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Objective and Motivation Objective

Objective

To devise a methodology to find the optimal scheduling regime in HSDPA
networks, that controls the allocation of the time-code resources.

This resulting optimal policy should have the following properties:
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Objective and Motivation Objective

Objective

To devise a methodology to find the optimal scheduling regime in HSDPA
networks, that controls the allocation of the time-code resources.

This resulting optimal policy should have the following properties:

@ Fair; Divide the resources fairly between all the active users.

@ Optimal Transmission: Maximizes the overall cell throughput.

@ Optimal Resource Utilization: Provide channel aware (diversity gain)
and high speed resource allocation.
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Objective and Motivation Motivation

Motivation

@ 3GPP only suggested some guidelines for HSDPA downlink scheduler
and left the design specifics undefined.

@ This resulted in many different scheduling techniques and
implementations most of which are proprietary.

@ Most of the available work in scheduler design is based on intuition
and creativity of the designers.
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Methodology

This work presents a different approach for scheduling in HSDPA. A
declarative approach is used,
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Methodology

This work presents a different approach for scheduling in HSDPA. A
declarative approach is used,

@ Develop an analytic model for the HSDPA downlink scheduler.

e A MDP based discrete stochastic dynamic programming model is used
to model the system.

e This Model is a simplifying abstraction of the real scheduler which
estimates system behavior under different conditions and describes the
role of various system components in these behaviors.

e It must be solvable.
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Methodology

This work presents a different approach for scheduling in HSDPA. A
declarative approach is used,

@ Develop an analytic model for the HSDPA downlink scheduler.

e A MDP based discrete stochastic dynamic programming model is used
to model the system.

e This Model is a simplifying abstraction of the real scheduler which
estimates system behavior under different conditions and describes the
role of various system components in these behaviors.

e It must be solvable.

@ Define an objective function.
@ Value iteration is then used to solve for optimal policy.

@ Study the structure of the optimal policy and develop a near-optimal
heuristic policy.
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Problem Definition and Conceptualization
Problem Definition and Conceptualization

The HSDPA downlink channel uses a mix of TDMA and CDMA:
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Problem Definition and Conceptualization
Problem Definition and Conceptualization

The HSDPA downlink channel uses a mix of TDMA and CDMA:

@ Time is slotted into fixed length 2 ms TTls.

@ During each TTI, there are 15 available codes that may be allocated
to one or more users.
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Problem Definition and Conceptualization

Problem Definition and Model Description

HSDPA Scheduler Model (Downlink)
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Problem Definition and Model Description Problem Definition and Conceptualization

FSMC Model for HSDPA Downlink Channel
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Problem Definition and Model Description Model Description and Basic Assumptions
The Model

@ MDP based Model.

@ HSDPA downlink scheduler is modelled by the 5-tuple

(Ta 57 Aa Pss’(a)a R(Sa a)),

where,
o T is the set of decision epochs,
e S and A are the state and action spaces,
o Ps(a)=Pr(s(t + 1)=s|s(t)=s,a(s)=a) is the state transition

probability, and

o R(s,a) is the immediate reward when at state s and taking action a.
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Hlogt) Deseipien an) ERst Asmpeg:
Basic Assumptions

@ L active users in the cell.

o Finite buffer with size B per user for each of the L users.

@ Error free transmission.

@ SDUs are segmented by RLC into a fixed number of PDUs (u;) and
delivered to Node-B at the beginning of the next TTI.

@ Independent Bernoulli arrivals with parameter g;.

@ Scheduler can assign ¢ codes chunks at a time, where

ce{1,3,5,15} .
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Model Description and Basic Assumptions
Basic Assumptions—FSMC State Space

@ The channel state of user i during slot t is denoted by ~;(t).
@ Channel state space is the set M ={0,1,...,M — 1}.

@ user i channel can handle up to v;(t) PDUs per code.
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Problem Definition and Model Description State and Action Sets

State and Action Sets

@ The system state s(t) € S is a vector and is given by

s(t) = (xa(t), x(t), ., xe(t),71(t),72(t), - (8)) (1)
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Problem Definition and Model Description State and Action Sets

State and Action Sets

@ The system state s(t) € S is a vector and is given by
s(t) = (a(t), xe(t), ..., xe(t),71(t), 72(2), .., (t)) (1)

o S ={X x M}t is finite, due to the assumption of finite buffers size
and channel states.
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Problem Definition and Model Description State and Action Sets

State and Action Sets

@ The system state s(t) € S is a vector and is given by
s(t) = (a(t), xe(t), ..., xe(t),71(t), 72(2), .., (t)) (1)

o S ={Xx x M} is finite, due to the assumption of finite buffers size
and channel states.

