
DOI: 10.1007/s00453-002-1009-y

Algorithmica (2003) 36: 97–122 Algorithmica
© 2003 Springer-Verlag New York Inc.

Efficient External Memory Algorithms by Simulating
Coarse-Grained Parallel Algorithms1

Frank Dehne,2 Wolfgang Dittrich,3 and David Hutchinson4

Abstract. External memory (EM) algorithms are designed for large-scale computational problems in which
the size of the internal memory of the computer is only a small fraction of the problem size. Typical EM
algorithms are specially crafted for the EM situation. In the past, several attempts have been made to relate the
large body of work on parallel algorithms to EM, but with limited success. The combination of EM computing,
on multiple disks, with multiprocessor parallelism has been posted as a challenge by the ACM Working Group
on Storage I/O for Large-Scale Computing.

In this paper we provide a simulation technique which produces efficient parallel EM algorithms from
efficient BSP-like parallel algorithms. The techniques obtained can accommodate one or multiple processors
on the EM target machine, each with one or more disks, and they also adapt to the disk blocking factor of the
target machine. When applied to existing BSP-like algorithms, our simulation technique produces improved
parallel EM algorithms for a large number of problems.

Key Words. Parallel algorithms, Coarse grained parallel computing, External memory algorithms,
Parallel I/O.

1. Introduction. External memory (EM) algorithms are designed for large computa-
tional problems in which the size of the internal memory of the computer is only a small
fraction of the size of the problem. Important applications in Geographic Information
Systems (GIS), Virtual Reality, VLSI design, weather prediction, computerized medical
treatment, 3D simulation and modeling, visualization, and Computational Geometry fall
into this category.

With few exceptions (e.g., [33]), previous authors focussed on a uniprocessor EM
model. However, parallel processing is an important issue for EM algorithms (extremely
large problems) for the same reasons that parallel processing is of practical interest in
non-EM algorithm design. Previous parallel EM algorithms (e.g., [33]), as well as most
sequential EM algorithms, were “new” and carefully hand-crafted to work optimally

1 A preliminary version of this paper was presented at the 9th Annual ACM Symposium on Parallel Algorithms
and Architectures (SPAA ’97), Newport, RI, June 22–25, 1997. The research by the first author was partially
supported by the Natural Sciences and Engineering Research Council of Canada. The second author’s research
was partially supported by DFG-Sonderforschungsbereich 376 “Massive Parallelität” and by EU ESPRIT
Long Term Research Project 20244 (ALCOM-IT), and was started while he was visiting Carleton University.
The research by the third author was partially supported by Almerco, Inc. and by the Natural Sciences and
Engineering Research Council of Canada.
2 School of Computer Science, Carleton University, Ottawa, Ontario, Canada K1S 5B6. frank@dehne.net,
http://www.dehne.net.
3 Bosch Telecom GmbH, Backnang, Germany.
4 Department of Systems and Computer Engineering, Carleton University, Ottawa, Ontario, Canada K1S 5B6.

Received September 6, 1998; revised July 21, 2002. Communicated by D. T. Lee.
Online publication March 20, 2003.

98 F. Dehne, W. Dittrich, and D. Hutchinson

in the EM environment. Existing “internal memory” algorithmic techniques and data
structures were often found to be unsuitable for EM. This is largely due to the need
for locality on data references, which is not generally present when algorithms are
designed for internal memory, due to the permissive nature of the RAM and PRAM
models. However, there are some obvious similarities between formulating an efficient
algorithm for a parallel computer and formulating one for EM (see, e.g., [6]). The
possibility of using the vast body of algorithms developed for parallel computers instead
of reinventing new algorithms for EM is intriguing. In this paper we exploit a natural
correspondence between EM algorithms and BSP-like parallel models such as BSP [28],
BSP* [9], [10], [8] and CGM [19], [17], [16]. We provide simulation techniques that
map BSP-like algorithms to EM algorithms and we show how, using a randomized
approach, an EM machine can take full advantage of parallel disk I/O and multiple
processors.

Ensuring that I/O is fully blocked is an important issue in reducing the runtime of
an EM algorithm. Accessing the main memory of a computer can be orders of magni-
tude faster than accessing an element of data in secondary memory such as a hard disk.
This large difference is typically made less significant by carefully ensuring that data
on disk is accessed in a blockwise fashion. Thus, the overheads of rotational delay and
disk arm movement are amortized over the number of items in a disk block. A second
important issue, when more than one disk is present, is fully parallel disk I/O. If there
are D disks present, and the disk block size is B, DB data items can be transferred
in a single I/O operation. These two issues are fundamental, since if I/O is not fully
blocked, the runtime can typically be up to a factor of 103 (the blocking factor) too high,
and if parallel disks are not properly utilized, the runtime can be a factor of D too high.
More discussion of the traditional EM system model and related issues can be found
in [33].

The main contribution of this paper is to exploit a natural correspondence between
EM algorithms and batch-synchronous parallel models such as BSP, BSP*, and CGM.
We identify the blockwise communication characteristic of the BSP* and CGM model
as an example of a type of coarse-grained communication which permits the gener-
ated EM algorithm to take full advantage of the disk block size. We provide a sim-
ulation technique that implements this mapping from BSP-like algorithms to EM al-
gorithms, and we further show how, using a randomized technique, an EM machine
can take full advantage of parallel disk I/O and multiple processors. Furthermore,
our technique can take full advantage of the physical memory available by concur-
rently simulating a superstep of more than one virtual processor. Our result addresses
a challenge posted by the ACM Working Group on Storage I/O for Large-Scale
Computing [20].

The remainder of this paper is organized as follows. In Section 2 we review previ-
ous work on EM algorithms as well as the BSP/BSP*/CGM models. In Section 3 we
introduce the EM-BSP model consisting of one or multiple processors, each with one or
multiple disks. Section 4 gives an overview of our simulation techniques, and Section 5
presents the details. Section 5.1 describes the simulation for the single-processor case and
Section 5.2 extends the result to the general multiprocessor case. Section 6 presents par-
allel EM algorithms obtained by applying our simulation technique to existing BSP-like
parallel algorithms and Section 7 concludes the paper.

Efficient External Memory Algorithms 99

2. Review

2.1. Previous Work For EM Algorithms. Sorting, permutation and related problems in
EM have been extensively studied [1], [15], [33], [32], [25]. I/O-optimal approaches
to many computational geometry problems [22] and graph problems [14] have also
been described. Data structures [3], [4], [27] and a number of applications [5] have
been examined in this context. Implementation results have been presented in [29], [30],
and [13].

The classical EM model is described in [1]. More complex models have been proposed
as well, incorporating a hierarchy of memory layers rather than the two-level memory
model of [1]. One such model is described in [2], and sorting for this model is studied
in [32]. Such models are interesting because modern computers typically have several
layers of memory which include main memory and caches as well as disks. We restrict
ourselves to the two-level model because the speed difference between disk and main
memory is much more significant than between the other layers of memory.

Chiang et al. [14] explored simulation of PRAM algorithms as a source of new EM
techniques. Their approach involves an EM sort with every PRAM step. They showed
that certain PRAM algorithms with a “geometrically decreasing size” property could be
simulated as EM algorithms in an I/O-optimal way. However, most problems do not have
a geometrically decreasing size, including problems like sorting, matrix multiplication,
convex hull, and Voronoi diagram construction (see [26]).

Concurrent to the work presented in this paper, Sibeyn and Kaufmann [26] have
developed a technique for simulating 1-optimal BSP algorithms to produce efficient
EM algorithms. Their work is presented in the context of a single disk uniprocessor
EM machine, but they suggest that the concept can be extended to multiple disks. They
simulate a superstep of one virtual processor at a time, saving the context and generated
messages in a v×v array on disk, where each cell is of size 3µ (v is the number of virtual
(BSP) processors, and µ is the size of the context of a processor). However, the paper
does not include techniques to accommodate the blocking factor, which is an intrinsic
issue in efficient I/O design, nor does it provide mechanisms for handling multiple disks
or multiple physical processors on the target EM machine.

2.2. The BSP/BSP*/CGM Models. The BSP (Bulk Synchronous Parallel) model was
introduced in 1990 [28]. A BSP computer is a collection of processor/memory modules
connected by a router that can deliver messages in a point to point fashion between
the processors. A BSP-style computation is divided into a sequence of supersteps sep-
arated by barrier synchronizations. Each superstep consists of a computation superstep
and a communication superstep. In a computation superstep the processors perform
computations on data that was present locally at the beginning of the superstep. In a
communication superstep data is exchanged among the processors via the router.

A BSP computer has the following parameters:

• p is the number of processors,
• L̂ is the minimum time between synchronization steps (measured in basic computation

units), and
• ĝ is the ratio of computational capacity (number of local computation operations per

100 F. Dehne, W. Dittrich, and D. Hutchinson

unit time) divided by the communication capacity (number of messages of unit size
that can be sent to the router per unit time).

