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Abstract

We investigate an optimal scheduling problem in a discrete-time system of L
parallel queues that are served by K identical, randomly connected servers.
This model has been widely used in studies of emerging 3G /4G wireless sys-
tems. We introduce the class of Most Balancing (MB) policies and provide
their mathematical characterization. We prove that MB policies are opti-
mal; we define optimality as minimization, in stochastic ordering sense, of a
range of cost functions of the queue lengths, including the process of total
number of packets in the system. We use stochastic coupling arguments for
our proof. We propose an implementation algorithm for an MB policy. We
also introduce the Least Connected Server First/Longest Connected Queue
(LCSF/LCQ) policy as an easy-to-implement approximation of MB policies.
The server-queue (channel) connectivities, during each time slot, are mod-
eled by independent Bernoulli random variables. The exogenous arrivals to
individual queues are assumed to be symmetrical and independent across the
queues in the system and independent of the connectivities. We conduct a
simulation study to compare the performance of several policies. The sim-
ulation results show that: (a) in all cases, LCSF/LCQ approximations to
the MB policies outperform the other policies, (b) randomized policies per-
form fairly close to the optimal one, and, (c¢) the performance advantage of
the optimal policy over the other simulated policies increases as the channel
connectivity probability decreases.



1 Introduction, Model Description and Prior
Research

Emerging 3G /4G wireless networks can be categorized as high speed IP-
based packet access networks. They utilize the channel variability, using data
rate adaptation, and user diversity to increase their channel capacity. These
systems usually use a mixture of Time and Code Division Multiple Access
(TDMA/CDMA). Time is divided to an equal size slots, each of which can
be allocated to one or more users. To optimize the use of the enhanced
data rate, these systems allow several users to share the wireless channel
simultaneously using CDMA. This will minimize the wasted capacity resulted
from the allocation of the whole channel capacity to one user at a time even
when that user is unable to utilize all of that capacity. Another reason for
sharing system capacity between several users, at the same time slot, is that
some of the user equipments at the receiving side might have design limitation
on the amount of data they can receive and process at a given time.

The connectivity of users to the base station in any wireless system is
varying with time and can be best modeled as a random process. The appli-
cation of stochastic modeling and queuing theory to model wireless systems
is well vetted in the literature. Modeling wireless systems using parallel
queues with random queue/server connectivity was used by Tassiulas and
Ephremides [3], Ganti, Modiano and Tsitsiklis [6] and many others to study
scheduler optimization in wireless systems. In the following subsection, we
provide a more formal model description and motivation for the problem at
hand.

1.1 Model Description

In this work, we assume that time is slotted into equal length deterministic
intervals. We model the wireless system under investigation as a set of L
parallel queues with infinite capacity (see Figure 1); the queues correspond
to the different users in the system. We define X;(n) to represent the number
of packets in the i queue at the beginning of time slot n. The queues share
a set of K identical servers, each server representing transmission channels
(or any other network resource, e.g., power, CDMA codes, etc.). We make
no assumption regarding the number of servers relative to the number of
queues, i.e., K can be less, equal or greater than L. The packets in this



system are assumed to have constant length, and require one time slot to
complete service. A server can serve one packet only at any given time slot.
A server can only serve connected, non-empty queues. Therefore, the system
can serve up to K packets during each time slot. Those packets may belong
to one or several queues.

The connectivity between a user and a channel is random. The state of
the channel connecting the i** queue to the j** server during the n!* time
slot is denoted by G, ;(n) and can be either connected (G ;(n) = 1) or not
connected (G;;(n) = 0). Hence, in a real system G; ;(n) will determine if a
transmission channel 7 can be used by user ¢ or not. We assume that, for
alli=1,2,...,L, j=1,2,...,K and n, G, j(n) are independent Bernoulli
random variables with parameter p.

The number of arrivals to the i queue during time slot n is denoted by
Z;(n). We make no assumption about the distribution of Z;(n), other than
P[Z;(n) < oo] = 1; the random variables Z;(n) and Z;(n') may be dependent,
for n # n/. However, we require that the distribution be the same for all i. We
require that arrival processes to different queues be independent of each other;
we also require that the random processes {Z;(n)} be independent of the
processes {G; j(n)} for i = 1,2,..., L, j = 1,2,..., K. These assumptions
are necessary for the coupling arguments we use in our optimality proofs.

A scheduler (or server allocation or scheduling policy) decides, at the
beginning of each time slot, what servers will be assigned to which queue
during that time slot. The objective of this work is to identify and analyze
the optimal scheduling policy that minimizes, in a stochastic ordering sense,
a range of cost functions of the system queue sizes, including the total number
of queued packets, in the aforementioned system. The choice of the class of
cost functions and the minimization process are discussed in detail in Section

D.

1.2 Previous Work and Our Contributions

In the literature, there is substantial research effort focusing on the optimal
server allocation in wireless networks. Tassiulas and Ephremides [3] for ex-
ample, tackled a similar, simpler problem where a single server (i.e., K = 1)
can only be allocated to one user and can only serve one packet at each time
slot. They proved, using stochastic coupling argument, that LCQ (Longest
Connected Queue) is optimal. In our work we show that LCQ is not al-
ways optimal in a multi-server system since servers can be assigned to one or



Y(n)

Figure 1: Abstraction of downlink scheduler in a 3G wireless network.

more queues simultaneously. Bambos and Michailidis [4] worked on a similar
model (a continuous time version of [3] with finite buffer capacity) and found
that under stationary ergodic input job flow and modulation processes, both
MCW (Maximum Connected Workload) and LCQ dynamic allocation poli-
cies maximize the stability region for this system. Furthermore, they proved
that C-FES, a policy that allocates the server to the connected queue with
the fewest empty spaces, stochastically minimizes the loss flow and maximizes
the throughput [5].

Another relevant result is that reported by Ganti, Modiano and Tsitsiklis
[6]. They presented a model for a satellite node that has K transmitters. The
system was modeled by a set of parallel queues with symmetrical statistics
competing for K identical servers. At each time slot, no more than one server
is allocated to each scheduled queue. They proved, using stochastic coupling
arguments, that LCQ), a policy that allocates the K servers to the K longest
connected queues at each time slot, is optimal. This model is similar to the
one we consider in this work, except that in our model one or more servers
can be allocated to each queue in the system. A further, stronger difference
between the two models is that we consider the case where each queue has
independent connectivities to different servers. We make these assumptions
for a more suitable representation of the 3G wireless systems described ear-
lier. These differences make it substantially harder to identify (and even
describe) the optimal policy (see Section 3). A more recent result that has
relevance to our work is the one reported by Kittipiyakul and Javidi in [7].
They proved, using dynamic programming, that a maximum-throughput and
load-balancing (MTLB) policy minimizes the expected average cost for a two-
queue multi-server system. In our research work we proved the optimality
of the most balancing policies in the more general problem of a multi-queue



(more than two queues) and multi-server system with random channel con-
nectivity. A stronger distinction of our work is that we proved the optimality
in a stochastic ordering sense which is a stronger notion of optimality com-
pared to the expected average cost criterion that was used in [7]. Lott and
Teneketzis [8] investigated a multi-class system of N weighted cost parallel
queues and M servers. They also used the same restriction of one server per
queue used in [6]. They showed that an index rule is optimal and provided
conditions sufficient, but not necessary, to guarantee its optimality.

Koole et al [9] studied a model similar to that of [3] and [5]. They found
that the Best User (BU) policy maximizes the expected discounted number of
successful transmissions. Liu et al [10], [11] studied the optimality of oppor-
tunistic schedulers (e.g., Proportional Fair (PF) scheduler). They presented
the characteristics and optimality conditions for such schedulers. However,
Andrews [13] showed that there are six different implementation algorithms
of a PF scheduler, none of which is stable. For more information on resource
allocation and optimization in wireless networks the reader may consult [12],
[14], [15], [16], [17], and [18].

In summary, the main contributions of our work are the following:

e We introduce the class of Most Balancing (MB) policies for server allo-
cation in the model of Figure 1 and prove their optimality for minimiz-
ing, in stochastic ordering sense, a set of functions of the queue lengths
(e.g., total system occupancy).

e An MB policy attempts to balance all queue sizes at every time slot,
so that the total sum of queue size differences will be minimized. Such
a policy exist and may be determined through a finite search of all
possible server allocations. In our work, we present a method that
reduces this search by searching for policies that assign servers to the
“longest connected queue” (LCQ allocation) in an ordered manner.

e We provide a heuristic approximation for an MB policy. At any time
slot, such policies allocate the “least connected servers first” to their
“longest connected queues” (LCSF/LCQ). These policies require mini-
mum complexity O(L x K) for their implementation. We further show,
using simulation, that their performance (on average) is identical to
the one achieved by MB policies.

The rest of the paper is organized as follows. In section II, we introduce
notation and define the server allocation policies. In section III, we intro-
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duce and provide a detailed description of the MB server allocation policies.
We also present an implementation algorithm for such policies. In section
IV, we introduce and characterize the balancing interchange. In section V,
we present the main result, i.e., the optimality of MB policies. In section
VI, we present the Least Balancing (LB) policies, and show that these poli-
cies perform the worst among all work conserving policies. MB and LB
policies provide upper and lower performance bounds. In section VII, we
introduce a practical low-overhead approximations for such policies, namely
the LCSF/LCQ policy and the MCSF/SCQ policy, with their implementa-
tion algorithms. In section VIII, we present simulation results for different
scheduling policies. We present proofs for some of our results in the Ap-
pendix.

2 Policies for Server Allocation

Recall that L and K denote the number of queues and servers respectively
in the model introduced in Figure 1. We will use bold face, UPPER CASE
and lower case letters to represent vector /matrix quantities, random variables
and sample values respectively. In order to represent the policy action that
corresponds to “idling” a server, we introduce a special, “dummy” queue
which is denoted as queue 0. Allocating a server to this queue is equivalent
to idling that server. By default, queue 0 is permanently connected to all
servers, contains only “dummy” packets. Let 14, denotes the indicator
function for condition A. Throughout this paper, we will use the following
notation:

e G(n)is an (L + 1) x K matrix, where G; ;(n) for i > 0 is the channel
connectivity random variable as defined in Section 1. We assume that
Gy j(n) =1 for all j,n.

e X(n) = (Xo(n), X1(n), Xa(n), ..., Xr(n))T is the vector of queue lengths
at the beginning of time slot n, measured in number of packets. We
assume Xo(1) = 0.

e Q(n) = (Q1(n),...,Qk(n))" is the server allocation control vector.
Q;(n) € {0,1,..., L} denotes the index of the queue that is selected
(according to some rule) to be served by server j during time slot n.
Note that serving the “dummy” queue, i.e., setting ();(n) = 0 means
that server j is idling during time slot n.



e V(n)isa (L+1)x K matrix such that V; j(n) = li—q,m)} - Gij(n),i =
0,...,Land j=1,..., K. Hence V; j(n) will be equal to 1 iff server j
is both connected to queue ¢ and assigned to serve it.

e Y(n) = (Yo(n),Yi(n),Ys(n),...,Yr(n))T is the vector of the number
of packets withdrawn from the system during time slot n. For any ¢,
Yi(n) € {0,1,..., K} denotes the number of packets withdrawn from
queue i (and assigned to servers) during time slot n.

o Z(n) = (Zy(n), Zi(n), Za(n), ..., Zr(n))T is the (column) vector of the
number of exogenous arrivals during time slot n = 1,2,.... Arrivals to
queue i # 0 are as defined in Section 1. We let Zy(n) = Yy(n).

e The tuple (X(n),G(n)) denotes the “state” of the system at the be-
ginning of time slot n.

