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Abstract

We present results related to satisfying shortest path queries on a planar graph
stored in external memory� Let N denote the number of vertices in the graph and
let sort�N� denote the number of input�output �I�O� operations required to sort
an array of length N �

��� We describe a blocking for rooted trees to support bottom�up traversals of
these trees in O�K�B� I�Os� where K is the length of the traversed path� The
space required to store the tree is O�N�B� blocks� where N is the number of
vertices of the tree and B is the block size�

�	� We give an algorithm for computing a �
� �separator of size O

�p
N
�
for a given

embedded planar graph� Our algorithm takes O�sort�N�� I�Os� provided that
a breadth�
rst spanning �BFS� tree is given�

��� We give an algorithm for triangulating embedded planar graphs in O�sort�N��
I�Os�

We use these results to construct a data structure for answering shortest path queries

on planar graphs� The data structure uses O
�
N����B

�
blocks of external memory

and allows for a shortest path query to be answered in O
�p

N�K
DB

�
I�Os� where K is

the number of vertices on the reported path and D is the number of parallel disks�
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� Introduction

Answering shortest path queries in graphs is an important and intensively
studied problem� It has applications in communication systems� transportation
problems� scheduling� computation of network �ows� and geographic informa�
tion systems �GIS�� Typically� an underlying geometric structure is represented
by a combinatorial structure� which is often a weighted planar graph�

The motivation to study external memory shortest path problems arose in
our GIS research and in particular� with an implementation of the results of
�LMS	
� for shortest path problems in triangular irregular networks� In this
application the given graph represents a planar map� i�e�� it is planar and em�
bedded� Quite often it is too large to �t into the internal memory of even a
large supercomputer� In this case� and in many other large applications� the
computation is forced to wait while large quantities of data are transferred be�
tween relatively slow external �disk�based� memory and fast internal memory�
Thus� the classical internal memory approaches to answering shortest path
queries in a planar graph �e�g�� �Dij	�Dji	��Fre�
�Fre	��KRRS	��� may not
be e�cient when the data sets are too large�

��� Model of Computation

Unfortunately� the I�O�bottleneck is becoming more signi�cant as parallel
computing gains popularity and CPU speeds increase� since disk speeds are not
keeping pace �RW	��� Thus� it is important to take the number of input�output
�I�O� operations performed by an algorithm into consideration when estimat�
ing its e�ciency� This issue is captured in the parallel disk model �PDM�
�VS	�a�� as well as a number of other external memory models �DDH	
�VS	�b��
We adopt the PDM as our model of computation for this paper due to its sim�
plicity� and the fact that we consider only a single processor�

In the PDM� an external memory� consisting of D disks� is attached to a
machine with an internal memory capable of holding M data items� Each of
the disks is divided into blocks of B consecutive data items� Up to D blocks� at
most one per disk� can be transferred between internal and external memory
in a single I�O operation� The complexity of an algorithm is the number of
I�O operations it performs�

�



��� Previous Results

Shortest path problems can be divided into three general categories� ��� com�
puting a shortest path between two given vertices of a graph� ��� computing
shortest paths between a given source vertex and all other vertices of a graph
�single source shortest paths �SSSP� problem�� and ��� computing the shortest
paths between all pairs of vertices in a graph �all pairs shortest paths �APSP�
problem��

Previous results in the RAM model� In the sequential RAM model�
much work has been done on shortest path problems� Dijkstra�s algorithm
�Dij	�� when implemented using Fibonacci heaps �FT�
�� is the best known
algorithm for the SSSP�problem for general graphs �with nonnegative edge
weights�� It runs inO�jEj�jV j log jV j� time� where jEj and jV j are the numbers
of edges and vertices in the graph� respectively� The APSP�problem can be
solved by applying Dijkstra�s algorithm to all vertices of the graph� which
results in an O �jV jjEj� jV j� log jV j� running time� For planar graphs� an

O
�
N
p
logN

�
�algorithm for the SSSP�problem and an O �N���algorithm for

the APSP�problem� where N � jV j� are given in �Fre�
�� A linear�time SSSP�
algorithm for planar graphs is presented in �KRRS	���

An alternate approach is to preprocess the given graph for online shortest path
queries� For graphs for which an O

�p
N
�
�separator theorem holds �e�g�� planar

graphs�� an O�S��space data structure �N � S � N�� that answers distance
queries in O �N��S� time is presented in �Dji	��� The corresponding shortest
path can be reported in time proportional to the length of the reported path�
�For planar graphs slightly better bounds are given��

It is known that every tree or outerplanar graph has a �
�
�separator of size

O���� In �LT
	� it is shown that every planar graph has a �
�
�separator of size

O
�p

N
�
� and a linear�time algorithm for �nding such a separator is given�

Other results include separator algorithms for graphs of bounded genus �AD	��
and for computing edge�separators �DDSV	���

Previous results in the PRAM model� A PRAM algorithm for comput�
ing a �

�
�separator of size O

�p
N
�
for a planar graph is presented in �GM�
��

The algorithm runs in O
�
log�N

�
time and uses O �N���� processors� where

� � � is a constant� In �Goo	�� a PRAM algorithm is given that computes
a planar separator in O�logN� time using O�N� logN� processors� provided
that a BFS�tree of the graph is given�
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Previous results in external memory� In the PDM� sorting� permuting�
and scanning an array of size N take sort�N� � �

�
N
DB

logM
B

N
B

�
� perm�N� �

��minfN� sort�N�g�� and scan�N� � �
�

N
DB

�
I�Os �Vit	��VS	�a�� For a com�

prehensive survey on external memory algorithms� refer to �Vit	��� The external�

memory SSSP�algorithm of �CMM	
� takes O
� jV j
D

� jEj
DB

logM
B

jEj
B

�
I�Os with

high probability� on a random graph with random weights and the algorithm
of �KS	�� takes O�jV j� jEj

B
log�

jEj
B
� I�Os on arbitrary graphs�

We do not know of previous work on computing separators in external memory�
but one can use the PRAM�simulation results in �CGG�	� together with the
results of �GM�
�Goo	�� cited above� Unfortunately� the PRAM simulation
introduces O�sort�N�� I�Os for every PRAM step� and so the resulting I�O
complexity is not attractive for this problem�

��� Our Results

The main results of this paper are as follows�

��� In Section � we show how to block a rooted tree T in external memory
so that a path of length K towards the root can be traversed in at mostl

K
�DB

m
� � I�Os� for � � � � �� If � � ��p�

�
� the blocking uses at most�

� � �
���

� jT j
B
�D blocks of external storage� For � � ��p�

�
� a slight modi��

cation of the approach reduces the amount of storage to
�
� � �

����

� jT j
B
�D

blocks� For �xed � � the tree occupies optimal O�jT j�B� blocks of external

storage and traversing a path takes O
�

K
DB

�
I�Os� which is optimal� Using

the best previous result �NGV	��� the tree would use the same amount of
space within a constant factor� but traversing a path of length K would
take O �K� logd�DB�� I�Os� where d is the maximal degree of the vertices
in the tree�

��� In Section � we give an external memory algorithm which computes a

separator consisting of O
�p

N
�
vertices for an embedded planar graph

in O�sort�N�� I�Os� provided that a BFS�tree of the graph is given� Our
algorithm is based on the classical planar separator algorithm in �LT
	��
The main challenge in designing an external memory algorithm for this
problem is to determine a good separator corresponding to a fundamental
cycle�

��� In Section  we give an external memory algorithm which triangulates
an embedded planar graph in O�sort�N�� I�Os�

��� In Section � we describe an external memory data structure for answering
shortest path queries online� Results ���� above� are the main techniques
that we use to construct this data structure� Our data structure uses

�



O
�
N����B

�
blocks of external memory and answers online distance and

shortest path queries in O
�p

N
DB

�
and O

�p
N�K
DB

�
I�Os� respectively� where

K is the number of vertices on the reported path�

Our separator and triangulation algorithms may be of independent inter�
est� since graph separators are used in the design of e�cient divide�and�
conquer graph algorithms and many graph algorithms assume triangulated
input graphs�

� Preliminaries

��� De�nitions

An undirected graph �or graph for short� G � �V�E� is a pair of sets V and
E� where V is called the vertex set and E is called the edge set of G� Each
edge in E is an unordered pair fv� wg of vertices v and w in V � Unless stated
otherwise� jGj will mean the cardinality of V � In a directed graph� every edge
is an ordered pair �v� w�� In this case� we call v the source vertex and w the
target vertex of edge �v� w�� A graph G is planar if it can be drawn in the
plane so that no two edges intersect� except possibly at their endpoints� Such
a drawing de�nes for each vertex v of G� an order of the edges incident to v
clockwise around v� We call G embedded if we are given this order for every
vertex of G� By Euler�s formula� jEj � �jV j � � for planar graphs�

A path from a vertex v to a vertex w in G is a list p � hv � v�� v�� � � � � vk � wi
of vertices� where fvi� vi��g � E for � � i � k� The length of path p is the
number k of edges in the path� We call p a cycle if v� � vk� Paths and cycles
are de�ned analogously for directed graphs� A directed acyclic graph �DAG�
is a directed graph that does not contain cycles of length greater than �� A
graph G is connected if there is a path between any two vertices in G� A
subgraph G� � �V �� E �� of G is a graph with V � � V and E � � E� Given a
subset X � V � we denote by G�X� � �X�E�X�� the subgraph of G induced by
X� where E�X� � ffv� wg � E � fv� wg � Xg� The graph G � X is de�ned
as G�V n X�� The connected components of G are the maximal connected
subgraphs of G� A tree with N vertices is a connected graph with N�� edges�
A rooted tree is a tree with a distinguished root vertex� The level or depth of
a vertex v in a rooted tree is the number of edges on the path from v to the
root� For an edge fv� wg in a tree T we say that v is w�s parent and w is v�s
child if w�s depth is greater than v�s depth in T � A vertex v is an ancestor of
a vertex w� and w is a descendant of v� if v is w�s parent or it is an ancestor
of w�s parent� A common ancestor of two vertices v and w is a vertex u which





is an ancestor of v and w� The lowest common ancestor lca�v� w� of v and w
is the common ancestor of v and w at maximum depth among all common
ancestors of v and w� A preorder numbering of a rooted tree T with N vertices
is an assignment of numbers � through N � � to the vertices of T such that
every vertex has a preorder number less than any of its descendants and the
preorder numbers of each vertex and all its descendants are contiguous� Given
an ordering of the children of each node� a lexicographical numbering of T is
a preorder numbering of T such that the preorder numbers of the children of
any node� taken in the given order� are increasing� An independent set I � V
in a graph G is a set of vertices such that for every vertex v � I and every edge
fv� wg � E� w �� I� That is� no two vertices in I are adjacent� A k�coloring of
a graph G is an assignment f � V � f�� � � � � kg of colors to the vertices of G
such that for any edge fv� wg � E� f�v� �� f�w��

A spanning tree of a graph G � �V�E� is a tree T � �V� F �� where F � E� A
breadth��rst spanning tree �BFS�tree� is a rooted spanning tree T of G such
that for any edge fv� wg in G� the levels of v and w in T di�er by at most ��

Let c � E � R
� be an assignment of non�negative costs to the edges of

a graph G� The cost kpk of a path p � hv�� � � � � vki is de�ned as kpk �Pk��
i�� c�fvi� vi��g�� A shortest path 	�v� w� is a path of minimal cost from

v to w�

Let w � V � R
� be an assignment of non�negative weights to the vertices of

a graph G such that
P

v�V w�v� � �� The weight w�H� of a subgraph H of G
is the sum of the weights of the vertices in H� An ��separator� � � � � �� of G
is a subset S of V such that none of the connected components of G� S has
weight exceeding ��

For a given directed� acyclic graph �DAG� G � �V�E�� a topological ordering
is a total order O � V 	 V such that for every edge �v� w� � E� �v� w� � O�

We will describe results on paths in a rooted tree which originate at an ar�
bitrary node of the tree and proceed towards the root� We will refer to such
paths as bottom�up paths�

For a given block size B� a blocking of a graph G � �V�E� is a decomposition
of V into vertex sets B�� � � � �Bq such that V �

Sq
i�� Bi and jBij � B� The

vertex sets Bi do not have to be disjoint� Each such vertex set Bi corresponds
to a block in external memory where its vertices are stored�

�



��� External Memory Techniques

First we introduce some useful algorithmic techniques in external memory
which we will use in our algorithms� These include external memory stacks
and queues� list ranking� time�forward processing and their applications to
processing trees�

We have already observed that scanning an array of size N takes O�scan�N��
I�Os using at least D blocks of internal memory to hold the D blocks cur�
rently being scanned� Using �D blocks of internal memory� a series of N stack
operations can be executed in O�scan�N�� I�Os� These �D blocks hold the
top�most elements on the stack� Initially� we hold the whole stack in internal
memory� As soon as there are �DB elements on the stack� and we want to push
another element on the stack� we swap the DB bottom�most elements to ex�
ternal memory� This takes one I�O� Now it takes at least DB stack operations
�DB pushes to �ll the internal bu�er again or DB pops to have no elements
left in internal memory� before the next I�O becomes necessary� Thus� we
perform at most one I�O per DB stack operations� and N stack operations
take O�N�DB� � O�scan�N�� I�Os� Similarly� to implement a queue we need
�D blocks of internal memory� D to bu�er the inputs at the end of the queue
and D to bu�er the outputs at the head of the queue�

The list�ranking problem is the following� Given a singly linked list L and a
pointer to its head� compute for every node of L its distance to the tail of L�
A common variant is to assign weights to the nodes of L and to compute for
every node the weight of the sublist of L starting at this node� In �CGG�	�
a recursive list�ranking procedure was developed� If the list has size at most
M � the problem can be solved in internal memory� Reading the input and
writing the output take O�scan�N�� I�Os in this case� If the list contains
more than M nodes the procedure ��colors the list and removes the largest
monochromatic set of vertices� For every removed vertex x� the weight of x�s
predecessor y is updated to w�y� � w�y� � w�x�� After recursively applying
the same technique to the remaining sublist� which has size at most �

�
N � the

removed vertices are reintegrated into the list and their ranks computed� In
�CGG�	� it is shown that the ��coloring of the list and the removal and
reintegration of the independent set can be done in O�sort�N�� I�Os� Thus�

this procedure takes T �N� � T
�
�
�
N
�
� O�sort�N�� � O�sort�N�� I�Os� In

�Zeh	�� it is shown that the ��coloring technique can be extended to rooted
trees� which allows the application of the same framework to the problem of
computing the level of every node in a rooted tree� Alternatively� one can use
the Euler�tour technique together with the list�ranking technique to compute
these levels�

The Euler�tour technique can be described as follows� Given a rooted tree T �






we replace every edge fv� wg by two directed edges �v� w� and �w� v�� For every
vertex v� let e�� � � � � ek�� be the incoming edges of v and e��� � � � � e

�
k�� be the

outgoing edges of v� where e�i is directed opposite to ei� and k is the arity of v
in T � We de�ne edge e�	i��
modk to be the successor of edge ei� for � � i � k�

At the root of T we de�ne edge e�k�� to have no successor� This de�nes a
traversal of the tree� starting at the root and traversing every edge of the tree
exactly twice� once per direction� To compute the levels of all vertices in T �
for instance� we assign weight � to all edges directed from parents to children
and weight �� to all edges directed from children to parents� Then we can
apply the list�ranking technique to compute the levels of the endpoints of all
edges�

If we choose the order of the edges e�� � � � � ek�� carefully� we can use the Euler�
tour technique to compute a lexicographical numbering of a given rooted tree�
Recall that in this case we are given a left�to�right ordering of the children of
every vertex� We construct the Euler tour by choosing for every vertex v edge
e� to be the edge connecting v�s parent to v� The remaining edges e�� � � � � ek��

are the edges connecting v to its children� sorted from left to right� It is easy to
see that the Euler tour thus constructed traverses the tree T lexicographically�
To compute the lexicographical numbers of all vertices� we assign weight � to
edges directed from parents to children and weight � to all remaining edges�
After applying list�ranking to this list� the lexicographical number of a vertex
v is the rank of the edge with weight � and target vertex v�

An important ingredient of the ��coloring technique in �CGG�	� as well as
most of the algorithms presented in this paper is time�forward processing�
which was introduced in �CGG�	�� This technique is useful for processing
directed acyclic graphs �DAGs�� We view the DAG as a circuit and allow
sending a constant amount of information along every edge� Every node can
use the information sent along its incoming edges to compute a function of
these values and then send a constant amount of information along each of
its outgoing edges� The technique presented for this problem in �CGG�	� has
two constraints� ��� The fan�in of the vertices in the DAG must be bounded
by some constant d and ��� the ratio m � M