A BSP algorithm with a total of λ supersteps has the following computation and com-
munication costs: The computation cost of the algorithm is Tcomp = ∑λ

i=1 wi
comp. The

time, wi
comp, expended in the i th computation superstep is max{L̂, t1, . . . , tp}, where tj is

the number of basic computation operations performed by processor j in the i th super-
step. The communication cost is Tcomm = ∑λ

i=1 wi
comm, where the i th communication

superstep is assigned cost wi
comm = maxp

j=1{wi
comm, j }. Here, wi

comm, j is the communica-
tion cost incurred by processor j in the i th superstep. Assuming that processor j receives
messages of lengths r1, . . . , rj ′ and sends messages of lengths {s1, . . . , sj ′′ } during the

i th superstep, wi
comm, j = max{L̂, ĝ(

∑ j ′
u=1 ri +∑ j ′′

u=1 si)}.
The BSP* model was introduced in 1995 [9] as an extension of BSP to account

for the increased performance that can often be achieved if communication between
processors is performed in a blockwise fashion. It introduces an additional parameter b
which is the minimum size that messages must have in order to take full advantage of
the bandwidth of the router. Messages of length smaller than b are charged the same cost
as messages of length b. We refer to messages of size b as packets and call b the packet
size.

In this paper we use the following notation to refer to the parameters of a BSP*
computer:

• p is the number of processors,
• b is the packet size,
• g is the time (measured in basic computation units) to transport a packet of size b

between processors, and
• L is the minimum time (measured in basic computation units) to perform a barrier

synchronization between the processors.

The BSP* model assigns the same cost to an algorithm as the BSP model except that
wi

comm, j = max{L , g(
∑ j ′

u=1 	ri/b
 +∑ j ′′
u=1 	si/b
)}.

The CGM (Coarse Grained Multicomputer) model was introduced in 1993 [19], [17],
[16]. It uses only two parameters, n and p, and assumes a collection of p processors,
each with n/p local memory, connected by a router that can deliver messages in a point
to point fashion. A CGM algorithm consists of an alternating sequence of computation
and communication rounds separated by barrier synchronizations. A computation round
is equivalent to a computation superstep in the BSP model, and the total computation
cost Tcomp is defined analogously. A communication round consists of a single h-relation
with h ≤ n/p. An h-relation is defined as a communication step in which p messages
of length at most O(h) bytes are sent and received by every processor [18]. The cost
wi

comm of every communication round is bounded by the same value, Hn,p. Therefore,
the total communication cost Tcomm of a CGM algorithm with λ communication rounds
is simply Tcomm = λHn,p. Algorithms do usually require a lower bound on n/p � 1,
e.g., n/p ≥ p or n/p ≥ pε [19], [17], [16]. The CGM model works particularly well
in the case where the overall computation speed is considerably larger than the overall
communication speed.

Efficient External Memory Algorithms 101

The h-relation simulation presented in [7] leads to the following observation.

OBSERVATION 1. A CGM algorithm A with communication time Tcomm = λHn,p, com-
putation time Tcomp, and local memory M can be simulated by a BSP* algorithm A′

with communication time O(gλ(n/pb) + λL), computation time O(Tcomp + λL), and
local memory O(M).

3. The EM-BSP/EM-BSP*/EM-CGM Models. We now extend the BSP model to
include secondary local memories. The basic idea is very simple and is illustrated in
Figure 1. Each processor has in addition to its local memory an EM in the form of a set
of hard disks. We apply this idea to extend the BSP model to its EM version EM-BSP
by adding the following to the standard BSP parameters:

• M is the local memory size of each processor,
• D is the number of disk drives of each processor,
• B is the transfer block size of a disk drive, and
• G is the ratio of local computational capacity (number of local computation operations)

divided by local I/O capacity (number of blocks of size B that can be transferred
between the local disks and memory) per unit time.

In many practical cases, all processors have the same number of disks. We restrict
ourselves to that case, although the model does not forbid different numbers of drives
and memory sizes for each processor. We denote the disk drives of each processor by
D0,D1, . . . ,DD−1. Each drive consists of a sequence of tracks (consecutively numbered
starting with 0) which can be accessed by direct random access using their unique track
number. A track stores exactly one block of B records.

Each processor can use all of its D disk drives concurrently, and transfer D × B
items from the local disks to its local memory in a single I/O operation and at cost
G. In such an operation, we permit only one track per disk to be accessed without any

P1

P2

Pp

.

.

.

.

.

.

ProcessorsProcessors

Router

Network

.

.

CPU

Memory

Disk 1

Processor

Comm-
unication

Internal Bus

Pi

Disk Di

Pi-1

Fig. 1. Illustration of a parallel machine with EM.

102 F. Dehne, W. Dittrich, and D. Hutchinson

restriction on which track is accessed on each disk. We assume that a processor can
store in its local memory at least one block from each local disk at the same time, i.e.,
M ≥ DB.

Like a computation on the BSP model, the computation on the EM-BSP model pro-
ceeds in a succession of supersteps. We adapt communication and computation super-
steps from the BSP model and allow multiple I/O operations during a single computation
superstep. For the EM-BSP model, the computation cost, tcomp, and communication cost,
tcomm, are the same as for the BSP model. The total cost of each superstep is defined as
tcomp + tcomm + tI/O + L . The term tI/O is the additional I/O cost charged for the superstep,
where tI/O = maxp

j=1{w j
I/O}, and w

j
I/O is the I/O cost incurred by processor j . Recall

that each I/O operation costs G time units.
Note that the model gives incentives to access all disk drives concurrently. For in-

stance, a single processor EM-BSP with D disks is capable of transferring a block of B
items to or from every disk in a single I/O operation. An operation involving fewer disk
drives incurs the same cost.

The EM-BSP* and EM-CGM models are defined analogously to the EM-BSP model.
We add to the BSP* and CGM models the additional parameters M (local memory size at
each processor), D (number of disk drives at each processor), B (transfer block size for
a local disk drive), and G (ratio of local computational capacity to local I/O capacity).

The cost of each EM-BSP* superstep or CGM round is defined as tcomp + tcomm +
tI/O + L where tcomp and tcomm refer to the computation time and communication time
as defined for the BSP* model, and tI/O is defined as indicated above for the EM-BSP
model. Note that the I/O cost of each CGM round is identical, and represents the I/O
cost for simulating an h-relation with h = n/p.

For the remainder of this paper, please refer to the table in Appendix A.2 to look up
the various parameters used.

4. Overview of the Simulation of Parallel Algorithms as EM Algorithms. We first
describe in general terms how a BSP-like algorithm can be executed as an EM algorithm
on a single-processor machine with multiple disks.

We adopt the following terminology: The processors of the BSP-like machine will be
called virtual processors, and v will denote their number. Each communication superstep
will be divided into a sending superstep and a receiving superstep. During a sending
superstep, messages are generated, and during a receiving superstep they are received.
A compound superstep is composed of a receiving, computation, and sending superstep.
The context of a virtual processor is the local memory it uses, and the context size of a
virtual processor is the maximum size of its context used during the computation. The
maximum context size of all virtual processors is denoted as µ.

The execution of a BSP-like algorithm proceeds as a series of compound supersteps,
and can therefore be simulated by repeated application of the simulation steps for a single
compound superstep. Message send/receive operations are modeled by disk read/write
operations.

Outline of the simulation for a compound superstep. A compound superstep for the v

virtual processors of a BSP-like machine is simulated by performing the following steps

Efficient External Memory Algorithms 103

in a round-robin fashion for k ≥ 1 virtual processors at a time:

1. Fetching Phase: read the context(s) and the messages to be received by the current
virtual processors from disk into memory.

2. Computation Phase: perform the computations indicated by the BSP* algorithm for
these k processors in this compound superstep.

3. Writing Phase: save the current contexts and the messages sent by the current virtual
processors on disk.

The Fetching Phase (Computation Phase, Writing Phase) performs the operations neces-
sary to simulate the receiving superstep (computation superstep, sending superstep) of a
compound superstep. A compound superstep produces messages which are received in
the following compound superstep. The simulation must store the generated messages
on disk in such a way that they can be fetched efficiently during the Fetching Phase
of the next compound superstep. By efficiently we mean in this context that both input
and output operations are fully blocked to the disk block size B and that if parallel
disks are present they are utilized in parallel, i.e., for D parallel disks, input and output
operations are performed D blocks at a time. These requirements can easily be met
for the contexts, as we know their maximum size and can preallocate a dedicated area
for each, spread across the D disks. For the generated message traffic, however, these
requirements may be more difficult, as we may not know the communication pattern for
a particular compound superstep.

In the following section we describe a randomized approach which allows us to
write the messages to disk efficiently and efficiently retrieve them in the next compound
superstep. We note that for communication of predetermined size, such as occurs in a
CGM, our simluation result can be made deterministic.

