGROUND

2.1 MAS Verification and Monitoring
Existing work on MAS verification is categorized into axiomatic
and model checking approaches [5]. In [6], axiomatic verification
is applied to the Beliefs, Desires and Intentions (BDI) model of
MAS using a concurrent temporal logic programming language.
However, it was noticed that this kind of verification cannot be
applied when the BDI principles are implemented with non-logic
based languages [5]. Also in design by contract [7] pre- and post-
conditions and invariants for the methods or procedures of the code
are defined and verified in runtime. Violating any of them raises an
exception.
 Model checking approaches seem to be more acceptable by
industry, because of less complexity and better traceability as
compared to axiomatic. Automatic verification of multi-agent
conversations [8] and model checking MAS with MABLE
programming language [9] are a few examples of model checking
approaches that both use SPIN model checker [10], a verification
system for detection of faults in the design models of software
systems.

2.2 Deadlock Detection Techniques
Resource and communication deadlocks models are considered in
message communication systems. Most deadlock models in
distributed systems are resource models [11, 12]. In these models,
the competition is on acquiring required resources and deadlock
happens whenever an entity is waiting permanently for a resource
which is held by another. As indicated in [12], the communication
deadlock model is general and can be applied to any message
communication system. The communication model is an abstract
description of a network of entities which communicate via
messages. A deadlock detection mechanism based on the
communication deadlock model is provided in [12]. In literature a
deadlock situation is usually defined as “A set of processes is
deadlocked if each process in the set is waiting for an event that
only another process in the set can cause” [13]. There are four
conditions that are required for a deadlock to occur [13]. They are
(1) “Mutual Exclusion” which means each resource can only be
assigned to exactly one process; (2) “Hold and Wait” in which
processes can hold a resource and request more; (3) “No
Preemption” which means resources cannot be forcibly removed
from a process; and (4) “Circular Wait” which means there must be
a circular chain of processes, each waiting for a resource held by
the next member in the chain [13]. Similar to other types of the
faults there are four techniques commonly used to deal with
deadlock problem: ignorance, detection, prevention and avoidance
[13]. The approach in this paper is a deadlock detection technique
which uses the behavioral model of MAS to monitor running
system to detect deadlocks.

2.3 Agent Based Development Methodology: MaSE
MaSE uses several models and diagrams driven from the standard
Unified Modeling Language (UML) to describe the architecture-
independent structure of agents and their interactions [4]. In MaSE
a MAS is viewed as a high level abstraction of object oriented
design of software where the agents are specialized objects that
cooperate with each other via conversation instead of calling
methods and procedures. There are two major phases in MaSE:
analysis and design (Table 1). In analysis phase, there are three
steps which are capturing goals, applying use cases and refining
goals. In the design phase, there are four steps which are creating

agent classes, constructing conversations, assembling agent classes
and system design [4].

Table 1- MaSE methodology phases and steps [4]
MaSE Phases and Steps Associated Models
1. Analysis Phase
a. Capturing Goals
b. Applying Use Cases
c. Refining Roles
2. Design Phase
a. Creating Agent Classes
b. Constructing Conversations
c. Assembling Agent Classes
d. System Design

Goal Hierarchy
Use Cases, Sequence Diagrams
Concurrent task, Role Diagram

Agent Class Diagrams
Conversation Diagrams
Agent Architecture Diagrams
Deployment Diagrams

3. CONSTRUCTING MAS BEHAVIOURAL MODEL

Agents of a MAS communicate by exchanging messages. The
sequence of messages is useful for understating the situation during
faults detection conversation. A common type of interaction
diagrams in UML is sequence diagram in which each agent or role
is represented by a participating object (lifeline in sequence
diagram). In this work the conversations of agents are transformed
from MaSE role diagrams to UML sequence diagrams. We then
monitor the given MAS based on its sequence diagrams and detect
deadlocks.

