M. Nikseresht, D. Hutchinson and A. Maheshwari, "Experiments
With A Parallel External Memory System", 14th Annual IEEE
International Conference on High Performance Computing (HiPC),
Goa, India, December 2007.

Experiments with a Parallel External Memory
System™

Mohammad R. Nikseresht!, David A. Hutchinson?, and Anil Maheshwari'

1 School of Computer Science, Carleton University
2 Dept. of Systems and Computer Engineering, Carleton University

Abstract. The theory of bulk-synchronous parallel computing has pro-
duced a large number of attractive algorithms, which are provably op-
timal in some sense, but typically require that the aggregate random
access memory (RAM) of the processors be sufficient to hold the entire
data set of the parallel problem instance. In this work we investigate the
performance of parallel algorithms for extremely large problem instances
relative to the available RAM. We describe a system, Parallel Exter-
nal Memory System (PEMS), which allows existing parallel programs
designed for a large number of processors without disks to be adapted
easily to smaller, realistic numbers of processors, each with its own disk
system. Our experiments with PEMS show that this approach is practi-
cal and promising and the run times scale predictable with the number
of processors and with the problem size.

1 Introduction

In this work we investigate the performance of parallel algorithms for extremely
large problem instances relative to the available Random Access Memory (RAM).
Using theoretical results of [1,2], we transform parallel algorithms designed for
a large number of processors without disks to smaller, realistic numbers of pro-
cessors, each with its own disk system.

External Memory (EM) Algorithms: These algorithms are designed so that
their run times scale predictably even as the size of their data increases far be-
yond the size of internal RAM. This huge data size requires that such algorithms
optimize the transfer of data between RAM and some sort of secondary memory
devices, typically moveable-head disk drives. The time to access an element of
data at an arbitrary position on a moveable-head disk is several orders of mag-
nitude greater than for RAM access. In addition, the time to set up the data
transfer (disk head movement, rotational delay) is much larger than the time
to actually transfer the data. Data items are grouped into blocks and accessed
block-wise by efficient external memory algorithms in order to amortize the setup
time over a large number of data items.

* This work was partially supported by the National Sciences and Engineering Re-
search Council of Canada (NSERC) and by the High Performance Computing Vir-
tual Laboratory (HPCVL).

David Hutchinson
Text Box
M. Nikseresht, D. Hutchinson and A. Maheshwari, "Experiments With A Parallel External Memory System", 14th Annual IEEE International Conference on High Performance Computing (HiPC), Goa, India, December 2007.

A critical quality in a good EM algorithm is its locality of reference to items
in a disk block (or collection of disk blocks). EM algorithms are designed to
use all, or a significant fraction, of the elements in a block while the block is in
memory, avoiding the cases where the same block must be brought into memory
many times. The operating system’s data cache may interfere with the operation
of an EM algorithm, as it may make useless copies of data blocks, and occupy
RAM that could be used more effectively for other purposes. EM algorithms
manipulate huge data volumes relative to their RAM size, and so the time to
move data between RAM and disk dominates the running time in most cases.
For this reason, the Parallel Disk Model (PDM) [3] uses the number of distinct
disk block input or output (I/O) operations as a measure of the goodness of
an EM algorithm. If D disks are present and the block size is B items, a single
I/O operation can transfer BD items in parallel in this model. An optimal EM
algorithm is one that achieves the minimum number of I/O operations possible.

Coarse Grained Parallel Algorithms: These algorithms have a number of
interesting and useful properties for our purposes: (a) the processors perform
multiple rounds of computation separated by communication of interim results,
(b) during each computation round, the processors perform a chunk of compu-
tational work. For this period of time the processors operate completely inde-
pendently, and are restricted to accessing the data in their own local memories.
and (c) between computation rounds the processors synchronize and exchange
information via a communication network.