5. BSP* to EM-BSP* Simulation. We now describe the details of a BSP* to EM-
BSP* simulation. A CGM to EM-CGM simulation follows by Observation 1.

5.1. Simulation Algorithm for the Single-Processor Case p = 1

DEFINITION 1. A collection of records is in blocked format if its records are grouped
into blocks of size B.

DEFINITION 2. A collection of records, stored on D disks, is in standard consecutive
format if (i) the records are in blocked format, (ii) the number of blocks on each disk
differs by at most one, and (iii) on each disk, the blocks are stored in consecutive tracks.

The communication time of a BSP* superstep is O(g(γ /b) + L), where γ is the
maximum size of the data communicated by a virtual processor. Recall that µ is the
maximum context size of a virtual processor, hence γ = O(µ). In the following, the
context and messages generated by a virtual processor are divided into blocks, and the
blocks are spread in standard consecutive format (evenly) over the available disks.

Algorithm SeqCompoundSuperstep simulates a single compound superstep of a v

processor BSP* on a uniprocessor EM-BSP* machine. We simulate k ≥ 1 virtual

104 F. Dehne, W. Dittrich, and D. Hutchinson

processors at a time, and we refer to such a collection of processors as a group. We
also use this term to refer to the messages associated with a group of processors. To
maximize the use of available memory, we choose k = �M/µ�. Note that M ≥ µ. The
following outlines the algorithm. The implementation details are presented afterwards.

Algorithm 1: SeqCompoundSuperstep

Objective: Simulation of a compound superstep of a v-processor BSP* on
a single-processor EM-BSP* with D disks.
Input: For each i ∈ {0, . . . , v/k − 1} the blocks of the contexts and arriving
messages of group i (i.e., virtual processors ik, . . . , (i + 1)k − 1) are spread
over the D disks in standard consecutive format, so that they can be accessed
in parallel.
Output: (i) The (changed) contexts of the k simulated processors are spread
across the disks in standard consecutive format. (ii) The messages generated
during the compound superstep are grouped by destination into v/k groups,
and each group is stored in standard consecutive format on the disks.

(1) for i = 0 to cv/k − 1
(a) Read the contexts of the k virtual processors of group i , referred

to as Vik, . . . , V(i+1)k−1 from the disks into memory.
(b) Read the packets received by the k virtual processors of group i

from the disks.
(c) Simulate the local computation of the k virtual processors of

group i .
(d) Write the packets which were sent by the k virtual processors to

the D disks.
(e) Write the changed contexts Vik to V(i+1)k−1 back to the D disks.

(2) Reorganize the blocks containing the generated messages into standard
consecutive format for each group of k processors so that they can be
accessed in parallel from the disks in the simulation of the next com-
pound superstep.

Algorithm SeqCompoundSuperstep simulates a single compound superstep of the
BSP* algorithm. Steps 1(a) and 1(b) correspond to the Fetching Phase, Step 1(c) is the
Computation Phase, and Steps 1(d) and 1(e) comprise the Writing Phase.

Details of Steps 1(a) and 1(e): Since we know the size of the contexts of the processors,
and the order in which we simulate the virtual processors is static during the simulation,
we can distribute the k contexts deterministically. We reserve an area of total size vµ

on the disks, vµ/DB blocks on each disk, where we store the contexts. We split the
context Vj of virtual processor j into blocks of size B and store the i th block of Vj on
disk (i + j (µ/B)) mod D using track �(i + j (µ/B))/D�. Since the context of each
processor is now in standard consecutive format on the disks, we can easily read and write
the contexts of k consecutive processors using D disks in parallel for every I/O operation.

Details of Step 1(b): Step (2) for the previous compound superstep guaranteed that
the blocks which contain the messages destined for the current processors are stored in a
reserved area evenly distributed over the disks. Therefore, we can use a similar technique
to fetch the messages as we used to fetch the contexts.

Efficient External Memory Algorithms 105

Details of Step 1(d): After the Computation Phase, all messages sent by the current
group of k processors in the current compound superstep have been generated and stored
in internal memory. The coarse-grained nature of the BSP* algorithm results in large
messages, which are as long or longer than the block size B. We cut the messages into
blocks of size B. Each block inherits the destination address from its original message.
In k(γ /B)/D rounds, we write the blocks out to the disks. In each round a group of D
blocks bi , 0 ≤ i ≤ (D − 1), is written in parallel to the disks by choosing a random
permutation π of {0, 1, . . . , (D − 1)} and writing block bi to disk π(i).

The blocks are partitioned into D buckets on the disks, depending on their destination
address. Each bucket contains the blocks destined for v/D consecutive virtual proces-
sors. In order to maintain the buckets, the simulation uses a table of D pointers on each
disk. The i th entry in the table on a disk points to the head of a list of blocks of bucket
i that have been written to that disk. Whenever we write a block of bucket i to disk
Dj , we allocate a free track on Dj and concatenate it to the list for bucket i . For conve-
nience, we refer to the format just described for the blocks in a bucket as standard linked
format.

Clearly, we can read all the blocks composing a bucket stored on D disks in standard
linked format in O(kγ /DB) parallel I/O operations, provided each disk contains the
same number of blocks. In Lemma 2 we will show that with high probability the blocks
of each bucket are uniformly distributed over the disks.

Algorithm SimulateRouting provides the details of Step 2 of SeqCompoundSuperstep.

Algorithm 2: SimulateRouting

Objective: Reorganize the blocks of messages from the previous computa-
tion superstep into standard consecutive format (Step 2 of Algorithm 1).
Input: The D buckets (of messages) stored on the disks in standard linked
format.
Output: The v/k groups (of messages) stored on the disks in standard con-
secutive format.

(1) Allocate space for a copy of bucket i on disk i , for i = 0, . . . , (D − 1).
Read the buckets from the disks in parallel and write them back, one
bucket per disk. For the j th parallel read/write we perform the follow-
ing:

for d = 0 to D − 1 in parallel do

Read block bd belonging to bucket d from disk ((d + j) mod D).
Write block bd to disk d on the next available track.

(2) From each disk, in parallel, read a block of each bucket, writing the
blocks back to the disks so that each bucket is in standard consecutive
format.

for j = 0 to vγ /DB

for d = 0 to D − 1 in parallel do

read the j th block from disk d and write it to disk (d + j) mod D on
track d	vγ /D2 B
 + � j/D�.

106 F. Dehne, W. Dittrich, and D. Hutchinson

Fig. 2. Reorganization of the blocks.

After Step 1 of Algorithm SimulateRouting, all messages that will be received by a
group of k processors are stored in one region on the same disk. After Step 2, the blocks
are stored in standard consecutive format. In fact they are stored in fixed locations like
the blocks of the context. See Figure 2. This is possible because we know that each
virtual processor receives and sends messages of total size ≤ γ .

LEMMA 1. Steps 1(a), 1(b), and 1(e) of algorithm CompoundSuperstep have computa-
tion time O(µv), memory
(kµ), I/O time O(G(vµ/DB)), and disk space O(vµ/DB)

blocks per disk.

PROOF. We have to read and write kµ/B blocks for the simulation of each simulated
superstep. The distribution allows us to access D tracks in parallel at a time. Hence, we
need the following number of I/O operations for one simulated superstep:

v/k∑
j=1

⌈
µk

DB

⌉
≤ v

k

µk

DB
+ v

k
.

Hence, we have to perform O(vµ/DB) I/O operations. Additionally, we need
O(DB(vµ/DB)) = O(vµ) local computation steps.

The blocks representing simulated message traffic are divided into buckets by the
simulation. The contents of a bucket are written to the available disks in a series of write
cycles. In each write cycle, at most one block is written to any disk.

LEMMA 2. Let R be the number of blocks in each bucket. Let X j,k be a random variable
representing the number of tracks of disk k that belong to bucket j (a track belongs to
bucket j , when it contains a record of bucket j). Then, for any fixed j, k we have the
following:

Pr

[
X j,k ≥ l

R

D

]
≤ exp

(
−�

(
l log l · R

D

))
.

Efficient External Memory Algorithms 107

PROOF. The proof is similar to one described in [33]. Let gt denote the number of disks
written to from bucket j during write cycle t , for 1 ≤ t ≤ C , where C is the total number
of write cycles used. We have ∑

1≤i≤C

gt ≤ R.(1)

Let Gt be the number of tracks belonging to bucket j that are assigned to disk k in write
cycle t . Since only one track can be written to any disk in a write cycle, Gt is restricted
to the values 0 and 1. We have Pr[Gt = 1] = gt/D and Pr[Gt = 0] = 1 − gt/D. Let
GGt (z) be the probability generating function for Gt :

GGt (z) = Pr[Gt = 0]z0 + Pr[Gt = 1]z1(2)

= 1 − gt

D
+ gt

D
z

= 1 + gt

D
(z − 1).