For future reference, we will call Q(n) the scheduling (or server allocation)
control and Y (n) the withdrawal control. The matrix V(n) will be useful in
describing feasibility constraints on such controls (see Equations (2) and (3)).

2.1 Feasible Scheduling and Withdrawal Controls

Using the previous notation and given a scheduling control vector Q(n) we
can compute the withdrawal control vector as:

K
Yi(n) = ly—g,my, i=0,1,2,...,L. (1)
7j=1

We assume that the controller has complete knowledge of the system state
information at the beginning of each time slot. Then we say that a given
vector Q(n) € {0,1,..., L} is a feasible scheduling control (during time slot
n) if: (a) a server is allocated to one connected queue, and, (b) the number
of servers allocated to a queue (dummy queue excluded) cannot exceed the
size of the queue at time n. Mathematically, these conditions are captured
by the following (necessary and sufficient) constraints:

Vi) -Ipn = Ig (2)
Vin) I X(n) (3)

IN



where I, is a column vector of size [, with all entries equal to one, and

. [0, 1= 0;
V;J(n) - { Vi,j(”)a otherwise.

The K constraints in Equation (2) capture condition (a) above; indeed,
equality in Equation (2) is not possible if a server j is allocated to a non-
connected queue, since V;;(n) = 0 for all ¢ in this case. The point-wise
inequality in Inequality (3) captures condition (b); with the choice of V*(n)
we guarantee that Inequality (3) is satisfied for the dummy queue. Note that
more than one server may be allocated to any queue.

Similarly, we say that a vector Y(n) € {0,1,..., K}/ is a feasible
withdrawal control (during time slot n) if there is a matrix V(n) that satisfies
the feasibility constraints (2) and (3) such that

Y(n) = V(n) - L (4)

From constraints (2), it is clear that a server can be allocated to one
and only one connected queue; summing the constraints in (2), we can see
that the controller can only withdraw a total of up to K packets from the
connected nonempty queues in the system. For any feasible Y (n), from the
definition of V; ;(n) and Inequality (3) it follows that, at any time slot, the
number of packets withdrawn from any queue cannot be larger than the
size of the queue or larger than the total number of servers connected to the
queue. Therefore, a feasible withdrawal control Y (n) satisfies the (necessary)
conditions

0 <Y;(n) < min (Xi(n), ZG”(n)> , Vn,i #0, (5)
Z Yi(n) = K, Vn. (6)

It is clear that conditions (5) and (6) are not sufficient for the feasibility of
the withdrawal vector Y (n).

For future reference, we denote the set of all feasible withdrawal controls
while in state (x,g) by V(x,g).

Note from Equation (1) that, given a feasible scheduling control Q(n), the
withdrawal control Y (n) is determined uniquely and is feasible (Equations
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(4) and (1) are the same, for a feasible scheduling control). However, for
a given system state Equation (4) may have more than one solution, i.e.,
V(n) (and hence Q(n)), that satisfy Equations (2) and (3). The feasibilities
of withdrawal control and scheduling control are entwined and by definition
imply each other. Nevertheless, Deriving Q(n) from a feasible withdrawal
control is not straightforward. One way to do that is to devise an algorithm
that searches through all possible scheduling vectors to find one that satisfies
Equation (4). Building such algorithm is out of the scope of this paper.

For the rest of this paper, we will refer to q(n) as an implementation of
the given feasible control y(n).

2.2 Definition of Policies for Server Allocation

For any feasible control (Y (n)), the system described previously evolves ac-
cording to

X(n+1)=X(n)—Y(n)+ Z(n), n=12... (7)

We assume that arrivals during time slot n are added after removing
served packets. Therefore, packets that arrive during time slot n have no
effect on the controller decision at that time slot and may only be withdrawn
during t = n + 1 or later. In order to ensure that Xy(n) = 0 for all n, we
define Zy(n) = Yy(n). We define controller policies more formally next.

A server allocation policy m (or policy 7 for simplicity) is a rule that
determines feasible withdrawal vectors Y (n) for all n, as a function of the
past history and current state of the system H(n). The state history is given
by the sequence of random variables

H(1) = (X(1)), and
H(n) = (X(1),G(1),Z(1),...,G(n—1),Z(n—1), G(n)),
n=23... (8)

Let H,, be the set of all histories up to time slot n. Then a policy 7 can
be formally defined as the sequence of measurable functions

Up 2 Hy — 22T,
st.  u,(H(n)) € Y(X(n),G(n)), n=12,... 9)

where Z, is the set of non-negative integers and Zﬁ“ =Z, X...X Z,,
where the Cartesian product is taken L + 1 times.
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At each time slot, the following sequence of events happens: first, the
connectivities G(n) and the queue lengths X(n) are observed. Second, the
packet withdrawal vector Y(n) is determined according to a given policy.
Finally, the new arrivals Z(n) are added to determine the next queue length
vector X(n + 1).

We denote by II the set of all policies described by Equation (9). The
goal of this work, as it will be shown in Section 5, is to prove that policies
that belong to the class of Most Balancing (MB) policies, that we introduce
next, are optimal: they minimize (in the stochastic ordering sense) a range
of cost functions including the total number of packets in the system.

3 The Class of MB Policies

In this section, we provide a description and mathematical characterization
of the class of MB policies.

Intuitively, the MB policies “attempt to minimize the queue length dif-
ferences in the system at every time slot n”.

For a more formal definition of MB policies, we first define the following:

Given a state (x(n),g(n)) and a policy 7 that chooses the feasible control
y(n) at time slot n, define the “updated queue size” z;(n) = z;(n) — y;(n)
as the size of queue i,7 = 0,1,..., L, after applying the control y;(n) and
just before adding the arrivals during time slot n. Note that because we
let zo(n) = yo(n), we have zo(n) € Z, i.e., we allow Zo(n) to be negative.
Furthermore, we define the “imbalance index”, k,(m), as the total sum of
differences of the L + 1-dimensional vector #(n) under the policy 7 at time
slot n (where 7 takes the control y(n) € Y(x,g) at time slot n), i.e.,

L+1 L+1

kn(m) =Y Y (@ (n) — 2p;(n)) (10)

i=1 j=i+1

where [k] denotes the index of the k' longest queue after applying the
control y(n) and before adding the arrivals at time slot n. By convention,
queue ‘0’ (the “dummy queue”) will always have order L+ 1 (i.e., the queue
with the minimum length). It follows from Equation (10) that the minimum
possible imbalance index is L - 2}z (i.e., all L queues have the same length
which is equal to the shortest queue length) which is indicative of a fully



balanced system. Let ITM# denotes the set of all MB policies, then we define
the elements of this set as follows!:

Definition: A Most Balancing (MB) policy is a policy m € ITMB that, at
n = 1,2,..., chooses feasible withdrawal vectors y(n) € Y(x,g) such that
the imbalance index is minimized at every n, i.e.,

Y9 = {r: argmin k,(7), Vn} (11)

y(n)eY(x,g)

The set IIM2 in Equation (11) is well-defined and non-empty, since the
minimization is over a finite set.

The set of MB policies may have more than one element. This could
happen, for example, when at a given time slot n, a server k is connected to
two or more queues of equal size, which happen to be the longest queues con-
nected to this server. Then, serving either one of them will satisfy Equation
(11) even if these allocations result in different Y (n) (i.e., different policies).
The resulting queue length vectors (Z(n)) under any of these policies will be
permutations of each other.

Remark 1. Note that the LCQ policy in [3] is a most balancing (MB) policy
for K =1 (i.e., the one server system presented in [3]). Extension of LCQ

to K > 1 (i.e., allocating all the servers to the longest queue) may not result
mn a MB policy. ([l

A construction of an MB policy given X(t) and G(t) can be done using
a direct search over all possible server allocations. This can be a challenging
computational task for larger L and K. In Section 7, we provide a low-
complexity heuristic algorithm (LCSF/LCQ) to approximate MB policies.
Our simulation study showed that the LCSF/LCQ performance is statisti-
cally indistinguishable from that of the MB policy.

3.1 Possible Implementation of MB Policies

A determination of an MB policy given X(¢) and G(¢) can be done using a
direct search over all possible server allocations. This can be a challenging
computational task. In what follows we present a more efficient approach for
the construction of an MB policy.

!'The max-min formulation will not work for our model because of the independent
random server/queue connectivity. A queue maybe connected to a subset of the servers
and not connected to the others at any given time slot.

10



We consider a given permutation (ordering) of the K servers in the sys-
tem. For this permutation we define a “sequential LCQ server allocation”
a process of allocating the servers to queues in K steps as follows: Starting
from the first server, we assign it to its longest connected queue and we up-
date (i.e., reduce by one) its queue size. We continue with the second server
following the same principle until we exhaust all servers in K steps. There
are K! server orderings that we have to consider. We will show that at least
one “sequential LCQ server allocation” corresponding to an ordering among
the K! server permutations will result in an MB policy.

Algorithm 1 (MB Policy Implementation).

1. for t=1,2,... do {
Input: X(t), G(t).Calculate: Quj, k=1,..., K.

3. Let: k" =1L - max X, ; maximum possible K,

N

4. forall 6 €© do { ; loop |©| = K! times
5. X' «+—X(1),Y «+—0,Q«—0
6. for j=1 to K { ; allocate servers sequentially

7. Q[je = min <k ke {argmax(XﬂXl’ > 0)})

l:lGng
g /
Let: i = ng
Y/ =Y/+1
0. X! =X/(t)—1 }

11.  Compute: ¥  from Equation(10)

12, if (k0 < KM {
13. K = K!
4. y(t) Y, q(t) «— Q. 0(t) +— 0 }

15. } } ; End of Algorithm 1.
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Algorithm 1 present the pseudo-code for the approach we described pre-
viously. We introduce the following notation:

We define the set M! as the set of servers connected to queue i during
time slot t. Let M;(t) = |M?| be the number of servers that are connected
to queue ¢ during time slot ¢, that is

Mi(t) =3 Giyh) (12)

Let Qr = {i : k € M!} denote the set of queues that are connected to
server k during time slot ¢; we omit the dependence on ¢ to simplify notation.
Let © denote the set of all possible permutations of the set {1,..., K'}. We
define a server ordering at time n as a permutation #(n) € ©. There are
|©| = K! possible server orderings. We use the subscript [j]° to denote the
jt server to be allocated under the ordering rule 8(n).

The algorithm choses a servers’ order 6 € ©, then allocates the K servers
sequentially (according to the selected order) to their Longest Connected
Queue (LCQ allocation). The resulted server allocation vector q(t) depends
on the order . Therefore, different servers’ orderings may result in different
vectors q(t). The algorithm computes () for every server allocation vector
q(t). It searches through all the K! different permutations of the servers’
order. Then it selects the ordering rule out of the set of all possible orders
(i.e., the set ©) that results in the minimum r;(7), and report the outputs

0(t), q(t) and y(t).

Theorem 1. The server allocation policy obtained by applying Algorithm 1
1s an MB policy.

Proof. A policy 7 is an MB policy if it has the MB property at every time
slot n =1,2,..., i.e., it minimizes the total differences between the queues’
lengths in the system at every n. To prove Theorem 1 we have to show that
Algorithm 1 produces a policy that has the MB property at all time slots.
For the proof of Theorem 1 we first introduce the following properties
of a server in a sequential server allocation during time slot n (where the
queue lengths are updated after each server allocation) such as that used
in Algorithm 1. Given a server allocation policy? 7 and following a server

2By 7% we denote a policy that is implemented using a sequential server allocation
following the order 6 € ©

12



ordering #, we define the allocation of a server to its longest connected queue
(according to 7?) as “LCQ allocation” (equivalently we may say that the
server has the LCQ property). Otherwise, we refer to this allocation as
“NLCQ allocation” or we say that the server has NLCQ property. We should
note that the LCQ or NLCQ properties of the servers depend on the selected
server allocation order 6.