The simulation techniques described in [1] permit coarse grained parallel al-
gorithms to be executed efficiently on machines with p real processors rather than
the number of processors v required by the original algorithm, where 1 < p < v.
We refer to the original v processors as virtual processors. The tradeoff is that
each of the real processors must have enough disk space to store the internal
memory for v/p of the virtual processors plus the messages that would be sent
between the virtual processors in each communication round. The real proces-
sors must have enough RAM to represent at least one virtual processor at a
time, and that should be at least DB items in size so swapping between virtual
processors is I/0 efficient. Finally, the communication should be 1/O efficient,
meaning that at least DB blocks should be sent and received by each virtual pro-
cessor in each communication round. Intuitively, the simulation technique works
because the coarse grained property of the original parallel algorithm ensures
that the requisite locality of reference is present in the resulting EM algorithm.
We can “trade-off” some parallelism for blocked I/O but retain some parallelism
to take advantage of multiple real machines and the scalability of multiple disk
systems. The theoretical guarantees of asymptotically optimal parallelism and
I/O in the resulting algorithms makes them interesting for practical use, since
their parameters (v, p, B, D) can be scaled to fit the parallel hardware at hand.

Previous Work: The work of this paper extends the results of previous imple-
mentation work reported in [2] from a single processor to multiple real processors.

LEDA-SM [4], TPIE [5] and STXXL [6] are I/O workbenches developed to ex-
plore external memory algorithm implementations for sequential machines. TPIE
provides prototype implementations of many contemporary EM algorithms but
currently it does not offer algorithms for multiple processors or multiple disks.
STXXL provides a mechanism for asynchronous I/O and therefore allows over-
lapping of I/O and computation. It handles multiple disks but it does not itself
support multiple processor algorithms. SSCRAP is a framework for implement-
ing parallel coarse grained algorithms and has been extended [7] to support the
simulation of certain parallel algorithms in external memory with reference to
the theoretical framework of [1]. However, it is not clear whether SSCRAP han-
dles communication traffic between virtual processors in an I/O-optimal way, or
whether very large problem instances relative to RAM size have been tested.

Organization and Contributions of this Paper: This paper takes a step
forward in determining the practicality of the simulation approach. In Sect.
3, we describe a framework that allows existing MPI-based implementations
of CGM algorithms (or BSP algorithms with appropriate parameters) to be
executed efficiently on a machine with fewer real processors but with disk storage.
Such MPI-based programs are modified in the following ways: (a) calls to the
MPI library are replaced by calls to corresponding procedures in the PEMS
library and (b) calls to the C dynamic memory management routines are replaced
by calls to corresponding PEMS routines. In Sect. 4, we report preliminary
timing results for sorting that are comparable with TPIE and STXXL, two
contemporary workbenches for high performance I/O experiments. We compare
single processor instances of sorting on these workbenches with sorting using
various numbers of real processors running a CGM sample sort implementation.
While our timing results lagged those of TPIE and STXXL for a single processor,
we are able to surpass both by adding more processors. Our experiments show
that this approach is practical and promising and the run times scale predictable
with the number of processors and with the problem size.

2 Preliminaries

In this section we present the main ideas behind the simulation technique pro-
posed in [1]. It optimizes blockwise data access and disk I/O and at the same
time utilizes multiple processors connected via a communication network or
shared memory. The Bulk-Synchronous Parallel (BSP) model [8] consists of v
processor/memory components, a router that delivers messages in a point to
point fashion, and a facility to synchronize all processors. Each processor has a
unique label in the range 0,1,...,v — 1. Computation proceeds in a succession
of supersteps separated by synchronizations, usually divided into communication
and computation supersteps. In computation supersteps processors perform local
computations on data that is available locally at the beginning of the superstep
and issue send operations. Between computation supersteps, a communication
superstep is performed, where each processor exchanges data with its peers, via

the router. This is done through an h-relation, where O(h) data are sent and
received by every processor in a superstep. In addition to the parameters v and
h, BSP uses two additional parameters. The parameter g is the time required to
send a single word of data between two processors, where time is measured in
number of CPU operations, and the parameter L is the minimum setup time or
latency of a superstep, measured in CPU operations.

The technique in [1] simulates a v (virtual) processor BSP algorithm A’
executing a problem of size N, which communicates via h-relations of size h =
O(%) with A supersteps/rounds, local memory size p, computation time 5+ AL,
communication time ga+ AL as a p (real) processor EM-BSP algorithm A with
»A rounds, computation time (5 + O(An)) + 5 AL, communication time »gor +
%)\L, and I/O time %G O\ 5) + %)\L for M =O(u), N = 2(vB), B = O(%),
p < v. The parameter G is the ratio between the local computational capacity
and the local I/O capacity and the parameter B is the disk block size.

