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Objective

To devise a methodology to find the optimal scheduling regime in HSDPA
networks, that controls the allocation of the time-code resources.

This resulting optimal policy should have the following properties:
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Objective

To devise a methodology to find the optimal scheduling regime in HSDPA
networks, that controls the allocation of the time-code resources.

This resulting optimal policy should have the following properties:

@ Fair; Divide the resources fairly between all the active users.
@ Optimal Transmission: Maximizes the overall cell throughput.

@ Optimal Resource Utilization: Provide channel aware (diversity gain)
and high speed resource allocation.
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Methodology

This work presents a different approach for scheduling in HSDPA. A
declarative approach is used,
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Methodology

This work presents a different approach for scheduling in HSDPA. A
declarative approach is used,

@ Develop an analytic model for the HSDPA downlink scheduler.

o A MDP based discrete stochastic dynamic programming model is used
to model the system.

e This Model is a simplifying abstraction of the real scheduler which
estimates system behavior under different conditions and describes the
role of various system components in these behaviors.

e It must be solvable.
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Methodology

This work presents a different approach for scheduling in HSDPA. A
declarative approach is used,

@ Develop an analytic model for the HSDPA downlink scheduler.

o A MDP based discrete stochastic dynamic programming model is used
to model the system.

e This Model is a simplifying abstraction of the real scheduler which
estimates system behavior under different conditions and describes the
role of various system components in these behaviors.

e It must be solvable.

o Define an objective function.

@ Value iteration is then used to solve for optimal policy.
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Problem Definition and Conceptualization
Problem Definition and Conceptualization

The HSDPA downlink channel uses a mix of TDMA and CDMA:
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Problem Definition and Conceptualization
Problem Definition and Conceptualization

The HSDPA downlink channel uses a mix of TDMA and CDMA:

@ Time is slotted into fixed length 2 ms TTls.

@ During each TTI, there are 15 available codes that may be allocated
to one or more users.
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Problem Definition and Conceptualization

Problem Definition and Model Description

HSDPA Scheduler Model (Downlink)
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Problem Definition and Model Description Problem Definition and Conceptualization

FSMC Model for HSDPA Downlink Channel
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Problem Definition and Model Description Model Description and Basic Assumptions
The Model

@ MDP based Model.

@ HSDPA downlink scheduler is modelled by the 5-tuple

(Ta 57 Aa Pss’(a)a R(Sa a)),

where,
o T is the set of decision epochs,
e S and A are the state and action spaces,
o Ps(a)=Pr(s(t + 1)=s|s(t)=s,a(s)=a) is the state transition

probability, and

o R(s,a) is the immediate reward when at state s and taking action a.
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Hlogt) Deseipien an) ERst Asmpeg:
Basic Assumptions

L active users in the cell.
Finite buffer with size B per user for each of the L users.
Error free transmission.

SDUs are segmented by RLC into a fixed number of PDUs (u;) and
delivered to Node-B at the beginning of the next TTI.

e 6 o ¢

Independent Bernoulli arrivals with parameter g;.

Scheduler can assign ¢ codes chunks at a time, where
ce{1,3,5,15} .
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Model Description and Basic Assumptions
Basic Assumptions—FSMC State Space

@ The channel state of user i during slot t is denoted by ~;(t).
@ Channel state space is the set M ={0,1,...,M — 1}.

@ user i channel can handle up to v;(t) PDUs per code.
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Problem Definition and Model Description State and Action Sets

State and Action Sets

@ The system state s(t) € S is a vector and is given by

s(t) = (xa(t), x(t), ., xe(t),71(t),72(t), - (8)) (1)
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Problem Definition and Model Description State and Action Sets

State and Action Sets

@ The system state s(t) € S is a vector and is given by
s(t) = (a(t), xe(t), ..., xe(t),71(t), 72(2), .., (t)) (1)

o S ={Xx x M} is finite, due to the assumption of finite buffers size
and channel states.

@ The action a(s) € A is taken when in state s

a(s) = (a1(s). ax(s). ... au (s)) (2)
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Problem Definition and Model Description State and Action Sets

State and Action Sets

@ The system state s(t) € S is a vector and is given by
s(t) = (xa(t), x2(t), ..., xc(t), 71(8), 2(t), - we()) (1)

o S ={Xx x M} is finite, due to the assumption of finite buffers size
and channel states.