Proceeding with the proof for Theorem 1, we consider a policy 7%, that is
implemented using sequential server allocation and a server order ; during
time slot n, such that 7% has the MB property at time slot n. We assume
that at least one server has the NLCQ property (i.e., allocated to a queue
that is not its longest connected queue) according to this implementation,
since otherwise the theorem is trivially true. We will show next that we
can construct a server allocation ordering 6, under which 7% has the MB
property at time slot n and all servers have the LCQ property under 6s.
Toward this end, we need the following lemmas that are proved in Appendix
A2

Lemma 1. Given a server allocation ordering 6 € © at time slot n and
a policy ©° that has the MB property at time slot n, if sigpe (i.e., the last
allocated server under 6 at time slot n) has the NLCQ property then a policy
™ can be constructed in which: (i) STk)o (i.e., the last server to be allocated
under ) has the LCQ property at time slot n and (ii) Sk has the same
allocation as sye,Vk : 1 < k < K, such that ™ has the MB property at time
slot n.

Lemma 2. Given a policy ©° that has the MB property during time slot n,
swapping the order of two consecutively allocated servers sy, sy under w0, the
second of which (s9) has the LCQ property, will not change the LCQ property
of that server under the new ordering.

The construction of the new ordering s during time slot n (as described
earlier) is summarized in the following steps:

(1) We identify the last NLCQ allocated server (s;) under 7. Denote
the order (in ¢;) of this server by i* (i.e., s; = sjje;). Now if this is the last
server to be allocated (i.e., i* = K), then go to step (4).

(2) Using Lemma 2 we can swap server s; with the server next in order,
i.e., 8j+ 1)1, (which has the LCQ property according to step (1)) and create
a new server ordering @}, in which the swapped server has order [i*]%1 and
retain it’s LCQ property.

13



(3) Repeat step (2) until s; is the last server to be allocated under 6.

(4) Allocate server s; to its longest connected queue. According to Lemma
1 the resulting policy will have the MB property at time slot n (with the last
server has LCQ property)

(5) Repeat steps (1) to (4) until all servers have the LCQ property. This
will result in a new ordering 6, and a new policy 7% that has the MB property
at time slot n with all servers having the LCQ property under 6, at the
corresponding time slot. O

4 Balancing Interchanges

In this section, we introduce the notion of “balancing interchanges”. Intu-
itively, an interchange I(f,t) between two queues, f and ¢, describes the
action of withdrawing a packet from queue f instead of queue ¢ (see Equa-
tions (15) and (16)). Such interchanges are used to relate the imbalance
indices of various policies (see Equation 28); balancing interchanges improve
(i.e, lower) the imbalance indices and thus provide a means to describe how
a policy can be enhanced. Interchanges can be implemented via server real-
location . Since there are K servers, it is intuitive that at most K balancing
interchanges should suffice to convert any arbitrary policy to an MB policy;
this is the crux of Lemma 5, the main result of this section.

4.1 Two-queue packet interchanges

Let f € {0,1,...,L}, t € {0,1,..., L} represent the indices of two queues
that we refer to as the ‘from’ and ‘to’ queues. Define the (L + 1) x 1-
dimensional vector I(f,t), whose j-th element is given by?:

0, t=;
+1L 5=1 t

TR A (13)
0, otherwise.

Fix an initial state x(n) at time slot n; consider a policy 7 with a (feasible)
withdrawal vector y(n). Let

y'(n) =yn) +I1(f.1), [#1 (14)

3In other words, I(f,t) represents an operation of removing a packet ‘from’ queue f
and adding it ‘to’ queue t.
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be another withdrawal vector. The two vectors y(n),y*(n) differ only in
the two components t, f; under the withdrawal vector y*(n), an additional
packet is removed from queue f, while one packet less is removed from queue
t. Note that either ¢ or f can be the dummy queue. In other words,

yr(n) = yr(n)+1 (15)
yi(n) = y(n)—1 (16)
y;(n) = wyi(n), Vi#f,t. (17)

In the sequel, we will call I(f,t) an interchange between queues f and t.
We will call I(f,t) a feasible interchange if it results in a feasible withdrawal
vector y*(n). From Equations (7) and (15) — (17), it is clear that the I(f,)
interchange will result in a new vector X*(n) such that:

23(n) = @p(n)—1, fe{0,1,...L} (18)
#n) = #n)+1, te{0,1,...L} (19)
Ti(n) = z(n), Vi#f.t; ie{0,1,...L} (20)

or, in vector notation,
X'(n) =X(n) = I(f,1), f#t. (21)

4.2 Feasible Server Reallocation

Given the state (x,g), let y(n) be any feasible withdrawal vector at time
slot n. We define a “feasible server reallocation” as the reallocation of a
server k to a connected, non-empty queue i (i.e., g;x(n) = 1 and &;(n) > 0).
Any feasible server reallocation results into a feasible interchange. How-
ever, the reverse may not be true, e.g., a feasible packet interchange may
result from a sequence of feasible server reallocations among several queues
(r1,72,...,"m+1) as demonstrated in Figure 2. This will be detailed in the
following section.

4.3 Implementation of feasible two-queue packet inter-
change

The interchange I(f,t) in Equation (14) can be implemented via a series
of m, 1 < m < K feasible server reallocations. For example, suppose that
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Figure 2: A sequence of m server interchanges (reallocations) results in a
feasible packet interchange I(f,t). The dotted line denotes original server
allocation. The solid line denotes server reallocation that implements I(f, ).

a server k is connected to both queues ¢ and f (i.e., grr(n) - gex(n) = 1),
and that the server is allocated to queue ¢, under y(n) (i.e., Ly =y = 1
and Z7(n) > 1). Then reallocating server k to queue f will result in the
interchange I(f,t) in Equation (14); this is the case m = 1.

Note that the condition gsx(n) - gix(n) - Lig )=y = 1 and Zy(n) > 1
is sufficient but not necessary for I(f,t) to be feasible. This is shown in
Figure 2 where we introduce a series of m server reallocations required to
implement a feasible I(f,t) following a suitable sequence of indices for the
queues involved in that interchange. Let r € Z™*! be such a sequence, where
r1=fand r, =t Let k; : k; € {1,2,..., K} be the server reallocated to
queue 7; from queue r; ;.

For the interchange operation of Equation (14), the following are sufficient
feasibility constraints:

Zgrnki(n) “Grivaki (n) ) ]l{Qki(n):Ti+1} =m, (22)
=1

i) >1, if fe{l,2,....L}, (23)
zi(n) >0, if Vi# f,ie{l,2,...,L} (24)
Zo(n) <0, (25)

for some integer m > 1 and r € Z™*!,
Constraint (22) is sufficient to ensure that connectivity conditions allow
for the series of m server reallocations. Server k reallocation to queue j is
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feasible only if queue j is non-empty (i.e., Z;(n) > 1) and is connected to
server k (i.e., gjr(n) = 1). Furthermore, the feasibility of y*(n) implies that
constraint (22) must hold for at least one m > 1 and one r € Z™*1.

Constraint (23) is necessary since a packet will be removed from queue f
to be added to queue t, therefore, queue f must contain at least one packet
for the interchange to be feasible. The remaining queues may be empty.
The sequence of intermediate interchanges starts by removing a packet from
queue f = r; and adding a packet to queue 5. Therefore, constraints (22)
— (25) insure that queue r5 will contain at least one packet for the second
intermediate server reallocation to be feasible even when 7,,(n) = 0. Same is
true for any queue r;,i € {2,3,...m}. Therefore, these constraints are also
sufficient for feasibility of (14).

4.4 “Balancing” two-queue packet interchanges
Definition: A feasible interchange I(f,t) is “balancing” if
zr(n) > 24(n) +1 (26)
I(f,t) is “unbalancing” if
Zp(n) < d(n) (27)

Balancing interchanges result in policies that reduce the imbalance index,
as the following lemma states.

Lemma 3. Consider two policies ©* and m, related via the balancing inter-
change

y'(n) =y(n)+ I(f,t).
The imbalance indices are related via

() = Kn(m) — 2(s = 1) - ]l{f[z](”)zf[s](”)-*-?} (28)

where | (respectively s) is the order of queue f (respectively t) in &(n) when
ordered in descending order?.

4Intuitively, we use s (respectively [) to refer to the order of the “shorter” (respectively
the “longer”) queue of the two queues used in the interchange.
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The proof is a direct consequence of Lemma A.1.1 in Appendix A.1 and
the fact that, by definition of the balancing interchange, we have s > [.

In words, Equation (28) states that an interchange I(f,t), when balanc-
ing, results in a cost reduction of 2(s—1) when Z;(n) = Zy(n) > Z(n)+2 =
Z¢(n) + 2 and keeps it unchanged otherwise, i.e., when Z¢(n) = 24(n) + 1.
The latter case agrees with intuition, since the balancing interchange in this
case will result in permuting the lengths of queues f and ¢ which does not
change the total sum of differences (and hence the imbalance index) in the
resulting queue length vector.

4.5 The difference vector D

The vector D defined below (Equation (29)) is a measure of how much an
arbitrary policy 7 differs from a given MB policy during a given time slot n.
Definition: Consider a given state (x(n),g(n)) and a policy 7 € II,,_4
that chooses the feasible withdrawal vector y(n) during time slot n. Let
yMB(n) be a withdrawal vector chosen by an MB policy during the same
time slot n. We define the (L + 1) x 1-dimensional vector D € ZL*! as

D = y"5(n) - y(n), (20)

where, for notational simplicity, we omit the dependence of D on the policy
7, and the time index. Intuitively, if element D of vector D is positive,
this indicates that more packets than necessary have been removed from
queue f under policy w. Lemma 4 provides a way to systematically select
balancing (and hence improving) interchanges. Lemma 5 provides a bound
on the number of interchanges needed to convert any policy into an MB one.
The proofs of the two lemmas are given in Appendix A.3.

Lemma 4. Consider a given state (x(n),g(n)) and a feasible withdrawal
vector y(n). Any feasible interchange I(f,t) with indices f and t such that
D > +1, D, < —1 is a balancing interchange.

For any fixed n > 1, let II,, denote the set of policies that have the
MB property at time slots ¢ = 1,2,...,n. We can easily see that these
sets form a monotone sequence, with IT, C II,,_;. Then the set IT™Z in
Equation (11) can be defined as IIM? = (> I,. Furthermore, we denote
h = ¢ |Ds|/2. We will show in the Appendix (equation (A-50)) that
h is integer valued and 0 < h < K. Consider a sequence of balancing
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interchanges, I(f1,t1), I(f2,t2),... Let 7* denote the policy that results from
applying the sequence of these interchanges.

Lemma 5. For any policy m € I1,,_1, at most h balancing interchanges are
required at time slot n to ensure that the resulting policy 7 € 11,,.

Lemma 4 can be used to identify queues f and ¢ during time slot n such
that the interchange I(f,t) is balancing. Lemma 5 shows that performing
a sequence of h such interchanges, starting from y(n), will result in a with-
drawal vector that is balancing during that time slot. Both lemmas are
crucial for the proof of our main result, since they indicate how a given pol-
icy can be improved (by reducing its difference from an MB policy, i.e., |D|)
using one balancing interchange at a time.

5 Optimality of MB Policies

In this section, we present the main result of this paper, that is, the optimality
of the Most Balancing (MB) policies. We will establish the optimality of MB
policies for a wide range of performance criteria including the minimization
of the total number of packets in the system. We introduce the following
definition.