@ The action a(s) € A is taken when in state s

a(s) = (a1(s). ax(s). ... au (s)) (2)
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Problem Definition and Model Description State and Action Sets

State and Action Sets

@ The system state s(t) € S is a vector and is given by
s(t) = (xa(t), x2(t), ..., xc(t), 71(8), 2(t), - we()) (1)

o S ={Xx x M} is finite, due to the assumption of finite buffers size
and channel states.

@ The action a(s) € A is taken when in state s

a(s) = (ai(s), az(s), ..., ar(s)) (2)

e subject to,
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Problem Definition and Model Description State and Action Sets

State and Action Sets

@ The system state s(t) € S is a vector and is given by
s(t) = (xa(t), x2(t), ..., xc(t), 71(8), 2(t), - we()) (1)

o S ={Xx x M} is finite, due to the assumption of finite buffers size
and channel states.

@ The action a(s) € A is taken when in state s

a(s) = (ai(s), az(s), ..., ar(s)) (2)

e subject to,

Za;(s) < 17:5 and  ai(s) < {Xi(t) W

— 7i(t)c
e a;(t)c, number of codes allocated to user / at time epoch t.
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Problem Definition and Model Description Reward Function

Reward Function

@ The reward must achieve the objective function

@ R(s,a) have two components corresponding to the two objectives

R(s a)—zamc—az = %) L—p) (3)

where we defined the fairness factor (o) to reflect the significance of
fairness in the optimal policy.

@ The positive term of the reward maximizes the cell throughput.

@ The second term guarantees some level of fairness and reduces
dropping probability.
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Stttz Testien Prettelaifiy
State Transition Probability

@ Py (a) denotes the probability that choosing an action a at time t
when in state s will lead to state s’ at time t + 1.

Pul@) = Pr(s(t + 1)=s'ls(t)=s,a(t)=a)

/ / / /
- Pr(Xla' < XV '77L‘X17' <o XLyYLse - YL591 50 - ~7aL)
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Stttz Testien Prettelaifiy
State Transition Probability

@ Pgy(a) denotes the probability that choosing an action a at time ¢t
when in state s will lead to state s’ at time t + 1.

Pss'@) = Pr(s(t + 1)=s'|s(t)=s,a(t)=a)
= Pr(X{, - oy X[ Y1 - V1| X0se + o XUy Y1se - 5VLy@15- - ,3L)
@ The evolution of the queue size (x;) is given by
x; = min([x — vilt + 2, B)
= min ([x; — amyiclt + 2, B) (4)
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Stttz Testien Prettelaifiy
State Transition Probability

@ Pgy(a) denotes the probability that choosing an action a at time ¢t
when in state s will lead to state s’ at time t + 1.

Pss'@) = Pr(s(t + 1)=s'|s(t)=s,a(t)=a)
= Pr(X{, - oy X[ Y1 - V1| X0se + o XUy Y1se - 5VLy@15- - ,3L)
@ The evolution of the queue size (x;) is given by
x/ = min ([x,- — y,']+ + 2z, B)
= min ([x; — aiyic]” + 2 ,B) (4)

@ Using the independence of the channel state and queue sizes
L
Pes(a) = [T (Puss (12 21) Pryry) (5)
i=1
where P,/ is the Markov transition probability of the FSMC.
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Stttz Testien Prettelaifiy
State Transition Probability cont.

1 if xl =x;=B & aj7; =0,
qi if xl =x;=B & 0 < ajvjc < u;j,
qgi ifxX'=B&x;<B & W1>B,
PX[X{(7i7ai): e /
i qg; if x; <B & x; = W1,
1-qi ifx <B&x/=W2,
0 otherwise.
where
w1l = [X,' — a,-’y,-c]+ + u;
w2 = [X,' — a;v;c]+
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Problem Definition and Model Description Value Function

Value Function

@ Infinite-horizon MDP.
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Problem Definition and Model Description Value Function

Value Function

@ Infinite-horizon MDP.

o Total expected discounted reward optimality criterion with discount
factor \ is used, where 0 < \ < 1.
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Problem Definition and Model Description Value Function

Value Function

@ Infinite-horizon MDP.

o Total expected discounted reward optimality criterion with discount
factor A is used, where 0 < A < 1.

