Optimal Scheduling Policy Determination in HSDPA Networks

Hussein Al-Zubaidy, Jerome Talim, Ioannis Lambadaris

SCE-Carleton University
1125 Colonel By Drive, Ottawa, ON, Canada
Email: {hussein, jtalim, ioannis.lambadaris}@sce.carleton.ca

26 June 2007

- Objective and Motivation
- 2 Methodology
- 3 Problem Definition and Model Description
- 4 Case Study and Results
- **5** Conclusion and Future Work

To devise a methodology to find the optimal scheduling regime in HSDPA networks, that controls the allocation of the time-code resources.

This resulting optimal policy should have the following properties:

To devise a methodology to find the optimal scheduling regime in HSDPA networks, that controls the allocation of the time-code resources.

This resulting optimal policy should have the following properties:

• Fair; Divide the resources fairly between all the active users.

To devise a methodology to find the optimal scheduling regime in HSDPA networks, that controls the allocation of the time-code resources.

This resulting optimal policy should have the following properties:

- Fair; Divide the resources fairly between all the active users.
- Optimal Transmission: Maximizes the overall cell throughput.

To devise a methodology to find the optimal scheduling regime in HSDPA networks, that controls the allocation of the time-code resources.

This resulting optimal policy should have the following properties:

- Fair; Divide the resources fairly between all the active users.
- Optimal Transmission: Maximizes the overall cell throughput.
- Optimal Resource Utilization: Provide channel aware (diversity gain) and high speed resource allocation.

Motivation

- 3GPP only suggested some guidelines for HSDPA downlink scheduler and left the design specifics undefined.
- This resulted in many different scheduling techniques and implementations most of which are proprietary.
- Most of the available work in scheduler design is based on intuition and creativity of the designers.

- Develop an analytic model for the HSDPA downlink scheduler.
 - A MDP based discrete stochastic dynamic programming model is used to model the system.
 - This Model is a simplifying abstraction of the real scheduler which estimates system behavior under different conditions and describes the role of various system components in these behaviors.
 - It must be solvable.

- Develop an analytic model for the HSDPA downlink scheduler.
 - A MDP based discrete stochastic dynamic programming model is used to model the system.
 - This Model is a simplifying abstraction of the real scheduler which estimates system behavior under different conditions and describes the role of various system components in these behaviors.
 - It must be solvable.
- Define an objective function.

- Develop an analytic model for the HSDPA downlink scheduler.
 - A MDP based discrete stochastic dynamic programming model is used to model the system.
 - This Model is a simplifying abstraction of the real scheduler which estimates system behavior under different conditions and describes the role of various system components in these behaviors.
 - It must be solvable.
- Define an objective function.
- Value iteration is then used to solve for optimal policy.

- Develop an analytic model for the HSDPA downlink scheduler.
 - A MDP based discrete stochastic dynamic programming model is used to model the system.
 - This Model is a simplifying abstraction of the real scheduler which estimates system behavior under different conditions and describes the role of various system components in these behaviors.
 - It must be solvable.
- Define an objective function.
- Value iteration is then used to solve for optimal policy.
- Study the structure of the optimal policy and develop a near-optimal heuristic policy.

Problem Definition and Conceptualization

The HSDPA downlink channel uses a mix of TDMA and CDMA:

Problem Definition and Conceptualization

The HSDPA downlink channel uses a mix of TDMA and CDMA:

• Time is slotted into fixed length 2 ms TTls.

Problem Definition and Conceptualization

The HSDPA downlink channel uses a mix of TDMA and CDMA:

- Time is slotted into fixed length 2 ms TTls.
- During each TTI, there are 15 available codes that may be allocated to one or more users.