In this section we devise a method to construct a sequence
diagram which shows the conversations of several agents and the
message exchanging among them. Unfortunately, such a diagram
is not provided by MaSE and it should be constructed based on the
information available in the other MaSE diagrams. The only
sequence diagram provided by MaSE is role sequence diagram in
“Applying Use Cases” step in analysis phase which shows the
conversations between roles assigned to each agent [4].

Another diagram which we use to construct agents sequence
diagram is a MaSE agent class diagram. The agent class diagram
which is created in the “Constructing Agent Classes” step of MaSE
represents the complete agent system organization consisting of
agent classes and the high-level relationships among them. An
agent class is a template for a type of agent with the system roles it
plays. Multiple assignments of roles to an agent demonstrate the
ability of agent to play assigned roles concurrently or sequentially.
The agent class diagram in MaSE is similar to agent class diagram
in object oriented design but the difference is that the agent classes
are defined by roles, not by attributes and operations. Furthermore,
relationships are conversations between agents [4]. Figure 2 shows
examples of MaSE role sequence and agent class diagram.

The approach for constructing agent sequence diagram based
on the two above mentioned MaSE diagrams is defined as follow.
Each role sequence diagram is searched for the roles which are
listed in the same agent class in the agent class diagram. Then, all
of the roles in each role sequence diagram are categorized based on
the agent which they belong to. Therefore, each category
corresponds to an agent class in agent class diagram and the
messages which it exchanges with other categories are
recognizable. On the other hand, a new agent sequence diagram
can be generated from agent class diagram which the lifelines are
agents’ types. The recognized messages between each two
categories are entered into agent sequence diagram as a new
conversation. For example, in Figure 2, the role sequence diagram
1 is categorized into three different categories, one consists of Role
1 and Role 2 and the other one consists of Role 3 and Role 4 and
finally one consists of Role 5. The first one corresponds to agent
class 1 and the second one corresponds into agent class 2 in agent

001612

Authorized licensed use limited to: Carleton University. Downloaded on December 21, 2009 at 12:28 from IEEE Xplore. Restrictions apply.

class diagram and the third one corresponds to agent class 3.
Constructed agent sequence diagrams from role sequence diagram
1, 2, 3 and agent class diagram in Figure 2 is shown in Figure 3.

Figure 2- MaSE role sequence and agent class diagrams

Figure 3- Constructed agent sequence diagrams

The definition of conversation in constructed sequence

diagrams which illustrates the behavior of MAS should be clear.
We define Conversation as a message exchange between two
specific agents for a special purpose. Each conversation has two
agents involved. In the constructed sequence diagrams a specific
conversation for each agent is shown by execution occurrences
specification or activity boxes (grey boxes on the lifeline).

There are several processes executing on the MAS which all
are handled by agents. Several agents communicate with each
other to handle tasks of a specific process. Conversation A is
related to conversation B, if conversation A exchanges at least one
message with conversation B during its execution. We call a set of
related conversations a “communication” which handles a process
or a part of it. Each communication may consist of several
conversations. As an example in Figure 3, communication 1, 2 and
3 are identified.

4. DEADLOCK DETECTION IN MAS

The resource and communication deadlock models in MAS are
discussed in this section and deadlock detection techniques are
presented using the ideas from [12].

