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Abstract—In this paper, we introduce the use of adaptive
controllers into software-defined networking (SDN) and pro-
pose the use of adaptive consistency models in the context
of distributed SDN controllers. These adaptive controllers can
tune their own configurations in real-time in order to enhance
the performance of the applications running on top of them.
We expect that the use of such controllers could alleviate some
of the emerging challenges in SDN that could have an impact
on the performance, security, or scalability of the network.
Further, we propose extending the SDN controller architecture
to support adaptive consistency based on tunable consistency
models. Finally, we compare the performance of a proof-of-
concept distributed load-balancing application when it runs on-
top of: (1) an adaptive and (2) a non-adaptive controller. Our
results indicate that adaptive controllers were more resilient
to sudden changes in the network conditions than the non-
adaptive ones.

1. Introduction

Software-Defined Networking (SDN) is a promising net-
work architecture that proposes the decoupling of data and
control planes. It uses a logically centralized controller pow-
ered by a global view to orchestrate the network, enabling
innovation by shifting the task of network administration to
network programming.

According to the SDN architecture [1] that is defind
by the Open Networking Foundation (ONF), a controller
needs to be logically centralized. The use of a physically
centralized controller can limit the scalability and reliability
of large scale networks. A single controller can represent
a bottleneck as well as a single point of failure. Recent
research in SDN [2], [3], [4], [5], [6] recommends the use
of logically centralized but physically distributed controllers.
On contrary to centralized controllers, distributed controllers
can scale-out by installing new controllers when needed and
can be fault-tolerant in case of controller failure.

The design of SDN applications that run on top of dis-
tributed controllers is a non-trivial task due to the complexity
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of handling controllers state synchronization which in-turn
can affect the application’s performance. Levin et al. [4]
studied the impact of the inconsistent controllers on the SDN
application performance, they found that inconsistency can
significantly degrade the performance of SDN applications.
In previous work [7], we confirmed their findings using
an implementation as well as a mathematical model of a
distributed SDN load-balancer using a different application
performance indicator, and this motivated the work in this
paper. We also showed that the network state collection
mechanism employed by the controller and the type of traffic
had an impact on the load-balancer’s performance.

Brewer theorem [8], [9] (also known as CAP theorem)
stated that it is impossible for a distributed system to simul-
taneously provide the following guarantees: Consistency,
Availability, and Partition tolerance, and that there is always
a trade-off between the system’s consistency and availability
in the presence of network partitions. For example, in the
case of a datastore cluster that is comprised of a set of
distributed nodes. At one point of time, those nodes got
partitioned due to a network failure, while new data update
requests continued to arrive at some of the nodes. If those
nodes continued to handle the requests, the stored data might
become inconsistent but the cluster will still be available.
Otherwise the data would remain consistent but it would be
said that the cluster is unavailable.

As the CAP theorem applies to any distributed system,
we believe that in SDN that would imply that designing an
SDN application that runs on top of physically distributed
controllers encounters a trade-off between consistency and
availability, in case of network partitions.

Panda and et al. [10], investigated how these trade-offs
apply to software-defined networks. They concluded that
availability and partition tolerance are identical in networks
and datastores, however the notion of consistency may differ.
In datastore systems, the consistency of data across replicas
is the primary concern, but in SDN it is the consistent
application of policies across the network.

In this paper, we make the following contributions:
(1) we propose the use of adaptive controllers based on
tunable consistency in distributed SDNs as we expect that
the use of such model could be a solution for some of the
apparent problems in SDN, (2) we show how the typical



SDN controller architecture can be extended in order to
support adaptive consistency, and (3) we implement a proof-
of-concept distributed load-balancing SDN application and
compare its performance when run on-top of: (1) non-
adaptive controllers and (2) adaptive controllers.