HSDPA Scheduler Model (Downlink)

FSMC Model for HSDPA Downlink Channel

The Model

- MDP based Model.
- HSDPA downlink scheduler is modelled by the 5-tuple $(T, S, A, P_{ss'}(\mathbf{a}), R(\mathbf{s}, \mathbf{a}))$, where,
 - T is the set of decision epochs,
 - S and A are the state and action spaces,
 - $P_{ss'}(\mathbf{a}) = Pr(\mathbf{s}(t+1) = \mathbf{s}'|\mathbf{s}(t) = \mathbf{s}, \mathbf{a}(\mathbf{s}) = \mathbf{a})$ is the state transition probability, and
 - R(s, a) is the immediate reward when at state s and taking action a.

◆ロト ◆団ト ◆意ト ◆意ト ・意 ・ 夕久で

Basic Assumptions

- L active users in the cell.
- Finite buffer with size B per user for each of the L users.
- Error free transmission.
- SDUs are segmented by RLC into a fixed number of PDUs (u_i) and delivered to Node-B at the beginning of the next TTI.
- Independent Bernoulli arrivals with parameter q_i .
- Scheduler can assign c codes chunks at a time, where $c \in \{1, 3, 5, 15\}$.

Basic Assumptions—FSMC State Space

- The channel state of user i during slot t is denoted by $\gamma_i(t)$.
- Channel state space is the set $\mathcal{M} = \{0, 1, \dots, M-1\}$.
- user i channel can handle up to $\gamma_i(t)$ PDUs per code.

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

ullet The system state ${f s}(t) \in S$ is a vector and is given by

$$\mathbf{s}(t) = (x_1(t), x_2(t), \dots, x_L(t), \gamma_1(t), \gamma_2(t), \dots, \gamma_L(t))$$
 (1)

Hussein Al-Zubaidy, Jerome Talim, Ioannis LaOptimal Scheduling Policy Determination in F

• The system state $\mathbf{s}(t) \in S$ is a vector and is given by

$$\mathbf{s}(t) = (x_1(t), x_2(t), \dots, x_L(t), \gamma_1(t), \gamma_2(t), \dots, \gamma_L(t))$$
 (1)

• $S = \{\mathcal{X} \times \mathcal{M}\}^L$ is finite, due to the assumption of finite buffers size and channel states.

◆ロト ◆個 ト ◆ 差 ト ◆ 差 ・ 釣 へ @

• The system state $\mathbf{s}(t) \in S$ is a vector and is given by

$$\mathbf{s}(t) = (x_1(t), x_2(t), \dots, x_L(t), \gamma_1(t), \gamma_2(t), \dots, \gamma_L(t))$$
 (1)

- $S = \{\mathcal{X} \times \mathcal{M}\}^L$ is finite, due to the assumption of finite buffers size and channel states.
- The action $\mathbf{a}(\mathbf{s}) \in A$ is taken when in state \mathbf{s}

$$a(s) = (a_1(s), a_2(s), \dots, a_L(s))$$
 (2)

< ロ > ∢母 > ∢差 > ∢差 > 差 のQで

• The system state $\mathbf{s}(t) \in S$ is a vector and is given by

$$\mathbf{s}(t) = (x_1(t), x_2(t), \dots, x_L(t), \gamma_1(t), \gamma_2(t), \dots, \gamma_L(t))$$
 (1)

- $S = \{\mathcal{X} \times \mathcal{M}\}^L$ is finite, due to the assumption of finite buffers size and channel states.
- The action $\mathbf{a}(\mathbf{s}) \in A$ is taken when in state \mathbf{s}

$$\mathbf{a}(\mathbf{s}) = (a_1(\mathbf{s}), a_2(\mathbf{s}), \dots, a_L(\mathbf{s}))$$
 (2)

subject to,

$$\sum_{i=1}^{L} a_i(\mathbf{s}) \leq \frac{15}{c}, \quad \text{and} \quad a_i(\mathbf{s}) \leq \left\lceil \frac{x_i(t)}{\gamma_i(t)c} \right\rceil$$

◆ロト ◆個ト ◆注ト ◆注ト 注 りへの

• The system state $\mathbf{s}(t) \in S$ is a vector and is given by

$$\mathbf{s}(t) = (x_1(t), x_2(t), \dots, x_L(t), \gamma_1(t), \gamma_2(t), \dots, \gamma_L(t))$$
 (1)

