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Abstract—Intelligent and autonomous SDN applications need
to monitor the network state in order to take appropriate actions.
In this letter, we compare the impact of active and passive
network state collection methods on an SDN load-balancing
application running at the controller. We do this comparison
through: (1) the results of a mathematical model evaluation we
derive for the SDN load-balancer, (2) the results of a series of
elaborate experiments we ran on our emulation setup. The results
show that in case of low-variation traffic, the load-balancer with
passive state collection performed better than the active one,
which was confirmed by both model and experimental evaluation.
However, the load-balancer with the active state collection was
more resilient to the nature of the traffic load.

Index Terms—SDN, SDN performance, SDN measurement,
SDN applications, SDN controller.

I. INTRODUCTION

IN this letter we focus on OpenFlow-based network state
collection mechanisms due to the popularity of OpenFlow

in SDN-enabled devices. In particular, we compare passive
network state collection maintained by the controllers with
active network state collection that relies on periodically
polling the switches. The ONUG [1] has recently showed
interest in network state collection.

In this letter, we make the following contributions: (1)
we study the impact of passive and active OpenFlow state
collection mechanisms on certain key performance indicators
that we define. To study this: (a) we ran simulations based a
mathematical model we derived for the load-balancing (LB)
application, and (b) we developed a load-balancing application
and we ran experiments in the context of single and distributed
controller environments. (2) We study the impact of low-
variation and high-variation traffic loads on the application
performance given different state collection mechanisms.

II. BACKGROUND ON SDN CONTROLLERS

For the rest of the letter, we refer to a physically centralized
controller as a “single controller”, while we call logically
centralized but physically distributed controllers “distributed
controllers”. One major challenge is how to keep the con-
trollers’ network views consistent. With distributed controllers,
as each controller collects state information about the network,
they need to exchange their views in order to build a global
network view. The consistency between controllers is governed
by the consistency model employed [2].
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Levin et al. [3] used a flow simulator to study the design of
distributed SDN applications. First, they evaluated the impact
of inconsistent global network view on the performance of
a LB application. They showed that the inconsistency can
significantly degrade the performance of SDN applications.
Second, they investigated the application complexity versus
robustness against outdated states. They concluded that ap-
plications that are aware of the underlying state distribution
can avoid depending solely on outdated states when making
decisions, and perform better than those that are unaware.
Guo et al. [4] further extended the work to overcome the
issues of synchronization overhead and forwarding-loops due
to inconsistency.

III. NETWORK STATE COLLECTION

There exist different mechanisms that network application
developers can employ in collecting the network state infor-
mation required for maintaining an up-to-date network view.
Excluding middle-boxes which are likely to face scalability
issues, we classify these techniques into: (1) non-OpenFlow-
based, and (2) OpenFlow-based. First, non-OpenFlow-based
mechanisms include the use of other protocols as SNMP or
sFlow. Second, OpenFlow-based mechanisms involve the use
of information stored at the controllers as well as flow or port
statistics that are polled from the switches. In this letter we
are only interested in OpenFlow-based mechanisms. Further
we divide OpenFlow-based mechanisms into: (1) passive,
and (2) active. The choice of whether to design a network
application to base its decisions on passive, active, or hybrid
state collection could be a design challenge.
Passive Network State Collection. When a new packet arrives
at a switch with no flow rule to match, by default, the packet’s
header will be forwarded to the controller. The controller is
then responsible for deciding what to do with the packet and
for instructing the switches. The controller can locally keep
track of flow rules inserted into the switches, which we call
passive state collection. However since by default not every
packet is forwarded to the controller, the controller-maintained
information are mainly flow-based information and may not
include packet or byte information. Yu et al. [5] proposed
a passive network monitoring approach that computes the
utilization of the links between switches, and they discussed
how their approach can be combined with active approaches.
Active Network State Collection. Controllers can asyn-
chronously communicate with the switches they control in
order to request the required state information. An example



2

is the flow and port statistics. OpenFlow defines the format
of the messages that can be exchanged by the controllers and
the switches. With regards to applications that require up-to-
date state information, they need to periodically communicate
with the network switches as such information could be
outdated relative to the application needs. It is also important
to highlight that our results (§VII-B) indicate that the period at
which the controllers poll the necessary information from the
switches can impact the performance of those applications.