@ The objective is to find the policy m among all policies, that maximize
the value function V™ (s).
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Problem Definition and Model Description Value Function

Value Function

@ Infinite-horizon MDP.

o Total expected discounted reward optimality criterion with discount
factor A is used, where 0 < A < 1.

@ The objective is to find the policy m among all policies, that maximize
the value function V™ (s).

@ The optimal policy is characterized by

V(s) = maxlR(s, ) + A Y Puw(a)V*(5)] (7)
s'eS

where, V*(s) = sup, V™ (s), attained when applying the optimal
policy 7*.
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Problem Definition and Model Description Value Function

Value Function

@ Infinite-horizon MDP.

o Total expected discounted reward optimality criterion with discount
factor A is used, where 0 < A < 1.

@ The objective is to find the policy m among all policies, that maximize
the value function V™ (s).

@ The optimal policy is characterized by
V*(s) = R P (a) V*(s'
(s) = max[R(s,a) + AS;S s (a) V()] (7)

where, V*(s) = sup, V™ (s), attained when applying the optimal
policy 7*.

@ The model was solved numerically using Value lteration.
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[EERSIVENGNETIS  Case Study: Two Users with 2-State FSMC

The Optimal Policy for Two Symmetrical Users
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[EERSIVENGNETIS  Case Study: Two Users with 2-State FSMC

The Effect of Channel Quality on Policy Structure
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[EERSIVENGNETIS  Case Study: Two Users with 2-State FSMC

The Effect of Arrival Probability on Policy Structure
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Case Study: Two Users with 2-State FSMC
Heuristic Policy
We studied the optimal policy structure by running a wide range of

scenarios, we noticed the following trends

@ The policy is a switch-over.
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Cese Sty Teo Users it 28z FENE
Heuristic Policy

We studied the optimal policy structure by running a wide range of
scenarios, we noticed the following trends

@ The policy is a switch-over.

@ The weight (w;) is a function of the difference of the two channel
qualities and that of the arrival probabilities:

wi = f([-AP]", [-AP]T) (8)
wy = f([AP]T, [AP,]T) (9)

where

AP,=P(y1=1) — P(v2=1) and AP,=P(z1=u) — P(zz=u).
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Cese Sty Teo Users it 28z FENE
Heuristic Policy

We studied the optimal policy structure by running a wide range of
scenarios, we noticed the following trends

@ The policy is a switch-over.

@ The weight (w;) is a function of the difference of the two channel
qualities and that of the arrival probabilities:

wi = f([-AP]", [-AP]T) (8)
wo = F([AP]T,[AP]T) (9)

where
AP,=P(y1=1) — P(y2=1) and AP, =P(z1=u) — P(zo=u).

@ The intermediate regions has almost a constant width that equals 2c.
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Heuristic Policy

We studied the optimal policy structure by running a wide range of
scenarios, we noticed the following trends

@ The policy is a switch-over.

@ The weight (w;) is a function of the difference of the two channel
qualities and that of the arrival probabilities:

wi = f([-AP]", [-AP]T) (8)
we = f([AP]T,[AP]T) (9)
where
AP,=P(y1=1) — P(y2=1) and AP, =P(z1=u) — P(zo=u).
@ The intermediate regions has almost a constant width that equals 2c.

@ a; (respectively ap) is increasing in x; (respectively xy).
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Cese Sty Teo Users it 28z FENE
Heuristic Policy

We studied the optimal policy structure by running a wide range of
scenarios, we noticed the following trends

@ The policy is a switch-over.

@ The weight (w;) is a function of the difference of the two channel
qualities and that of the arrival probabilities:

wi = f([-AP]", [-AP]T) (8)
we = f([AP]T,[AP]T) (9)
where
AP,=P(y1=1) — P(y2=1) and AP, =P(z1=u) — P(zo=u).
@ The intermediate regions has almost a constant width that equals 2c.
@ a; (respectively ap) is increasing in x; (respectively xy).

e f() is increasing in |AP,| and decreasing in |AP,]|.
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[EERSIITIENNETII  \Weight Function Approximation

Weight Function Approximation

Following these observations, we approximated w; and wy as follows

W = 14+ 15[-AP,)" —0.7[-AP,]* (10)
W = 1+ 15[AP,]T —0.7[AP,]" (11)
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Itluisife (Fefiey Stiusiue
Heuristic (dotted line) vs. optimal policy; ¢ = 15

0 1 5 10 15 20 25 X3

P(vi=1)=0.5 and P(z;=5)=0.5 for all i € {1,2}.
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Itluisife (Fefiey Stiusiue
Heuristic (dotted line) vs. optimal policy; ¢ = 15
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Itluisife (Fefiey Stiusiue
Heuristic (dotted line) vs. optimal policy; ¢ = 15

P(y1=1)=P(y2=1)=0.5, P(z1=5)=0.8 and P(z=5)=0.5.
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Case Study and Results Heuristic Policy Structure

Heuristic (dotted line) vs. optimal policy; ¢ =5
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Case Study and Results Performance Evaluation

Performance Evaluation: The Effect of Policy Granularity
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Where p = ). P, u;/r™ is the offered load and r™ is the measured system
capacity under m. P(y1=1)=0.8 and P(7y2=1)=0.5.