Next we sketch the main steps of the simulation. We distribute v virtual
processors evenly on p real processors. Each real processor i, 0 < i < p executes
the following steps (for a single processor simulation, we set p = 1, i = 0 and
omit Step 5):

For j =0 to % — 1 do in parallel on each real processor ¢

1. Read the context of virtual processor z% + j from the local disk.

2. Read any messages addressed to virtual processor i% + 7 from the local disk.

3. Simulate the computation superstep of virtual processor i% + 7, collecting
all generated messages in the local internal memory.

4. Send all generated messages to the required (real) destination processors.

5. Receive all messages addressed to real processor i on behalf of virtual pro-
cessors i to (i +1)7 — 1 in local internal memory and write them to the
local disk.

6. Write the changed context for virtual processor i% + j back to the local disk.

3 Software Design

In this section we explain our software design and show how different components
work and interact together in the Parallel External Memory System (PEMS).
In PEMS a virtual processor is represented by a user space thread. The input
to our system is an existing MPI program implementing a coarse grained BSP
algorithm. In such a program MPI is responsible for interprocessor communi-
cations. Most of the MPI functions are for sending and receiving messages. In
PEMS, each MPI call is replaced by call to a corresponding PEMS service. These
PEMS calls may in turn incorporate MPI calls. The communication between vir-
tual processors is managed using the disk, memory buffers and communication
network. This is the main challenge in the design and implementation of PEMS.

User Program
EM_Beast EM System Interface
EM_Gather
EM_Scatter
EM_Gatherv Memory Process
EM_Allgather Disk /0 Management | Communication | Management
EM_Allgatherv Subsystem Subsystem Through Subsystem
EM_Alltoall MPI
EM_Alltoallv (DIS) (MMS) (PMS)
EM_malloc 7'y 7'y Tl T l

GNU

MPI pth thread library

y \ 4

Operating System

Fig. 1. PEM System Software Layers

To date, our focus has been on confirming the high level behavior of the
simulation approach, that is to confirm that the behavior of PEMS scales pre-
dictably as problem sizes and the number of real processors vary. This involves
both running time and disk space usage behaviors. We have not been overly
concerned about optimization in this initial version of PEMS.

Figure 1 shows the layered software design of PEMS. The user program is
shown as the top layer in the diagram. The EM System Interface (Layer 2)
provides the external memory communication primitives. All MPI and memory
allocation calls in the original user program are replaced by a call to a simi-
lar PEMS function in this layer. Layer 3 has four major components. The Disk
I/O Subsystem (DIS) is responsible for reading and writing data blocks to disk
efficiently. The Memory Management Subsystem (MMS) is responsible for al-
locating memory for virtual processor data and for swapping this data when
required. The Process Management Subsystem (PMS) is responsible for creat-
ing, scheduling and synchronizing virtual processors. The Open MPI library [9]
is used for communication between real processors and also for starting the soft-
ware on multiple machines. In subsequent subsections we discuss layers 2 and 3
in more detail.

Virtual Processor Simulation and Process Management Subsystem
(PMS): The GNU pth thread library [10] is used for representing virtual pro-
cessors as threads. Each virtual processor is a user level thread. Each thread
runs a copy of the modified MPI-based user program. Modifications include re-
placement of MPI and memory allocation calls with the corresponding PEMS
calls. The PMS consists of a set of functions to initialize, start, synchronize,
manage, and schedule threads. These functions are implemented using the GNU
pth thread library which is responsible for the creation and cooperative schedul-

ing of threads. At the end of every computation superstep each virtual processor
calls _EM_yield(). This first invokes the services of MMS. The data for the cur-
rent thread must be swapped out and the data for the new thread must be
swapped in. Then the services of the thread library are invoked to perform a
context switch and transfer control to the new thread. Coordination of differ-
ent processes on different machines is achieved using the open MPT library [9].
Each virtual processor has a global identification number which we will call its
PEMS rank, as well as a local thread number within its user space process, and
an MPI rank that identifies which MPI process contains it. The PEMS rank of
a virtual processor is computed based on the MPI rank of the process and its
local thread number. When virtual processors are communicating, their PEMS
ranks are used to distinguish them from each other. It is possible to change the
total number of virtual processors by changing the number of virtual processors
in each MPI process or by changing the number of MPI processes which are
running on different machines.