4.1 Deadlock Detection in Resource Deadlock Model
Resource model of MAS consists of agents, resources and
controller agents. Controller agents are responsible for resource
allocation. A controller agent is associated with a set of agents and
a set of resources which it manages. Agents request for acquiring
resources from their controller. Also, the controller can
communicate with other controllers in case of requesting resources
from other controllers. We assume that in the resource deadlock
model each resource can only be assigned to exactly one agent and
each agent can hold a resource and request more and finally
resources cannot be forcibly removed from an agent. Several
processes are active in a MAS and tasks associated with each
process are performed by agents’ cooperation. Each agent cannot
perform the process task which is assigned to it unless it acquires
all of the resources which it needs. We define a set of agents as
deadlocked when no agent in the set can perform its task regarding
a specific process because that task needs a resource which is
acquired by another agent in the set. The controller agent can keep
track of all resource allocations therefore behavioral faults are
detectable by analyzing information collected by controller agent.
However, it is possible for an agent to request for acquiring a
resource from another controller. In such a case if the agent
identifies itself in waiting state, it is not clear whether it can
acquire the requested resource ever. The reason is that its request
may be passed to other controllers and agents which can release
that required resource for it. One possible solution is the MAS
negotiation. But there are three main reasons for why agents in
heterogeneous MAS are not completely interoperable. These
reasons are called architectural elements[14] and are as follow: (1)
inconsistent mental state structures; (2) different syntax and
semantics of the agent communication languages; and (3)
incompatible message transport mechanisms. For tackling these
problems, a gateway agent can be proposed as a translator of the
agent communications. A prototype of the gateway agent that can
translate messages between Knowledge Query Manipulation
Language (KQML) [15] and FIPA Agent Communication
Language speaking agents (FIPA-ACL) [16] is developed in [14].
In this work, a communication protocol is defined for controller
agents to communicate, acquire resources and handle behavioral
faults such as deadlock.

Whenever agent ���in controller ����needs to acquire a resource
�� associated to another controller���, it sends its request to its
controller ��. �� communicates with controller �� regarding the
requested resource ��. If the required resource is available,
�����provides the resource for agent ���in controller �� .But if it is
held by another agent �	, �� provides the identification of agent �	
to controller �� . So , each controller agent has information about
the internal resource allocation inside its set and the external
resources that each agent in its set has already acquired or wants to
acquire.

In resource model, agent �
 is said to be dependent on another
agent �� if there exists a sequence of agents��
,����…,��� where
each agent in sequence is idle and each agent in sequence except
the first one holds a resource for which the previous agent is
waiting. Agent �
�is internally dependent on �� if both are in the
same MAS, i.e. both associated to one controller agent. If �
 is
dependent on���, then �
�has to remain in idle status as long as ��
is idle. �
 is deadlocked if it is dependent on itself or on an agent
which is dependent on itself. The deadlock can be extended to a
cycle of idle agents, each dependent on the next in the cycle.
Therefore, the resource model deadlock detection is to declare the
existence of that cycle.

Agent 1 :
Agent
Class1

Agent 2 :
Agent
Class2

SD1.Message 1

SD1.Message 6

Agent SD1

Agent 3 :
Agent
Class3

SD1.Message 4

SD1.Message 3

Agent 1 :
Agent
Class1

Agent 2 :
Agent
Class2

SD2.Message 2

SD2. Message 5

Agent SD2

Agent 2 :
Agent
Class2

Agent 3 :
Agent
Class3

SD3.Message 5

SD3. Message 6

Agent SD3

Communication 1 Communication 2

Communication 3

001613

Authorized licensed use limited to: Carleton University. Downloaded on December 21, 2009 at 12:28 from IEEE Xplore. Restrictions apply.

In order to determine for an idle agent �� whether it is in
deadlock state or not, a communication is initiated by its controller
agent. In deadlock detection communication, controller agents send
an investigator message to each other. An investigator message is
of the form ��������������� � � � �� denoting that it is initiated
by controller of agent �� for process �� and transaction !
regarding agent �	 which requested to acquire resource �" that it
is currently held by ��# .���������������� � � � �� is sent by
controller �� to controller �� when one of the following conditions
is true: (1) �	 associated to controller ���is idle and �	 is waiting
to acquire resource �"�associated to the controller �� (externally)
and �"�is currently held by ��# associated to the controller �� , (2)
�	 associated to controller ���is idle and �	 is waiting to acquire
resource �"�associated to the controller �� (internally) and �"�is
currently held by �# associated to the controller ��.�
���������������� � � � �� is accepted by �� if the ��# is idle and
has not know that �� is dependent on it (and know it knows) and
��# is waiting to acquire a resource (internally or externally) and
that resource is currently held by another agent. In this condition ��
send an investigator message to the controller of���#. It follows that
if �� receives ��������������� � � � �� from another controller
for any possible b and r and if �" is one of the resources which is
held by ���, a circular wait is detected and �� declare �� as
deadlocked. Pseudo code for deadlock detection in resource model
of MAS is shown in Figure 4. To reduce the number of deadlock
detection computations which are initiated, an agent may initiate
one only if it has been idle continuously for some time T, where
we call T as a performance parameter.