The rest of this paper is organized as follows: we present
the related work in distributed SDN controllers in Section
2. In Section 3 we provide a background on the consistency
models, the problem of inconsistency, and its impact on
SDN applications. In Section 4 we explain adaptive consis-
tency and discuss its need in SDN. An extended architecture
for adaptively consistent controllers is presented in Section
5. The proof-of-concept distributed load-balancing applica-
tion is demonstrated in Section 6. While in Section 7 we
discuss tunable consistency. Finally Section 8 will be our
conclusion and an outline for possible foreseeable work.

2. Related Work: Distributed Controllers

FlowVisor [11] is an OpenFlow proxy which acts as a
network virtualization layer that lies between the network
devices and control applications. It can host multiple guest
OpenFlow controllers, one controller per slice while ensur-
ing that slices are isolated from one another.

HyperFlow [3] is a distributed event-based controller that
uses a publish/subscribe messaging paradigm built on-top
of a distributed file system, giving the applications control
over consistency and durability. HyperFlow was designed to
be resilient in the presence of network partitioning, where
partitions must continue their operation independently, being
eventually consistent and favoring availability.

Onix [5] is a general API for controller implementation,
allowing the control applications to make their own trade-
offs among consistency, and scalability. The authors ob-
served that applications often have different requirements for
the consistency of the network state they manage. Onix pro-
vides the control applications with two storage subsystems
employing different consistency models: a transactional
Database (DB) with strong consistency and a memory-based
single-hop Distributed Hash Table (DHT) with eventual
consistency.

Open Network Operating System (ONOS) [6] is dis-
tributed NOS platform for SDNs. ONOS runs instances of
Floodlight [12] controllers, and makes use of a distributed
DB in order to provide a global view for the controllers.
Two prototypes were developed: (1) The first prototype
was concerned with implementing the global network view
on a distributed platform providing scalability and fault-
tolerance. Cassandra [13], [14] an eventually consistent DB
was selected as the distributed data store. On top of Cassan-
dra, ONOS deployed a graph DB and provided a graph API
for the SDN applications developers. The first prototype was
suffering from low performance issues due to the complexity
of its data model, the excessive data store operations, and
the controllers had to keep polling network state information
from the switches. (2) The second prototype was concerned
with improving the low performance issues of the first.
The authors replaced Cassandra DB with a low latency

distributed in-memory key-value data store, and added a
caching layer for the network topology information.
DIstributed SDN COntrol plane (DISCO) [15] is a dis-
tributed controllers platform that was designed for multi-
domain SDN networks, it is built on top of Floodlight
[12] SDN controllers, and employs an AMQP-based pub-
lish/subscribe messaging module. To support other func-
tionalities such as QoS, DISCO uses agents that can be
dynamically be added at the different controllers.

3. Consistency in Software-Defined Networks

3.1. Consistency Models

In distributed systems, the consistency of data among
different nodes (different nodes holding copies of same
data are known as replicas) is governed by the consis-
tency model being employed. Tanenbaum and Van Steel
[16], presented different consistency models for distributed
datastores. They defined the consistency model as a contract
between the applications and the datastore, which embodies
that if applications agree to obey certain rules, the store
promises to work correctly. In the light of their work, the
main consistency models of many distributed systems can be
categorized into: strong, weak or eventual. In the presence
of network partitioning, a strong consistency model would
favor consistency to availability, a weak consistency model
would favor availability to consistency. While an eventual
consistency model, would be in the favor of availability,
relax its consistency requirements so that replicas will even-
tually converge to the same state (i.e. become consistent) in
case of no further updates were served.

To the best of our knowledge, we believe that most of
the research conducted in the area of distributed controllers
can be categorized as either strong or eventually consistent
controllers.

3.2. Impact of Inconsistency in Networks

As aforesaid, Levin et al. [4] studied the impact of
inconsistency among distributed controllers on the SDN
application performance, the less consistent the controllers
become, the lower the application performs. Levin et al.
[4] only studied the impact of inconsistency on application
performance. We also cofirmed that the inconsistent state
information among the controllers or between the controllers
and switches had an impact on the application performance
[7]. However, beside application peformace degradation, in-
consistency can create other severe problems in the network
such as forwarding loops, black holes and isoluation and
reachability violation, which we discuss later in this sub-
section. Guo et al. [17] identified some of these problems.