IV. PERFORMANCE INDICATORS

In this letter, we study the behavior of a LB application
(§V) when employing different mechanisms for network state
collection. For simplicity, we consider the load-balancing
between two servers. We opted for the relative difference
between the traffic received by each server as an indicator
for the LB’s performance. The smaller the difference, the
better the performance. The relative difference can be defined
in terms of flows (ξf ) or bytes (ξb). We chose the relative
difference, as a normalized indicator (unit-less) to be able to
compare (ξf ) and (ξb) where needed.

Equations 1 and 2 show the relative difference in terms of
flows and bytes, respectively. In case of ξf , fi represents the
flow count (as measured at the server) assigned to server i (in
our experiments, i ∈ {1, 2}) at a given time. While for ξb, bi
represents the amount of traffic received (in bytes, measured
at the server) by server i at a given time.

ξf =
|f1 − f2|
f1 + f2

· · · s.t. 0 ≤ ξf ≤ 1 (1)

ξb =
|b1 − b2|
b1 + b2

· · · s.t. 0 ≤ ξb ≤ 1 (2)

V. LOAD-BALANCER’S DESIGN

A simplified version of the load-balancing algorithm is
presented in Algorithm 1. When a new client’s request (packet)
arrives at a switch and there are no rules in the switch’s flow-
table on how to process this request, the switch will forward
the request to its controller. The controller will, according to
its local view of the network, decide where to assign the flow
associated with the request. In case of distributed controllers,
a controller can assign the flows to its local domain server
or forward the flows to the out-of-domain server connected to
the other switch. The two controllers periodically synchronize
their state. On each synchronization period, the controllers
exchange their local view of network. We use a hard-time
of 2 sec for all flows i.e., a flow rule lives in the switch’s
flow-table for only 2 sec, then it has to be reassigned.

We consider four different variation for a LB: (1) a single-
controller LB that uses passive state collection (SP), (2) a
single-controller LB that uses active state collection (SA), (3) a
two-controller distributed LB that uses passive state collection
(DP), and (4) a two-controller distributed LB that uses active
state collection (DA). The objective of these LBs is to reduce
the difference between the servers’ link utilization. i.e. hence
reduce ξ (0 is the optimum).

Algorithm 1: SDN load-balancing at the controllers.
Data: Sn, set of n servers.
Data: Ln, set of traffic load of the n servers (could be

measured in flows or bytes)
begin

while pkt arrives do
lmin ←∞
foreach s ∈ Sn do

if L(s) < lmin then
lmin ← L(s)
smin ← s

SetupPath(pkt, smin)

VI. MODEL EVALUATION

We derive ξf only in the case of SP. However, similar steps
can be used to derive ξb for SA. We make the following as-
sumptions: (1) the number of switches, servers and controllers
in the network (N = 2), (2) the load-balancing algorithm
is invoked for every flow arrival event (as in the case of
OpenFlow), and (3) we ignore network delays. Next, we use
the following notations:

• Ek(t) — the number of expired flows assigned at server
k (1 ≤ k ≤ N ) at a given time t.

• Li
k — the load on server k, i is the ith flow inter-arrival

event.
• ∆i — the difference between the two servers’ loads.

∆i = Li
1 − Li

2 (3)
• σi — the total loads on the two servers.

σi = Li
1 + Li

2 (4)
• ξif — the relative difference between the servers.

ξif = |∆i|/σi (5)
• M i

k — number of new flows that will be assigned to
server k, based on the second assumption

∑N
k=1M

i
k = 1.