As an example for deadlock detection in resource deadlock
model, we consider the following scenario. Agent �
 is holding
resource �
 associated to its controller �
�and requested to acquire
���associated to controller���. ��� in ���is holding �� and requested
to acquire �$ from �$. ��$ in �$�is holding �$ and requested to
acquire to acquire �$ which is held by ��
 . The wait-for graph [17]
of this example and the agent sequence diagram which shows the
message communication between controllers for deadlock
detection in the resource model is shown in figure 5. According to
our assumptions for resource deadlock model, three of four
deadlock conditions are true in this example which are (1)
“Mutual Exclusion”; (2) “Hold and Wait”; (3) “No Preemption”.
Also as it can be seen in figure 5 the fourth condition circular wait
can be detected after receiving��������������� � ��% �& �& �%� by
�
 and identifying that �$ requested by ��$ and is held by��
. So
all the four condition of deadlock is true and �
�can declare ��
 as
deadlocked.

4.2 Deadlock Detection in Communication Deadlock Model
In the communication deadlock model of MAS there is no
controller agent or resources. Associated with each idle agent is a
set of dependent agents which is called its dependency set. Each
agent in that set can change its state about one particular task from
idle to executing upon receiving a message from one of the
members of its dependency set regarding that task.

We define a nonempty set of agents as deadlocked if all agents
in that set are permanently idle regarding a special task. An agent
is called permanently idle, if it never receive a message from its
dependency set to change its state. In the more precise definition, a
none empty set of agents S is called deadlock if and only if all
agents in S are in idle state, the dependency set of every agent in S
is a subset of S and there are no active conversation between agents
in S. Based on this definition, all agents in the set can be called

permanently idle, because the dependency set of each agent such as
�� is in S, so they are all in idle state, and also there is not any
trigger message in transit between agents just because there is no
active conversation.

A controller on initiation of a investigator for an idle agent �� (after a
defined time T)
If �� is locally dependent on itself or on a set of idle agents all in same
controller
 Then Declare �� deadlocked
 Else

For all agents (in parallel) such as���� which want to acquire resource r
(internally or externally) which is held by another agent ���#� in another
controller,

 Send ��������������� � � � �� to controller of agent ���#
 End For
End If
A controller on receiving a ����������������� � � ��
If �# is idle, and it has not replied to all requests of �	 recently (after a
defined time T), and �# has not known that �� is dependent on it.
 Then
 Declare that �� is dependent on �#
 If � ' � and �" is one of the resources which are held by ��
 Then declare that �� is deadlocked

 Else
 For all agents (in parallel) such as���# which want to acquire

resource �" (internally or externally) which is held by another
agent ���(� in another controller,

 Send ��������������� � � � �� to controller of agent ���(
 End For
 End If
End If

Figure 4- Pseudo code for deadlock detection in resource deadlock
model

Figure 5 - deadlock detection example in resource deadlock model

An idle agent can determine if it is deadlocked by initiating a

deadlock detection conversation with its dependency set when it
enters to idle state. Each agent can initiate many deadlock
detection communication which are numbered by �. An agent ��
is deadlock if and only if it initiates a query conversation to all the
agents in its dependency set and receives reply to every query that
it sent. The purpose of initiating this query is to find out if the
agent �� belongs to a deadlock set S with the mentioned conditions
above. On receiving a query by an idle agent in dependency set, it
should forward the query to its dependency set if it has not done
already. For example if there is sequence of idle agents such
as���
,���…,�� that each one is in the dependency set of the
previous one, a query initiated by �
 will be forwarded to ��.