Let GX j,k (z) be the probability generating function for X j,k . We can bound X j,k by
the sum of independent random variables: X j,k ≤ G1 + G2 + · · · + GC . For purpose of
bounding, we consider that X j,k = G1 + G2 + · · · + GC . Since the sum of independent
random variables corresponds to the product of the corresponding probability generating
functions and using (2), we have

GX j,k (z) = GG1+G2+···+GC (z)(3)

= GG1(z) × GG2(z) × · · · × GGC (z)

=
∏

1≤t≤C

(
1 + gt

D
(z − 1)

)
.

By the tail estimate Lemma 8 we have

Pr

[
X j,k ≥ l

R

D

]
≤ E[exp(rXj,k)]

exp(rlR/D)
(4)

for each r ≥ 0. We can express the numerator in (4), using (3) and the definitions of
expected value and probability generating function, as

E[erXj,k] =
∑
t≥0

Pr[erXj,k = ert]ert(5)

=
∑
t≥0

Pr[X j,k = t]ert

= GX j,k (e
r)

=
∏

1≤t≤C

(
1 + gt

D
(er − 1)

)
.

108 F. Dehne, W. Dittrich, and D. Hutchinson

By (1) and convexity arguments, we can maximize (5) by setting gt = R/C for each t .
Thus

E[erXj,k] ≤
∏

1≤t≤C

(
1 + R · (er − 1)

DC

)

=
(

1 + R · (er − 1)

DC

)C

.

Substituting this bound into (4), we get

Pr

[
X j,k ≥ l

R

D

]
≤ (1 + R(er − 1)/DC)C

exp(rlR/D)
.(6)

From the bound (1 + a)b ≤ eab, for a > −1, we can approximate the numerator in (6)
and get for r = ln l,

Pr

[
X j,k ≥ l

R

D

]
≤ exp(R · (er − 1)/D)

exp(rlR/D)

= exp

(
R · (er − 1) − rlR

D

)

= exp

(
−�

(
l log lR

D

))
.

LEMMA 3. The computation time of algorithm SimulateRouting is O(lγ v) and its I/O
time is O(Gl(vγ /DB)) with probability 1 − e−�(l·log l·log(M/B)) for v ≥ kD log(M/B)

and constant l ≥ 1.

PROOF. For the purposes of the proof we assume that the maximum amount of com-
munication is required. This can be accomplished by the introduction of dummy blocks
if necessary. Each bucket contains R = vγ /DB blocks since each of the D buckets
contains the messages destined for v/D virtual processors. Hence, for M ≥ DB, and
v/k ≥ D log(M/B),

R = vγ

DB
≥ kγ D log(M/B)

DB
(7)

R ≥ kγ log(M/B)

B
.(8)

By Lemma 2, a given disk contains more than l(R/D) records of a given bucket with
probability at most exp(−�(l · log l(R/D))). Let X denote the event that any disk
contains more than l(R/D) blocks of any bucket. There are D drives and D buckets, so
with (8) and kγ ≥ DB, we have

Pr[X] ≤ D2 exp

(
−�

(
l log l

R

D

))

≤ D2 exp

(
−�

(
l log l

kγ log(M/B)

DB

))

Efficient External Memory Algorithms 109

≤ exp

(
−�

(
l log l

DB log(M/B)

DB
+ log D

))

≤ exp

(
−�

(
l log l · log

M

B

))
.

After D iterations of Step 1 in algorithm SimulateRouting, D blocks per bucket have
been moved. Each disk contains less than vγ /D2 B blocks of each bucket with high
probability. Thus, after D(vγ /D2 B) iterations, all blocks have been moved.

In Step 2 (vγ /DB) iterations are performed. During each iteration, a parallel read and
a parallel write operation are performed.

Thus, the total I/O time of algorithm SimulateRouting is O(G(lvγ /DB)) and the
total computation time is O(lvγ) with high probability.

LEMMA 4. A compound superstep of a v-processor BSP* with computation time τ + L ,
communication time gγ /b + L , and local memory size µ can be simulated on a single-
processor EM-BSP* in computation time vτ + O(lvγ) and I/O time O(Gl(vγ /DB))

with probability 1−exp(−�(l log l · log(M/B))) for constant l ≥ 1, v ≥ kD log(M/B),
M =
(kµ), b ≥ B, and arbitrary integer k.

PROOF. Since the local memory of a virtual processor is large enough to store the
incoming messages and we need µ memory to store the context, we need M ≥ kµ

memory in the EM-BSP* machine.
The disk space needed by the simulation is the total context size vµ, which includes

space for incoming messages. By Lemma 2, the communicated data is evenly distributed
over the disks with high probability. Therefore we need in total O(vµ/(DB)) space on
each disk.

Step 1(c) of algorithm CompoundSuperstep consumes vτ computation time. For
each batch of k virtual processors, kγ /b messages are generated. This adds O(vγ)

computation time overall.
During Step 1(d) of algorithm CompoundSuperstep, a permutation can be generated

in O(D) time, so the computation time for each batch is O(D(vγ /DB) + kγ) and I/O
time O(kγ /DB), giving computation time O(vγ) and I/O time O(G(vγ /DB)) for the
whole simulation.

By Lemmas 1 and 3 the computation time and I/O time, respectively, for Steps 2,
1(a), 1(b), and 1(d) are O(vγ) and O(G · l(vγ /DB)). Thus, overall, the computation
time is vτ + O(lγ v) and I/O time is O(G · l(vγ /DB)) with probability 1 − exp(−�

(l · log l · log(M/B))).

Lemma 5 allows us to exploit the independence of the random experiments performed
during each compound superstep in order to prove that the success probability for the
entire simulation is as large as for the simulation of a single compound superstep.

LEMMA 5. Let X1, X2, . . . , Xz be independent random variables such that Pr[Xi >

lT] ≤ exp(−l log l · m) and Pr[Xi ≤ lT] ≥ 1 − exp(−l log l · m), where m ≥ ln x and

110 F. Dehne, W. Dittrich, and D. Hutchinson

l ≥ 2. Let Twc ≤ xT be the worst-case size of Xi for any i , that is, Xi ≤ Twc. Then

Pr

[
z∑

i=1

Xi ≤ e2(l + 1)zT

]
≥ 1 − e−�(l log l·m).

PROOF. We identify two cases: (1) z ≥ xmc and (2) z ≤ xmc for c = 1+(log log l)/log m.
First, we consider Case (1). The mean of the quantity

∑z
i=1 Xi can be bounded from

above as follows for suitable constant l ≥ 2 and m ≥ ln x :

E

[
z∑

i=1

Xi

]
≤

z∑
i=1

(lT · Pr[Xi ≤ lT] + Twc · Pr[Xi > lT])(9)

≤ zlT(1 − exp(−l log l · m)) + zxT exp(−l log l · m)

≤ zlT + zT exp(−l log l · m + ln x)

≤ zlT(1 − exp(−l log l · m)) + zxT exp(−l log l · m)

≤ zlT + zT exp(−l log l · m + ln x)

≤ (l + 1)zT.

We can bound the mean E[
∑z

i=1 Xi] from below as follows:

E

[
z∑

i=1

Xi

]
≥

z∑
i=1

(Pr[Xi ≤ lT] · lT + Pr[Xi > lT] · T)

≥ (l − 1)zT(10)

≥ (l − 1)xmcT .(11)

From Lemma 9, using k = Twc ≤ xT , m = E[
∑z

i=1 Xi] ≥ (l − 1)xmcT , and u = e2,

Pr

[
z∑

i=1

Xi ≥ e2m

]
≤ exp

(
−e2 (l − 1)xmcT

xT

)

≤ exp(−(l − 1)mc)

≤ exp(−(l − 1) log l · m).

Now, we consider Case (2). We repeat the experiment only z ≤ xmc times, where
c = 1 + (log log l)/log m. Thus we have, with m ≥ ln x ,

Pr

[
z∑

i=1

Xi ≤ zlT

]
≥ (1 − exp(−l log l · m))z

≥ 1 − xmc exp(−l log l · m)

≥ 1 − exp(−l log l · m + c ln m + ln x).

Efficient External Memory Algorithms 111

LEMMA 6. A v-processor BSP* algorithm A with communication time gα/b + λL ,
computation time β + λL , and local memory µ can be simulated on a single-processor
EM-BSP* with computation time (1 + o(1))vβ and I/O time O(Gλ(lvµ/DB)) with
probability 1−exp(−�(l log l·log(M/B))) for suitable l ≥ 1,β = ω(λµ), M =
(kµ),
v ≥ kD log(M/B), b ≥ B, and arbitrary integer k.

PROOF. Since we assume that the amount of communication each BSP* processor
performs per superstep is bounded by its memory size µ, we can conclude that the
communication time of each compound superstep is bounded by gµ/b + L .