5.1 Definition of Preferred Order

Lets define the relation < on ZELLH) first; we say x < x if:
1- #; < x; for all ¢ (i.e., point wise comparison),

2- X is obtained from x by permuting two of its components; the two
vectors differ only in two components ¢ and j, such that z; = z; and
Z; = x;, or

3- X is obtained from x by performing a “balancing interchange”, as de-
fined in Equation (26).

To prove the optimality of MB policies, we will need a methodology that
enables comparison of the queue lengths under different policies. Towards
this end, we define a “preferred order” as follows:
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Definition: (Preferred Order). The transitive closure of the relation <
defines a partial order (which we call preferred order and use the symbol <,

to represent) on the set ZJ(FLH). O

The transitive closure [19], [6] of < on the set ZJ(FLH) is the smallest tran-
sitive relation on ZJ(FLH) that contains the relation <. From the engineering
point of view, X <, x if X is obtained from x by performing a sequence of
reductions, permutations of two components and/or balancing interchanges.

For example, if X = (3,4,5) and x = (4,5, 3) then X <, x since X can be
obtained from x by performing the following two consecutive two-component
permutations: first swap the second and third components of x, yielding
x! = (4,3,5) then swap the first and second components of x!, yielding
x? = (3,4,5) = x.

Suppose that X, x represent queue size vectors for our model. Case (3-)
in this case describes moving a packet from one real, large queue 7 to another
smaller one j (note that the queue with index j = 0 is not excluded since a
balancing interchange may represent the allocation of an idled server). We
say that X is more balanced than x when (3-) is satisfied. For example, if
L =2 and x = (0,5, 2) then a balancing interchange (where i = 1 and j = 2)
will result in X = (0,4, 3). In summary, the queue size vector X is preferred
over x (X <, x) if X can be obtained from x by performing a sequence of
packet removals, permutations or balancing interchanges.

5.2 The class F of cost functions

Let x,x € ZJ(FLH) be two vectors representing queue lengths. Then we denote

by F the class of real-valued functions on ZJ(FLH) that are monotone, non-
decreasing with respect to the partial order <,; that is, f € F if and only
if

X <, X = f(x) < f(x) (30)

From (30) and the definition of preferred order, it can be easily seen that
the function f(x) = x1+x2+. ..+ belongs to F. This function corresponds
to the total number of queued packets in the system®.

®Another example is the function f’(x) = max{x1,...,2r} which also belongs to the
class F.
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5.3 Definition of the subsets HZ, 0<h<K

Consider a policy m € IL,_1; let h = 3. | D;|/2 with respect to a given MB
policy 78 where the vector D is defined in Equation (29).

Definition: For any given time n and 0 < h < K, define the set HZ, 0<
h < K as the set that contains all feasible policies = € II,,_1, such that ‘at
most’ h balancing interchanges are needed to make 7 € II".

We define T1° = II,,. Note that the set II. is not empty, since MB policies
are elements of it; Note also that m € IX by default. {II"}< | forms a
monotone sequence, with H?L Cc ... C HZ Cc ... C HnK . We can easily
check that Hff = II,,_1; note that the set II of all policies can be denoted as
1 = I, = UK TI}.

In the rest of this paper, we say that a policy ¢ dominates another policy
m if

FXT(8) < FXT@E), VE=1,2,... (31)
for all cost functions f € F.

We will need the following lemma to complete the proof of our main result

presented in Theorem 2.

Lemma 6. For any policy 7 € 11" and h > 0, a policy # € 1I"! can be
constructed such that @ dominates .

The proof of Lemma 6 is given in Appendix A.5.

5.4 The main result

In the following, X*? and X™ represent the queue sizes under a MB and an
arbitrary policy 7. For two real-valued random variables A and B, A <4 B
defines the usual stochastic ordering [2].

Theorem 2. Consider a system of L queues served by K identical servers,
as shown in Figure 1 with the assumptions of Sections 1. A Most Balancing
(MB) policy dominates any arbitrary policy when applied to this system, i.e.,

FEXME() <o f(XT(1), ViE=12,... (32)

for all m € 11 and all cost functions f € F.
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Proof. From (30) and the definition of stochastic dominance, it is sufficient to
show that XMB(t) <, X7 (¢) for all ¢ and all sample paths in a suitable sample
space. The sample space is the standard one used in stochastic coupling
methods [1]; see Appendix A.5 for more details.

To prove the optimality of an MB policy, 7, we start with an arbitrary
policy @ and apply a series of modifications that result in a sequence of
policies (71, 7o, ...). The modified policies have the following properties:

(a) m dominates the given policy T,

(b) m; € I1;, i.e., policy m; has the MB property at time slots t = 1,2,...,1,
and,

(c) m; dominates 7; for j > i (and thus 7; has the MB property for a longer
period of time than ;).

Let m be any arbitrary policy; then m € I, = IIf. Using Lemma 6
we can construct a policy # € II! that dominates the original policy 7.
Repeating this operation recursively we can construct policies that belong to
-1 E -2, .. 119 = II; such that all dominates the original policy 7. This
sequence of construction steps will result in a policy m; that is MB at t =1,
i.e., m € II;, and dominates 7. Therefore, by construction m € IIX. We
repeat the construction steps above for time slot ¢ = 2, by improving on 7y,
to obtain a policy mo € Il; that dominates 71, and recursively for t = 3,4, ...
to obtain policies 73, m4,... . From the construction of m,,n = 1,2,..., we
can see that it satisfies properties (a), (b) and (c) above.

Denote the limiting policy as n — oo by 7*. One can see that 7* is
an MB policy. Furthermore, 7* dominates m;, for all i < oo, as well as the
original policy 7. O]

Remark 2. The optimality of MB policies is intuitively apparent; any such
policy will tend to reduce the probability that any server idles. This is because
an MB policy distribute the servers among the connected queues in the system
such that it keeps packets spread among all the queues in a “uniform” man-
ner. The MB policies also outperform a Longest Connected Queue (LCQ)
policy which assigns all K servers to the longest connected queue at each time
slot. O
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6 The Least Balancing Policies

The Least Balancing (LB) policies are the server allocation policies that
at every time slot (n = 1,2,...), choose a packet withdrawal vector y(n) €
Y(x, g) that “maximizes the differences” between queue lengths in the system
(i.e., maximizes k,(7) in Equation (10)). In other words, if IT“® is the set of
all LB policies and IT"¢ is the set of all work conserving policies then

"7 = {r: argmax k,(7),7 € 1" Vn} (33)
y(n)eY(x,g)

Maximizing the imbalance among the queues in the system will result in
maximizing the number of empty queues at any time slot, thus maximizing
the chance that servers are forced to idle in future time slots. This intuitively
suggests that LB policies will be outperformed by any work conserving policy.
Furthermore, a non-work conserving policy can by constructed such that it
will perform worse than LB policies, e.g., a policy that idles all servers. The
next theorem states this fact. It’s proof is analogous to that of Theorem 2
and will not be given here.

Theorem 3. Consider a system of L queues served by K identical servers,
under the assumptions described in Sections 1. A Least Balancing (LB)
policy 1s dominated by any arbitrary work conserving policy when applied to
this system, i.e.,

FXT(®) <a FXEP(®R), ViE=1,2,... (34)
for all m € IIVC and all cost functions f € F.

An LB policy has no practical significance, since it maximizes the cost
functions presented earlier. Intuitively, it should also worsen the system
stability region and hence the system throughput. However, it is interesting
to study the worst possible policy behavior and to measure its performance.
The LB and MB policies provide lower and upper limits to the performance of
any work conserving policy. The performance of any policy can be measured
by the deviation of its behavior from that of the MB and LB policies.
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7 Heuristic Implementation Algorithms For
MB and LB Policies

In this section, we present two heuristic policies that approximate the behav-
ior of the MB and LB policies respectively. We present an implementation
algorithm for each one of them.

7.1 Approximate Implementation of MB Policies

We introduce the Least Connected Server First/Longest Connected Queue
(LCSF/LCQ) policy, a low-overhead approximation of MB policy, with O(L x
K) computational complexity. We show that it results in a feasible with-
drawal vector. The policy is stationary and depends only on the current
state (X(n), G(n)) during time slot n.

The LCSF/LCQ implementation during a given time slot is described as

follows: The least connected server is identified and is allocated to its longest
connected queue. The queue length is updated (i.e., decremented). We pro-
ceed accordingly to the next least connected server until all servers are as-
signed. In algorithmic terms, the LCSF/LCQ policy can be described /implemented
as follows:
Let Q; ={i:i=1,2,...,L;g;;(t) = 1} denote the set of queues that are
connected to server j during time slot ¢; we omit the dependence on ¢ to
simplify notation. Let Q; be the it" element in the sequence (Q, ..., Qxk),
when ordered in ascending manner according to their size (set cardinality),
ie., |Qpl = |Qpy| if I > m. Ties are broken arbitrarily. Then under the
LCSF/LCQ policy, the K servers are allocated according to the following
algorithm:
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Algorithm 2 (LCSF/LCQ Implementation).

1. for t=1,2,... do {

2. Input: X(t),G(t). Calculate Qp, 1 =1,... K.
3. X'+—X(t), Y0, Q«—0

4. forjg =1 to K { ; allocate servers sequentially

Q) =min [ [:1 €4 argmax(X;| X, > 0)
k:keQy

fori=1 to L {

£ Yi=Yi+ ]l{i:Qm}

ot

&

8. X! = X,(t) - Y, } }
9.  Output: y(t) «— Y,q(t) «— Q ; report outputs
10. } ; End of Algorithm 2.

Note that in line 5 of Algorithm 2, if the set Q;) is empty, then the argmax
returns the empty set. In this case, the j'" order server will not be allocated
(i.e., will be idle during time slot ¢). Algorithm 2 produces two outputs,
when it is run at t = n: y(n) and q(n) as shown in line 9 of the algorithm.
In accordance to the definition of a policy in Equation (9), the LCSF/LCQ
policy can be formally defined as the sequence of time-independent map-
pings u(x(n),g(n)) that produce the withdrawal vector y(n) described in
line 9 above. The following lemma asserts that the mapping defines feasible
controls.

Lemma 7. The policy obtained by applying Algorithm 2 results in a feasible
withdrawal vector at every time slot n and any state (x(n),g(n)).

Proof. Let y(n) and q(n) denote the outputs of Algorithm 2; the inputs are
(x(n),g(n)). Let V(n) be the matrix with elements

Vij(n) = Liizg;(my - 913(1)- (35)
We must show that the output y(n) can be written as

y(n) =V(n)-Ig (36)



and that V(n) satisfies the feasibility constraints (2) and (3).

From Algorithm 2, line 5, it can be seen that for every server [j], only the
set of queues that are connected to server [j] are considered as candidates for
allocating this server. Therefore, Vjj;(n) = 1 is true only when g;;(n) = 1
and 1 {i=ay ()} = 1 are true, establishing Equation (35). From Equations

(36) and (3) we can easily see that

y(n) <x(n) (37)

is a sufficient condition for Inequality (3) to hold. Note that queue i will
be selected in Algorithm 2, line 5 (to be served by server [j]) only if its
current size X/ is strictly positive. This will ensure that the number of servers
allocated to any queue is no larger than the number required to empty that
queue. Therefore, y;(n) < z;(n),i = 1,..., L, proving Inequality (37).
Constraints (2) are satisfied. To prove that, fix a server [j]; the initial-
ization step 3 assigns this server to the dummy queue. Observe that even
though the inner for-loop in Algorithm 2 is executed L+1 times, the indicator
function ]l{z‘:Qm} in line 7 is nonzero for only one value of i € {0,1,..., L};

each server is allocated to one queue only, either the dummy queue or the
queue with the minimum index out of the outcome of the argmax function
in line 5 of Algorithm 2. Therefore the statement ZiL:O 1 {i )= 1 is true

for all j, proving equality (2).