Each query has the form)��*+��,)��������-.��/��� � � ��
denoting this message belongs to ��0 deadlock detection
communication initiated for ��0 communication in MAS by agent
�� which is sent from agent ���to agent �	 .Each agent ���keeps
the latest deadlock detection communication which it has been
participated in it by 1�����)��*+��,)������������ denoting the
latest deadlock detection communication number that ���was

001614

Authorized licensed use limited to: Carleton University. Downloaded on December 21, 2009 at 12:28 from IEEE Xplore. Restrictions apply.

participated in it and initiated by���. The state of each agent
(idle/executing) also is stored by�2������� �� denoting the state of
agent �� for ��0 deadlock detection communication initiated
by����� for ��0 communication in MAS. Also the number of replies
which should be received by an agent for ��0 deadlock detection
communication initiated by����� for ��0 communication in MAS is
stored in��3.�45��6+������. Algorithm for communication model
deadlock in of MAS is shown by pseudo code in Figure 6.

An idle agent �� to initiate a deadlock detection
query��)��*+��,)��������-.��/��� � � ��: (after a defined time T)
Begin
1�����)��*+��,)������������ ' 1�����)��*+��,)������������ 7 %;
2������� �� = waiting;
Send)��*+��,)��������-.��/�� 1�����)��*+��,)������������ � � ���to all agents �	
in �� 's dependent set (see section 4.3) S in parallel ;
3.�45��6+������= Number of agents in �� 's dependent set S
End
An idle agent �	�, upon receiving)��*+��,)��������-.��/��� � � ��:
if m > 1�����)��*+��,)������������
 Then begin
�������������������1�����)��*+��,)������������ ' �;
 2������� �� = waiting;
 for all agents �" in �	�� dependent set S (see section 4.3) in parallel
 Send ��)��*+��,)��������-.��/��� � � ��;
 3.�45��6+������= Number of agents in �� 's dependent set S
 End for
Else if 2������� �� = waiting and m =�1�����)��*+��,)������������
 then send ��6+/��� � � �� to ��
End if
Upon receiving ��6+/��� � � �� by �	
if m = 1�����)��*+��,)�������������and 2������� ��= waiting
 then begin
������������3.�45��6+������:= 3.�45��6+������ - 1;
 if 3.�45��6+������=0
 then if i = b
 Declare �	� deadlocked
 End if
 else send ��6+/��� � � �� to �"�

where �"�is the agent which caused 1�����)��*+��,)������������ be set
to its current value

 End if
End if

Figure 6- Pseudo code for deadlock detection in
communication deadlock model

We present the following scenario as an example for deadlock
detection in the communication deadlock model of a hypothetical
MAS with the sequence diagrams shown in Figure 3. In this
scenario, agent �
 is executing and has not received any message
in one of its communications (communication 1 in this case) for a
defined time T from its dependency set {��, �$}(Section 4.3). This
is since �� and �$ are both in waiting state and �
 is not aware of
it. After the defined time T , �
 identifies itself as an idle agent and
initiates a deadlock detection conversation with each agent in its
dependency set. An agent �
 declare itself as deadlocked if and
only if it initiates a query conversation to all the agents in its
dependency set and receives reply to every query that it had sent.
The complete deadlock detection scenario for the mentioned
scenario is shown as a sequence diagram in figure 7. �
 initiates
two query conversations with its dependency set which are �� and
�$.��� and �$ propagate the queries to their own dependency set
which are{ �
, �$ } for �� and { �
 , ��} for �$. Respectively
�� and �$ receive replies from their own dependency sets. Thus
they both reply to �
 which is the initiator of deadlock queries in
this scenario. So, �
�receives reply for all quires which it had
initiated to its dependency set. So, ir declares itself as deadlocked.