- $S = \{\mathcal{X} \times \mathcal{M}\}^L$ is finite, due to the assumption of finite buffers size and channel states.
- The action $\mathbf{a}(\mathbf{s}) \in A$ is taken when in state \mathbf{s}

$$a(s) = (a_1(s), a_2(s), \dots, a_L(s))$$
 (2)

subject to,

$$\sum_{i=1}^{L} a_i(\mathbf{s}) \leq \frac{15}{c}, \quad \text{and} \quad a_i(\mathbf{s}) \leq \left\lceil \frac{x_i(t)}{\gamma_i(t)c} \right\rceil$$

• $a_i(t)c$, number of codes allocated to user i at time epoch t.

4□ > 4□ > 4 = > 4 = > = 90

Reward Function

- The reward must achieve the objective function
- $R(\mathbf{s}, \mathbf{a})$ have two components corresponding to the two objectives

$$R(\mathbf{s}, \mathbf{a}) = \sum_{i=1}^{L} a_i \gamma_i c - \sigma \sum_{i=1}^{L} (x_i - \bar{x}) \mathbf{1}_{\{x_i = B\}}$$
(3)

where we defined the **fairness factor** (σ) to reflect the significance of fairness in the optimal policy.

- The positive term of the reward maximizes the cell throughput.
- The second term guarantees some level of fairness and reduces dropping probability.

◆□▶ ◆圖▶ ◆重▶ ◆重▶ = = のQ@

State Transition Probability

• $P_{ss'}(\mathbf{a})$ denotes the probability that choosing an action \mathbf{a} at time t when in state \mathbf{s} will lead to state \mathbf{s}' at time t+1.

$$P_{ss'}(\mathbf{a}) = Pr(\mathbf{s}(t+1) = \mathbf{s}' | \mathbf{s}(t) = \mathbf{s}, \mathbf{a}(t) = \mathbf{a})$$

= $Pr(x'_1, ..., x'_L, \gamma'_1, ..., \gamma'_L | x_1, ..., x_L, \gamma_1, ..., \gamma_L, a_1, ..., a_L)$

State Transition Probability

• $P_{ss'}(\mathbf{a})$ denotes the probability that choosing an action \mathbf{a} at time t when in state \mathbf{s} will lead to state \mathbf{s}' at time t+1.

$$P_{ss'}(a) = Pr(s(t+1) = s'|s(t) = s, a(t) = a)$$

= $Pr(x'_1, ..., x'_L, \gamma'_1, ..., \gamma'_L|x_1, ..., x_L, \gamma_1, ..., \gamma_L, a_1, ..., a_L)$

• The evolution of the queue size (x_i) is given by

$$x'_{i} = \min([x_{i} - y_{i}]^{+} + z'_{i}, B)$$

= $\min([x_{i} - a_{i}\gamma_{i}c]^{+} + z'_{i}, B)$ (4)

State Transition Probability

• $P_{ss'}(\mathbf{a})$ denotes the probability that choosing an action \mathbf{a} at time t when in state \mathbf{s} will lead to state \mathbf{s}' at time t+1.

$$P_{ss'}(a) = Pr(s(t+1) = s'|s(t) = s, a(t) = a)$$

= $Pr(x'_1, ..., x'_L, \gamma'_1, ..., \gamma'_L|x_1, ..., x_L, \gamma_1, ..., \gamma_L, a_1, ..., a_L)$

• The evolution of the queue size (x_i) is given by

$$x'_{i} = \min([x_{i} - y_{i}]^{+} + z'_{i}, B)$$

= $\min([x_{i} - a_{i}\gamma_{i}c]^{+} + z'_{i}, B)$ (4)

Using the independence of the channel state and queue sizes

$$P_{ss'}(\mathbf{a}) = \prod_{i=1}^{L} \left(P_{x_i x_i'}(\gamma_i, a_i) P_{\gamma_i \gamma_i'} \right) \tag{5}$$

where $P_{\gamma_i \gamma_i'}$ is the Markov transition probability of the FSMC.