=qp)(t

Although allocating the available servers to their longest connected queues
in the order specified by Algorithm 2, i.e., starting from the least connected
server first to the most connected server last, may not be “most balancing”
in some occasions, the LCSF/LCQ is expected to perform very close to any
MB policy.

Our intuition suggests that in a sequential server allocation, such as that
of Algorithm 2, one of the K! possible server orderings (with LCQ server
allocation) may actually result in an MB policy. The construction and proof
of such an algorithm is out of the scope of this paper and hence it is left for
future research work.

Lemma 8. LOSF/LCQ is not an MB policy.

To prove lemma 8 we present the following counter example. Consider a
system with L = 4 and K = 7. At time slot n the system has the following
configuration:
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The queue state at time slot n is x(n) = (5,5,5,4). Servers 1 to 6 are
connected to queues 1, 2 and 3 and server 7 is connected to queues 1 and 4
only.

Under this configuration, we can show that the LCSF/LCQ algorithm will
result in X(n) = (0,2, 3,3,4) (where the first element represents the dummy
queue that by assumption holds no real packets) and &, (LCSF/LCQ) = 18.
A policy 7 can be constructed that selects the feasible server allocation q =
(1,2,3,1,2,3,4) which yields the state X(n) = (0,3,3,3,3) and k,(7) = 12 <
kn(LCSF/LCQ). Therefore, the LCSF/LCQ does not belong to the class of
MB policies.

The LCSF/LCQ policy is of particular interest for the following reasons:
(a) It follows a particular server allocation ordering (LCSF) to their longest
connected queues (LCQ) and thus it can be implemented using simple se-
quential server allocation with low computation complexity. (b) the selected
server ordering (LCSF) and allocation (LCQ) intuitively tries to maximize
the opportunity to target and reduce the longest connected queue in the
system thus minimizing the imbalance among queues, and (c) as we will see
in Section 8, the LCSF/LCQ performance is statistically indistinguishable
from that of an MB policy (implying that the counterexamples similar to the
one in Lemma 8 proof have low probability of occurrence under LCSF/LCQ
system operation).

7.2 Approximate Implementation of LB Policies

In this section, we present the MCSF /SCQ policy as a low complexity, easy to
implement approximation of LB policies. We also provide an implementation
algorithm for MCSF/SCQ using sequential server allocation principle that
we used in the previous algorithms.

The Most Connected Server First/Shortest Connected Queue (MCSF /SCQ)
policy is the server allocation policy that allocates each one of the K servers
to its shortest connected queue (not counting the packets already scheduled
for service) starting with the most connected server first. The MCSF/SCQ
implementation algorithm is analogous to Algorithm 2 except for lines 4 and
5 which are described next:
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Algorithm 3 (MCSF/SCQ Implementation).

1. for t=1,2,... do {

4. forj=K to 1 { ; Servers in descending order

5. Q[;) = min (Z e {argmin(X,@]X,; > O)})

k:keQyy)

10. ; End of Algorithm 3.

Comments analogous to the ones valid for Algorithm 2 are also valid for
Algorithm 3.

8 Performance Evaluation and Simulation Re-
sults

We used simulation to study the performance of the system under the MB/LB
policies and to compare against the system performance under several other
policies. The metric we used in this study is EQ = F (Zle X;), the average
of the total number of packets in the system.

We focused on two groups of simulations. In the first, we evaluate the
system performance with respect to number of queues (L) and servers (K) as
well as channel connectivity (Figures 3 to 7). Random arrivals to queues are
assumed to be i.i.d. Bernoulli. In the second group of simulations (Figures
8(a) to 8(c)) we consider batch arrivals with random (uniformly distributed)
burst size.

The policies used in this simulation are: LCSF/LCQ), as an approximation
of an MB policy; MCSF/SCQ, as an approximation of an LB policy. An MB
policy was implemented using full search, for the cases specified in this sec-
tion, and its performance was indistinguishable from that of the LCSF/LCQ.
Therefore, in the simulation graphs the MB and LCSF /LCQ are represented
by the same curves. Other policies that were simulated include the random-
ized, Most Connected Server First/Longest Connected Queue (MCSF/LCQ),
and Least Connected Server First/Shortest Connected Queue (LCSF/SCQ)
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Figure 3: Average total queue occupancy, F@Q, versus load under different
policies, L = 16, K = 16 and p = 0.2.

policies. The randomized policy is the one that at each time slot allocates
each server, randomly and with equal probability, to one of its connected
queues. The MCSF/LCQ policy differs from the LCSF/LCQ policies in the
order that it allocates the servers. It uses the exact reverse order, starting the
allocation with the most connected server and ending it with the least con-
nected one. However, it resembles the LCSF/LCQ policies in that it allocates
each server to its longest connected queue. The LCSF/SCQ policy allocates
each server, starting from the one with the least number of connected queues,
to its shortest connected queue. The difference from an LCSF/LCQ policy
is obviously the allocation to the shortest connected queue. This policy will
result in greatly unbalanced queue lengths and hence a performance that is
closer to the LB policies.

Figure 3 shows the average total queue occupancy versus arrival rate un-
der the five different policies. The system in this simulation is a symmetrical
system with 16 parallel queues (L = 16), 16 identical servers (K = 16)
and ii.d. Bernoulli queue-to-server (channel) connectivity with parameter
p = P[G,;;(t) =1] =0.2.

The curves in Figure 3 follow a shape that is initially almost flat and
ends with a rapid increase. This abrupt increase happens at a point where
the system becomes unstable. In this case, the queue lengths in the system
will grow fast and the system becomes unstable. The graph shows that
LCSF/LCQ, the MB policy approximation outperforms® all other policies.

699% confidence intervals are very narrow and would affect the readability of the graphs.
Therefore they are not included.
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Figure 4: Average total queue occupancy, E(Q), versus load, L = 16, K = 8
and p = 0.2.
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Figure 5: Average total queue occupancy, EQ), versus load, L = 16, K = 4
and p = 0.2.

It minimizes, F() and hence the queuing delay. We also noticed that it
maximizes the system stability region and hence the system throughput as
well. As expected, the performance of the other three policies lies within the
performance of the MB and LB policies.

The MCSF/LCQ and LCSF/SCQ policies are variations of the MB and
LB policies respectively. The performance of MCSF/LCQ policy is close to
that of the MB policy. The difference in performance is due to the order of
server allocation. On the other hand, the LCSF/SCQ policy shows a large
performance improvement on that of the LB policy. This improvement is a
result of the reordering of server allocations.

Figure 3 also shows that the randomized policy performs reasonably well.
Moreover, its performance improves as the number of servers in the system
decreases, as the next set of experiments shows.
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8.1 The Effect of The Number of Servers

In this section, we study the effect of the number of servers on policy per-
formance. Figures 4 (K = 8) and 5 (K = 4) show EQ versus arrival rate
per queue under the five policies, in a symmetrical system with L = 16 and
p = 0.2. Comparing these two graphs to the one in Figure 3, we notice the
following;:

First, the performance advantage of the LCSF/LCQ (an hence of an
MB policy) over the other policies increases as the number of servers in
the system increases. The presence of more servers implies that the server
allocation action space is larger. Selecting the optimal (i.e., MB) allocation,
over any arbitrary policy, out of a large number of options will result in
reduced system occupancy as compared to the case when the number of
server allocation options is less.

Second, the stability region of the system becomes narrower when less
servers are used. This is true because fewer resources (servers) are available
to be allocated by the working policy in this case.

Finally, we notice that the MCSF /LCQ performs very close to the LCSF/LCQ
policy in the case of K = 4. Apparently, when K is small, the order of server
allocation does not have a big impact on the policy performance.

8.2 The Effect of Channel Connectivity

In this section we investigate the effect of channel connectivity on the perfor-
mance of the previously considered policies. Figures 6 and 7 show this effect
for two choices of L and K. We observe the following:

First, we notice that for larger channel connection probabilities (p >
0.9), the effect of the policy behavior on the system performance becomes
less significant. Therefore, the performance difference among the various
policies is getting smaller. The LCSF/LCQ policy still has a small advantage
over the rest of the policies, even though statistically difficult to distinguish.
MCSF /SCQ continues to have the worst performance. As p increases, the
probability that a server will end up connected to a group of empty queues
will be very small regardless of the policy in effect. In fact, when the servers
have full connectivity to all queues (i.e., p = 1.0) we expect that any work
conserving policy will minimize the total number of packets in a symmetrical
homogeneous system of queues since, any (work-conserving) policy will be
optimal in a system with full connectivity.
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Figure 6: Average total queue occupancy, E@Q), versus load under different
policies, L = 8 and K = 4.

Second, from all graphs we observe that there is a maximum input load
that results in a stable system operation (maximum stable throughput). An
upper bound (for stable system operation) for the arrival rate « for each
queue can be easily shown to be

a < %(1 —(1-p)*) (38)
Le., the average number of packets entering the system («L) must be less
than the rate they are being served. When p = 1.0, the stability condition
in Inequality (38) will be reduced to al. < K, which makes intuitive sense
in such a system.

Finally, we observe that the MCSF/LCQ policy performance is very close
to the one from LCSF/LCQ. However, its performance deteriorates in sys-
tems with higher number of servers and lower channel connectivity probabil-
ities. It is intuitive that with more servers available, the effect of the order of
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Figure 7: Average total queue occupancy, EQ, versus load under different
policies, L = 12 and K = 4.

server allocations on the performance will increase. Since MCSF/LCQ dif-
fers from LCSF/LCQ only by the order of server allocation, therefore, more
servers implies larger performance difference. Also, the lower the connectiv-
ity probability, the higher the probability that a server will end up with no
connectivity to any non-empty queue, and hence be forced to idle.

8.3 Batch Arrivals With Random Batch Sizes

We studied the performance of the presented policies in the case of batch ar-
rivals with uniformly distributed batch size, in the range {1,...,U}. Figure
8 shows E'Q) versus load for three cases with U = 2,5, 10, and hence average
batch sizes 1.5, 3, and 5.5. The LCSF/LCQ policy clearly dominates all
the other policies. However, the performance of the other policies, including
MCSF/SCQ (LB approximation) approaches that of the LCSF/LCQ pol-
icy as the average batch size increases. The performance of all the policies
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deteriorates when the arrivals become burstier, i.e., the batch size increases.
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Figure 8: Average total queue occupancy, F(Q), versus load, batch arrivals,
L =16 and K = 16.

9 Conclusion

In this work, we presented a model for dynamic packet scheduling in a multi-
server systems with random connectivity. This model can be used to study
packet scheduling in emerging wireless systems. We modeled such systems
via symmetric queues with random server connectivities and general arrival
distributions. We introduced the class of Most Balancing policies. These
policies distribute the service capacity between the longest connected queues
in the system in an effort to “equalize” the queue occupancies. A theoretical
proof of the optimality of MB policies using stochastic coupling arguments
was presented. Optimality was defined as minimization, in stochastic order-
ing sense, of a range of cost functions of the queue lengths. The LCSF/LCQ
policy was proposed as good, low-complexity approximation for MB policies.
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A simulation study was conducted to study the performance of five differ-
ent policies. The results verified that the MB approximation outperformed
all other policies (even when the arrivals became bursty). However, the
performance of all policies deteriorate as the mean burst size increases. Fur-
thermore, we observed (through simulation) that the performance gain of the
optimal policy over the other policies is reduced greatly in this case. Finally,
we observed that a randomized policy can perform very close to the optimal
one in several cases.
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APPENDIX:

A.1 Balancing Interchanges And The Imbalance Index

In this section, we present a lemma that quantifies the effect of perform-
ing a balancing interchange on the imbalance index k,(7). The “balancing
interchange” is defined in Section 5.3.