An example of an application that would employ strong
consistency is a security-sensitive firewall application. Such
application would probably employ a strong consistency
model as it must ensure certain policies are met, and any
inconsistency in such policies could led to illegitimate traffic



traversing restricted links. On the other hand, an application
that would tolerate using a weaker consistency model is a
load-balancing application. Such application could tolerate
some inconsistency between the controllers, as long as they
agree on the least-loaded server in order to avoid creating
forwarding loops which we discuss in details next. In such
case, non-strongly consistent load-balancers must develop
techniques to ensure that all the controllers agree on the
least-loaded server, or to be designed in a way to avoid such
conflicts. Indeed this can complicate the design of such SDN
application.

There are some reasons where network application de-
velopers would choose not to design their applications to be
strongly consistent. First, several distributed services require
low latency guarantees to properly function. Second, in dy-
namic (i.e. nodes join and leave) and partitionable networks
where node failure is common, oftentimes these services
ought to relax their consistency expectancy choosing avail-
ability at the expense of strong consistency [18]. Third,
many enterprise-grade or carrier-grade applications require
high availability guarantees (at least five-nines [19]) while
strong consistency comes at the cost of less availability.
In addition, applications can have different functional (or
non-functional) ! requirements. Hence, they often opt to use
different consistency models (depending on the application
requirements).

Further, it is of great importance to highlight the fol-
lowing critical problems that can occur as result of incon-
sistency between the SDN controllers. It is worth noting
that those problems can also be caused by other means e.g.
implementation or misconfiguration bugs (even in case of
non-distributed controllers). However, in this paper we are
only considering the case where those problems were caused
as result of controllers’ inconsistency.

1) Forwarding loops [17], [21],
2) Black holes [17], [21],
3) and Isolation and Reachability Violation [21], [22].

First, loops can occur when a packet returns to a port it
has visited before [22]. Moreover, loops can be finite or
infinite (when packets loop indefinitely). Forwarding loops
can occur in SDN when two (or more) switches, based on
improper flow rules installed by the controllers, repeatedly
keep forwarding some flows among themselves in a loop
which may never terminates, causing the flows not to reach
their intended destinations. The improper rules can be a
consequence of an unintended misconfiguration made by the
SDN application developer, or due to inconsistent network
views at the controllers. For example, in the case of a
distributed load-balancer, a controller can decide that a client
request (flow) should be forwarded to a least-loaded server
(according to its own view), and when the traffic passes
through a port that belongs to a switch administered by a
different controller (also running the same load-balancing

1. Functional requirements are the requirements that a system should
provide in order to properly function. They show how would the system
behave or act for different inputs or situations. Non-functional requirements
are those constraints on the functions provided by a system. [20]

application), then the latter decided to forward the flow
back to a different least-loaded server (according to its
inconsistent view) that is connected to a switch port that
is administered by the first controller. The repetition of this
scenario can lead to the flow never reaching any server,
causing the client request not to be handled.

Next, a black hole occurs when packets belonging to
certain flows (or all packets) get dropped when they traverse
a specific switch port. Hence, that switch acts like a black
hole in the network. Black holes can occur in SDN for the
same reasons as the forwarding loops.

Finally, isolation and reachability policies can be vio-
lated as a result of improper flow rules inserted by the
controllers due to out-dated information or inconsistent
views. Veriflow [21] can check the SDN for violations of
policies in real-time by verifying the data-planes (instead
of the SDN control applications) for correctness. Further,
network alaysis frameworks as [22], [23], [24] can be used
to statically check networks for any violations of policies.