Using Lemma 4, we can simulate on an EM-BSP* machine with D disks and local
memory
(kµ) a compound superstep with communication time τ +L and computation
time gµ/b + L in computation time vτ + O(lvµ) and I/O time O(G(lvµ/DB)) with
probability at least 1 − exp(−�(l log l · log(kµ/B))).

The computation time required to simulate the computation steps of A is vβ. The
computational overhead is O(lvγ λ), which is asymptotically smaller than vβλ for β =
ω(µλ) and constant l.

Since the worst case runtime of a compound superstep is at most D times the average
runtime, the claim follows from Lemma 5.

5.2. The Multiprocessor Case p ≥ 1. In this section we generalize the simulation to
p ≥ 1 processors on the target EM machine.

We first describe the simulation of a compound superstep of a v-processor BSP*
with communication time gγ /b + L , computation time τ + L , and context size µ on
a p-processor EM-BSP*, for v ≥ kpD log(M/B) and p ≥ 1. We assume further that
b ≥ B, where b is the message block size of the BSP* virtual machine.

Outline of the parallel simulation. As an initial step,v/p virtual processors i(v/p), . . . ,

(i + 1)(v/p) − 1 are assigned to each simulating processor i . As before, the simula-
tion of each compound superstep is composed of a series of rounds. During the j th
of v/pk rounds processor i simulates the steps of the k virtual processors i(v/p) +
jk, . . . , i(v/p) + (j + 1)k − 1. Messages sent between virtual processors on different
real machines require real communication by the simulation. If these messages are sent
directly to their destinations by the simulation the traffic may be unbalanced, causing in-
efficiencies in communication. Therefore, we distribute the messages randomly among
the processors after each round. After the last round of a compound superstep, each
processor reorganizes the messages it has received so that during the fetching phase of
the j th round of the next compound superstep it can read the messages destined for the
virtual processors jkp, . . . , (j + 1)kp − 1 in parallel from disk and direct them to the
correct simulating processor.

We maintain v/pk batches to store the generated messages. The j th batch contains
the messages destined for virtual processors simulated in the j th round of the current
compound superstep. Each processor writes its share of the v/pk batches to its
local disks. The main difficulty is the efficient maintenance of the batches so that the
packets which are needed during the j th simulation round can be read in parallel from
the disks.

112 F. Dehne, W. Dittrich, and D. Hutchinson

Algorithm 3: ParCompoundSuperstep

Objective: Simulation of a compound superstep of a v-processor BSP* on
a p-processor EM-BSP*.
Input: For every batch j , where 0 ≤ j ≤ v/pk, the message and context
blocks of the virtual processors jkp, . . . , (j + 1)kp − 1 are divided among
the real processors and their local disks as follows:

• Each real processor holds O(kγ /B) blocks of messages and kµ/B blocks
of context.

• Each local disk contains O(kγ /DB) blocks of messages and O(kµ/DB)

blocks of context.

Output: The changed contexts and generated messages distributed as re-
quired for the next compound superstep.

(1) For j = 0 to v/pk − 1 do
For i = 0 to p − 1 do in parallel
(a) (Fetching Phase): processor i reads any message blocks pertaining

to batch j from its local disks (in parallel) and sends them to the
appropriate simulating processors.

(b) (Computing Phase): processor i simulates the computation super-
steps of its current virtual processors and collects all generated
messages in its local memory.

(c) (Writing Phase): processor i splits all generated messages into
packets of size b (the message size) and sends each packet to a
randomly chosen processor.

(2) For i = 0 to p − 1 do in parallel: processors i reorganize the received
batches using algorithm SimulateRouting so that each batch is evenly
distributed over the local disks.

Many of the details of algorithm ParCompoundSuperstep are similar to ones pre-
viously described for Algorithm 1, so we focus on the differences. In each round a
processor receives kγ /b packets with high probability. In Step 1(c) each processor cuts
the packets it receives into blocks of size B. The blocks are written to the disks, us-
ing a random permutation of disk numbers as before. Depending on their destination
address, the blocks are maintained in D buckets, which are divided among the disks
as in Step 1(d) of the single-processor simulation. Each bucket contains the blocks for
(v/pk)/D batches. As before, a table of D pointers is maintained for each disk. As be-
fore, we can show that each disk will receive the same number of blocks of every bucket
with high probability.

LEMMA 7. A compound superstep of a v-processor BSP* with computation time τ + L ,
communication time gγ /b + L , and local memory size µ can be simulated on a p-
processor EM-BSP* in computation time τ(v/p) + O(l(v/p)(γ + µ) + L(v/pk)),
communication time O(gl(v/p)(γ /b + log(M/B)/k)+ L(v/pk)), and I/O time O(G ·
l(v/p)(µ/DB)) with probability 1 − exp(−�(l log l · log(M/B))) for suitable l ≥ 1,

Efficient External Memory Algorithms 113

M =
(kµ), b log(M/B) = O(M), v = �(kpD · log(M/B)), M/B ≥ pε, and
arbitrary constants k, ε > 0.

PROOF. Each of the v/pk batches contains the packets generated by pk simulated
processors. We ensure that each batch contains pkγ /b packets by creating dummy packets
if necessary.
We first consider the runtime of Step 1 for a fixed round j :

Step 1(a): Each processor reads the blocks belonging to batch j from its local disks
in I/O time O(G(kγ /DB)). The blocks destined for a common processor are combined
into packets of size b, and all packets are then sent to their destination in a single
superstep. Each simulating processor sends O(kγ /b) message packets, since each holds
O(kγ /B) blocks of messages. Each simulating processor receives kγ /b packets. Thus
an O(kγ /b)-relation is routed, consuming O(g(kγ /b) + L) communication time. The
processors can reassemble messages from received packets in linear time since each
receives kγ data per round and sufficient real memory exists to hold all of the received
messages. Each processor then reads the contexts of its k currently simulated processors
in I/O time O(G(kµ/DB)) from its local disks.

Step 1(b): The steps of the currently simulated processors are performed, and the
contexts are written back to the disks. Since γ = O(µ), the I/O time is O(Gl(kµ/DB))

and the computation time is kα + O(lkµ + L).
Step 1(c): During the previous step, message packets of total size O(kγ), each one

of size b, were generated and stored in the local memories of the simulating processors.
Now each processor sends each of its O(kγ /pb) packets to a randomly chosen processor.
This corresponds to randomly throwing p(kγ /b) balls into p bins. Let us assume for the
sake of the proof that each processor sends at least log(M/B) messages.5

With Lemma 10 for x = p(kγ /b + log(M/B)) we can show that each processor
receives more than l(kγ /b+log(M/B)) packets with probability exp(−�(l ln l ·(kγ /b+
log(M/B)) − ln p)).

Since these messages are exchanged in one superstep, an O(l(kγ /b + log(M/B)))-
relation is routed which requires communication time O(gl(kγ /b + log(M/B)) + L).
After the packets have been received they are written to the disks. Let b log(M/B) =
O(M) and M =
(kµ). Thus each processor receives data of size O(kµ) which is
written to its disks in I/O time O(Gl(kµ/DB)).

For a single round the I/O time is O(Gl(kµ/DB)), communication time is O(gl(kµ/

b + log(M/B))+ L), and computation time is kα + O(kl(γ +µ)+ L) with probability
exp(−�(l ln l · (kγ /b + log(M/B)) − ln p)). For M/B ≥ pε the probability becomes
1 − exp(−�(l log l · log(M/B))).

Now we consider the runtime for v/pk rounds. The rounds are independent. We
introduce z = v/pk independent random variables X1, X2, . . . , Xz , where Xi repre-
sents the cost (communication, computation, and I/O time) of the i th round. Since

(log(M/B)) = ln p, we can apply Lemma 5 to bound the total cost of all v/pk
rounds after making the substitution in the identity x = p, and m =
(log(M/B)).
In total, we have I/O time O(G · l(vµ/pDB)), communication time O(gl(vγ /pb +

5 This condition can be easily achieved by the introduction of dummy packets.

114 F. Dehne, W. Dittrich, and D. Hutchinson

v log(M/B)/pk) + L(v/pk)), and computation time α(v/p) + O(l(v/p)(γ + µ) +
L(v/pk)) with probability 1 − exp(−�(l log l · log(M/B))).

We now examine the costs of reorganizing the batches in Step 2 of algorithm ParCom-
poundSuperstep. We begin by considering how the packets belonging to a fixed bucket are
distributed among the processors. A bucket contains the blocks/packets of v/pkD batches
and each batch contains kpγ /b packets. In total, for each bucket, vγ /Db packets are dis-
tributed randomly among p processors. Using Lemma 10 we can show that any processor
receives more than l(vγ /pDb) packets with probability exp(−�(l ln l(vγ /pDb)−ln p)).
Since we have D buckets, the probability that any processor receives more than R =
l(vγ /pDb) packets for any bucket is exp(−�(l ln l(vγ /pDb) − ln p − ln D)). With
v = �(kpD log(M/B)) we have probability 1 − exp(−�(l log l · log(M/B))) that each
bucket of every processor contains less than l(vγ /pDb) packets.