@ The action a(s) € A is taken when in state s

a(s) = (ai(s), az(s), ..., ar(s)) (2)

e subject to,
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Problem Definition and Model Description State and Action Sets

State and Action Sets

@ The system state s(t) € S is a vector and is given by
s(t) = (xa(t), x2(t), ..., xc(t), 71(8), 2(t), - we()) (1)

o S ={Xx x M} is finite, due to the assumption of finite buffers size
and channel states.

@ The action a(s) € A is taken when in state s

a(s) = (ai(s), az(s), ..., ar(s)) (2)

e subject to,

Za;(s) < 17:5 and  ai(s) < {Xi(t) W

— 7i(t)c

e a;(t)c, number of codes allocated to user / at time epoch t.
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Problem Definition and Model Description Reward Function

Reward Function

@ The reward must achieve the objective function

@ R(s,a) have two components corresponding to the two objectives

R(s a)—zamc—az = %) L—p) (3)

where we defined the fairness factor (o) to reflect the significance of
fairness in the optimal policy.

@ The positive term of the reward maximizes the cell throughput.

@ The second term guarantees some level of fairness and reduces
dropping probability.
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Stttz Testien Prettelaifiy
State Transition Probability

@ Py (a) denotes the probability that choosing an action a at time t
when in state s will lead to state s’ at time t + 1.

Pul@) = Pr(s(t + 1)=s'ls(t)=s,a(t)=a)

/ / / /
- Pr(Xla' < XV '77L‘X17' <o XLyYLse - YL591 50 - ~7aL)
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Sizize UEnditan (A ety
State Transition Probability
@ Pgy(a) denotes the probability that choosing an action a at time ¢t
when in state s will lead to state s’ at time t + 1.
Pss'@) = Pr(s(t + 1)=s'|s(t)=s,a(t)=a)
= Pr(X{, - oy X[ Y1 - V1| X0se + o XUy Y1se - 5VLy@15- - ,3L)

@ The evolution of the queue size (x;) is given by

x; = min([x — vilt + 2, B)

1

= min ([x,- —aiyic]t + 2, B) (4)
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Stttz Testien Prettelaifiy
State Transition Probability

@ Pgy(a) denotes the probability that choosing an action a at time ¢t
when in state s will lead to state s’ at time t + 1.

Pss'@) = Pr(s(t + 1)=s'|s(t)=s,a(t)=a)
= Pr(X{, - oy X[ Y1 - V1| X0se + o XUy Y1se - 5VLy@15- - ,3L)
@ The evolution of the queue size (x;) is given by
x/ = min ([x,- — y,']+ + 2z, B)
= min ([x; — aiyic]” + 2 ,B) (4)
@ Using the independence of the channel state and queue sizes

Py (a) = ﬁ (PX,X;(’W, aj) Pm{) (5)

i=1

where P,/ is the Markov transition probability of the FSMC.

Vi
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Stttz Testien Prettelaifiy
State Transition Probability cont.

qi

PX/X;(7i7 ai) =
qi

where

w1l =

w2

(3 TR B AT B E I Y O ST ISR MO RV D v link Scheduler Optimization in High-Spe

1—gq;

=B & a;jy; =0,
|fx’—x, B & 0 < ajyic < uj,
ifxX'=B&x;<B & W1>B,
if xl <B & x! = W1,

if xl <B & x! = W2,

otherwise.

[X,' — a,-’y,-c]+ + uj

[xi — aiyic]t
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Problem Definition and Model Description Value Function

Value Function

@ Infinite-horizon MDP.
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Problem Definition and Model Description Value Function

Value Function

@ Infinite-horizon MDP.

o Total expected discounted reward optimality criterion with discount
factor A is used, where 0 < A < 1.

@ The objective is to find the policy m among all policies, that maximize
the value function V™ (s).
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Problem Definition and Model Description Value Function

Value Function

@ Infinite-horizon MDP.

o Total expected discounted reward optimality criterion with discount
factor A is used, where 0 < A < 1.

@ The objective is to find the policy m among all policies, that maximize
the value function V™ (s).

@ The optimal policy is characterized by

V(s) = maxlR(s, ) + A Y Puw(a)V*(5)] (7)
s'eS

where, V*(s) = sup, V™ (s), attained when applying the optimal
policy 7*.
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Problem Definition and Model Description Value Function

Value Function

@ Infinite-horizon MDP.

o Total expected discounted reward optimality criterion with discount
factor A is used, where 0 < A < 1.