◆ロト ◆卸 ト ◆差 ト ◆差 ト ・ 差 ・ か Q (^*)

State Transition Probability cont.

$$P_{x_{i}x_{i}'}(\gamma_{i}, a_{i}) = \begin{cases} 1 & \text{if } x_{i}' = x_{i} = B \& a_{i}\gamma_{i} = 0, \\ q_{i} & \text{if } x_{i}' = x_{i} = B \& 0 < a_{i}\gamma_{i}c \leq u_{i}, \\ q_{i} & \text{if } x_{i}' = B \& x_{i} < B \& W1 \geq B, \\ q_{i} & \text{if } x_{i}' < B \& x_{i}' = W1, \\ 1 - q_{i} & \text{if } x_{i}' < B \& x_{i}' = W2, \\ 0 & \text{otherwise.} \end{cases}$$

$$(6)$$

where

$$W1 = [x_i - a_i \gamma_i c]^+ + u_i$$

$$W2 = [x_i - a_i \gamma_i c]^+$$

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

• Infinite-horizon MDP.

- Infinite-horizon MDP.
- Total expected discounted reward optimality criterion with discount factor λ is used, where $0 < \lambda < 1$.

- Infinite-horizon MDP.
- Total expected discounted reward optimality criterion with discount factor λ is used, where $0 < \lambda < 1$.
- The objective is to find the policy π among all policies, that maximize the value function $V^{\pi}(s)$.

- Infinite-horizon MDP.
- Total expected discounted reward optimality criterion with discount factor λ is used, where $0 < \lambda < 1$.
- The objective is to find the policy π among all policies, that maximize the value function $V^{\pi}(s)$.
- The optimal policy is characterized by

$$V^*(\mathbf{s}) = \max_{\mathbf{a} \in A} [R(\mathbf{s}, \mathbf{a}) + \lambda \sum_{\mathbf{s}' \in S} P_{\mathbf{s}\mathbf{s}'}(\mathbf{a}) V^*(\mathbf{s}')]$$
(7)

where, $V^*(\mathbf{s}) = \sup_{\pi} V^{\pi}(\mathbf{s})$, attained when applying the optimal policy π^* .

- Infinite-horizon MDP.
- Total expected discounted reward optimality criterion with discount factor λ is used, where $0 < \lambda < 1$.
- The objective is to find the policy π among all policies, that maximize the value function $V^{\pi}(s)$.
- The optimal policy is characterized by

$$V^*(\mathbf{s}) = \max_{\mathbf{a} \in A} [R(\mathbf{s}, \mathbf{a}) + \lambda \sum_{\mathbf{s}' \in S} P_{\mathbf{s}\mathbf{s}'}(\mathbf{a}) V^*(\mathbf{s}')]$$
(7)

where, $V^*(\mathbf{s}) = \sup_{\pi} V^{\pi}(\mathbf{s})$, attained when applying the optimal policy π^* .

• The model was solved numerically using Value Iteration.

The Optimal Policy for Two Symmetrical Users

$$P(\gamma_i=1)=0.5$$
 and $P(z_i=5)=0.5$ for all $i \in \{1,2\}$; $c=5$.

Hussein Al-Zubaidy, Jerome Talim, Ioannis LaOptimal Scheduling Policy Determination in F

The Effect of Channel Quality on Policy Structure

$$P(\gamma_1=1)=0.8$$
, $P(\gamma_2=1)=0.5$ and $P(z_i=5)=0.5$.

The Effect of Arrival Probability on Policy Structure

$$P(\gamma_1 = 1) = P(\gamma_2 = 1) = 0.5$$
 and $P(z_1 = 5) = 0.8$ $P(z_2 = 5) = 0.5$.

We studied the optimal policy structure by running a wide range of scenarios, we noticed the following trends

• The policy is a switch-over.