4. Proposed Adaptive Consistency

In general, we define an adaptive controller as:

“One that can autonomously and dynamically

tune its configuration in order to achieve a cer-

tain level of performance measured in predefined

metrics and based on its requirements.”
In the case where the tunable configuration is the consis-
tency level, we call it an adaptively consistent controller. In
other words, an adaptively consistent controller is one that
can tune its level of consistency in order to reach the desired
level of performance based on specific metrics. Adaptive
consistency models have previously been proposed for the
use in cloud computing environments [25], [26].

There are a number of reasons, which we believe are
enough, for justifying the need to adopt the concept of adap-
tive consistency in SDN controllers. Adaptively consistent
controllers can:

1) Reduce the complexity at the applications. Without
adaptive consistency, application developers would
need to implement application-specific consistency
models directly into their applications as every
application has different requirements. In turn this
could contribute to a lower application implementa-
tion cost. Nevertheless, the need for adaptively con-
sistent controllers becomes more apparent in case
of deploying multiple applications with different
requirements where application developers ought to
implement multiple consistency models.

2) React rapidly to the changing network conditions.
By tracking the applications’ performance in real-
time, adatively consistent controllers can tune the
consistency level in order to maintain a certain
performance level based on pre-defined metrics. In
other words, adatively consistent controllers could
provide the applications with robustness and reli-
ability against sudden changes in network condi-
tions.
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Figure 1: The Extended Architecture for Adaptive Con-
trollers

3) Reduce the overhead of controllers state distribu-
tion by eliminating unnecessary state distribution
messages without compromising the application
performance, especially in case strong consistency
is not a requirement, or network states do not have
to be replicated to all the controllers.

5. The Design of Adaptive Controllers

In this section, we present an abstract design for adap-
tive controllers. We extended the typical SDN controller
architecture to support controller adaptation. Fig. 1 shows
the main constituents of such controllers (which we call
modules). These modules are supposed to be physically a
part of every controller (i.e. reside at each controller) in a
given set of distributed controllers (with the exception of the
application module). Based on their functionality, many of
these modules are already employed by several controller
implementations either explicitly as separate modules or
implicitly as parts of other modules. In this section, we
show all modules in order to highlight their interoperability
to form an adaptively consistent controller. Given certain
application specific performance indicators, the adaptively
consistent controller will try to autonomously tune, based on
measurements or predictions, the consistency level in order
to achieve the lowest possible overhead while maintaining
the required level of application performance according to
specified performance indicators. The adaptively consistent
controller should also abide to certain constraints such as:
no forwarding loops or black holes. Generally speaking, we
believe that an adaptively consistent model for distributed
SDN controllers would turn the problem of inconsistency
into an automatic control problem, where the system is
comprised of a measurement (and/or prediction) module as
well as a control module forming a feedback loop. The
control module based on the performance level measured by
the measurement module would tune the consistency level
of such system.

!I

| Controller; |

=
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Southbound Module. The first module is the the south-
bound module which is responsible for implementing the
controller-side of the SDN south-bound protocol. An SDN
south-bound protocol enables controllers to communicate
with the switches and instruct them how to handle flows.
Administered by the ONF, OpenFlow [27] is the defacto
standard south-bound protocol.

Northbound Module. The northbound module is respon-
sible for enabling the communication between the SDN
applications and the controllers. The SDN applications can
run on the same machines as the controllers or on separate
machines. Hence, a northbound interface is needed to enable
the SDN applications to seamlessly communicate with the
controllers via an Application Programming Interface (API)
(locally or remotely).

East/West-bound Module. The controllers’ east/west-
bound module is the module implementing the east-west
communication protocol. An east-west protocol is responsi-
ble for coordinating controller-to-controller communication.

Network State Collection Module. This module is re-
sponsible for collecting network state information about
the network so that controllers can build their own views.
There are different mechanims that can be used to collect
network state information which are mainly dependent on
the APIs provided by the Soutbound module. In previous
work [7], we studied network state collection and its impact
on SDN application performance. The network state infor-
mation provided by this module can subsequently be used
by other modules or it can queried by the applications. The
Adaptation module needs the information provided by this
module in order to calculate the application performance
indicators.