4.3 Dependency set identification
The deadlock detection techniques described in section 4 rely on
identifying the dependency set for an agent. The agent �� is
member of dependency set of agent �� if �� is structurally or
functionally dependent to ��� [18]. From UML 2.0 point of view,
dependency is defined as “a relationship that signifies that a single
or a set of model elements requires other model elements for their
specification or implementation. This means that the complete
semantics of the depending elements is either semantically or
structurally dependent on the definition of the supplier
element(s)”[3].

Figure 7 – A deadlock detection scenario in communication

deadlock model using our technique

We can conclude that the dependency can be categorized into
two groups which are structural and behavioral. In the structural
dependency, the implementation changes in one entity can affect
another entity. In behavioral dependency one entity requires a
service from another entity in order to complete its assigned task
[18]. The focus of this writing is on behavioral faults such as
deadlock in agent communications and this point of view leads to
the dependency of agents based on their behavior. Behavioral
dependencies in the context of MAS can be of several types [18]:

� A data dependency exists whenever the available data for one
agent is required in another one for completing of its task.

� Time dependency exists when the behavior of one agent in
MAS has to precede or follow the behavior of another one to
complete its task.

� State dependency specifies that the behavior of an agent will
not happen unless the system or some part of the system, or
also another agent is in a specified state.

� Causal dependency specifies that the behavior of an agent in
MAS entails a specific behavior for another agent.

001615

Authorized licensed use limited to: Carleton University. Downloaded on December 21, 2009 at 12:28 from IEEE Xplore. Restrictions apply.

As mentioned earlier, the assumption is that the processes and
associated tasks in heterogeneous MAS are handled by means of
communications between agents. Whenever an agent identifies
itself in waiting or idle state for a specific communication, it
initiates a deadlock detection communication query or propagates a
query to its dependency set. As it is clear all types of behavioral
dependencies which are mentioned above can exist between agents
which are somehow involved in a specific conversation. So the
basic and immediate approach for an agent in MAS is to identify
all of the agents which are involved in a specific communication as
its dependency set whenever it declares itself waiting or idle for
that communication. In Figure 3, Agent 1 initiate a deadlock query
communication or propagate a query to Agents 2 and Agent 3 as it
dependency set.

4.4 Comparison between resource and communication models
The main difference between resource and communication models
is that the identifications of agents that communicate with a
specific agent are known in the communication model. On the
other hand, an agent can identify the agents from which it has to
receive message before it can continue its assigned task in the
communication model. For example, if agent A expects to receive
a message from agent B, the former recognize its status that it is
waiting for agent B. So, the agent has most of the required
information for deadlock detection approach if it finds itself in idle
situation. But in the resource model the dependency of one agent
action on actions of others is not directly noticeable. All is known
is the dependency of one agent action for performing the assigned
task to a specific resource, but agents which can release that
required resource are not known. In such a case, the controller
agent of each site (a set of agents) should keep track of the
resource allocation on that site and collect information about the
dependency of agent actions or tasks with respect to each other.
The conclusion is that different deadlock detection approaches
should be used for resource and communication models.

5. CONLUCSION AND FUTURE WORK

In this paper, we presented a methodology for runtime monitoring
of the behavior of a Multi-Agent System (MAS) to detect
deadlocks as one of its unwanted emergent behavior. Our
methodology uses a behavioral model of the MAS, i.e. UML
sequence diagrams constructed from MaSE analysis and design
artifacts. An approach for constructing UML agent sequence
diagrams from MaSE role diagrams is presented in section 3. We
instrument the source code of the system with specific instructions
in terms of deadlock detection techniques to enable runtime
deadlock detection. To design our resource and communication
deadlock detection techniques, we use and refine the approaches
from the work in [12].

In order to efficiently detect deadlocks and only involve the
needed agents in the deadlock detection mechanism, our technique
relies on identifying the dependency set for each agent (Section
4.3). To account for the above efficiency criteria, the focus of this
paper is on indentifying the dependency set based on the involved
agents in a communication regardless of the dependency type. As
the future work, the tradeoffs between effectiveness and efficiency
of our deadlock detection techniques will be analyzed with regards
to different types of dependencies mentioned in section 4.3. Also,
our methodology will be applied to a few more MAS case studies
to evaluate its effectiveness and efficiency.