Memory Management Subsystem (MMS): As PEMS runs, context switch-
ing between threads occurs whenever a virtual processor reaches the end of a
computation superstep. The simulation technique resizes each virtual proces-
sor (thread) to use the available physical memory. To accommodate many such
threads it would normally be necessary for the operating system to allocate mem-
ory from its swap space or virtual memory. Each time a thread starts execution,
the operating system would swap in the needed pages of data from the disk swap
area. This is done based on a page fault mechanism which may not be efficient
for our purposes. Even if the operating system was able to perform swapping
efficiently, the total amount of memory needed for all virtual processors could
be well beyond the virtual address space of the combined operating system and
the hardware. This is especially true for 32-bit machines. Therefore, we need
complete control over the PEMS physical memory and all of the disk activities
related to the execution of the PEMS program.

The Memory Management Subsystem determines how much physical mem-
ory is available at the beginning of the program execution (initialization phase).
Half of this memory is used as a buffer for communication purposes and for as-
sembling and disassembling messages. The other half is reserved for use by vir-
tual processors; they can allocate memory from this area by calling EM_malloc().

Disk I/O Subsystem (DIS): This layer allows the higher layers of the system
to be independent of specific operating system I/O calls. This makes the system
more flexible and portable, and potentially allows PEMS to interface to third
party I/O packages. The DIS currently contains implementations of direct I/O
based on the native Linux direct I/O which is supported in kernel versions 2.6
and above, asynchronous I/O and synchronous I/O. Currently, PEMS uses di-
rect synchronous I/0 for swapping and buffered synchronous I/O for messaging.

EM System Interface and Messaging: This layer is the most important layer
in our implementation. While the contexts (local data) of each virtual processor
can be swapped between RAM and disk using efficient streaming I/0O, this is not
genereally true for delivering messages between virtual processors in the simula-
tion. All of the PEMS functions have the same number and type of parameters
as their MPI counterparts. This makes it easier to transform an MPI program
into a PEMS program. In fact we believe that there are simple automated ways
of doing this. We have also implemented EM data types corresponding to the
MPI data types (e.g. MPILINT, MPI_.CHAR). As mentioned earlier, communi-
cation is done through the disk, memory buffer, network, or a combination of
them depending on the communication function. If two communicating virtual
processors are on the same machine then they communicate through the disk
or memory buffer, depending on the communication function invoked. If they
are on two different machines they communicate through the network as well.
PEMS splits the available physical memory into two partitions, each equal to
the data memory size of a virtual processor. One partition is used by the virtual
processors and the other partition is used by PEMS as a large buffer. Any mes-
sage which fits into this buffer is kept there instead of being written to the disk.
Since no virtual processor can receive a message bigger than its data memory
size, it is possible to keep most of the messages in this buffer. The exceptions are
messages generated by the functions EM_Alltoall and EM_Alltoallv. In this type of
communication, potentially all of the virtual processors are generating messages
which are destined to all other virtual processors and each virtual processor may
receive different sizes and numbers of messages. Since it is not possible to keep all
of these messages in the shared memory buffer, they are written to the disk. The
destination virtual processor will read the relevant messages from the disk when
it becomes active. This requires maintaining information pertaining to where
these messages are stored on the disks, as well as efficient retrieval mechanisms
of the disk blocks corresponding to these messages.

We now turn to communication between virtual processors running on dif-
ferent physical machines. The sending virtual processor generates a message and
calls the relevant PEMS function for communication. PEMS determines the MPI
rank of the destination virtual processor and sends the message to the real pro-
cessor on which it is hosted. The destination virtual process (or thread) may not
be running at the time that the messages arrives, however. The current running
virtual processor at the destination machine receives the messages on behalf of
the destination virtual processor and saves the messages in the memory buffer or
on the disk. The actual receiver can read the messages later whenever it becomes
active.