• di — the decision parameter of controller.

di+1 = (Li
1 − Ei+1

1 )− (Li
2 − Ei+1

2 )

= ∆i − Ei+1
1 + Ei+1

2 (using(3)) (6)

Li+1
k = Li

k − Ei+1
k +M i+1

k (7)

M i+1
1 =

{
0, if di > 0

1, if di ≤ 0
, M i+1

2 =

{
0, if di ≤ 0

1, if di > 0
(8)

∆i+1 = Li+1
1 − Li+1

2 (using(3))

= (Li
1−Ei+1

1 +M i+1
1 )− (Li

2−Ei+1
2 +M i+1

2 ) (using(7))

= ∆i + (M i+1
1 −M

i+1
2 ) + (Ei+1

2 −E
i+1
1 )

σi+1 = Li+1
1 + Li+1

2 (using(4))

= Li
1−Ei+1

1 +M i+1
1 + Li

2−Ei+1
2 +M i+1

2 (using(7))

= σi + 1− (Ei+1
1 + Ei+1

2 ) (9)

ξi+1
f = |∆i+1|/σi+1 (using(5))

=
|∆i + (M i+1

1 −M
i+1
2 ) + (Ei+1

2 −E
i+1
1 )|

σi + 1− (Ei+1
1 + Ei+1

2 )
(10)
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Fig. 1: Average relative difference (ξ̄b) vs synchronization
period in case of DP and DA LBs. Results obtained using
the model shown in §VI.

In the cases of DP and DA, each controller maintains its
own decision parameter which may differ in values. For DP
controllers, they base their decision on values of Li for the
local server and Li−s for the out-of-domain server, where s
is a variable that depends on the synchronization period. For
DA controllers, they base their decision on values of Li−p for
the local server and Li−s for the out-of-domain server, where
p is a variable that depends on the polling period.

Fig. 1 shows the effect of the synchronization period on
the performance of both DP and DA. In the case of LV, DP
performed better than the DA (except at sync. period 2). The
effect of the polling period had a higher impact than the
synchronization on DA. In the case of HV, DP was more
impacted than DA with higher synchronization periods.

VII. EXPERIMENTAL EVALUATION

A. Environment Setup

To highlight the impact of employing different network state
collection mechanisms, we designed a series of experiments
we ran on our emulation setup to show how a LB application
running at the controller will perform when it takes actions
based on both passive collection of flow information and
active collection of byte information polled from-switch. We
do this in the context of both a single and a distributed SDN
controllers environments.

In our setup, we run POX [6] controller instances as
in-band hosts emulated by Mininet. The consistency model
employed in our experiment in the cases of distributed LBs
(DP and DA) is known as the delta consistency model [7].
The choice of the right value of the synchronization period
is application-specific. Using very small periods might not
be feasible due to various network delays or communication
overhead, while very long ones can badly hurt the performance
of the application (we show in §VII-B). Also the number of
synchronization messages exchanged between the controllers
increases with the number controllers.

Figure 2 shows the topology used in our experiment. The
topology was used in two scenarios: (1) a single controller was
used (in black), and (2) two distributed controllers (in blue)
were used. Two OpenFlow-enabled switches are connected via
a 1000 Mb/s link. The setup also includes two servers; each is
connected to a separate switch via a 100 Mb/s link. In case of
the second topology, the network is divided into two domains,
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Fig. 2: The network topology used in the two scenarios: (1) a
single controller was used (in black), and (2) two distributed
controllers (in blue) were used.

TABLE I: Employed traffic loads and their parameters. r1 and
r2 are flow arrival rates for switch 1 and 2, respectively. p1
and p2 are packets-per-flow arrival rates for switch 1 and 2,
respectively. Payload of any packet is 4KBytes.

LV HV
Flows Poisson process Poisson process
Flows rates r1 = 6f/s, r2 = 4f/s r1 = 8f/s, r2 = 2f/s
Pkts-per-flow Poisson process Poisson process
Pkts-per-flow rates p1 = 34p/s, p2 = 30p/s p1 = 48p/s, p2 = 16p/s

where each domain consists of: a switch, a server, a number of
clients, and a controller that is responsible for controlling that
domain. Finally, 64 clients (32 at each switch) are connected
via 100 Mb/s links. The clients will generate UDP requests and
create the traffic. We employed two traffic loads. The first we
call the low-variation traffic load (LV), while the second is the
high-variation traffic load (HV). Table I shows the parameters
of each load.
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Fig. 3: Relative difference (ξb) vs time.
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Fig. 4: Average relative difference (ξ̄b) vs polling period in
case of a SA LB.