We know that each processor holds R = vγ /pDb packets for each bucket. For a fixed
processor we have a similar situation to the single simulating processor case. For the sake
of the proof, we introduce dummy blocks so that each bucket contains R′ = vµ/pDB
blocks.

With v = �(kpD log(M/B)) and DB =
(kγ), we have

R′ = vµ

pDB
≥ kµ log(M/B)

B
.(12)

By Lemma 2, we know that a fixed drive contains less than l(R′/D) blocks of a fixed
bucket with probability at most exp(−�(l log l(R′/D))). Let X denote the event that
any disk contains more than l(R′/D) blocks of any bucket.

There are D drives and D buckets, so with 12 and R′ ≥ kµ log(M/B)/B we have

Pr[X] ≤ D2 exp

(
−�

(
l log l · R′

D

))

≤ exp

(
−�

(
l log l · kµ log(M/B)

DB
+ log D

))

≤ exp

(
−�

(
l log l · kµ log(M/B)

DB
+ log

M

B

))

≤ exp

(
−�

(
l log l · log

M

B

))
.

Because we have p processors, any processor needs more than O(G · l(vγ /pB)) I/O
time with probability at most exp(−�(l log l · log(M/B) − log p)). Again, assuming
M/B ≥ pε, this probability becomes exp(−�(l log l · log(M/B))).

Hence, in Step 2 each processor has O(kγ /b) packets for each bucket and they can be
reorganized as required by the input in algorithm ParCompoundSuperstep in I/O time
O(Gl(kµ/BD)) with probability 1 − exp(−�(l log l · log(M/B))).

Efficient External Memory Algorithms 115

5.3. The Main Result. The following theorem states our main simulation result.

THEOREM 1. A v-processor BSP* algorithm A with communication time gα/b + λL ,
computation time β + λL , and local memory µ can be simulated on a p-processor EM-
BSP* with computation time (1 + o(1))(v/p)β + O(Lλ(v/pk)), communication time
O(gl((v/p)(α/b)+λ(log(M/B)/k))+ Lλ(v/pk)), and I/O time O(Gl(v/p)(µλ/BD))

with probability 1 − exp(−�(l log l · log(M/B))) for suitable l ≥ 1, β = ω(λµ),
M =
(kµ), v = �(pkD · log(M/B)), M/B ≥ pε, b log(M/B) = O(M), and
arbitrary constants k, ε > 0.

PROOF. Algorithms 1–3 and Lemmas 1–7.
Since the local memory of a virtual processor is large enough to store the incoming

messages and we need µ memory to store the context, we need M ≥ kµ memory in the
EM-BSP* machine.

The disk space needed by the simulation is the total context size vµ, which includes
space for incoming messages. By Lemma 2, the communicated data is evenly distributed
over the disks with high probability. Therefore, in total, the space used on each disk is
O(vµ/DB).

Step 1(c) of Algorithm 1 consumes vτ computation time. For each batch of k virtual
processors, kγ /b messages are generated. This adds O(vγ) computation time overall.

During Step 1(d) of Algorithm 1, a permutation can be generated in O(D) time, so the
computation time for each batch is O(D(vγ /DB)+kγ) and the I/O time is O(kγ /DB).
Overall, the computation time is O(vγ) and the I/O time is O(G(vγ /DB)) for the whole
simulation.

By Lemmas 1 and 3 the computation time and I/O time, respectively, for Steps 2, 1(a),
1(b), and 1(d) are O(vγ) and O(G · l(vγ /DB)). Thus, overall, the computation time is
vτ + O(lγ v) and the I/O time is O(G · l(vγ /DB)) with probability 1 − exp(−�(l ·
log l · log(M/B))).

The slackness v/p required by the simulation is controlled by the number of pro-
cessors and disks we want to employ as well as the desired success probability. The
condition M/B ≥ pε is usually fulfilled for actual machines. Combining Theorem 1
with Observation 1, we obtain the following.

COROLLARY 1. A CGM algorithm A with communication time Tcomm = λHn,p, com-
putation time Tcomp, and local memory M can be simulated by an EM-CGM algorithm
A′ with communication time Õ(gλ(n/pb+ log(M/B))+λLD log(M/B)), computation
time Õ(Tcomp + λLD log(M/B)), and I/O time Õ(λG(M/BD)) for Tcomp = ω(λM),
b log(M/B) = O(M), and M/B ≥ pε (fixed constant ε > 0).

5.4. A Note On C-Optimal BSP* Algorithms. Since even small multiplicative constant
factors in runtime are important, Bäumker et al. [9] characterize the performance of a
BSP* algorithm A∗ as c-optimal if (a) the ratio between the computation times of A∗

and T (A)/p, where T (A) is the runtime of the best sequential algorithm for the problem

116 F. Dehne, W. Dittrich, and D. Hutchinson

under consideration, is c + o(1) and (b) the ratio between the communication time of
A∗ and the computation time T (A)/p is o(1).

Consider the following natural extension of c-optimality to EM-BSP* algorithms.
An EM-BSP* algorithm A∗ is c-optimal if (a) the ratio between the computation times
of A∗ and T (A)/p, where T (A) is the runtime of the best sequential algorithm for the
problem under consideration, is c + o(1), (b) the ratio between the communication time
of A∗ and the computation time T (A)/p is o(1), and (c) the ratio between the I/O time
of A∗ and the computation time T (A)/p is o(1).

We observe that Theorem 1 preserves c-optimality, i.e., a c-optimal BSP* algorithm
is converted into c-optimal EM-BSP* algorithms.

OBSERVATION 2. If algorithm A in Theorem 1 is c-optimal on the BSP* for g ≤ g(n),
b ≤ b(n), L ≤ L(n), and v ≤ v(n), then the simulation according to Theorem 1 results
in a c-optimal EM-BSP* algorithm for λ(log(M/B)/k) = O(α/b), g ≤ g(n), b ≤ b(n),
L ≤ L(n) · pk/v, and G = BD · o(β/µλ).

6. Applications. In this section we study applications of Theorem 1 and Corollary 1.
Recall from Corollary 1 that the simulation of a CGM algorithm A with λ supersteps
results in a parallel EM algorithm with I/O time Õ(λG(M/BD)). In practice, this means
that the parallel EM algorithm reads the entire disk contents λ times. Therefore, it is
crucial that the underlying CGM algorithm has a very small λ. Fortunately, this is the case,
as demonstrated in Table 1. In fact, several important problems have CGM algorithms
with λ = O(1), resulting in parallel EM algorithms with I/O time Õ(G(M/BD)) which
is optimal.

The first column of Table 1 lists three groups of applications. (A) Fundamental algo-
rithms: sorting, permutation, and matrix transpose. (B) GIS and computational geometry
algorithms: polygon triangulation, trapezoidal decomposition, segment tree construction,
next element search on line segments batched planar point location, 3D convex hull, 2D
Voronoi diagram, Delaunay triangulation, lower envelope of nonintersecting line seg-
ments, area of union of rectangles, 3D-maxima, 2D-nearest neighbors, 2D-weighted
dominance counting, uni- and multi-directional separability. (C) Graph algorithms: list
ranking, euler tour in a tree, lowest common ancestor, tree contraction, expression tree
evaluation, connected components, spanning forest, ear and open ear decomposition,
and biconnected components. The second column of Table 1 shows the I/O complexity
of previously known EM algorithms for these problems in Vitter’s parallel disk model
(PDM) [33]. The third column of Table 1 shows the complexity of known parallel CGM
algorithms for these problems. Note that λ = O(1) for the CGM algorithms for Groups A
and B, and λ = O(log p) for the CGM algorithms for Group C. For most applications,
the number of processors, p, is fixed and and not very large, and log p is a fairly small
number.

The fourth column of Table 1 shows the complexity of the parallel EM algorithms
obtained through our simulation technique (Theorem 1 and Corollary 1). We observe
that the I/O complexity of the parallel EM algorithms obtained is Õ(G(n/pBD)) for the
problems in Groups A and B and Õ(G log (p)(n/pBD)) for the problems in Group C. In
many cases this is a considerable improvement. The I/O complexity of our parallel EM

Table 1. New parallel EM algorithms obtained and comparison with previous sequential EM methods.
See Appendix A.2 for notation.