The most complicated communication primitive is EM_Alltoallv. This primi-
tive allows all virtual processors to send messages to all other virtual processors.
The messages can be of different sizes and may be made up of multiple packets.
The only restriction is that they need to fit into the local buffers of each virtual
processor. As real processor p; simulates % virtual processors, in each round of
communication it will receive all messages addressed to the virtual processors

which it simulates. It is possible, in our current implementation, that a user
thread representing virtual processor v;;, associated with the real processor p;,
is called on to handle many messages addressed to the virtual processors in p;.
The total size of these messages may be more than the total physical memory of
pi. More precisely, let the data memory of each virtual processor be p4, then the
maximum message size is bounded by pg. There are % virtual processors in each
real processor p;, so p; may receive a total of min(p, %) X g messages which may
be beyond the real processor’s RAM capacity. If we use the personalized com-
munication algorithm by Bader et.al. [11] then the message size for each virtual
processor is at most &4 4 =1 Then the maximum message size for each real
processor is O(min(p,) x £¢) which is O(uq). This is within reasonable limits
and can be handled by a real processor. During the personalized communication
the memory buffer is used as a working area for assembling and disassembling
messages and packets.

3.1 Discussion on Design Choices

In this section we highlight some of the design alternatives for different compo-
nents of the PEM system and provide some reasoning behind our choices.

Kernel Space Threads versus User Space Threads: In our implementa-
tion each virtual processor is simulated as a user space thread. We could have
used kernel space threads. There are advantages and disadvantages in using one
over the other. We decided to use the user space threads to shorten development
time; they are easier to manage and synchronize, switching between threads is
faster and coding and debugging is easier. We chose the GNU pth thread library
for our implementation. This library is portable, has a Posix pthread interface
as well as has its own specific interface.

Choices for Communication: We categorize two types of communication.
Communication between virtual processors within a real processor is called in-
ternal communication, whereas communication between virtual processors on
different processors is called external communication.

Option 1: We assign the job of communication (either internal or external) to a
separate process (a kernel level thread). As virtual processors generate data for
communication, they send them to the communication process, which decides if
those data should be communicated internally or externally. Here we also need
an interprocess communication mechanism to send data from the simulating pro-
cess to the communication process.

Option 2: As the internal communication is fairly simple, each virtual processor
can submit its internal communication to the DIS and send its external commu-
nication to the communication process as in Option 1.

Option 3: Internal communication is done as in Option 2 but external com-
munication is done by the main thread of the process which simulates virtual
processors. This avoids the need for interprocess communication. In this ap-
proach the main thread also has a synchronizing role. Before allowing the next

superstep to start, it waits until communication data from all virtual processors
are written to the disk and all external communication data are received by peer
processors and written to the disk or the memory buffer.

Option 4: Internal and external communication is done by the current running
threads on all machines. Each running virtual processor calls the communication
routines as subroutines. Communication routines classify messages, communi-
cate with other running virtual processors and gather all the messages sent to
their real processor (on behalf of all virtual processors being simulated in this
real processor). We chose to use this approach in the current version of PEMS for
the following reasons: First, messages to other machines are sent out as they are
generated so there is no additional disk I/O or buffer activity for them. Second,
there is no need for a separate process to do the communication. Third, each
time virtual processors communicate through MPI, they can also go through a
synchronization phase with other virtual processors and in fact all real proces-
sors can be synchronized without the need to wait for the main threads of the
Processors.

Direct and Asynchronous I/0: Direct I/O allows an I/O operation to be
performed directly on a user space buffer without additional buffering by the
operating system. Incorporating Linux direct I/O imposes constraints on the
buffer size, alignment and also on the file offset especially when we want to use
disk I/O functions such as pread or pwrite. The buffer size must be a multiple
of the disk block size, it must also be aligned on a memory address which is a
multiple of the disk block size. The same alignment constraint applies to file offset
on a read or write operation. This complicates the PEMS versions of MPI-like
collective primitives, as we often need to read and write at arbitrary file offsets
and at arbitrary addresses in the buffer space. As a result, we decided to use
direct 1/0O for swapping the context data and buffered I/O for communication
purposes.