4

1.0 2.0 4.0 8.0 16.0 32.0

0.1

0.15

0.2

0.25

Sync Period (sec)

A
ve

ra
ge

R
el

at
iv

e
D

iff
er

en
ce

ξ̄f
ξ̄b

(a) LV

1.0 2.0 4.0 8.0 16.0 32.0

0.1

0.2

0.3

0.4

0.5

Sync Period (sec)

A
ve

ra
ge

R
el

at
iv

e
D

iff
er

en
ce

ξ̄f
ξ̄b

(b) HV

Fig. 5: Average relative difference in bytes (ξ̄b) and flows (ξ̄f )
vs synchronization period in case of a DP LB.

1.0 2.0 4.0 8.0 16.0 32.0

0.4

0.6

0.8

Polling Period (sec)

A
ve

ra
ge

R
el

at
iv

e
D

iff
er

en
ce

(ξ̄
b
) sync. 1.0 sec

sync. 8.0 sec
sync. 32.0 sec

(a) LV

1.0 2.0 4.0 8.0 16.0 32.0

0.4

0.6

0.8

1

Polling Period (sec)

A
ve

ra
ge

R
el

at
iv

e
D

iff
er

en
ce

(ξ̄
b
) sync. 1.0 sec

sync. 8.0 sec
sync. 32.0 sec

(b) HV

Fig. 6: Average relative difference (ξ̄b) vs polling period in
case of a DA LB.

B. Results

We show the results of our experiments. ξ̄ represents the
relative difference averaged every 2 sec over 10 runs. Recall
the definition of the relative difference ξf (1) and ξb (2). The
smaller the relative difference the better the performance.

Fig. 3 shows how the relative difference in the number of
bytes (ξb) measured at each server varies with time (6 sec
averaged). SP performed better most of the time than SA (with
polling period 1 and 2 sec). Comparing Fig. 3a and 3b, the
results show that the traffic load had an impact that was not
significant, i.e. in the LV case the SP performed better than
SA even at small polling periods.

Fig. 4 shows the effect of the polling period on the perfor-
mance of the SA LB. Regardless of the traffic load (Fig. 4a
and 4b), SA is affected by the polling period. As the polling
period increases, the performance of SA degrades.

Fig. 5 shows that the performance of DP was affected by the
synchronization period among the controllers. As the synchro-
nization period increases, the performance degrades. Levin et
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Fig. 7: Average relative difference (ξ̄b) vs synchronization
period in case of DP and DA LBs.

al. [3] showed similar results regarding flow-based controllers
when measuring the performance in terms of flows. Relying on
flows in decision making (i.e. passive state collection) impacts
the results as follows: (1) the performance of the LB was
worse in the case of the HV load than that of the LV load
(higher ξ̄f and ξ̄b), and (2) the flow-based ξ̄f and byte-based
ξ̄b performance indicators deviated.

Fig. 6 shows the effect of the polling period on the perfor-
mance of the DA LB, at synchronization periods of 1, 8 and
32 sec. DA is affected by the polling period. Its performance
degrades as the polling period increases, the same as SA (Fig.
4). Our results show that the polling period has more impact
than the synchronization period on DA’s performance (same as
Fig. 1a). As the polling period increases, the state information
used by the LB becomes increasingly outdated. Therefore,
for LV traffic load, reducing the frequency of synchronization
(i.e. 32 sec) limits the exchange of outdated state information
between the controllers. This is demonstrated in Fig. 6a by
a lower value of ξ̄b in the case of a 32 sec synchronization
period at high polling periods (8, 16 or 32 sec).

Fig. 7 shows the effect of the synchronization period on the
performance of both the DP and the DA LBs. For LV traffic,
DP outperformed DA, even at high synchronization periods
(similar to 1a). However, for HV traffic the performance of
DP started to degrade with the synchronization period.

VIII. CONCLUSION

Our evaluation shows that in case of low-variation traffic,
where flows are comparable (in byte counts), the application
that relied on passive state collection performed better than
the one that relied on active state collection. The performance
of the application that relied on active state collection was
mainly dependent on the polling periods, and in the context
of a distributed environment was more affected by the polling
periods than the synchronization periods. Lastly, since the
results show that the nature of traffic (LV versus HV) has
an impact on the application performance, SDN application
developers should pay attention to how they define flows in
their applications.
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