Tunable Consistency Module. A tunable consistency mod-
ule is one that implements the tunable consistency model
and provides a configurable consistency level. In other
words, this module encapsulates the complexity of main-
taining distributed information across multiple controllers
and provides other modules with a uniform interface that
can be used to change the consistency of such information
in between strong and weak consistency levels.

State Prediction Module. When consulted by the adap-
tation module, this module is responsible for predicting
the behavior of the tunably consistent systems before using
some particular configuration. In some cases, predicting the
behavior of the application given certain configurations can
help the controller to select a suitable configuration for
achieving the required application performance.

Stored Procedure Compiler Module. As different SDN
applications employ different performance metrics, the ap-
plication needs to instruct the controller on how to calculate
its performance indicator. The application does that by creat-
ing a stored procedure (similar to the ones used in Database



systems [28]) that will be executed at the controller. The
procedure is executed at the controller to prevent any un-
necessary delays as the application might not physically be
running on the same machine as the controller. The stored
procedure compiler Module is responsible for validating
such procedures and compiling them into a representation
understood by the Adaptation Module.

Adaptation Module. At the core of an adaptive controller,
lies down the adaptation module. The adaptive module is
one that is given a current state for the network, calculates
application-specific performance indicators and apply an
adaptive strategy in order to find suitable values for the
tunable parameters that would maintain the required level
of application performance.

Policy Checker. This module is responsible for checking
the controllers’ configuration before applying them. It can
verify the configurations before being set by the controller
against user defined policies. It can also be used to verify
any new rules created by the SDN application against the
user policies before sending them to the switches via the
southbound interface.

Application Module. Finally, the application module holds
the application logic of the network application that is
implemented by the network developer. This module can
physically reside at the controller, or can communicate
with the controller through some interface (Northbound).
Each application is responsible for choosing its performance
indicators and instructing the controller on how to calculate
it.

6. Proof-of-Concept

In order to evaluate the validity and effectiveness of the
proposed adaptive controller, we implemented a distributed
load-balancing application running on-top of adaptive con-
trollers. With regards to the proposed design (Fig. 1), our
implementation is missing the “prediction”, “stored proce-
dure compiler”, and “policy checker” modules. The reason
is we wanted to show that even without these modules, the
whole system still will perform better that the non-adaptive
one in the presence of changing network conditions. For
this particular implementation, the mathematical model de-
veloped for the load-balancer presented in [7] could be used
in the implementation of a prediction module.

6.1. Experimental Setup

Our experimental setup shown in Fig. 2 consists of
two domains, each domain includes a controller, a switch,
a server, and a set of 32 clients that generate the traf-
fic. The controllers run POX [29] to handle southbound
communication. Mininet was used to emulate the network.
When a flow arrives at the switch with no rules to match,
the switch will notify its controller which in-turn decides
where to assign the flow (i.e. which server should handle

it). The decision is based on the controller’s network view
of the least-loaded server. The traffic generated by the clients
follows a Poisson distribution with the following parameters:
flow arrival rates at the switches are 6 and 4 flows/sec,
and packets-per-flow rates for the switches are 34 and 30
pkts/sec. In order to simulate a sudden network change, we
change the parameters of traffic shortly after 100 sec to 8
and 2 flows/sec for the flow arrival rates, and to 48 and 16
pkts/sec for the packets-per-flow rates.

Domain I Domain II
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Dl Controller; Controllers Dl
p——— /] y p——
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Figure 2: The network topology with two distributed con-
trollers used.