We studied the optimal policy structure by running a wide range of scenarios, we noticed the following trends

- The policy is a switch-over.
- The weight (w_i) is a function of the difference of the two channel qualities and that of the arrival probabilities:

$$w_1 = f([-\Delta P_{\gamma}]^+, [-\Delta P_z]^+)$$
 (8)

$$w_2 = f([\Delta P_{\gamma}]^+, [\Delta P_z]^+) \tag{9}$$

where

$$\Delta P_{\gamma} = P(\gamma_1 = 1) - P(\gamma_2 = 1)$$
 and $\Delta P_z = P(z_1 = u) - P(z_2 = u)$.

We studied the optimal policy structure by running a wide range of scenarios, we noticed the following trends

- The policy is a switch-over.
- The weight (w_i) is a function of the difference of the two channel qualities and that of the arrival probabilities:

$$w_1 = f([-\Delta P_{\gamma}]^+, [-\Delta P_z]^+)$$
 (8)

$$w_2 = f([\Delta P_{\gamma}]^+, [\Delta P_z]^+) \tag{9}$$

where

$$\Delta P_{\gamma} = P(\gamma_1 = 1) - P(\gamma_2 = 1)$$
 and $\Delta P_z = P(z_1 = u) - P(z_2 = u)$.

• The intermediate regions has almost a constant width that equals 2c.

We studied the optimal policy structure by running a wide range of scenarios, we noticed the following trends

- The policy is a switch-over.
- The weight (w_i) is a function of the difference of the two channel qualities and that of the arrival probabilities:

$$w_1 = f([-\Delta P_{\gamma}]^+, [-\Delta P_z]^+)$$
 (8)

$$w_2 = f([\Delta P_{\gamma}]^+, [\Delta P_z]^+) \tag{9}$$

where

$$\Delta P_{\gamma} = P(\gamma_1 = 1) - P(\gamma_2 = 1)$$
 and $\Delta P_z = P(z_1 = u) - P(z_2 = u)$.

- The intermediate regions has almost a constant width that equals 2c.
- a_1 (respectively a_2) is increasing in x_1 (respectively x_2).

We studied the optimal policy structure by running a wide range of scenarios, we noticed the following trends

- The policy is a switch-over.
- The weight (w_i) is a function of the difference of the two channel qualities and that of the arrival probabilities:

$$w_1 = f([-\Delta P_{\gamma}]^+, [-\Delta P_z]^+)$$
 (8)

$$w_2 = f([\Delta P_{\gamma}]^+, [\Delta P_z]^+) \tag{9}$$

where

$$\Delta P_{\gamma} = P(\gamma_1 = 1) - P(\gamma_2 = 1)$$
 and $\Delta P_z = P(z_1 = u) - P(z_2 = u)$.

- The intermediate regions has almost a constant width that equals 2c.
- a_1 (respectively a_2) is increasing in x_1 (respectively x_2).
- f() is increasing in $|\Delta P_{\gamma}|$ and decreasing in $|\Delta P_{z}|$.

Weight Function Approximation

Following these observations, we approximated w_1 and w_2 as follows

$$\hat{w}_1 = 1 + 1.5[-\Delta P_{\gamma}]^+ - 0.7[-\Delta P_z]^+ \tag{10}$$

$$\hat{w}_2 = 1 + 1.5[\Delta P_{\gamma}]^+ - 0.7[\Delta P_z]^+ \tag{11}$$

$$P(\gamma_i=1)=0.5$$
 and $P(z_i=5)=0.5$ for all $i \in \{1,2\}$.

4 D F 4 D F 4 D F 5000

$$P(\gamma_1=1)=0.8$$
, $P(\gamma_2=1)=0.5$ and $P(z_i=5)=0.5$.

$$P(\gamma_1 = 1) = P(\gamma_2 = 1) = 0.5$$
, $P(z_1 = 5) = 0.8$ and $P(z_2 = 5) = 0.5$.

$$P(\gamma_i = 1) = 0.5$$
 and $P(z_i = 5) = 0.5$ for all $i \in \{1, 2\}$.

$$P(\gamma_1=1)=0.8$$
, $P(\gamma_2=1)=0.5$ and $P(z_i=5)=0.5$.

$$P(\gamma_1 = 1) = P(\gamma_2 = 1) = 0.5$$
, $P(z_1 = 5) = 0.8$ and $P(z_2 = 5) = 0.5$.