ACKNOWLDGEMENTS

Nariman Mani, Vahid Garousi and Behrouz H. Far were supported
by a discovery grant from NSERC. Vahid Garousi was further
supported by an Alberta Ingenuity New Faculty Award.

REFERENCES

[1] H. V. D. Parunak, "A Practitioners' Review of Industrial

Agent Applications," Journal of Autonomous Agents and
Multi-Agent Systems, vol. 3, pp. 389-407, 2000.

[2] M. R. Genesereth and P. K. Ketchpel, "Software agents "
Commun. ACM vol. 37 pp. 48-53, 1994.

[3] Object Management Group (OMG), "UML 2.1.1
Superstructure Specification," 2007.

[4] S. A. DeLoach, "The MaSE Methodology," in Methodologies
and Software Eng. for Agent System. vol. 11, F. Bergenti,
M.P.Gleizes, and F. Zambonelli, Eds. New York: Kluwer
Academic Publishers, 2004, pp. 107-147.

[5] F. Bergenti, M.P.Gleizes, and F. Zambonelli, Methodologies
and Software Engineering for Agent System vol. 11. New
York: Kluwer Academic Publishers, 2004.

[6] M. J. Wooldridge and P. Ciancarini, "Agent-Oriented
Software Engineering: The State of the Art," in Proc. of the
Workshop on Agent-Oriented Soft. Eng., 2000, pp. 1-28.

[7] B. Meyer, "Applying Design by Contract," IEEE Computer,
vol. 25, pp. 40–51, 1992.

[8] H. L. Timothy and S. A. DeLoach, "Automatic Verification of
Multiagent Conversations," in the Annual Midwest Artificial
Intelligence and Cognitive Science Fayetteville, 2000.

[9] M. J. Wooldridge, M. Fisher, M. Huget, and S. Parsons,
"Model Checking Multi-Agent Systems with MABLE," in
Proc. of the Int. Joint Conf. on Autonomous Agents and
Multiagent Systems, 2002, pp. 952–959.

[10] G. J. Holzmann, "The Model Checker Spin," IEEE Trans. on
Soft. Eng., vol. 23, pp. 279–295, 1997.

[11] V. Gligor and S. Shattuck, "Deadlock detection in distributed
systems," IEEE Trans. Soft. Eng., pp. 435-440, 1980.

[12] K. M. Chandy, J. Misra, and L. M. Haas, "Distributed
Deadlock Detection," ACM Trans. on Computer Systems, vol.
1, pp. 144-156, 1983.

[13] A. Tanenbaum, Modern Operating Systems. Englewood
Cliffs: Prentice Hall Inc., 1992.

[14] H. Suguri, E. Kodama, M. Miyazaki, and I. Kaji, " Assuring
interoperability between heterogeneous multi-agent systems
with a gateway agent," in Proc. of the 7th IEEE Int. Symp. on
High Assurance Systems Eng., 2002, pp. 167-170.

[15] T. Finin, R. Fritzson, D. McKay, and R. McEntire, "KQML as
an agent communication language," in The Third Int. Conf. on
Information and Knowledge Management, Gaithersburg,
Maryland, United States, 1994, pp. 456 - 463

[16] Foundation for Intelligent Physical Agents (FIPA), "FIPA
ACL Message Structure Specification," 2002.

[17] D.A. Menasce and R.R. Muntz, "Locking and Deadlock
Detection in Distributed Data Bases," IEEE Transactions on
Software Eng., vol. 5, pp. 195-202, 1979.

[18] V. Garousi, L. Briand, and Y. Labiche, "Analysis and
Visualization of Behavioral Dependencies among Distributed
Objects based on UML Models," in Proc. of Int. Conf. on
Model Driven Engineering Languages and Systems, 2006, pp.
365-379.

001616

Authorized licensed use limited to: Carleton University. Downloaded on December 21, 2009 at 12:28 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