[ VESS WA VAT EYe VAN YT SR IV T R BT O ot 2| Scheduling Policy Determination in 26 June 2007 28 / 34



Case Study and Results Performance Evaluation

Heuristic Policy Evaluation
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Conclusion and Future Work Conclusion

Conclusion

@ The optimal policy can be described as share the codes in proportion
to the weighted queue length of the connected users.
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Conclusion and Future Work Conclusion

Conclusion

@ The optimal policy can be described as share the codes in proportion
to the weighted queue length of the connected users.

@ A policy with finer granularity will perform better in light to moderate
loading conditions, while a coarse policy is more desirable in heavy
loading conditions.
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Conclusion and Future Work Conclusion

Conclusion

@ The optimal policy can be described as share the codes in proportion
to the weighted queue length of the connected users.

@ A policy with finer granularity will perform better in light to moderate
loading conditions, while a coarse policy is more desirable in heavy
loading conditions.

@ However, the performance gain when using ¢ < 5 is marginal and
does not justify the added complexity.
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Conclusion and Future Work Conclusion

Conclusion cont.

@ The suggested heuristic policy has a reduced constant time
complexity (O(1)) as compared to the exponential time complexity
needed in the determination of the optimal policy.
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Conclusion and Future Work Conclusion

Conclusion cont.

@ The suggested heuristic policy has a reduced constant time
complexity (O(1)) as compared to the exponential time complexity
needed in the determination of the optimal policy.

@ The performance of the resulted heuristic policy matches very closely
to the optimal policy.
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Conclusion and Future Work Conclusion

Conclusion cont.

@ The suggested heuristic policy has a reduced constant time
complexity (O(1)) as compared to the exponential time complexity
needed in the determination of the optimal policy.

@ The performance of the resulted heuristic policy matches very closely
to the optimal policy.

@ The results also proved that RR is undesirable in HSDPA system due
to the poor performance and lack of fairness.

(3 [TEE AN B AT] =Y e WA T2 R YT MR BT O 5t im2| Scheduling Policy Determination in b 26 June 2007 31/ 34



Conclusion and Future Work Conclusion

Conclusion cont.

@ The suggested heuristic policy has a reduced constant time
complexity (O(1)) as compared to the exponential time complexity
needed in the determination of the optimal policy.

@ The performance of the resulted heuristic policy matches very closely
to the optimal policy.

@ The results also proved that RR is undesirable in HSDPA system due
to the poor performance and lack of fairness.

@ The suggested heuristic policy can be extended to the case with more
than two active users. It also can be easily adapted to accommodate
more than one class of service.
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Pt Wit
Future Work

@ Prove analytically some of the optimal policy and value function
characteristics, such as monotonicity, multi-modularity, and the
switch-over behavior that we noticed before.
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Pt Wit
Future Work

@ Prove analytically some of the optimal policy and value function
characteristics, such as monotonicity, multi-modularity, and the
switch-over behavior that we noticed before.

@ Relax the assumption of error free transmission and extend the model
to take into account retransmissions.
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Pt Wit
Future Work

@ Prove analytically some of the optimal policy and value function
characteristics, such as monotonicity, multi-modularity, and the
switch-over behavior that we noticed before.

@ Relax the assumption of error free transmission and extend the model
to take into account retransmissions.

@ Study the effect of using different arrival process statistics using
simulation obviously.
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Conclusion and Future Work Future Work

Thank You

Discussion

Hussein Zubaidy
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Acronyms

HSDPA-High Speed Downlink Packet Access.
3GPP-Third Generation Partnership Project
MDP—-Markov Decision Process
TDMA-Time Division Multiple Access
CDMA-Code Division Multiple Access
TTI-Transmission Time Interval (2 ms)
FSMC—Finite State Markov Channel
SDU-Service Data Unit

RLC-Radio Link Control Protocol located at Radio Network
Controller (RNC)

PDU-Protocol data unit
o LQF-Longest Queue First
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