Lemma A.1.1. Let x be an L-dimensional ordered vector (in descending
order); suppose that x* is obtained from x by performing a balancing inter-
change of the I'" and the s components, s.t., s > l,x; > x,,VYa > | and
Ty < xp, Vb < s. Then

L L L
PO IACEEAED DD ICEED
=1 j'=i'+1 i=1 j=i+1

—2(s =1 Liaza.42) (A-1)

Proof. We generate the vector x* by performing a balancing interchange of
two components (the [** and the s'* largest components) in the vector x.
The resulted vector x* is characterized by the following:

xp=x—1, xy=xs+1, x>
v, =z, Vk#I s, s (A-2)
where I (respectively ') is the new order (i.e., the order in the new vector

x*) of the [ (respectively s') component in the original vector x.
From Equation (A-2) we can easily show that

L L
D> @p—ap) = > (wm—wy),
i'=1j5'=i'4+1 =1 j=i+1
forall i j¢{l,sy ; . ¢{l.s} (A-3)

For the remaining cases, i.e., when at least one of the indices i, j belongs
to {l,s} and/or 7, j' belongs to {I', s'}, we pair the index i’ (respectively j)
on the left hand side with the index i (respectively j) on the right hand side
of Equation (A-1). We first assume that x; > x;+ 2, then we can easily show
that I’ < &'. In this case, we have the following five, mutually exclusive, cases
to consider:
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1. When ¢/ =1',i =1,/ = s and j = s. This case occurs only once, i.e.,
when decomposing the double sum in Equation (A-1) we can find only
one term that satisfies this case. From Equation (A-2) we have

T — Ty =2 — Tg — 2 (A-4)

2. When i =10"ji=1,j' # s and j # s. There are L — [ — 1 terms that
satisfy this case. Analogous to case 1) we determined that

Ty —xp =3 — x5 —1 (A-5)

3. When ¢ #£1',i #1,j' = s and j = s. There are s — 2 terms that satisfy

this case. In this case we can show that

Ty — Ty =x; —xs— 1 (A-6)

4. When ¢/ £ 1',s',i #1,s,7/ =1' and j = [. There are [ — 1 terms that
satisfy this case. In this case we can show that

xh—apy =x; —x+ 1 (A-7)

5. When i’ = §',i =s,j' #1',s and j # [, s. There are L — s terms that
satisfy this case. In this case we have

I:/ - I;/ = Tg — .I] + ]. (A‘8>

The above cases (i.e., Equations (A-3)-(A-8)) cover all the terms in Equa-
tion (A-1) when xp; > zy + 1. Combining all these terms yields:

i'=1j'=i'+1 =1 j=i+1
2 (1)1 (L—l—1)—1-(s—2)+1-(I—1)+1-(L—s)
L L
=Y > (@wi—w) =25 =) Lgaza,ia) (A-9)
i=1 j=i+1

Furthermore, if ; = x5 + 1, then from Equation (A-2) it is clear that
x, = xs and x% = x4, i.e., the resulted vector is a permutation of the original
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one. Therefore, the sum of differences will be the same in both vectors and
Equation (A-1) will be reduced to

L L L L
SN (@ —a) > (x (A-10)
/=1 j'=i'+1 i=1 j=i+1

A.2 Proofs for Results in Section 3

Proof for Lemma 1 of Section 3. We will show that at time slot n a policy
7 (as described in the lemma statement) will always result in an imbalance
index that is equal to that resulted from applying the original policy 77, i.e

L+l L+1 L+l L+1
Do D (@) —afy) =) > (@) - dy(n)) (A-11)
=1 j'=i'+1 i=1 j=i+1

where 27 (n) (respectively #((n)) is the size of the k" longest queue after
applying the policy 7* (respectively 7?) at time slot n.

We start by constructing the policy 7* at time slot n, such that it uses
the same allocation order as 7% (i.e., #), allocates the first K — 1 servers
(call them sy, ..., S(x_1)) similar to 7%, and allocates the K™ server (sixj)
to its longest connected queue (instead of a NLCQ as in 7). Let &*(n, k)
(respectively X(n,k)) represent the updated queue length vector (or state
vector) after allocating the k' server during a sequential server allocation.
Then x*(n, K — 1) = X(n, K — 1), i.e., both policies will result in the same
queue sizes after the (K —1)% server has been allocated, since the two policies
have the same server allocation (by construction) up to this point.

At the (K — 1)* allocation step (just before the K", i.e., the last, server
allocation), we assume that the queues have been ordered such that the
longest queue lies on top, i.e., the vector X(n, K — 1) is arranged in a de-
scending order). We identify two queues of interest. The first is the K server
longest connected queue (LCQ) which has an order I (i.e., Zpy(n, K —1) >
2 (n, K—1),¥i > i € Qx). This queue will receive service in step K
(when the K'™. i.e., last, server is allocated) under policy 7*. Therefore,

Iy (n, K) = &y (n, K) - L
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The second queue of interest is the non-LCQ that server six was allo-
cated to under the policy 7/, and which has an order s (where s > [, since
(s (n, K —1) < Zpy(n, K —1)). Therefore, &j,(n, K) = &[;)(n, K)+1. The re-
maining queue lengths remain the same, i.e., e (n, K) = 2(n, K), Vi # 1, s.
In other words, X*(n) is obtained from X(n) by performing a “balancing in-
terchange”. Using lemma A.1.1 we can show that

L+1 L+1 L+1 L+1
SN Gl =) <303 (@) —dm)  (A12)
i'=1j5'=i'4+1 =1 j=i+1

Since 7% has the MB property at time slot n (by assumption), then Equa-
tion (A-12) can only be satisfied with strict equality (i.e., 7* has the MB
property at time slot n) and Lemma 1 follows.

Note: Stated differently, 7% should allocate its last server either to its longest
connected queue or to a connected queue that has one packet less than the
longest connected queue. Otherwise, it may not be an MB policy. O]

Proof for Lemma 2 of Section 3. During time slot n, denote the two swapped
servers by s; (NLCQ allocated) and s, (LCQ allocated server that is next in
order). Denote the queue that s; (respectively s9) is allocated to by ¢; (re-
spectively ¢z). Denote the new order (resulted from swapping the allocation
orders of s; and sy) by 6*(n) and denote all quantities that result from using
that order by the superscript ().

The LCQ property of (s, ¢2) will not hold only if g2 becomes shorter than
the LCQ due to the swapping. To prove lemma 2, we must show that this
is not possible. To do that we consider the following two mutually exclusive
cases:

Case 1) If MY N M7 = {¢} (i.e., the two servers are not connected to
common queues), then sy will definitely retain its LCQ property since the
swap in such case will not affect the order of queues in the set M7, (i.e., their
relative lengths). The swap does not change the queue length of ¢, i.e.,

Ty, (n,k—1)=24(n, k),and Ty (n,k)=24(n,k—1) (A-13)

where k is the step where s; is allocated under the order §(n). Step k is also
the step where s; is allocated under the order 6*(n) (see Figure A-1 for the
allocation order).

Case 2) If M7 N M}, # {¢}, then the only case that needs to be consid-
ered is when ¢; is connected to both servers, s; and sy, (Figure A-2).
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Figure A-1: Sequence of servers’ allocation during one time slot.

Figure A-2: Connectivity pattern for case 2.

In that case and under the sequential server allocation order 6(n), queue
¢1 must be shorter than queue ¢» by step k£ (i.e., the moment just before
allocating server s, to its longest connected queue). This is true because s;
is a NLCQ allocated server by assumption. Therefore,

j:th <n7 k) < jtm (nv k) (A_14>

Recall that server sy is connected to both ¢; and ¢o. If sy is allocated
before s; (as in 6*(n)) then

iy (nk—1)<ay,(n,k—1) (A-15)

Therefore, the LCQ property of (sg,q2) pair remains valid and lemma 2
follows. O

A.3 Proof of Lemma 4

Before we present the proof, we need to introduce a few intermediate lemmas.
They describe useful properties of I(f,¢) and D.

Lemma A.3.1. The feasible interchange I(f,0), f > 0 is a balancing inter-
change.

40



Proof. By definition, x¢(n) = 0. Since yo(n) > 0, therefore z¢(n) = z¢(n) —
yo(n) < 0. According to the feasibility constraint (23), the interchange I(f,0)
is feasible only when Z(n) > 1. Therefore, Z(n) > Z¢(n) + 1, and it follows
that I(f,0) is a balancing interchange. O

Lemma A.3.2. For a given policy m € 11,,_1 and a time slot n,

L L
Z D; - 1¢p,>0p = — Z Dj - 1ip, <oy (A-16)
i=0 §=0

i.e., the sum of all positive elements of D equals the sum of all negative

elements of D.

Proof. For any withdrawal vector y(n), we have

where K is the number of servers. From equation (29), we have then:

L L L
2 Di = 3w =) )
i=0 =0 i=0
- K-K=0,
and Equation (A-16) follows. O

Lemma A.3.3. Consider a given state (x(n),g(n)) during time slot n. Let
f,t €{0,1,..., L} be any two queues such that 1(t, f) is feasible. A policy
7 € 11 that results in Zp(n) < &4(n) — 2 is not an MB policy.

Proof. The interchange I(t, f) is a balancing interchange by definition. Since
Zr(n) < 24(n) — 2, then the balancing interchange I(t, f) reduces the imbal-
ance index by a factor of two according to Equation (28). Therefore, 7 does
not achieve the minimum imbalance index during time slot n, and hence, is
not an MB policy. O]

Lemma A.3.4. Consider a given state (x(n),g(n)) and a policy 7. If D =0,
then w has the MB property. Conversely, if m has the MB property, the vector
D has components that are 0,+1, or —1 only.
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Proof. Assume that D = 0; then, using Equation (29), we have:

y(n) = y"%(n)
x(n) —y(n) = x(n)—y""(n)
%(n) = %MB(n) (A-17)

From Equations (A-17) and (10), we have that k, (1) = &, (7*?) and thus 7
has the MB property during time slot n.

To prove the converse part of the lemma, assume that m has the MB
property. Therefore, x,(m) = k,(7™58). From Lemma A.1.1 this is only
possible if either: (i) %(n) = £M5(n), or (ii) &(n) is obtained by performing a
balancing interchange between the pair of the I and the s longest queues
(I < s) in *MP(n) such that Zy(n) = &(n) + 1, is satisfied; note that
there may be multiple such queue pairs. The balancing interchange in case
(i) will affect the length of two queues only (call them i and j) such that
zi(n) = &}"P(n) — 1 and &;(n) = £}P(n) 4+ 1, where ¢ = [I] and j = [s] (for
each given pair). Therefore,

yi(n) = xi(n) — &i(n) = zi(n) — (2;"(n) — 1)
= ¥ (n) + 1, (A-18)

and,

yi(n) = x;(n) — i;(n) = z;(n) — (77 (n) + 1)
=y (n) — 1, (A-19)

while withdrawals from the remaining queues will be the same, i.e.,

y(n) = y'B(n), Vb #1i,j. (A-20)
From Equations (A-18) through (A-20), we conclude that the vector D
has components that are 0,+1, or —1 only. O

Lemma A.3.5. Given the state (x(n),g(n)) and a feasible withdrawal vector
y(n) then a withdrawal vector y'(n) that results from performing any sequence
of feasible server reallocations on y(n) is feasible.

Proof. Tt suffices to show that a single feasible server reallocation will result
in a feasible withdrawal vector y*(n). Starting from the feasible withdrawal
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vector y*(n), we can use the same argument to show that the second server
reallocation will also result in a feasible withdrawal vector. The subsequent
server reallocations will also have the same result.