Problem description

Previous Results: New Results:
Sequential I/O complexity (one
processor, multiple disks)

CGM complexity (multi-
ple processors, no disks)

Parallel EM-CGM complexity (multiple proces-
sors, multiple disks)

Group A: Fundamental Algorithms

Sorting
(G n
B D

logM/B
n
B) [1], [31] λ = O(1)

Tcomp = O(
n log n

p)
M = O(n

p) [21]

Tcomm = Õ(g(n
pb

+log n
pB)+L D log n

pB)

Tcomp = Õ(
n log n

p + L D log n
pB)

TI/O = Õ(G n
pB D)

Permutation
(G min(n
D

, n
DB

logM/B
n
B)

[1], [31]

λ = O(1)

Tcomp = O(
n log n

p)
M = O(n

p)

Tcomm = Õ(g(n
pb

+log n
pB)+L D log n

pB)

Tcomp = Õ(
n log n

p + L D log n
pB)

TI/O = Õ(G n
pB D)

Matrix transpose (r rows,
c cols, n = r · c.)

(G n
B D

log min(M,r,c,n/B)

log(M/B))
[1], [31]

λ = O(1)

Tcomp = O(
n log n

p)
M = O(n

p)

Tcomm = Õ(g(n
pb

+log n
pB)+L D log n

pB)

Tcomp = Õ(
n log n

p + L D log n
pB)

TI/O = Õ(G n
pB D)

Group B: GIS and Computational Geometry Algorithms

Polygon triangulation,
Trapezoidal decompo-
sition, Segment tree
construction, Next el-
ement search on line
segments

O(G n
B

logM/B
n
B) [5] λ = O(1)

Tcomp = O(
n log n

p)
M = O(

n log n
p) [12]

Tcomm = Õ(g(n
pb

+ log
n log n

pB)

+ L D log
n log n

pB)

Tcomp = Õ(
n log n

p + L D log
n log n

pB)

TI/O = Õ(G
n log n
pB D)

Batched planar point lo-
cation

O(G(n
B

+ k) logM/B
n
B) [5] λ = O(1)

Tcomp = O(
n log n

p)
M = O(

n log n
p) [12]

Tcomm = Õ(g(n
pb

+ log
n log n

pB)

+ L D log
n log n

pB)

Tcomp = Õ(
n log n

p + L D log
n log n

pB)

TI/O = Õ(G
n log n
pB D)

3D convex hull, 2D
Voronoi diagram, De-
launay triangulation

O(G n
B

logM/B
n
B) [22] λ = Õ(1)

Tcomp = Õ(
n log n

p)
M = O(n

p) [16]

Tcomm = Õ(g(n
pb

+log n
pB)+L D log n

pB)

Tcomp = Õ(
n log n

p + L D log n
pB)

TI/O = Õ(G n
pB D)

Lower envelope of non-
intersecting line seg-
ments

λ = O(1)

Tcomp = O(
n log n

p)
M = O(n

p) [19]

Tcomm = Õ(g(n
pb

+log n
pB)+L D log n

pB)

Tcomp = Õ(
n log n

p + L D log n
pB)

TI/O = Õ(G n
pB D)

Generalized lower enve-
lope of line segments

λ = O(1)

Tcomp = O(
n log n

p)
M = O(nα(n)

p) [19]

Tcomm = Õ(g(n
pb

+ log
nα(n)

pB)
+ L D log

nα(n)

pB)

Tcomp = Õ(
n log n

p + L D log
nα(n)

pB)
TI/O = Õ(G

nα(n)

pB D)

Area of union of rectan-
gles, 3D-maxima, 2D-
nearest neighbors

O(G n
B

logM/B
n
B) [22] λ = O(1)

Tcomm = O(
n log n

p)
M = O(n

p) [19]

Tcomm = Õ(g(n
pb

+log n
pB)+L D log n

pB)

Tcomp = Õ(
n log n

p + L D log n
pB)

TI/O = Õ(G n
pB D)

2D-weighted dominance
counting, Uni- and
multi-directional sepa-
rability

λ = O(1)

Tcomp = O(
n log n

p)
M = O(n

p) [19]

Tcomm = Õ(g(n
pb

+log n
pB)+L D log n

pB)

Tcomp = Õ(
n log n

p + L D log n
pB)

TI/O = Õ(G n
pB D)

Group C: Graph Algorithms

List ranking, Euler tour
(tree), Lowest com-
mon ancestor, Tree
contraction, Expres-
sion tree evaluation

O(G n
B

logM/B
n
B) [14] λ = O(log p)

Tcomp = O(n
p log p)

M = O(n
p) [11]

Tcomm = Õ(g log (p)(n
pb

+ log n
pB)

+ log (p)L D log n
pB)

Tcomp = Õ(
n log p

p + log (p)L D log n
pB)

TI/O = Õ(G log (p) n
pB D)

Connected components,
Spanning forest, Ear
and open ear decom-
position, Biconnected
components (V ver-
tices, E edges, n =
V + E)

O(G E
DB

logM/B
V
B

· max{1, log log V B D
E }) [24]

λ = O(log p)

Tcomp = O(n
p log p)

M = O(n
p) [11]

Tcomm = Õ(g log (p)(n
pb

+ log n
pB)

+ log (p)L D log n
pB)

Tcomp = Õ(n
p log p + log (p)L D log n

pB)
TI/O = Õ(G log (p) n

pB D)

118 F. Dehne, W. Dittrich, and D. Hutchinson

algorithms for the problems in Groups A and B is optimal. Furthermore, the EM-CGM
algorithms obtained through our simulation technique are parallel, i.e., yield speedup
through the use of multiple processors, while the algorithms in the first column are for
single-processor machines only. Another important advantage of our method is that our
EM-CGM algorithms are automatically generated through simulation, instead of being
individually designed.

7. Conclusion. In this paper we described a simulation technique which produces
efficient parallel EM algorithms from efficient BSP-like parallel algorithms. When ap-
plied to existing BSP, BSP*, or CGM algorithms, our simulation technique produces
improved parallel EM algorithms for a large number of problems. Our technique can ac-
commodate one or multiple processors on the EM target machine, each with one or more
disks, and it also adapts to the disk blocking factor of the target machine. This allows
a scenario where an application that is based on our method could adapt dynamically
to the operating parameters and numbers of the available resources such as processors,
memory, and disks.

Note that our technique applies only to BSP-like algorithms for which Tcomp is at least
λM ; see Theorem 1 and Corollary 1. This is a large class of algorithms, including all
those listed in Table 1. Typically, algorithms for problems with at least linear sequential
time complexity fall into this category. Algorithms which do not fall into this category
are typically for problems with sublinear time complexity. An example of such an al-
gorithm is multisearch [9]. In general, sublinear time external memory data structure
search/update is not applicable for our technique. This is a very important open problem
for future research.

Appendix

A.1. Probability Estimates. We use the following tail estimates:

LEMMA 8. If X is a non-negative random variable and r ≥ 0, we have

Pr[X ≥ u] ≤ E[erX]

eru
.

PROOF. We use the following Markov inequality. Let X by any random variable. Then,
for all t ∈ IR+,

Pr[X ≥ t] ≤ E[X]

t
.

For any positive real r ,

Pr[X ≥ u] = Pr[erX ≥ eru].

Applying the above Markov inequality to the right-hand side, we have

Pr[X ≥ u] ≤ E[erX]

eru
.

Efficient External Memory Algorithms 119

LEMMA 9. Let X1, . . . , Xn be independent random variables with Xi ∈ [0, . . . , k] and
m = E[

∑n
i=1 Xi]. Then for u ≥ e2,

Pr

[
n∑

i=1

Xi ≥ u · m

]
≤ exp

(
−u

m

k

)
.

PROOF. Hoeffding [23] showed that for this situation we have

Pr

[
n∑

i=1

Xi ≥ (δ + 1) · m

]
≤
(

eδ

(δ + 1)(δ+1)

)m/k

.

Let u = δ − 1. We have

(
eδ

(δ + 1)(δ+1)

)m/k

= e(u−1)(m/k) · u−u(m/k)

= e(u−1)(m/k) · eln u(−u(m/k))

= e−(m/k)(u ln u−u+1).

Finally, we have u ln u − u + 1 ≥ u if log u ≥ 2, or u ≥ e2.

LEMMA 10. Given x balls and y bins. If the balls are randomly and independently
distributed to the bins, each bin contains more than lx/y balls with probability 1 −
e−�(l ln l(x/y)−ln y).

PROOF. The probability of the event that a bin receives exactly i balls is

(
x

i

)
·
(

1

y

)i

·
(

1 − 1

y

)x−i

≤
(

x

i

)
·
(

1

y

)i

.

Let X be the event that a bin receives more than k balls, and let Y denote the event that
at least one of the bins receives more than k = l(x/y) balls. Thus,

Pr[X] =
x∑

i=k+1

(
x

i

)
·
(

1

y

)i

.

We can conclude that

Pr[X] =
x∑

i=k+1

(
x

i

)
·
(

1

y

)i

≤
x∑

i=k

x!

i! (x − i)!

1

yi

120 F. Dehne, W. Dittrich, and D. Hutchinson

= x!

k! (x − k)! yk
+ x!

(k + 1)! (x − (k + 1))! yk+1

+ x!