6.2. Implementation

Network State Collection Module. We used a passive
network state collection mechanism. Where, each controller
only maintains the number of flows assigned at its local-
domain server (f;). In previous work [7], we explored
different SDN network state collection mechanisms and how
they impact the performance of SDN applications. As for the
application performance indicator, we opted for the relative
difference as defined in [7], the lower the relative difference
the better the performance. The module will calculate the
relative difference in the number of flows as measured at the
controllers (§7) shown in (1) for the use by the adaptation
module. For the evaluation, we used the relative difference
in the number of bytes as measured at the servers (£;) shown
in (2) as a performance indicator. We make the following
notations:

e fi — the flow count assigned to server i (i € {1,2})
at a given time (measured at the controller in our
experiment).

e b; — the amount of traffic received (in bytes, mea-
sured at the server) by server ¢ at a given time.

e &y — the relative difference in the number of flows
(control parameter).

o & — the relative difference in the number of bytes
(performance indicator).
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Tunable Consistency Module. The tunable consistency
module used in our implementation is based on the delta
consistency model [30]. The delta consistency model relaxes
its data staleness constraints, where a read returns the last
value that was updated at most delta time units (also known
as the synchronization period) prior that read operation. In
other words, the delta consistency model guarantees that
all the controllers converge to a point after delta time
units, where they all see the same shared data values if no
new updates occurred. The tunable consistency module will
expose the synchronization period as the tunable parameter
(consistency level indicator) to the adaptation module. The
adaptation module will automatically tune the value of the
synchronization period based on the measured performance
of the load-balancer. Using small values for delta might not
be feasible, as small values would mean more synchroniza-
tion messages between the controllers which subsequently
affects the application performance. Also using large values
for delta could have a negative impact of the application
performance.

Adaptation Module. We used a simple controller adaptation
module. The core of the module is the adaptation function
shown in (3). The adaptation function accepts the &; as an
input and returns a value for the synchronization period s
from the set S of allowed periods. In our implementation,
we used S = {1,2,4,8,16,32}. The values of S were
chosen to be powers of 2 (2%) in order to quickly impact the
application performance. We make the following notations:

. E? — the relative difference threshold (set by the

application).

e ¢ and e — the threshold margins.

e s € 8§ — the synchronization period (2¢min < s <
Q0maz)),

o f(&f) — the controller adaptation function which

selects a new value for s.

2min(logz(5)+1,amm)7 0< ff < E}‘ e

FE) =15, e <t <el et
zrn,(m(logz(S)—l,oun,m)7 f? +et < & <1

3)

Fig. 3 shows how the adaptation function selects the next
value of the synchronization period. The function divides the
value of the relative difference £y (recall that 0 < &y < 1)
into three regions. The first region 0 < &5 < &7 — ¢ where
the value of £¢ is considered low relative to the threshold
(better performance) and the synchronization period must
be increased in order to decrease the number of unnecessary
synchronization messages between the controllers. The sec-
ond region f? —e <& < 5}1 +¢et where the value of & is
considered moderate and synchronization period is left intact

P

£ =0

Figure 3: The Controller Adaptation Function

(i.e. unchanged). The third region f}r +et <& <1 where
the value of £y is considered high (worse performance) and
the synchronization period must be decreased in order to en-
hance the application performance. In our implementation,
the adaptation function was invoked every 2 secs.

6.3. Results

We compare the results of a load-balancing applica-
tion running on-top of non-adaptive distributed controllers
against the same application running on-top of adaptive
ones. The results were obtained by running the load-
balancing application using the setup shown in subsection
6.1 and might differ in other scenarios. We set the syn-
chronization period of the non-adaptive controllers to a
constant of 4 sec. As for the adaptive controllers we used the
following values for the parameters: 5? =0.25, et =0.2,
and e~ =0.1.

Fig. 4 shows how the application performance repre-
sented by the relative difference in the number of bytes as
measured at the servers &, changes over time in both cases.
Fig. 4a shows that in the case of non-adaptive controllers,
the application performance was affected by the changing
network condition, shortly after time = 100 sec when the
traffic parameters changed, the application performance de-
graded (higher &,). While in the case of adaptive controllers
shown in Fig. 4b, the application performance was more
resilient (smaller variation in &) to the sudden change
in the network. This behavior can clearly be observed in
Fig. 5 which shows the simple moving average (over 10
points) for the relative difference (&;) in both cases. Fig. 6
demonstrates how the adaptive controllers altered the values
of their synchronization period over time.