Let q(n) be a server allocation vector that results in the withdrawal vector
y(n). Then y(n) is related to q(n) as follows

K
vi(n) =Y Lj—gmy, i=0,1,2,... L. (A-21)
j=1

A feasible reallocation of server k from queue gx(n) to queue b will result
in a withdrawal vector y*(n), where

Yy (n) = yp(n) +1

y:]kk (n) =Yg, (n) —1
y; (n) = yi(n), Vi # qi, b

From the above, we conclude that

> wiln) = > wiln) = K (a2

The resulted server allocation vector q*(n) is given by

. b ifi==k
q; (n) = . (A-23)
¢;(n)  Otherwise

Using the definition of feasible server reallocation, we conclude that gy (1)
1 and Z(n) > 1. Therefore, feasibility constraints (2) and (3) (in the main
paper) are satisfied and the feasibility of y*(n) follows. Using the same ar-
gument for subsequent server reallocations results in the feasible withdrawal
vector y'(n). O

Lemma A.3.6. Consider the state (x(n),g(n)) and any two feasible with-
drawal vectors y(n) and y'(n). Then, starting from y(n), the vector y'(n)
can be obtained by performing a sequence of feasible server reallocations.
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Proof. To prove this lemma we construct one such sequence next.
Let q(n),q'(n) denote two implementations of y(n),y’(n) respectively.
We can write

y'(n) = y(n) + ) 1(g(n), gx(n)) (A-24)

where, by definition, server k is connected to both queues gx(n) and g (n).
Therefore, each interchange I(g,(n), qx(n)) is equivalent to a feasible server
reallocation. Note that gz(n) = ¢(n) is possible, for some k, in which case
I(q,(n), qx(n)) = 0. By construction, all the interchanges in the right hand
side of Equation (A-24) are feasible. O

We are now ready to prove Lemma 4 of Section 5.3.

Proof. We observe that f # t must be true. Otherwise, we arrive at a
contradiction, i.e., +1 < Dy < —1. This leaves three cases to consider:

Case 1: f = 0. This case is not possible by contradiction. By assumption,
Dy > +1, which means that y}'?(n) > yo(n)+1. This case states that an MB
policy idled at least one more server than 7. Therefore, 2/%(n) < —1. This
makes queue 0 the shortest queue. Allocating the idled server to queue t, i.e.,
the interchange I(t,0), is both feasible (since y(n) is feasible by assumption)
and balancing (by Lemma A.3.1). The interchange I(¢,0) will result in a
withdrawal vector y'(n) = y™B(n) + I(¢,0). Let s be the order of queue
f = 0 when ordering the vector *#(n) in a descending manner. Therefore,
s = L+1. Furthermore, in order for I(t,0) to be feasible queue ¢ must not be
empty (according to feasibility constraint (23)) which implies that 25 (n) >
1 and the order of queue ¢ is [ < s. Therefore, #}'%(n) < #}'%(n) — 2 and
the interchange I(¢,0) will reduce the imbalance index by 2(s — ) according
to Equation (28). This implies that the new policy has less imbalance index
than an MB policy. This contradicts the fact that any MB policy minimizes
the imbalance index.

Case 2: t = 0. When ¢ = 0 then the interchange I(f,t) is the process of
allocating an idled server to queue f > 0. This, according to Lemma A.3.1,
is a balancing interchange.

Case 3: t, f > 0. We will show that this case will also result in a balancing
interchange. Let y(n) be the original withdrawal vector. Let y*(n) be the
withdrawal vector resulted from the interchange I(f,t), i.e.,

y'(n) =y(n)+1(f,1)
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Using the assumption D; < —1 and Equation (16), we arrive at the
following;:

y"P(n) —y(n) < -1
y"P(n) < w(n)—1=y/(n)
y"P(n) < yin) =wy(n) —1 (A-25)

and,

ze(n) — g7 (n) Z@(n) — i (n) = ze(n) — (ye(n) — 1)

#MB(n)>af(n) = 2(n)+1, t>0 (A-26)
Similarly, using the assumption D; > +1 and Equation (15), we have
i P (n) —ys(n) > +1
yP(n) > yp(n) + 1 =yj(n)
v P (n) > yp(n) =yp(n) +1 (A-27)

and,
wy(n) — yi' P (n) <ap(n)—yj(n) = 2;(n) — (yr(n) + 1)
7P (n)<@}(n) =2y(n)—1, f>0 (A-28)
To show that I(f,t) in this case is a balancing interchange, we have to

show that Z;(n) > Z;(n) + 1. Suppose to the contrary that z;(n) < Z(n);
then, from Equations (A-26) and (A-28), we have

Tp(n) < d(n)
3(n)+1 < 3j(n) -1
h(n) < f(n) -2 (A-29)

From (A-26) and (A-28) we have,
ij\c“?(n) 23(n) < 2f(n) —2 < #MB(n) -2
23 (n) #MB(n) — 2 (A-30)

The differences Dy > +1 and D, < —1 by assumption, i.e., there is at
least one more (respectively one less) server allocated to queue f (respectively
queue t) under the MB policy. Therefore, y*(n) = yMB(n)+1I(t, f) is feasible.
Therefore, Inequality (A-30) is a contradiction according to Lemma A.3.3.
Therefore, Z¢(n) > Z;(n) + 1 and by definition the interchange I(f,?) is a
balancing interchange. O

<
<

45



A.4 Proof of Lemma 5

We present the proof of Lemma 5 of Section 5.3 in this section. Lemma
A 4.1, stated below, guarantees the existence of a feasible interchange.

Lemma A.4.1. Consider a given state (x(n),g(n)) and a policy m € 11,4
that selects a withdrawal vector y(n) during time slot n. Let F' # {¢} and
T # {¢}, where {¢} is the empty set, denote the sets of queues for which
Dy > +1 and Dy < —1, respectively. Then, there exist at least two queues
f € F andt € T such that the interchange I1(f,t) is feasible.

Proof. Let 7 € IIMB be an MB policy that selects the withdrawal vector
y*(n) during time slot n. Let D = y*(n) —y(n). Furthermore, let q*(n) and
q(n) be two implementations of y*(n) and y(n) respectively. From Lemma
A.3.6 we have:

y*(n) = y(n) + Y _ 1gi(n), ax(n)) (A-31)

The summation on the right-hand side of Equation (A-31) composed of
K terms, each represents a reallocation of a server k from queue gx(n) to
queue ¢i(n). Such server reallocation can be formulated as an interchange
1(g;(n). gu(n)).

In the following, we will selectively use ¢ out of the K terms (or equiv-
alently, K server reallocations) in Equation (A-31) to construct a feasible
interchange I(ry,r;41) = I(rq,re)+1(ro,r3)+- -+ I(rs, 741) for some i < K,
s.t. ry € Fand r;;1 € T. Note that this interchange is composed of ¢ server
reallocations each represents a term in the summation in Equation (A-31)
above. We will show that such a queue r; 1,7 < K that belongs to T" does
exist and the interchange I(rq,r;11) is feasible.

Let m € F,r; € {1,2,... L} then using Equation (A-31) we can write

K

vr () = 4 () + Y Lgrm=riy — Ligp(m=ra} (A-32)
k=1

Since r; € F' by assumption, then we have
Yr, () = ypy(n) = 1 (A-33)

From Equations (A-32) and (A-33) we conclude
K

K
Z ]I{QZ(”)=71} > Z ]l{qk(n):m} +1 (A—34>
k=1

k=1
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In words, there is at least one more server allocated to queue r; under 7*
than the servers allocated to queue r; under w. Let k; be one such server.
From (A-34) we conclude that one of the K terms in Equation (A-31) must
be I(q},(n), qr (n)) such that g (n) = ri,qr (n) = ro,k € {1,2,... K}. In
other words, a server k; and two queues 71 = ¢ (n) and ry = g, (n) must
exist such that the interchange I(ry,79) is feasible.

The feasibility of I(ry,rs) stems from the fact that server k; is allocated
to queues r; and ry under two different feasible policies, namely 7* and 7.
This is possible only if

9r1,k1 (TL) = Ora,k1 (TL) =1 (A_35>

Furthermore, using Equation (A-33) we can write

Yr (n) =y (n) +1
xrl( ) y:1 (n> S Lry (n) —Yr (n) -1
0< a5 (n) < & (n)—1 (A-36)

From Equation (A-36) we conclude
fi'm (n) > 1 (A_37>

Equations (A-35) and (A-37) are sufficient for the feasibility of the inter-
change y(n) + I(r1,r2).

Consider queue 3 above. One of the following two cases may apply:

Case (1) ro € T: The proof of the lemma in this case is completed by
letting f = r; and ¢t = 5. The resulted interchange I(f,t), f € F,t € T is
feasible by construction and the lemma follows.

Case (2) ry ¢ T: Define y'(n) as follows:

y'(n) =y(n)+ I(r1,m) (A-38)

Using Lemma A.3.5 we conclude that y'(n) is a feasible withdrawal vec-
tor. From Equations (A-38) and (13) we can write

Ury(n) = Yrp(n) — 1 (A-39)

From Equation (A-39) and since ro ¢ T we conclude
Ui (1) =y (n) > gy, (n) + 1 (A-40)
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Therefore, one of the terms of the summation in Equation (A-31) must
be a server reallocation of some server ks from queue r3 = g,(n) to queue
T2 = q;,(n), i.e., the interchange I(ry,73) is a feasible server reallocation. It
follows that y?(n) is feasible, where

y’(n) = y'(n)+I(rz,r3)
= y(n)+ I(ri,r2) + I(r2,73)
= y(n)+I(r,rs) (A-41)

If r3 € T then we complete the proof using the argument in case (1)
above. Otherwise, we repeat the argument in case (2) again.

Repeating the previous argument ¢ times, 1 < ¢ < K, we arrive at the
following relationship:

y'(n) =y(n)+ Z I(rj,rit1), (A-42)

where by construction, each one of the i terms in Equation (A-42) above
corresponds uniquely to one of the terms of the summation in Equation (A-
31). For every i we check to see whether r;;1 € T or not. If not then we
have

y:‘<¢+1 (n) Z y"'i—o—l (n) Z yi¢+1 (n) + ]' (A_43>

Repeating the argument K times (one for each term of the summation in
Equation (A-31)) we show that a queue r;; € T', where I(r;,7;41) is one of
the terms in Equation (A-31), must exist.

In order to do that, we assume to the contrary that r;,; ¢ T,Vi =
1,2,... K. The K" (last) server reallocation I(rg, rx41), ' = i, (n), Tk41 =
Qrye (n) will result in the withdrawal vector y*(n), such that,

K

y (n) =y(n) + Y 1(rj,rim) (A-44)

J=1

Since there is one-to-one correspondence between the summation terms in
Equation (A-44) and those in Equation (A-31) by construction, then we can

write
K

y¥(n) =y(n) + Y 1(g(n), a(n)) (A-45)

k=1
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However, since rx41 ¢ T then

Ve (M) = Y (n) > 75, (n) + 1 (A-46)
Using Equations (A-31), (A-45) and (A-46) we arrive at the following
contradiction:
K K
> I(gi(n),qx(n)) # > 1(gi(n), gx(n)) (A-47)
k=

1 k=1

Therefore, we conclude that there must exist a queue r;.; € T such that
server k; reallocation I(r;,ri11),7 = i (n),7iq1 = qx,(n) is feasible. Let
f=rmr and t = ri4q. It follows that the interchange I(f,t) = I(ry,7iq1) is
feasible and the lemma follows. O

Proof for Lemma 5. The policy m € I1,,_; C II and therefore y(n) is a feasi-
ble withdrawal vector. A necessary feasibility condition is the one given by
Equation (6), i.e.,

> uiln) = K (A-48)

Therefore, the total difference between the two vectors is bounded by:

L
0<> 5P (n) — yi(n)| < 2K, (A-49)
i=0
or equivalently,
L
0< > |Dif <2K (A-50)
i=0

When the sum equals 0, then m has the MB property during time slot n
according to Lemma A.3.4. When the sum equals 2K, then one can conclude
using Lemma A.3.2 that the sum of positive terms is equal to the sum of
negative terms in the summation above. To put it differently, there are at
most K (+1)’s and K (-1)’s in the difference vector D.