Hussein Al-Zubaidy, Jerome Talim, Ioannis LaOptimal Scheduling Policy Determination in F

Performance Evaluation: The Effect of Policy Granularity

Where $\rho = \sum_i P_{z_i} u_i / r^{\pi}$ is the offered load and r^{π} is the measured system capacity under π . $P(\gamma_1 = 1) = 0.8$ and $P(\gamma_2 = 1) = 0.5$.

Heuristic Policy Evaluation

(c) System Throughput for different ρ ; $P(\gamma_1=1)=0.8$ and $P(\gamma_2=1)=0.5$.

(d) Queueing Delay Performance; $P(\gamma_2 = 1) = 0.5$, $q_1 = 0.8$, $q_2 = 0.5$ and u = 10

Conclusion

• The optimal policy can be described as share the codes in proportion to the weighted queue length of the connected users.

Conclusion

- The optimal policy can be described as share the codes in proportion to the weighted queue length of the connected users.
- A policy with finer granularity will perform better in light to moderate loading conditions, while a coarse policy is more desirable in heavy loading conditions.

Conclusion

- The optimal policy can be described as share the codes in proportion to the weighted queue length of the connected users.
- A policy with finer granularity will perform better in light to moderate loading conditions, while a coarse policy is more desirable in heavy loading conditions.
- However, the performance gain when using c < 5 is marginal and does not justify the added complexity.

• The suggested heuristic policy has a reduced constant time complexity (O(1)) as compared to the exponential time complexity needed in the determination of the optimal policy.

- The suggested heuristic policy has a reduced constant time complexity (O(1)) as compared to the exponential time complexity needed in the determination of the optimal policy.
- The performance of the resulted heuristic policy matches very closely to the optimal policy.

- The suggested heuristic policy has a reduced constant time complexity (O(1)) as compared to the exponential time complexity needed in the determination of the optimal policy.
- The performance of the resulted heuristic policy matches very closely to the optimal policy.
- The results also proved that RR is undesirable in HSDPA system due to the poor performance and lack of fairness.

- The suggested heuristic policy has a reduced constant time complexity (O(1)) as compared to the exponential time complexity needed in the determination of the optimal policy.
- The performance of the resulted heuristic policy matches very closely to the optimal policy.
- The results also proved that RR is undesirable in HSDPA system due to the poor performance and lack of fairness.
- The suggested heuristic policy can be extended to the case with more than two active users. It also can be easily adapted to accommodate more than one class of service.

Future Work

 Prove analytically some of the optimal policy and value function characteristics, such as monotonicity, multi-modularity, and the switch-over behavior that we noticed before.

Future Work

- Prove analytically some of the optimal policy and value function characteristics, such as monotonicity, multi-modularity, and the switch-over behavior that we noticed before.
- Relax the assumption of error free transmission and extend the model to take into account retransmissions.

Future Work

- Prove analytically some of the optimal policy and value function characteristics, such as monotonicity, multi-modularity, and the switch-over behavior that we noticed before.
- Relax the assumption of error free transmission and extend the model to take into account retransmissions.
- Study the effect of using different arrival process statistics using simulation obviously.

Thank You

Discussion

Hussein Zubaidy

www.sce.carleton.ca/~hussein/

Acronyms

- HSDPA-High Speed Downlink Packet Access.
- 3GPP-Third Generation Partnership Project
- MDP-Markov Decision Process
- TDMA-Time Division Multiple Access
- CDMA-Code Division Multiple Access
- TTI-Transmission Time Interval (2 ms)
- FSMC-Finite State Markov Channel
- SDU-Service Data Unit
- RLC–Radio Link Control Protocol located at Radio Network Controller (RNC)
- PDU-Protocol data unit
- LQF-Longest Queue First