(k + 2)! (x − (k + 2))! yk+2
+ · · ·

= x!

k! (x − k)! yk
·
(

1 + x − k

(k + 1)y
+ (x − k)(x − (k + 1))

(k + 1)(k + 2)y2
+ · · ·

)

≤
(

x

k

)
1

yk
·
(

1 + x − k

(k + 1)y
+
(

x − k

(k + 1)y

)2

+ · · ·
)

≤
(

xe

ky

)k

·
∑
i≥0

(
x − k

(k + 1)y

)i

.

For k = l(x/y) and l ≤ y we note that

x − k

(k + 1)y
= x − l(x/y)

(l(x/y) + 1)y
= 1 − l/y

l + y/x
< 1 − l

y
< 1

and so

∑
i≥0

(
x − k

(k + 1)y

)i

= y

l
.

Thus, for k = l(x/y) and l > e,

Pr[X] ≤
(

xe

ky

)k

·
∑
i≥0

(
x − k

(k + 1)y

)i

=
(e

l

)lx/y
· y

l

= y

l
· el(x/y)−l ln l(x/y).

Recall that Y denotes the event that at least one of the bins receives more than k = l(x/y)

balls:

Pr[Y] = y · Pr[X] ≤ y2

l
· el(x/y)−l ln l(x/y)

= el(x/y)−l ln l(x/y)−ln l+2 ln y .

So we can conclude that

Pr[Y] = e−�(l ln l(x/y)−ln y).

Efficient External Memory Algorithms 121

A.2. Terminology

Symbol Meaning

n The number of data items
p The number of real processors
b The minimum packet size for communication
B The disk block size
D The number of disk drives on a (real) processor
g The time required for the router to deliver a packet of size b
ĝ The time required for the router to deliver a packet of unit size
G The time required for a processor to transfer D blocks between its D

local disks and its local memory
L The time required for synchronizing the processors
M The memory size of a (real) processor
v The number of virtual processors
γ The maximum total size of messages sent or received by a virtual

processor in a single superstep
µ The maximum size of the context of a virtual processor
Tcomm The communication time
Tcomp The computation time
TI/O The I/O time
λ The number of supersteps

References

[1] A. Aggarwal and J. S. Vitter. The Input/Output complexity of sorting and related problems. Communi-
cations of the ACM, 31(9):1116–1127, 1988.

[2] B. Alpern, L. Carter, E. Feig, and T. Selker. The uniform memory hierarchy model of computation.
Algorithmica, 12:72–109, 1994.

[3] L. Arge. The buffer tree: a new technique for optimal I/O-algorithms. In Proc. Workshop on Algorithms
and Data Structures, pages 334–345. LNCS 955, Springer-Verlag, Berlin, 1995. A complete version
appears as BRICS Technical Report RS-96-28, University of Aarhus.

[4] L. Arge. Efficient External-Memory Data Structures and Applications. Ph.D. thesis, University of
Aarhus, February/August 1996.

[5] L. Arge, D. E. Vengroff, and J. S. Vitter. External-memory algorithms for processing line segments
in geographic information systems. In Proc. Annual European Symposium on Algorithms, pages
295–310. LNCS 979, Springer-Verlag, Berlin, 1995. A complete version (to appear in a special is-
sue of Algorithmica) appears as BRICS Technical Report RS-96-12, University of Aarhus.

[6] M. Atallah and J.-J. Tsay. On the parallel decomposability of geometric problems. Algorithmica, 8:
209–231, 1992.

[7] D. Bader, D. Helman, and J. Jájá. Practical parallel algorithms for personalized communication and
integer sorting. Journal of Experimental Algorithmics, 1, 1996. http://www.jea.acm.org/1996/

BaderPersonalized/.
[8] A. Bäumker and W. Dittrich. Fully dynamic search trees for an extension of the BSP model. In Proc.

ACM Symposium on Parallel Algorithms and Architectures, pages 233–242, 1996.
[9] A. Bäumker, W. Dittrich, and F. Meyer auf der Heide. Truly efficient parallel algorithms: c-optimal

multisearch for an extension of the BSP model. In Proc. Annual European Symposium on Algorithms,
pages 17–30, 1995.

122 F. Dehne, W. Dittrich, and D. Hutchinson

[10] A. Bäumker, W. Dittrich, and A. Pietracaprina. The deterministic complexity of parallel multisearch.
In Proc. Scandinavian Workshop on Algorithms Theory, pages 404–415, 1996.

[11] E. Cáceres, F. Dehne, A. Ferreira, P. Flocchini, I. Reiping, N. Santoro, and S. W. Song. Efficient
parallel graph algorithms for coarse grained multicomputers and BSP. In Proc. International Colloquium
Algorithms, Languages and Programming, pages 390–400. LNCS 1256, Springer-Verlag, Berlin, 1997.

[12] A Chan, F. Dehne, and A. Rau-Chaplin. Coarse grained parallel next element search. In Proc. Interna-
tional Parallel Processing Symposium, pages 320–325, 1997.

[13] Y.-J. Chiang. Dynamic and I/O-Efficient Algorithms for Computational Geometry and Graph Problems:
Theoretical and Experimental Results. Ph.D. thesis, Brown University, August 1995.

[14] Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E. Vengroff, and J. S. Vitter. External-memory
graph algorithms. In Proc. ACM–SIAM Symposium on Discrete Algorithms, pages 139–149, 1995.

[15] T. H. Cormen. Virtual Memory for Data Parallel Computing. Ph.D. thesis, Department of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology, 1992.

[16] F. Dehne, X. Deng, P. Dymond, A. Fabri, and A. Khokhar. A randomized parallel 3D convex hull
algorithm for coarse grained multicomputers. In Proc. ACM Symposium on Parallel Algorithms and
Architectures, pages 27–33, 1995.

[17] F. Dehne, A. Fabri, and C. Kenyon. Scalable and architecture independent parallel geometric algorithms
with high probability optimal time. In Proc. 6th IEEE Symposium on Parallel and Distributed Processing,
pages 586–593, 1994.

[18] F. Dehne, A. Fabri, and A. Rau-Chaplin. Scalable parallel geometric algorithms for coarse grained
multicomputers. In Proc. ACM Annual Conference on Computational Geometry, pages 298–307, 1993.

[19] F. Dehne, A. Fabri, and A. Rau-Chaplin. Scalable parallel computational geometry for coarse grained
multicomputers. International Journal on Computational Geometry, 6:379–400, 1996.

[20] G. A. Gibson, J. S. Vitter, and J. Wilkes. Report of the working group on storage I/O issues in large-scale
computing. ACM Computing Surveys, 28(4), December 1996.

[21] M. T. Goodrich. Communication efficient parallel sorting. In Proc. ACM Symposium on Theory of
Computation, 1996.

[22] M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S. Vitter. External-memory computational geometry.
In Proc. IEEE Symposium on Foundations of Computer Science, pages 714–723, 1993.

[23] W. Hoeffding. Probability inequalities for sums of bounded random variables. American Statistical
Association Journal, :13–30, 1963.

[24] K. Munagala and A. Ranade. I/O complexity of graph algorithms. Proc. ACM–SIAM Symposium on
Discrete Algorithms, pages 687–694, 1999.

[25] M. H. Nodine and J. S. Vitter. Greed sort: optimal deterministic sorting on parallel disks. Journal of the
ACM, 42(4):919–933, 1995.

[26] J. F. Sibeyn and M. Kaufmann. BSP-like external-memory computation. In Proc. 3rd Italian Conference
on Algorithms and Complexity, pages 229–240. LNCS 1203, Springer-Verlag, Berlin, 1997.

[27] S. Subramanian and S. Ramaswamy. The p-range tree: a new data structure for range searching in
secondary memory. In Proc. ACM–SIAM Symposium on Discrete Algorithms, pages 378–387, 1995.

[28] L. G. Valiant. A bridging model for parallel computation. Communications of the ACM, 33(8):103–111,
August 1990.

[29] D. E. Vengroff. TPIE User Manual and Reference. Duke University, 1995. Available via WWW at

http://www.cs.duke.edu/ ∼dev.
[30] D. E. Vengroff and J. S. Vitter. Supporting I/O-efficient scientific computation in TPIE. In Proc. IEEE

Symposium on Parallel and Distributed Computing, 1995. Appears also as Duke University Department
of Computer Science Technical Report CS-1995-18.

[31] J. S. Vitter. External memory algorithms. Proc. ACM Symposium on Principles of Database Systems,
pages 119–128, 1998.

[32] J. S. Vitter and M. H. Nodine. Large-scale sorting in uniform memory hierarchies. Journal of Parallel
and Distributed Computing, 17:107–114, 1993.

[33] J. S. Vitter and E. A. M. Shriver. Algorithms for parallel memory, I: two-level memories. Algorithmica,
12(2–3):110–147, 1994.