7. Discussion on Tunable Consistency

As different SDN applications may have different con-
sistency requirements [5], they tend to employ different
consistency models. One consistency model that we believe



1% T 1 T
~ 0.8 H — - 0.8 F o
g 0.6 | [ ‘I L ; ‘”I & g 06 N
& o4 |4 \TH I 04l I 1
é Uj ?ﬂﬁﬁ}mﬂ “‘W?\)ﬂ& Hiﬁ —S‘ uz—l‘f‘wj M}' I Mg“ H‘* m Tv‘\ 1
e &LP}A ‘M A =) U i Y K
0 B ﬁ | 0 VOL . My‘} l‘f‘l 1

Time (sec) Time (sec)

(a) Case I: Non-adaptive Controllers (b) Case II: Adaptive Controllers

Figure 4: Relative Difference &, vs Time

0.4 T N T T T
Adaptive
—— Non-adaptive (sync = 4s)

——

Relative Difference (&)

L | | | |
0 50 100 150 200 250 300
Time (sec)

Figure 5: Adaptive vs Non-adaptive Controllers

is generic and could fulfill the requirements of different
network applications is the tunable consistency model used
in some widely deployed distributed DB such as Amazon
DynamoDB [31] and Apache Cassandra [13], [14]. Dixon
[32] explained how this model could be used for distributed
SDN controllers. For the rest of this section, we refer to
such model simply as the “tunable” consistency model.
Cassandra is a single-hop (peers have information on all
other peers) peer-to-peer (P2P) distributed NoSQL DB, built
on top of a distributed hash table (DHT) with a look-
up complexity of O(1). The consistency model underlying
Cassandra sometimes is said to be eventually consistent
[33]. However, the paramters of the consistency level used
in Cassandra can be tuned [33]. An application can fune
some parameters within each query specifying if it needs
that query to be executed strongly or eventually consistent
(also known as the consistency level) [33], [34]. We believe
that adopting a similar model for distributed SDN controllers
can be beneficial, where each SDN application can use a
consistency level that fulfills its requirements. Also, each
query can be accompanied with a different consistency level.
Thus by using tunable consistency, even within the same
application, developers can have fine-grained control over
the consistency of each query.
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Figure 6: Synchronization Period vs Time

The parameters that can be tuned by the application
are: First, N is the total number of replicas (or nodes)
in a cluster. Next, R is the number of replicas that must
acknowledge a read operation in order to be successful. In
other words, how many nodes that the system must wait for
to acknowledge a read operation in order to consider it a
success and to return the value to the application. Finally,
W is the number of replicas that must acknowledge a write
operation in order to be successful.

In case a strong consistency level is desired, the follow-
ing equality [35] needs to be true:

R+W >N 4

When retrieving a key from the DB, the equality shown
above will guarantee the overlap property that there exist at
least one node among the R nodes that has the most recent
written value. Vogels [34] explained how the aforementioned
parameters could be tuned in order to control the consistency
level of a distributed DB system.

8. Conclusion and Future Work

In this paper, we investigated the potential of employ-
ing adaptive SDN controllers. We believe that the use of
such controllers should reduce the application complexity,
provide the applications with robustness against sudden
changes in network conditions, and reduce the controllers
state distribution message when not needed. Additionally,
we proposed an extension to the typical SDN controllers
in order to support adaptive consistency, and explained the
functionality of its constituents. Finally, we implemented a
proof-of-concept distributed load-balancing application that
runs on-top of both an adaptive and a non-adaptive con-
troller. We compared the application performance in both
cases (adaptive vs non-adaptive), and our results showed that
adaptive controllers were more resilient to sudden changes
in the network conditions than the non-adaptive ones.

For the foreseeable future, we plan to evaluate the fea-
sibility of adaptive controllers employing a more realistic
tunable consistency model (see Section 7) similar to that
of distributed datastores such as Amazon DynamoDB and
Apache Cassandra.
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