4 Experiments

Objectives: The main objective of our present work has been to see whether the
simulation technique as proposed in [1, 2] is practical. At this stage of PEMS de-
velopment, our experiments focus primarily on scalability of performance when
the problem size and number of processors are varied. In order to shorten de-
velopment time we have not yet placed much emphasis on optimizing our use
of low level services such as asynchronous I/O and and kernel threads. While
our experiments show running times for sorting with TPIE and STXXL, we in-
clude these measurements only as general reference points that highlight room
for improvement in our single processor results.

Experimental Setup: Single processor tests are performed on the following
configuration: AMD Opteron 2.4GHz CPU with 2GB of RAM, 3 Hard Disks
each with at least 30GB of free space, two partitions across two disks configured
as software RAID 0, hard disk bandwith is 71MB/Sec, RAID bandwith is 112

10

Mb/Sec (measured by hdparm utility), file system is EXT3, GNU/Linux 64bit v.
2.6.15 operating system and we used gcc v.4.1.1. Multiple processor experiments
are performed on a cluster of Linux machines with the following hardware and
software configuration®. Intel 2 x Xeon 2.0 GHz CPUs with 1.5 GB of RAM
(only one processor was used in practice), one hard disk each with at least 46GB
of free space, hard disk bandwith of 45Mb/Sec (measured by hdparm utility),
GNU/Linux 32bit kernel version 2.6.9-42.0.2. ELsmp, EXT?2 file system, gcc v
3.4.6 compiler and Gigabit ethernet for the communication between machines.

We use parallel sample sort to test our implementation. In our experiments
we have simulated parallel sample sort [12] as an external memory algorithm.
For comparison, we include timings from TPIE’s [5] test_sort and STXXL’s [6]
test_sortl. We have slightly modified test_sort and test_sortl functions to restrict
them to one round of sorting (with no extra tests). All of the test programs
use 128MB of RAM for sorting. The record size is 4 bytes and timing includes
the data generation, but none of the test programs create a separate output
file. PEMS uses 128MB of memory but 64MB of this memory is used as buffer
and shared memory for communication, and only 64MB is used for sorting. (In
PEMS, we have disabled the extra memory so that the operating system cannot
use it for caching.)

Test data was generated using the C or C++ standard random generator
or the package specific random generator method. We do not use any special
integer sorting techniques in the parallel sample sort algorithm or in other test
programs. Operating system swap has been disabled in all of the tests.

Experimental Results: Figure 2 shows running times for PEMS sample sort
on 1, 2, 4, 8 and 16 real processors. It also includes running time of TPIE and
STXXL external memory sort test programs on a single processor. We include
the TPIE and STXXL results only as general reference points that highlight
room for improvement in our single processor results. The reader should not
draw conclusions about the relative running times of TPIE and STXXL sort, for
instance, as we have not ensured that this is a fair comparison. The TPIE and
STXXL sort programs are 3 to 5 times faster than our single processor sort with
this version of PEMS, but as more real processors are added, PEMS becomes
faster. At 7 billion integers, the running time of PEMS with 16 processors reduces
by 65%, 53%, and 48%, in comparison to TPIE, STXXL and PEMS with 8
processors, respectively. The PEMS running times increase almost linearly with
problem size when the number of real processors is fixed.

Limitations: An important limitation of PEMS is its internal disk usage. It
needs ¢ x ug for swapping of data on each real processor. Here pg represents
data memory of each virtual processor. It also reserves 2% X g for communica-
tion on each real processor. We are currently investigating ways to reduce this
requirement on the reservation of the disk space for the messages.

Concluding Remarks: PEMS is runtime library for creating parallel external
memory programs from implementations of BSP-like coarse grained parallel al-

3 This is part of HPCVL Lab www.hpcvl.org.

11

—+—P=1 —8—P=2 —a—P=4 —+P=8 ——P=16 —=—TPIE ——ST0L

2514

Time Per ltem (Microseconds)

Problem Size (Billions of Integers)

Fig. 2. Wall clock timings for sorting. The X-axis is the problem size in billions of
integers. The Y-axis is wall clock time per sorted item in microseconds.

gorithms. The primary application area is problems that require processing of
massive amounts of data. We see our work as relevant from several practical
perspectives: a class of theoretically optimal parallel algorithms can be scaled to
fit the hardware at hand, using both processors and disks; for a large set of prob-
lems for which suitable parallel algorithms exist, I/O optimal parallel algorithms
can be used instead of single processor EM algorithms; and, both computational
and I/0 load are spread over multiple machines, contributing to the scalability.