According to Lemma 4 and Lemma A.4.1, a pair of queues, f and ¢, where
I(f,t), Dy > +1 and D; < —1, is a feasible balancing interchange does exist.
Since we have ). |D;|/2 such pairs of queues, then applying the balancing
interchange described by Lemma 4 for ), |D;|/2 times will result in a new
difference vector D* = 0, i.e., y*(n) = yMB(n).
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Therefore, using Lemma 4 we conclude that for any arbitrary feasible pol-
icy m € 1I,,_; and a corresponding withdrawal vector y(n), at most >, |D;|/2
feasible balancing interchanges are required to make y*(n) = y™%(n) and
hence the resulting policy 7* € I1,. O]

A.5 Coupling Method and the Proof of Lemma 6
A.5.1 The Coupling Method

If we want to compare probability measures on a measurable space, it is
often possible to construct random elements, with these measures as their
distributions, on a common probability space, such that the comparison can
be carried out in terms of these random elements rather than the probability
measures. The term stochastic coupling (or coupling) is often used to refer to
any such construction. In the notation of [1], a formal definition of coupling
of two probability measures on the measurable space (F, ) (the state space,
e.g., E =R, R% Z,, etc.) is given below; see [1] for more details.

A random element in (F, £) is a quadruple (2, %, P, X), where (2, #,P)
is the sample space and X is the class of measurable mappings from {2 to F
(X is an E-valued random variable, s.t. X~}(B) € .Z for all B € £).

Definition: A coupling of the two random elements (Q, #,P,X) and (V, #', P, X’)
in (E,E) is a random element (Q,.%,P,(X,X")) in (E?,E%) such that

XZX and X' ZX/, (A-51)
where Z denotes ‘equal in distribution’.

Remark 3. The above definition makes no assumption about the distribution
of the collection of random wvariables X; for example, X may be a sequence
of non-i.i.d. random variables, as is the case with the arrival process in our
model. 0

We apply the coupling method to our proof as follows: Let w and =«
be a given sample path of the system state process and server allocation
policy. The values of the sequences {X(n)} and {Y(n)} can be completely
determined by w and m. We denote the ensemble of all random variables
as system S. A new sample path, @ and a new policy 7 are constructed
as we specify in detail in the proof. We employ the tilde notation in all
random variables that belong to the new system; we denote the ensemble of
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all random variables (in the new construction) as system S. Then, in the
coupling definition, @ = (w,®) and the “coupled” processes of interest in
Equation (A-51) will be the queue sizes X = {X(n)} and X' = {X(n)}.

We define w as the sequence of sample values of the random variables
(X(1),G(1),Z(1),G(2),Z(2),...), i.e, w = (x(1),g(1),2z(1),g(2),2z(2),...).
The sample path @ = (x(1),g(1),z(1),8(2),z(2),...) is constructed such
that (a) x(1) = x(1), (b) g(n) the same as g(n) except for two elements that
are exchanged, (c) z(n) the same as z(n) except for two elements that are
exchanged. Which elements are exchanged is detailed in the proof. In the
symmetrical system we are studying, {G(n), Z(n)} has the same distribution
as {G(n),Z(n)}, since the distributions of G(n) and Z(n) will not change
when reordering their elements. The mappings from G(n) to G(n) and from
Z(n) to Z(n) are one-to-one.

The new policy 7 is constructed (by showing how 7 chooses the with-
drawal vector y(-)) as detailed in the proof. Then using Equation (7), the
new states x(-),X(-) are determined under m and 7. The goal is to prove that
the relation

x(t) <, x(t) (A-52)

is satisfied at all times ¢. Towards this end, the preferred order (introduced
in Section 5.1) can be described by the following property:

Property D: x is preferred over x (X <, x) if and only if one of the following
statements holds:

(D1) x < x: the two vectors are component-wise ordered;

(D2) x is a two-component permutation of x as described in (2-) in Section
5.1.

(D3) X is obtained from x by performing a “balancing interchange” as de-
scribed in (3-) in Section 5.1.

A.5.2 Proof of Lemma 6 of Section 5
Proof. Fix an arbitrary policy 7 € II" and a sample path w = (x(1),g(1),z(1),...),
where x(.), g(.) and z(.) are sample values of the random variables X(.), G(.)

and Z(.). Let , 7* € TP be an MB policy that works on the same system.
The policy 7* chooses a withdrawal vector y*(t), Vt.
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The proof has two parts; Part 1 provides constructions for @ and 7 (as
defined by Lemma 6 statement) for times up to ¢ = 7. Part 2 does the same
for t > 7.

Part 1: For the construction of &, we let the arrivals and channel states
be the same in both systems at all time slots before 7, i.e., Z(t) = z(¢) and
g(t) = g(t) for all t < 7. We construct 7 such that it chooses the same
withdrawal vector as 7, i.e., we set y(t) = y(¢) for all ¢ < 7. In this case,
at t = 7, the resulting queue sizes are equal, i.e., X(7) = x(7). Therefore at
t = 7, property (D1) (of the preferred order) holds true.

At time slot 7, let @ have the same channel connectivities and arrivals as
w, i.e., let g(7) = g(7) and z(7) = z(7). Furthermore, let D = y*(7) — y(7).
Recall that h = 3>% | D;|/2. Then one of the following two cases may apply:

1- During time slot ¢ = 7, the original policy 7 differs from 7*, the MB
policy, by strictly less than h balancing interchanges. Then 7w € 11"~1 as well,
so we set y(7) = y(7). In this case, the resulting queue sizes X(7+1),x(7+1)
will be equal, property (D1) holds true and (A-52) is satisfied at t = 7 + 1.

2- During time slot t = 7, 7 differs from the MB policy 7* by exactly h
balancing interchanges. Since 7 € I1" and h > 0, we can identify two queues
[ and s such that: (a) D; > 1, (b) Dy < —1, and (c) I(l, s) is feasible. Lemma
5 states that such queues must exist when h > 0. The construction of 7 is
completed in this case by performing the interchange (I, s), i.e.,

y(r) =y(r) + (), (A-53)

or equivalently, _
x(1) =%(1) — I(l, s) (A-54)
According to Lemma 4, this interchange is balancing. Therefore, the

queue lengths at the beginning of time slot (7 4+ 1) under the two policies
satisfy property (D3), and (A-52) is satisfied at ¢ = 7 + 1.

Part 2: The above concluded the construction of @, 7 during ¢ = 7. The
next step is to construct w, 7 for times n > 7, such that the partial order
(A-52) is preserved. To achieve this, we will use induction. We assume that
7 and @ are defined up to time n — 1 and such that X(n) <, x(n). We will
prove that at time slot n, 7 can be constructed such that X(n+1) <, x(n+1),
i.e., (A-52) holds at t = n + 1. In order for (A-52) to hold, we have to show
that either D1, D2 or D3 holds at time slot n + 1.

The following three cases, that correspond to properties (D1), (D2) and
(D3) introduced earlier will be considered next.
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Case (1) x(n) < x(n). The construction of @ is straightforward in this
case. We set z(n) = z(n) and g(n) = g(n). We construct 7 such that
y(n) = y(n). In this case, its obvious that X(n + 1) < x(n + 1) and (A-52)
holds at t =n + 1.

Case (2) X(n) is a permutation of x(n), such that X(n) can be obtained
from x(n) by permuting components i and j (as described in property D2
of the preferred order). For the construction of @, we set g;.(n) = g;.(n)
and g;.(n) = gic(n), for all c =1,2,..., K; Z;(n) = zj(n) and Z;(n) = z;(n);
the connectivities and arrivals for each one of the remaining queues are the
same as in w. We construct 7 such that g;(n) = y;(n), y;(n) = yi(n) and
Um(n) = ym(n) for all m # i,j. As a result, X(n + 1) and x(n + 1) satisfy
property (D2) again and (A-52) is satisfied at ¢t = 7 4 1.

Case (3) X(n) is obtained from x(n) by performing a balancing inter-
change for queues ¢ and j as defined in property (D3). In this case x;(n) >
z;(n) 4+ 1, by the definition in (D3)”. There are two cases to consider:

(3.a) zj(n) = x;(n) + 1. Therefore, Z;(n) = z;(n) and z,;(n) = x;(n), i.e.,
the vectors x(n) and xX(n) have components ¢ and j permuted and all other
components are the same. This case corresponds to case (2) above.

(3.b) xi(n) > z;(n) + 1. Depending on whether 7 empties queues 4, j or
not, the construction of @, 7 will follow one of the following two arguments:

(i) yi(n) < xi(n), i.e., m does not empty queue i. We construct @ as in
case (1). Furthermore, let §,,(n) = yn(n),Ym # j. If © does not empty
queue j, then let g;(n) = y;(n) and property (D3) will be preserved and
(A-52) is satisfied at t = n+ 1. If, on the other hand, policy = empties queue
j, then if under policy 7 all the servers connected to queue j are allocated,
then let y;(n) = y;(n) (i.e., 7 is identical to m at ¢ = n). Therefore, (D3)
holds and (A-52) satisfied at t =n + 1.

In the event that m empties queue j without exhausting all the servers
connected to queue 7, then 7 will be constructed such that one of these idling
servers is allocated to queue j, i.e., §;(n) = y;(n) +1, so that 7 preserves the
work conservation property at t = n. Since Z;(n) = x;(n) + 1 by property
(D3) and Zj(n) = z;(n) by assumption, then we have

zjn+1)=z;(n+1) = zi(n)

Since #;(n) = x;(n) — 1 by property (D3) and g;(n) = y;(n) by construction,

"By definition, we have x;(n) > z;(n), #;(n) = z;(n) — 1 and Z;(n) = z;(n) + 1.
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we have

The rest of the queues will have the same lengths in both systems at ¢t = n+1.
Therefore, (D1) is satisfied at ¢ = n 4+ 1 and (A-52) follows.

(ii) y;(n) = x;(n), i.e., ™ empties queue i. In this case, there are at least
x;(n) servers connected to queue i at t = n,

> " gieln) = wi(n).

For the construction of @, we set z(n) = z(n), Jm.c(n) = gm(n) for all
m # 14,7, and for all c. For queues i and j we do the following;:

Let M7 be the set of servers connected to queue ¢ at time slot n. Then let
server r € M be such that ¢.(n) =i (i.e., server r is allocated to queue i by
policy 7 at t = n). Now, we switch the connectivity of server r to queue ¢ and
that of server r to queue j, i.e., we set g;,(n) = g;,(n) and g, ,(n) = g;.(n).

We construct 7 such that ¢.(n) = j and ¢.(n) = q.(n),Ve # r. This
means that 7 differs from 7, at ¢ = n, by one server allocation (server r)
that is allocated to queue j (under 7) rather than queue ¢ (under 7). From
equation (1), we can easily calculate that resulting queue lengths will be:

zin+1) = zn+1) = zn),
ITmn+1) = xu(n+1), Vm # 1.

In this case, it is obvious that property (D1) is satisfied and therefore
(A-52) is again satisfied at t = n + 1.

Cases (i) and (ii) are the only possible ones, since 7 cannot allocate more
servers to queue 4 than its length. Note that policy 7 belongs to 11"~ by
construction in Part 1; its dominance over 7 follows easily from relation

(30). 0
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