B
must be large enough� These

constraints have been removed in �Arg	� using the following elegant solution�
Given a DAG G� sort the vertex set topologically� which de�nes a total order
on this set� Then evaluate the nodes in their order of appearance� thereby
ensuring that all nodes u with an outgoing edge �u� v� have been evaluated
before v� Every such node u inserts the information it wants to send to v into
a priority queue� giving it priority v� Node v performs din�v� DeleteMin

operations to retrieve its inputs� where din�v� is the fan�in of v� It is easy to
verify that at the time when v is evaluated� the din�v� smallest elements in the
priority queue indeed have priority v� After sorting the vertex and edge sets
of the DAG� this technique performs �jEj priority queue operations� which

�



take O�sort�jEj�� I�Os �Arg	�� Thus� this technique takes O�sort�jV j� jEj��
I�Os�

� Blocking Rooted Trees

In this section we consider the following problem� Given a rooted tree T �
store it in external memory so that for any query vertex v � T � the path
from v towards the root of T can be reported I�O�e�ciently� One can use
redundancy to reduce the number of blocks that have to be read to report the
path� However� this increases the space requirements� The following theorem
gives a trade�o� between the space requirements of the blocking and the I�O�
e�ciency of the tree traversal�

Theorem � Given a rooted tree T of size N and a constant � � � � � � ��
we can store T on D parallel disks so that traversing any bottom�up path of
length K in T takes at most

l
K

�DB

m
� � I�Os� The amount of storage used is

at most
�
� � �

���
�
N
B
�D blocks for � � ��p�

�
and at most

�
� � �

����

�
N
B
�D

blocks for � � ��p�
�

�

PROOF� This follows from Lemmas � and � below� ut

Theorem � considers the general case of a path from an arbitrary vertex v to
an arbitrary vertex w� where the depth of v is greater than the depth of w� A
special case is the when w is the root of T �

Intuitively� our approach is as follows� We cut T into layers of height �DB�
This divides every bottom�up path of length K in T into subpaths of length
�DB� each subpath stays in a particular layer� We ensure that each such
subpath is stored in at most D blocks� and each of the D blocks is stored on a
di�erent disk� Thus each subpath can be traversed at the cost of a single I�O
operation� This gives us the desired I�O�bound because any bottom�up path
of length K visits at most d K

�DB
e � � layers and is thus divided into at most

d K
�DB

e� � subpaths�

More precisely� let h represent the height of T � and let h� � �DB be the height
of the layers to be created �we assume that h� is an integer�� We cut T into
layers L�� � � � � Ldh�h�e��� where layer Li is the subgraph of T induced by the
vertices on levels ih� through �i���h�� � �see Fig� ��� Each layer is a forest of
rooted trees� whose heights are at most h�� Suppose that there are r such trees�
T�� � � � � Tr� taken over all layers� We decompose each tree Ti� � � i � r� into
possibly overlapping subtrees Ti��� � � � � Ti�s having the following properties�

	



L�

L�

L�

L�

�DB

�DB

�DB

�DB

Fig� �� A tree is cut into layers of height �DB� �Here� �DB � 	�� The tree is cut
along the dashed lines� The resulting subtrees Ti are shaded�

Property �� jTi�jj � DB� for all � � j � s�

Property ��
Ps

j�� jTi�jj �
�
� � �

���
�
jTij� and

Property �� For every leaf l of Ti� there is a subtree Ti�j containing the whole
path from l to the root of Ti�

Lemma � Given a rooted tree Ti of height at most �DB� � � � � �� we can
decompose Ti into subtrees Ti��� � � � � Ti�s having Properties �	��

PROOF� If jTij � DB� we �decompose� Ti into one subtree Ti�� � Ti� Then
Properties ��� trivially hold� So assume that jTij � DB�

Given a preorder numbering of the vertices of Ti� we denote every vertex by its
preorder number� Given a parameter � � t � DB to be speci�ed later� let s �
djTij�te� �� We de�ne vertex sets V�� � � � � Vs� where Vj � fjt� � � � � �j���t� �g
for � � j � s �see Fig� ��a��� The vertex set Vs may contain less than t vertices�
The tree Ti�j � Ti�Vj� is the subtree of Ti consisting of all vertices in Vj and
their ancestors in Ti �see Fig� ��b��� We claim that these subtrees Ti�j have
Properties ���� if we choose t appropriately�

Property � is guaranteed because for every leaf l� the subtree Ti�j� where l � Vj�
contains the whole path from l to the root of Ti� To prove Property �� let Aj

be the set of vertices in Ti�j which are not in Vj� Every such vertex x is an
ancestor of some vertex y � jt� That is� x � y� As x �� Vj and the vertices in
Vj are numbered contiguously� x � jt� Vertex y is in the subtree of Ti rooted at
x and x � jt � y� Thus� vertex jt must be in this subtree as well because the
vertices in the subtree rooted at x are numbered contiguously� Hence� every
vertex in Aj is an ancestor of vertex jt� This implies that jAjj � �DB because
jt has at most one ancestor at each of the at most �DB levels in Ti� Hence�
jTi�jj � jAjj � jVjj � �DB � t� Choosing t � DB � �DB� we guarantee that
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Fig� 	� �a� A rooted tree Ti with its vertices labelled with their preorder numbers�
Assuming that t � �� V� is the set of black vertices� V� is the set of grey vertices�
and V� is the set of white vertices� �b� The subtrees Ti�V��� Ti�V��� and Ti�V�� from
left to right�

every subtree Ti�j has size at most DB� Now Property � holds because

sX
j��

jTi�jj �

l
jTij

DB��DB

m
��X

j��

DB ���

�
� jTij
DB � �DB

� �

�
DB ���

�
�

�� �
jTij�DB ���

�
�

�

�� �
� �

�
jTij� ���

The step from line ��� to line ��� uses the fact that jTij � DB� ut

Lemma � If a rooted tree T of size N is decomposed into subtrees Ti�j such
that Properties �	� hold� T can be stored on D parallel disks so that any
bottom�up path of length K in T can be traversed in at most

l
K

�DB

m
�� I�Os� for

� � � � �� For � � ��p�
�

� the amount of storage used is at most
�
� � �

���
�
N
B
�

D blocks� For � � ��p�
�

� the tree occupies at most
�
� � �

����

�
N
B
�D blocks�

PROOF� We consider D disks of block size B as one large disk divided into
superblocks of size DB� Thus� by Property �� each subtree Ti�j �ts into a single
superblock and can be read in a single I�O�

A bottom�up path p of length K in T visits at most k �
l

K
�DB

m
� � layers�

This divides p into k maximal subpaths such that none of them visits more
than one layer� Each such subpath p� is a leaf�to�root path in some subtree
Ti� or a subpath thereof� Thus� by Property �� there exists a subtree Ti�j that
contains the whole of the subpath p�� That is� each subpath p� can be accessed
in a single I�O� Therefore� the traversal of p takes at most

l
K

�DB

m
� � I�Os�

��



By property �� all subtrees Ti�j together use at most
�
� � �

���
�Pr

i�� jTij ��
� � �

���
�
N space� Initially� we store every subtree Ti�j in a separate su�

perblock� which may leave many superblocks sparsely populated� As long as
there are at least two superblocks that are at most half full we keep merging
pairs of superblocks� Finally� if we are left with a single half full superblock
we try to �nd a superblock that can be merged with it� If we �nd one� we
merge the two superblocks� Otherwise� the half�full superblock together with
any other superblock contains more than DB vertices� All other superblocks
are at least half full� Thus� on average� each superblock is at least half full� and
we use

l�
�� �

���
�

N
DB

m
superblocks� i�e�� D

l�
�� �

���
�

N
DB

m
�
�
� � �

���
�
N
B
�D

blocks to store all subtrees Ti�j�

For � � ��p�
�


 ����� � � �
����

� � � �
��� � In this case� we apply the following

strategy� We cut the given tree T into layers of height ��DB� We guaran�
tee that the vertices of every subtree Ti�j are stored contiguously� but not
necessarily in a single block� As every tree Ti�j has size at most DB� it is
spread over at most two blocks� Thus� two I�Os su�ce to traverse any leaf�to�
root path in a subtree Ti�j� and traversing a path of length K takes at most

�
�l

K
��DB

m
� �

�
�
l

K
�DB

m
� � I�Os� On the other hand� we guarantee that all

superblocks except for the last one are full� Thus� we use
l�
�� �

����

�
N
DB

m
superblocks� i�e�� D

l�
�� �

����

�
N
DB

m
�
�
� � �

����

�
N
B
� D blocks of external

memory� ut

� Separating Embedded Planar Graphs

We now present an external�memory algorithm for separating embedded pla�
nar graphs� Our algorithm is based on the classical linear�time separator al�
gorithm of �LT
	�� It computes a �

�
�separator S of size O

�p
N
�
for a given

embedded planar graph G in O�sort�N�� I�Os� provided that a BFS�tree of
the graph is given� �

The input to our algorithm is an embedded planar graph G and a spanning
forest F ofG� Every tree in F is a BFS�tree of the respective connected compo�
nent� �In the remainder of this section� we call F a BFS�forest�� The graph G
is represented by its vertex set V and its edge set E� To represent the embed�
ding� let the edges incident to each vertex v be numbered in counterclockwise
order around v� starting at an arbitrary edge� This de�nes two numbers nv�e�
and nw�e�� for every edge e � fv� wg� Let these numbers be stored with e�
The spanning forest F is given implicitly by marking every edge of G as �tree

� The currently best known algorithm for computing a BFS�tree �MR� takes
O�jV j� jEj�jV jsort�jV j�� I�Os�

��



edge� or �non�tree edge� and storing with each vertex v � V � the name of its
parent in F �


�� Framework of the Algorithm

First we compute the connected components of the given graph G� If there
is a component whose weight is greater than �

�
we compute a separator S of

that component� Then we compute the connected components of G�S� which
gives the desired partition of G into subgraphs of weight at most �

�
each�

The connected components can be computed in O�sort�N�� I�Os �CGG�	��
In the next subsection� we describe how to compute the separator S using
O�sort�N�� I�Os� leading to the following theorem�

Theorem � Given an embedded planar graph G with N vertices and a BFS�
forest F of G� a �

�
�separator of size at most �

p
�
p
N for G can be computed

in O�sort�N�� I�Os�


�� Separating Connected Planar Graphs

In this section� we present an external memory algorithm for computing a
�
�
�separator of size O

�p
N
�
for a connected embedded planar graph G of size

N and weight at least �
�
� provided that a BFS�tree T of G is given� We assume

that G is triangulated� If it is not� it can be triangulated in O�sort�N�� I�Os
using the algorithm in Section � � Also� we assume that no vertex has weight
exceeding �

�
because otherwise S � fvg� where w�v� � �

�
� is trivially a �

�
�

separator of G� For a given level l of T � let L�l� be the number of vertices on
level l and W �l� be the weight of the vertices on level l�

The algorithm �Algorithm �� is based on the following observation� In a BFS�
tree T of a given graph G� non�tree edges connect vertices on the same level
or on consecutive levels� Thus� the removal of all vertices of any level in T
disconnects the subgraph of G corresponding to the upper part of T from the
subgraph corresponding to the lower part �see Fig� ��a��� We will �nd two
levels l� and l� that divide the graph into three parts G�� G�� and G�� where
w�G�� � �

�
� w�G�� � �

�
� and L�l�� � L�l�� is at most �

p
�
p
N � ��l� � l� � ��

�Step �� see Fig� ��b��� Thus� G� and G� already have the desired weight� and
we can a�ord to add up to two vertices per level between l� and l� to the

� Note� however� that the graph must be triangulated before computing the BFS�
tree� Otherwise� T might not be a BFS�tree of the triangulation anymore�
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Fig� �� Illustrating the three major steps of the separator algorithm�

separator� in order to cut G� into pieces whose individual weights are at most
�
�
�Step �� see Fig� ��c���

Lemma � Algorithm � computes a �
�
�separator S of size at most �

p
�
p
N for

an embedded connected planar graph G with N vertices in O�sort�N�� I�Os�
provided that a BFS�tree of G is given�

PROOF� First� let us assume that Step � computes the desired separator of
G� in O�sort�N�� I�Os� Then the major di�culty in Algorithm � is �nding
the two levels l� and l� in Step �� We �rst compute the level l� closest to the
root such that

P
l�l� W �l� � �

�
�see Fig� ��a��� Let K �

P
l�l� L�l�� Then we

compute levels l� � l� and l� � l� such that L�l�� � ��l� � l�� � �
p
K and

L�l�� � ��l� � l� � �� � �
p
N �K �see Fig� ��b��� The existence of level l� is

obvious� The existence of levels l� and l� has been shown in �LT
	�� It is easy
to see that levels l� and l� have the desired properties�

Now we turn to the correctness of Step �� In this step� we shrink levels �
through l� to a single root vertex r of weight �� Next� we remove levels l� and
below� and retriangulate the resulting graph� obtaining a triangulation G� �see
Fig� ��c��� Then we use the techniques of Section ��� to compute a fundamental
cycle C of G� which is a �

�
�separator of G�� Graph G� is a subgraph of G�� Thus�

G��C is a �
�
�separator of G�� The fundamental cycle can have length at most

��l�� l��� �� If the length is indeed ��l�� l��� �� C contains the root vertex
r� which is not part of G�� Thus� S

� � G� � C has size at most ��l� � l� � ���
as desired� When shrinking levels � through l� to a single vertex we have to
be a bit careful because we have to maintain the embedding of the graph� To

SeparateConnected�G� T ��

�� Label every vertex in T with its level in T �
	� Compute levels l� and l� cutting G into subgraphs G�� G�� and G� such

that w�G�� � �
�
� w�G�� � �

�
and L�l�� � L�l�� � ��l� � l� � �� � �

p
�
p
N �

�� Find a �
�
�separator S � of size at most ��l� � l� � �� for G��

�� Remove the vertices on levels l� and l� and in S � and all edges incident to
these vertices from G and compute the connected components of G� S�

Algorithm �� Separating a connected embedded planar graph�

��
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�a� �b�

r f

Fig� �� �a� An embedding of a given graph G� Regions Rl� � Rl� � and R
� are the white�

light grey� and dark grey parts of the plane� respectively� The additional curves in
region Rl� are level l� � � vertices� �b� In Step � of Algorithm �� we replace the
graph in region Rl� by a single root vertex r and connect it to all vertices at level
l��� �dotted curves�� We also remove the interior of region Rl� � All non�triangular
faces like face f have to be triangulated�

do this we number the vertices of T lexicographically and sort the vertices
v�� � � � � vk on level l��� by increasing numbers �i�e�� from left to right�� Let wi

be the parent of vi on level l�� Then we replace edge fvi� wig by edge fr� vig
and assign nvi�fr� vig� � nvi�fvi� wig� and nr�fr� vig� � i� This places edges
fr� vig counterclockwise around r and guarantees that edge fr� vig is embedded
between the appropriate edges incident to vi� We construct a BFS�tree T � of
G� by adding the edges fr� vig to the remains of T in G�� It is easily veri�ed
that T � is a spanning tree of G�� It is not so easy to see that T � is a BFS�tree of
G�� which is crucial for simplifying Algorithm � in Section ���� which computes
the desired separator for G� and thus G��

Consider the embedding of G in the plane �see Fig� ��a��� Then we de�ne
Rl� to be the union of triangles that have at least one vertex at level l� or
above in T �the outer face in Fig� ��a��� Analogously we de�ne Rl� to be
the union of triangles that have at least one vertex at level l� or below in T
�the light gray interior faces in Fig� ��a��� The embedding of G� then lies in
R� � R

� n �Rl� �Rl�� �the dark grey regions in Fig� ��a��� The boundary of R�

is a set of edge�disjoint cycles� and the interior of R� is triangulated� Also� note
that no vertex at level at most l� can be on the boundary between Rl� and
R� because all incident triangles are in Rl� � On the other hand� for a vertex
at level at least l� � � to be on that boundary it must be on the boundary
of a triangle that has a vertex at level at most l� on its boundary� which is
also impossible� Thus� the boundary between Rl� and R� is formed by level
l� � � vertices only� �Note that some level l� � � vertices are interior to Rl�

�the additional curves in region Rl� in Fig� ��a���� Analogously� the boundary
between Rl� and R� is formed by level l� � � vertices only� When shrinking
the vertices above and including level l� to a single root vertex� we can think
of this as removing the parts of G in Rl� and placing the new root vertex r

�



into Rl� �see Fig� ��b��� The tree edges connecting r to level l� � � vertices
are embedded in Rl� � As we did not alter the triangulation of R� �i�e�� G���
the only faces of G� where the triangulation algorithm adds diagonals are in
Rl� or Rl� � As all vertices on the boundary of Rl� are already connected to r�
the triangulation algorithm only adds edges connecting two level l��� or two
level l� � � vertices� thereby preserving the BFS�property of T � with respect
to G��

Now we analyze the complexity of Algorithm �� Step � takes O�sort�N�� I�Os
�see Section ����� In Step �� we sort the vertices by their levels and scan the
resulting sequence until the total weight of the vertices seen so far exceeds �

�
�

We continue the scan until we reach the end of a level� While scanning we
maintain the count K of visited vertices� We scan the vertex list backward�
starting at l�� and count the number of vertices on each visited level� When
we �nd a level l� with L�l�� � ��l� � l�� � �

p
K we stop� In the same way

we �nd l� scanning forward� starting at the level following l�� As we sort and
scan a constant number of times� Step � takes O�sort�N�� I�Os� Removing
all levels below and including l� takes O�sort�N�� I�Os� We sort the vertex
set and �rst sort the edges by their �rst endpoints� in a single scan we mark
all edges that have their �rst endpoint on level l� or below� after sorting the
edges by their second endpoints� we scan the edge list again to mark all edges
with their second endpoints on level l� or below� �nally� it takes a single scan
to remove all marked vertices and edges� Shrinking levels � through l� to a
single root vertex takes O�sort�N�� I�Os� O�sort�N�� I�Os to number the
vertices lexicographically� O�sort�N�� I�Os to sort the vertices on level l� � �
and another scan to replace edges fvi� wig by edges fr� vig� By Theorem 
�
we can retriangulate the resulting graph in O�sort�N�� I�Os� The removal of
the vertices and edges in G� can be done in a similar way as for G�� The rest
of Step � takes O�sort�N�� I�Os by Lemma �� Steps � and � have marked
the vertices on levels l� and l� and in S � as separator vertices� Then we use
the same technique as for removing G� to remove all separator vertices and
incident edges in O�sort�N�� I�Os� Computing the connected components of
G� S takes O�sort�N�� I�Os �CGG�	�� ut


�� Finding a Small Simple Cycle Separator

Let G� be the triangulation as constructed at the beginning of Step � of Algo�
rithm � and T � be the BFS�tree of G� constructed from T � Every non�tree edge
e � fv� wg in G� de�nes a fundamental cycle C�e� consisting of e itself and the
two paths in the tree T � from the vertices v and w to the lowest common ances�
tor u of v and w �see Fig� �� �Note that in a BFS�tree� u is distinct from both
v and w�� Given an embedding of G�� any fundamental cycle C�e� separates
G� into two subgraphs R��e� and R��e�� one induced by the vertices embedded

��
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Fig� �� A non�tree edge e and the corresponding fundamental cycle C�e� shown in
bold� R��e� is the region inside the cycle and R��e� is the region outside the cycle�

inside C�e� and the other induced by those embedded outside� In �LT
	� it is
shown that there is a non�tree edge e in G� such that R��e� and R��e� have
weights at most �

�
each� provided that no vertex has weight exceeding �

�
and

G� is triangulated� Moreover� for any non�tree edge e� the number of vertices
on the fundamental cycle C�e� is at most �  height�T �� � � � ��l� � l�� � ��
Next we show how to �nd such an edge and the corresponding fundamental
cycle I�O�e�ciently�

We compute labels for the non�tree edges of G� so that we can compute the
weights w�R��e�� and w�R��e�� of regions R��e� and R��e� only using the
labels stored with edge e� Then we can �nd the edge e whose corresponding
fundamental cycle is a �

�
�separator in a single scan over the edge set of G��

Consider Fig� � Given a lexicographical numbering of the vertices in T �� denote
the number assigned to vertex x by nl�x�� For a given edge e � fv� wg� we
denote by v the endpoint with smaller lexicographical number� i�e�� nl�v� �
nl�w�� Then the vertices in the white and striped subtrees and on the path from
u to w are exactly the vertices with lexicographical numbers between nl�v�
and nl�w�� We compute for every vertex x a label 
l�x� �

P
nl	y
�nl	x
w�y��

Then the weight of the vertices in the white and striped subtrees and on the
path from u to w is 
l�w�� 
l�v�� Given for every vertex x the weight ��x� of
the vertices on the path from x� inclusive� to the root r of T �� the weight of the
vertices on the path from u to w� including w but not u� is ��w�� ��u�� and
the weight of the white and striped subtrees is 
l�w� � 
l�v� � ��w� � ��u��
It remains to add the weight of the cross�hatched trees and to subtract the
weight of the white trees to obtain the weight w�R��e�� of region R��e��

For every edge e� we compute a label ��e�� If e � fv� wg is a tree edge and v is
further away from the root of T � than w� then ��e� is the weight of the subtree
of T � rooted at v� If e is a non�tree edge� ��e� � �� Let e�� � � � � ek be the list
of edges incident to a vertex x� sorted counterclockwise around x and so that
e� � fx� p�x�g� where p�x� denotes x�s parent in T �� Then we de�ne �x�e�� � �
and �x�ei� �

Pi
j�� ��ej� for i � �� Now the weight of the white subtrees in

Fig�  is �v�e�� and the weight of the cross�hatched subtrees is �w�e�� Thus� we

�




can compute the weight of region R��e� as

w�R��e�� � 
l�w�� 
l�v� � ��w�� ��u� � �w�e�� �v�e�� ��

It is easy to see that the weight of region R��e� is

w�R��e�� � w�G��� w�R��e��� ��v�� ��w� � ���u�� w�u� ���

�the weight of the whole graph minus the weight of the interior region minus
the weight of the fundamental cycle�� Assuming that all these labels are stored
with e� we can scan the edge set of G� and compute for every visited non�tree
edge the weights of R��e� and R��e� using equations �� and ���� It remains
to show how to compute these labels� We provide the details in the proof of
the following lemma�

Lemma � Given a triangulated graph G� with N vertices and a BFS�tree T � of
G�� Algorithm � takes O�sort�N�� I�Os to compute a �

�
�simple cycle separator

CycleSeparator�G�� T ���
�� Compute the vertex and edge labels required to compute the weights of

regions R��e� and R��e�� for every non�tree edge e�

a� Label every vertex x in G� with a tuple A�x� � �W �x�� nl�x�� ��x�� �l�x���
where
� W �x� is the weight of the subtree of T � rooted at x�
� nl�x� is x�s lexicographical number in T ��
� ��x� is the total weight of all ancestors of x in T �� inclusive� and
� �l�x� �

P
nl	y
�nl	x
 w�y� ��weighted lexicographical number of x���

b� For every edge e � fv� wg�
��� Compute the lowest common ancestor u of v and w and copy the tuples

A�u�� A�v�� and A�w� to e� and
�	� Compute a label ��e� de
ned as

��e� �

�
� if e is a non�tree edge

W �v� if e is a tree edge and w � p�v��

c� For every vertex x let e�� � � � � ed be the set of edges incident to x sorted
counterclockwise around x and so that e� � fx� p�x�g� Compute labels

�x�ei� �

�
� if i � �

�x�ei��� � ��ei� if i � ��

	� Scan the edge list of G� and compute for every non�tree edge e� the weights
of R��e� and R��e� using equations �� and ���� Choose a non�tree edge e
such that w�R��e�� � �

�
and w�R��e�� � �

�
�

�� Report the fundamental cycle C�e��

Algorithm �� Finding a simple cycle separator in a triangulation�
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of size at most �  height�T ��� � for G��

PROOF� The labelling of vertices in Step �a takes O�sort�N�� I�Os� The
subtree weights W �v� and the weighted levels ��v� of the vertices can be
computed using time�forward processing in the tree� To compute the subtree
weights� we process the tree bottom�up� To compute the weighted levels� we
process the tree top�down� In Section ���� we have described how to compute
a lexicographical numbering of T � in O�sort�N�� I�Os� To compute 
l�x� for
all vertices x� we sort the vertex set of T � by increasing numbers nl�x� and
then scan this sorted list to compute labels 
l�x� as the pre�x sums over the
weights w�x��

As there are at most �N �  non�tree edges in T �� we have to compute O�N�
lowest common ancestors in T � in Step �b� which takes O�sort�N�� I�Os
�CGG�	�� To copy the labels of u� v� and w to edge e � fv� wg� we �rst
sort the vertex set by increasing vertex names� Then we sort the edge set
three times� once by each of the values of u� v� and w� After each sort� we scan
the vertex and edge sets to copy the tuples A�u�� A�v�� and A�w�� respectively�
to the edges� Computing labels ��e� then takes an additional scan over the
edge set of T ��

To compute labels �x�e� in Step �c� we create a list L� containing two tuples
�v� nv�e�� p�v�� w� ��e�� and �w� nw�e�� p�w�� v� ��e�� for every edge e � fv� wg�
We sort this list lexicographically� so that �the tuples corresponding to� the
edges incident to vertex x are stored consecutively� sorted counterclockwise
around x� Then we scan L� and compute a list L� of triples �v� w� �v�e�� and
�v� w� �w�e��� Note that in L�� the edge �x� p�x�� is not necessarily stored as the
�rst edge in the sublist of edges incident to x causing us to skip some edges at
the beginning of the sublist until we �nd edge �x� p�x�� in the list� The skipped
edges have to be appended at the end of the sublist� We can use a queue to
do this� After sorting L� as well as the edge list of T �� it takes a single scan of
the two sorted lists to copy the labels �v�e� and �w�e� to all edges e�

Step � searches for a non�tree edge whose corresponding fundamental cycle is
a �

�
�separator� As already observed� this search takes a single scan over the

edge list of G�� using the labels computed in Step � to compute the weights
w�R��e�� and w�R��e�� of the interior and exterior regions�

Step � is based on the following observation� Given a lexicographical number�
ing nl�x� of the vertices of T �� this numbering is also a preorder numbering�
Given a vertex v with preorder number x� let the subtree rooted at v have
size m� Then the vertices in this subtree have preorder numbers x through
x�m� �� This implies that the ancestor of a vertex v at a given level l is the
vertex u such that nl�u� � maxfnl�u�� � l�u�� � l � nl�u�� � nl�v�g� where l�x�

�	



denotes the level of vertex x� Using this observation we sort the vertices by
increasing levels in T � and in each level by increasing lexicographical numbers
and scan this sorted list of vertices backward� �nding the ancestors of v and w
at every level until we come to a level where v and w have the same ancestor�
u� Thus� Step � also takes O�sort�N�� I�Os� ut

� Triangulating Embedded Planar Graphs

In this section� we present an O�sort�N���algorithm to triangulate a connected
embedded planar graph G � �V�E�� We assume the same representation of G
and its embedding as in the previous section� Our algorithm consists of two
phases� First we identify the faces of G� We represent each face f by a list of
vertices on its boundary� sorted clockwise around the face� In the second phase
we use this information to triangulate the faces of G� We show the following
theorem�

Theorem 	 Given an embedded planar graph G� it can be triangulated in
O�sort�N�� I�Os�

PROOF� This follows from Lemmas � and ��� ut

��� Identifying Faces

As mentioned above� we represent each face f by the list of vertices on its
boundary� sorted clockwise around the face� Denote this list by Ff � Let F be
the concatenation of the lists Ff for all faces f of G� The goal of the �rst step is
to compute F � The idea of this step is to replace every edge fv� wg of G by two
directed edges �v� w� and �w� v� and decompose the resulting directed graph�
D� into directed cycles� each representing the clockwise traversal of a face of
G �see Fig� ��a��� ��Clockwise� means that we walk along the boundary of the
face with the boundary to our left� Thus� a clockwise traversal of the outer
face corresponds to walking counterclockwise along the outer boundary of the
graph� This somewhat confusing situation is resolved if we imagine the graph
to be embedded on a sphere because then all faces are interior�� Removing
one edge from each of these cycles gives us a set of paths� The vertices on
such a path appear in the same order on the path as clockwise around the
face represented by the path� �Note that the same vertex may appear more
than once on the boundary of the same face� if it is a cutpoint �see Fig� ��a����
Considering the set of paths as a set of lists� we can rank the lists� This gives
us the orders of the vertices around all faces� i�e�� the lists Ff �
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f

Fig� �� �a� The directed graph D �dotted arrows� corresponding to a given graph
G �solid lines�� Note that vertex v appears twice on the boundary of face f � and
vertex w appears twice on the boundary of the outer face� �b� The directed graph
�G �white vertices and dotted arrows� corresponding to D�

The problem with the directed cycles in D is that they are not vertex�disjoint�
Hence� we cannot apply standard graph external�memory algorithms to ex�
tract these cycles� The following modi�cation solves this problem� Instead of
building D� we build a graph  G for G �see Fig� ��b��� which is closely related
to the representation of G by a doubly�connected edge list �MP
���  G contains
a vertex v	v�w
 for every edge �v� w� in D and an edge between two vertices
v	u�v
 and v	v�w
 if the corresponding edges �u� v� and �v� w� are consecutive in

some cycle of D representing a face of G� Graph  G consists of vertex�disjoint
cycles� each representing a face of G� We compute the connected components
of  G� thereby identifying the cycles of G� and apply the same transformations
to  G that we wanted to apply to D� Step � of Algorithm � gives the details of
the construction of  G� In Step �� we use  G to compute F �

Lemma 
 Algorithm � takes O�sort�N�� I�Os to construct the list F for a

IdentifyFaces�G��

�� Construct a directed graph  G � � V �  E��

a� For each edge e � fv� wg � E� add two vertices� v	v�w
 and v	w�v
 to �V �
b� For each vertex v � V � let fv� w�g� � � � � fv� wk��g be the edges incident to v�

in counterclockwise order�
c� Add directed edges

�
v	wi�v
� v�v�w�i���modk�

�
� � � i 	 k� to �E�

	� Construct F �

a� Compute the connected components of �G �considering �G as undirected�� la�
belling every vertex �v with a label c��v� identifying its connected component�

b� Remove one edge from each connected component of �G�
c� Rank the resulting lists�
d� Sort �V by component labels c��v� and decreasing ranks�
e� Scan �V and write for each vertex v	v�w
� a copy of v with face label f�v� �

c�v	v�w
� to F �

Algorithm �� Identifying the faces of G�

��



given graph G�

PROOF� Correctness� Two vertices in  G that are consecutive on a cycle of
 G represent two edges that are consecutive on the boundary of a face of G
in clockwise order� Thus� these two edges are consecutive around a vertex
of G in counterclockwise order� The correctness of Step � follows from this
observation�

After removing an edge from every cycle in  G� the connected components of  G
are paths� Considering these paths as lists� we can rank these lists� Sorting the
vertices in  V by component labels and decreasing ranks �Step �d� arranges
the vertices representing the same face of G consecutively and sorts them
clockwise around the face� Given a sublist  Vf of  V representing a face f of

G� the vertices of  Vf represent the edges of D clockwise around the face�
We can think of Step �e as scanning this list of edges in D and writing the
sorted sequence of source vertices of these edges to disk� This produces the
desired list Ff � and the application of Step �e to the whole of  V produces the
concatenation F of all such lists Ff � Note that the lists Ff are distinguished
in F � as two vertices in F have the same label f�v� if and only if they belong
to the same list Ff �

Complexity� Step �a requires a single scan over the edge list E of G� For step
�b� recall that we are given the embedding as two labels nv�e� and nw�e� for ev�
ery edge e � fv� wg� We replace e by two triples �v� nv�e�� w� and �w� nw�e�� v��
and sort the resulting list of triples lexicographically� In the resulting list� all
�triples representing� edges incident to a vertex v are stored consecutively�
sorted counterclockwise around the vertex� Thus� Step �c requires a single
scan over this sorted list of triples� and Step � takes O�sort�N�� I�Os�

Steps �a and �c take O�sort�N�� I�Os �CGG�	� as do Steps �d and �e� The
details of Step �b are as follows� Note that for every vertex  v� there is exactly
one edge � v�  w� in  G� Thus� we sort  V by vertex names and  E by the names of
the source vertices� thereby placing edge � v�  w� at the same position in  E as  v�s
position in  V � Scanning  V and  E simultaneously� we assign component labels
c�� v�  w�� � c� v� to all edges � v�  w� in  E� Then we sort  E by these component
labels� Finally we scan  E again and remove every edge whose component label
is di�erent from the component label of the previous edge� Also� we remove
the �rst edge in  E� As this procedure requires sorting and scanning  V and  E
twice� the complexity of Step � is O�sort�N�� I�Os� ut

��



��� Triangulating Faces

We triangulate each face f in four steps �see Algorithm ��� In Step �� we reduce
f to a simple face  f � That is� no vertex appears more than once in a clockwise
traversal of  f �s boundary� Accordingly we reduce the list Ff to F �f � In Step ��

we triangulate  f � We guarantee that there are no parallel edges in  f � But we
may add parallel edges to di�erent faces� �See Fig� ��a� for an example�� Let
e�� � � � � ek be the set of edges with endpoints v and w� In Step �� we select one
of these edges� say e�� and mark edges e�� � � � � ek as con�icting� Each of these
edges is said to be in con�ict with e�� In Step �� we retriangulate all faces so
that con�icts are resolved and a �nal triangulation is obtained�

The following lemma states the correctness of Step ��

Lemma � For each face f of G� the face  f computed by Step � of Algorithm 

is simple� The parts of f that are not in  f are triangulated� Moreover� Step �
does not introduce parallel edges�

TriangulateFaces�G�F ��

�� Make all faces of G simple�

For each face f � �a� mark the 
rst appearance of each vertex v in Ff � �b�
append a marked copy of the 
rst vertex in Ff to the end of Ff � �c� scan
Ff backward and remove each unmarked vertex v from f and Ff by adding
a diagonal between its predecessor and successor in the current list� and �d�
remove the last vertex from list Ff � Call the resulting list F �f �

	� Triangulate the simple faces�

Let F �f � hv�� � � � � vki� Then add �temporary diagonals� fv�� vig� 	 � i � k���

to �f �

�� Mark con�icting diagonals�

Sort E lexicographically� representing edge fv� wg by an ordered pair �v� w��
v 	 w� and so that edge fv� wg is stored before any �temporary diagonal�
fv� wg� Scan E and mark all occurrences except the 
rst of each edge as
con�icting� Restore the original order of all edges and �temporary diagonals��

�� Retriangulate con�icting faces�

a� For each face �f � let D �f � hfv�� v�g� � � � � fv�� vk��gi be the list of �temporary
diagonals��

b� Scan D �f until we 
nd the 
rst con�icting diagonal fv�� vig�
c� Replace the diagonals fv�� vig� � � � � fv�� vk��g by new diagonals

fvi��� vi��g� � � � � fvi��� vkg�
Algorithm �� Triangulating the faces of G�
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Fig� �� Illustrating the proof of Lemma �

PROOF� We mark exactly one copy of every vertex on f �s boundary� For
the �rst vertex� we append a second marked copy to the end of Ff only to
close the cycle� This copy is removed at the end of Step �� We remove an
unmarked vertex v by adding an edge between its predecessor u and successor
w on the current boundary of the face� thereby cutting triangle �u� v� w� o�
the boundary of f � As we remove all unmarked vertices this way� the resulting
face  f is simple and the parts that have been removed from f to produce  f
are triangulated�

Next we show that Step � does not add parallel edges to the same face f �
Assume for the sake of contradiction that we have added two edges with
endpoints v and w to f �see Fig� 
�a��� We can add two such edges e� and
e� only if one of the endpoints� say w� appears at least twice in a clockwise
traversal of f �s boundary� Then� however� there is at least one vertex x that
has all its occurrences between two consecutive occurrences of w because e�
and e� form a closed curve� That is� the marked copy of x also appears between
these two occurrences of w� Adding e� to f would remove this marked copy
from f �s boundary� but we never remove marked vertices� Thus� e� cannot
exist�

Now assume that we add two edges e� and e� with endpoints v and w to
di�erent faces f� and f�� By adding e� we remove a vertex u from f��s boundary
�see Fig� 
�b��� As this copy is unmarked� there must be another� marked� copy
of u� Consider the region R� enclosed by the curve between the marked copy
of u and the removed copy of u� following the boundary of f�� In the same way
we de�ne a region R� enclosed by the curve between the removed copy of u
and the marked copy of u� Any face other than f� that has v on its boundary
must be in R�� Any face other than f� that has w on its boundary must be in
R�� However� R� and R� are disjoint� Thus� we cannot add a diagonal fv� wg
to any face other than f�� ut

Step � triangulates all simple faces  f � possibly adding parallel edges to di�erent
faces� Consider all edges e�� � � � � ek with endpoints v and w� We have to remove
at least k� � of them� Also� if edge fv� wg was already in G� we have to keep
this edge and remove all diagonals that we have added later� That is� the
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Fig� �� �a� A simple face �f with a con�icting diagonal edge d � fv�� vig� Diagonal
d con�icts with d� and divides �f into two parts f� and f�� One of them� f�� is
con�ict�free� Vertex vi�� is the third vertex of the triangle in f� that has d on its
boundary� �b� The con�ict�free triangulation of �f �

edge fv� wg is the edge with which all diagonals fv� wg are in con�ict� and we
have to label all diagonals as con�icting while labelling edge fv� wg as non�
con�icting� If edge fv� wg was not in G� we can choose an arbitrary diagonal
fv� wg with which all other diagonals with the same endpoints are in con�ict�
This strategy is realized in Step �� The following lemma states the correctness
of Step �� thereby �nishing the correctness proof for Algorithm ��

Lemma �� Step 
 makes all faces  f con�ict�free� i�e� the triangulation ob�
tained after Step 
 does not contain parallel edges�

PROOF� Let d � fv�� vig be the edge found in Step �b �see Fig� ��a��� Then
d cuts  f into two halves� f� and f�� All diagonals fv�� vjg� j � i are in f��
all diagonals fv�� vjg� j � i are in f�� That is� f� does not contain con�icting
diagonals� Vertex vi�� is the third vertex of the triangle in f� that has d on
its boundary� Step �c removes d and all edges in f� and retriangulates f� with
diagonals that have vi�� as one endpoint� �Intuitively it forms a star at the
vertex vi��� see Fig� ��b���

Let d� be the edge that d is in con�ict with� Then d and d� form a closed curve�
Vertex vi�� is outside this curve and all boundary vertices of f� excluding the
endpoints of d are inside this curve� As we keep d�� no diagonal� except for the
new diagonals in  f � can intersect this curve� Thus� the new diagonals in  f are
non�con�icting� The �old� diagonals in  f were in f� and thus� by the choice of
d and f�� non�con�icting� Hence�  f does not contain con�icting diagonals� ut

Lemma �� Given the list F as computed by Algorithm �� Algorithm 
 trian�
gulates the given graph G in O�sort�N�� I�Os�

PROOF� We have already shown the correctness of Algorithm �� In Step ��
we �rst sort every list Ff by vertex names� Then it takes a single scan to
mark the �rst occurrences of all vertices in Ff � Using another sort we restore

�



the original order of the vertices in Ff � The rest of Step � requires scanning
F � writing the marked vertices to F �f � in their order of appearance� and keep�
ing the last visited marked vertex in main memory in order to add the next
diagonal� Thus� Step � takes O�sort�N�� I�Os� Step � requires a single scan
over the list F � as modi�ed by Step �� Assuming that all edges in G before
the execution of Step � were labelled as �edges�� we label all edges added
in Step � as �diagonals�� Then Step � requires sorting the list of edges and
diagonals lexicographically and scanning this sorted list to label con�icting
diagonals� Note� however� that Step � requires the diagonals to be stored in
the same order as added in Step �� Thus� before sorting in Step �� we label
every edge with its current position in E� At the end of Step �� we sort the
edges by these position labels to restore the previous order of the edges� Of
course� Step � still takes O�sort�N�� I�Os� Step � takes a single scan over E�
Thus� the whole algorithm takes O�sort�N�� I�Os� ut

A problem that we have ignored so far is embedding the new diagonals� Next
we describe how to augment Algorithm � in order to maintain an embedding
of G under the edge insertions performed by the algorithm� To do this� we have
to modify the representation of the embedding slightly� Initially we assumed
that the edges e�� � � � � ek incident to a vertex v are assigned labels nv�ei� � i
clockwise around v� During the triangulation process we allow labels nv�e�
that are multiples of �

N
� Note that this does not cause precision problems

because we can represent every label nv�e� as an integer N  nv�e� using at
most � logN bits �while nv�e� uses logN bits��

Let v�� e�� v�� e�� � � � � vk��� ek�� be the list of vertices and edges visited in a
clockwise traversal of the boundary of a face f �i�e�� Ff � hv�� � � � � vk��i��
During the construction of Ff � we can easily assign labels n��vi� and n��vi�
to the vertices� where n��vi� � nvi�e	i��
modk� and n��vi� � nvi�ei�� When
we add a diagonal d � fvi� vjg� i � j� we update the labels of vi and vj
to n��vi� � n��vi� � �

N
and n��vj� � n��vj� �

�
N

and embed d assigning
nvi�d� � n��vi� and nvj �d� � n��vj�� Assuming that n��vi� � n��vi� � �

N
or

n��vi� � n��vi� and n��vj� � n��vj� �
�
N

or n��vj� � n��vj�� this embeds
d between e	i��
modk and ei at vi�s end and e	j��
modk and ej at vj�s end� It
remains to show that this assumption is always satis�ed�

We maintain the following invariant for every face f � Let v�� e�� � � � � vk��� ek��

be the boundary description of f as given above� Then for every vertex vi�
either n��vi� �

k��
N

� n��vi� or n��vi� � n��vi�� Initially� this is true because
all labels nv�e� are integers and k � N � Adding diagonal d to f as above
cuts f into two faces f� and f�� For all vertices vl� l �� fi� jg� the labels do not
change� but the sizes of f� and f� are less than the size of f � Thus� for all these
vertices the invariant holds� We show that the invariant holds for vi� A similar
argument can be applied for vj� Let f� be the face with vertices vj� � � � � vi on
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Fig� � A given planar graph G �a� and its separator tree ST�G� �b�� Note that any
path between vertices v and w� which are stored in the white and grey subtrees of
ST�G�� respectively� must contain a black or horizontally striped separator vertex�
These separators are stored at common ancestors of 
�v� and 
�w��

its boundary and f� be the face with vertices vi and vj on the boundary� Let
the size of fi be ki � k � �� If n��vi� � n��vi�� then this is also true after
subtracting �

N
from n��vi�� Otherwise� n��vi� � n��vi� � k��

N
� �

N
� k���

N
�

Thus� the invariant holds for all vertices on f��s boundary� In f� we do not
have any room left to add diagonals incident to vi or vj� However� Steps � and
� of Algorithm � scan along the boundaries of the faces and keep cutting o�
triangles� Choosing the indices i and j in the above description so that f� is
the triangle that we cut o�� we never add another diagonal to f�� �Note that
it would be just as easy to maintain the embedding in Step �� but we need
not even do this because diagonals are added only temporarily in Step �� and
�nal diagonals are added in Step ���

� The Shortest Path Data Structure

In this section� we incorporate the main ideas of the internal memory short�
est path data structure in �Dji	�� and show how to use them together with
the external memory techniques developed in this paper to design an e�cient
external memory shortest path data structure� The data structure in �Dji	��
uses O�S� space and answers distance queries on graphs with separators of

size O
�p

N
�
in O �N��S� time� where � � S � N�� Reporting the corre�

sponding shortest path takes O�K� time� where K is the number of vertices
on the path� The basic structure used to obtain the above trade�o� is an
O
�
N���

�
size internal memory data structure that answers distance queries

in O
�p

N
�
time� Our external memory data structure is fully blocked� That is�

it uses O
�
N����B

�
blocks of external memory and answers distance queries

in O
�p

N�DB
�
I�Os� The corresponding shortest path can be reported in

O�K�DB� I�Os�
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Given a planar graph G �see Fig� 	�a��� we compute a separator tree ST�G� for
G �see Fig� 	�b��� This tree is de�ned recursively� We compute a �

�
�separator

S��� of size O
�q

jGj
�
for G� Let G�� � � � � Gk be the connected components of

G � S���� Then we store S��� at the root � of ST�G� and recursively build
separator trees ST�G��� � � � � ST�Gk�� whose roots become the children of ��
Thus� every vertex v of G is stored at exactly one node �v� � ST�G�� For
two vertices v and w� let �v� w� � lca��v�� �w��� For a vertex  � ST�G��
we de�ne S��� �resp� S���� as the sets of vertices stored at  and its
ancestors �resp� descendants�� For convenience� we denote the sets S��v�� and
S��v� w�� by S�v� and S�v� w�� respectively� Sets S��v�� S��v�� S��v� w� and
S��v� w� are de�ned analogously� In �Dji	�� it is shown that any path between
v and w in G must contain at least one vertex in S��v� w�� For a given graph
H� we denote the distance between two vertices v and w in H by dH�v� w��
Then d�v� w� � minx�S�	v�w
fdGS�	x
��x� v� � dGS�	x
��x� w�g� If we represent
all sets S��v� and S��v� w� as lists sorted by increasing depth in ST�G�� then
S��v� w� is the longest common pre�x of S��v� and S��w�� Let D�v� be a list
of distances� where the ith entry inD�v� is the distance dGS�	x
��v� x� between v
and the ith entry x in S��v�� Given the lists S��v�� S��w��D�v�� andD�w�� we
can compute d�v� w� by scanning these four lists� We scan S��v� and S��w� in
�lock�step� fashion and test whether xv � xw� where xv and xw are the current
entries visited in the scans of the two lists� If xv � xw� then we proceed in the
scans of D�v� and D�w� to compute dGS�	xv
��xv� v� � dGS�	xv
��xv� w� and
compare it to the previously found minimum� If xv �� xw� we have reached the
end of S��v� w� and stop�

For every separator vertex x� our data structure contains a shortest path tree
SPT�x� with root x� This tree represents the shortest paths between x and
all vertices in G�S��x��� That is� every vertex v of G�S��x�� is represented
by a node in SPT�x�� and the shortest path from v to x in G�S��x�� corre�
sponds to the path from v to x in SPT�x�� Given the distance d�v� w� between
two vertices v and w� there must be some vertex xmin � S��v� w� such that
d�v� w� � dGS�	xmin
��xmin� v�� dGS�	xmin
��xmin� w�� The shortest path 	�v� w�
from v to w is the concatenation of the shortest paths from v to xmin and from
xmin to w� Given SPT�xmin�� we can traverse the paths from v and w to the
root xmin and concatenate the traversed paths to obtain 	�v� w�� To traverse
these two paths in the tree� we have to �nd the two �external� memory loca�
tions holding the two nodes representing v and w in SPT�xmin�� We construct
lists P �v� for all vertices v of G holding pointers to the representatives of v in
all shortest path trees� Let x be the separator vertex stored at the ith position
in S��v�� Then the ith position of P �v� holds a pointer to the node represent�
ing v in SPT�x�� That is� if xmin is stored at position i in S��v� and S��w��
the ith positions of P �v� and P �w� hold the addresses of the representatives of
v and w in SPT�xmin�� giving us enough information to start traversing and
reporting 	�v� w��
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The size of the separator S�� stored at every vertex  in the separator tree

ST�G� is O
�q

jG�S����j
�
� From one level in ST�G� to the next the sizes of

the subgraphs G�S���� associated with the vertices decrease by a factor of at
least �

�
� Thus� the sizes of the graphs G�S���� on a root�to�leaf path in ST�G�

are bounded from above by a geometrically decreasing sequence� and the sizes
of the separators S�� stored at these vertices form a geometrically decreasing

sequence as well� Hence� there are only O
�p

N
�
separator vertices on any such

path and each list S��v� has size O
�p

N
�
� As we have to scan lists S��v��

S��w�� D�v�� and D�w� to compute d�v� w�� this takes O
�p

N�DB
�
I�Os� It

takes two more I�Os to access the pointers in P �v� and P �w�� Assuming that
all shortest path trees have been blocked as described in Section �� traversing
the paths from v and w to xmin in SPT�xmin� takes O�K�DB� I�Os� where K
is the number of vertices on the shortest path 	�v� w��

It remains to show that the data structure can be stored in O
�
N����B

�
blocks�

As every list S��v�� D�v�� and P �v� has size O
�p

N
�
and there are �N such

lists� all lists require O
�
N���

�
space and can thus be stored in O

�
N����B

�
blocks� There is exactly one shortest path tree for every separator vertex�
Consider tree SPT�x� and a node v in this tree� Then this node corresponds
to the entry for x in list S��v�� That is� there is a one�to�one correspondence
between entries in the lists S��v� and shortest path tree nodes� Thus� the total

size of all shortest path trees is O
�
N���

�
as well� As blocking the shortest path

trees increases the space requirements by only a constant factor� the shortest
path trees can also be stored in O

�
N����B

�
blocks of external memory� We

have shown the following theorem�

Theorem �� Given a planar graph G with N vertices� one can construct
a data structure that answers distance queries between two vertices in G in
O
�p

N�DB
�

I�Os� The corresponding shortest path can be reported in

O�K�DB� I�Os� where K is the length of the reported path� The data structure

occupies O
�
N����B

�
blocks of external memory�

	 Conclusions

The I�O�e�cient construction of our shortest path data structure is still a
problem� as there are no algorithms for BFS� embedding� and the single source
shortest path problem that perform I�O�e�ciently on planar graphs� The sep�
arator algorithm in Section � tries to address the problem of computing the
separators required to build the separator tree I�O�e�ciently� Also� in �Zeh	��
an O�sort�N�� algorithm for transforming a given rooted tree of size N into
the blocked form described in Section � is given�

�	



A shortcoming of our separator algorithm is that it needs a BFS�tree� Most
separator algorithms rely on BFS� but breadth��rst search and depth��rst
search seem to be hard problems in external memory� Thus� it is an impor�
tant open problem to develop an I�O�e�cient separator algorithm that does
not need BFS or DFS� The existence of an I�O�e�cient planar embedding
algorithm is also open�

Recently� Maheshwari and Zeh �MZ		� presented O�sort�N�� algorithms for
outerplanarity testing� computing an outerplanar embedding� BFS� DFS� and
computing a �

�
�separator of a given outerplanar graph� It is an important

question whether there are other interesting classes of graphs with similar I�O�
complexities for these problems� They also showed !�perm�N�� lower bounds
for computing an outerplanar embedding� and BFS and DFS in outerplanar
graphs� As outerplanar graphs are also planar� the lower bounds for BFS and
DFS also apply to planar graphs� A similar technique as in �MZ		� can be
used to show that planar embedding has an !�perm�N�� lower bound�
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