Our experiments show several important properties of the PEMS approach.
First of all the methodology is practical. Secondly, increasing the number of real
processors decreases the running time in a predictable way. The ability to exploit
parallel machine resources such as disks gives the ability to handle extremely
large data sets on practical architectures such as a network of workstations. On
such a system, one can inexpensively add computational power, RAM, disks,
and bandwidth between RAM and disk by adding machines to a network. Using
a coarse grained parallel algorithm and PEMS, our experiments in this paper
suggest that one can take advantage of all of these resources, as well as adapting
the theory of coarse grained parallel algorithms to the reality of a smaller number
of real processors, each with a disk system. We believe that our experiments with
sorting, for instance, showed good speedups in parallel running time primarily
due to disk parallelism. More computationally intensive applications may be able
to also make use of the additional computation power.

12

This brings us to several suggestions for further work: (1) PEMS algorithms
have the disadvantage that they may do more I/O, than a conventional single
processor EM algorithm due to the need to swap the contexts of virtual proces-
sors between RAM and disk. Our experiments suggest that this can be offset by
the scalability of I/O bandwidth in our model. However, since I/0 is so prevalent
in PEMS we expect that improving the low level I/O performance may make a
significant improvement in running times. To this end we plan to investigate the
use of asynchronous (no-wait) I/O in PEMS. This would allow the overlapping
of computation and I/O and the use of multiple independent parallel disks on
each real processor. We noticed that STXXL [6] has a well designed and effi-
cient asynchronous parallel disk I/O layer which can be used without calling
its higher level functions. (2) We plan to further investigate the use of kernel
threads in the asynchronous sending and receiving of communication traffic be-
tween virtual processors. (3) With multiple core CPUs becoming a commodity,
adjustments should be considered for PEMS to take full advantage of symmet-
ric multiprocessor machines. (4) In order to study the behavior of PEMS when
simulating different algorithms more examples should be implemented. To this
end we have implemented and tested a randomized list ranking algorithm and
our preliminary results are promising (see [13]).

References

1. Dehne, F.K.H.A., Dittrich, W., Hutchinson, D.A., Maheshwari, A.: Bulk syn-
chronous parallel algorithms for the external memory model. Theory Comput.
Syst. 35(6) (2002) 567-597

2. Hutchinson, D.A.: Parallel Algorithms in External Memory. PhD thesis, School of
Computer Science, Carleton University (1999)

3. Vitter, J.S., Shriver, E.A.M.: Algorithms for parallel memory, I: Two-level memo-
ries. Algorithmica 12(2-3) (1994) 110-147

4. Crauser, Mehlhorn: LEDA-SM: Extending LEDA to secondary memory. In: WAE:
International Workshop on Algorithm Engineering, LNCS (1999)

5. TPIE: (http://www.cs.duke.edu/TPIE/)

6. Dementiev, R., Kettner, L., Sanders, P.. STXXL: Standard template library for
XXL data sets. In: ESA. Volume 3669 of LNCS. (2005) 640-651

7. Gustedt, J.: Towards realistic implementations of external memory algorithms
using a coarse grained paradigm. In: ICCSA (2). LNCS 2668 (2003) 269-278

8. Valiant, L.G.: A bridging model for parallel computation. Communications of the
ACM 33(8) (1990) 103-111

9. Open MPI: (http://www.open-mpi.org/)

10. GNU Pth - The GNU Portable Threads: (http://www.gnu.org/software/pth/)

11. Bader, D.A., Helman, D.R., J4J4, J.: Practical parallel algorithms for personalized
communication and integer sorting. ACM JEA 1 (1996) 3

12. Shi, H., Schaeffer, J.: Parallel sorting by regular sampling. Journal of Parallel and
Distributed Computing 14 (1992) 361-372

13. Nikseresht, M.R.: A parallel external memory system. Master’s thesis, School of
Computer Science, Carleton University (2007)