@ The objective is to find the policy m among all policies, that maximize
the value function V™ (s).

@ The optimal policy is characterized by
V*(s) = max[R(s,a) + A ) _ Pssr(a)V*(s')] (7)
acA
s'eS
where, V*(s) = sup, V™ (s), attained when applying the optimal
policy 7*.

@ The model was solved numerically using Value lteration.
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The Optimal Policy Structure

o 1 s 0 2 2 x,

(a) Symmetrical case

(¢) P(zz = 5) = 0.8 and
P(22 = 5) =0.5.
The Optimal Policy for Two Symmetrical Users, Different Channel Quality, Different Arrival Probability
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Cese Sty Teo Users it 28z FENE
Heuristic Policy

We studied the optimal policy structure by running a wide range of
scenarios, we noticed the following trends

@ The policy is a switch-over.
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Cese Sty Teo Users it 28z FENE
Heuristic Policy

We studied the optimal policy structure by running a wide range of
scenarios, we noticed the following trends

@ The policy is a switch-over.

@ The weight (w;) is a function of the difference of the two channel
qualities and that of the arrival probabilities:

wi = f([-AP]", [-AP]T) (8)
wy = f([AP]T, [AP,]T) (9)

where

AP,=P(y1=1) — P(v2=1) and AP,=P(z1=u) — P(zz=u).
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Heuristic Policy

We studied the optimal policy structure by running a wide range of
scenarios, we noticed the following trends

@ The policy is a switch-over.

@ The weight (w;) is a function of the difference of the two channel
qualities and that of the arrival probabilities:

wi = f([-AP]",[-AP]) (8)
wo = F([AP]T,[AP]T) (9)
where
AP,=P(11=1) = P(y2=1) and AP, =P(z1=u) — P(z2=u).

@ The intermediate regions has almost a constant width that equals 2c.
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Heuristic Policy

We studied the optimal policy structure by running a wide range of
scenarios, we noticed the following trends

@ The policy is a switch-over.

@ The weight (w;) is a function of the difference of the two channel
qualities and that of the arrival probabilities:

wi = f([-AP]", [-AP]T) (8)
we = f([AP]T,[AP]T) (9)
where
AP,=P(y1=1) — P(y2=1) and AP, =P(z1=u) — P(zo=u).
@ The intermediate regions has almost a constant width that equals 2c.

@ a; (respectively ap) is increasing in x; (respectively xy).
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Cese Sty Teo Users it 28z FENE
Heuristic Policy

We studied the optimal policy structure by running a wide range of
scenarios, we noticed the following trends

@ The policy is a switch-over.

@ The weight (w;) is a function of the difference of the two channel
qualities and that of the arrival probabilities:

wi = f([-AP]", [-AP]T) (8)
wo = F([AP]T,[AP]T) (9)

where

AP,=P(y1=1) — P(y2=1) and AP, =P(z1=u) — P(zo=u).
@ The intermediate regions has almost a constant width that equals 2c.
@ a; (respectively ap) is increasing in x; (respectively xy).

e f() is increasing in |AP,| and decreasing in |AP,]|.
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Heuristic (dotted line) vs. optimal policy; ¢ = 15

(d) Symmetrical case (e) P,,=0.8, P,,=0.5.

10

(f) P(zz = 5) = 0.8 and
P(>.—R\—NHR
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Study and Results Heuristic Policy Structure

i

Heuristic (dotted line) vs. optimal policy; ¢ =5

0 15 2 2 x

01

(i) P(n = 5) = 0.8 and
P(22:5):0.5.
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Case Study and Results Performance Evaluation

Performance Evaluation: The Effect of Policy Granularity

.
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Where p = ). P, u;/r™ is the offered load and r™ is the measured system
capacity under m. P(y1=1)=0.8 and P(7y2=1)=0.5.
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Case Study and Results Performance Evaluation

Heuristic Policy Evaluation
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(1) System Throughput for different p; (m) Queueing Delay Performance;
P(y1=1)=0.8 and P(y2=1)=0.5. P(y2 = 1) = 0.5, gt = 0.8, g = 0.5
and u = 10.
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Conclusion and Future Work Conclusion

Conclusion

@ The optimal policy can be described as share the codes in proportion
to the weighted queue length of the connected users.
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to the weighted queue length of the connected users.

@ The suggested heuristic policy has a reduced constant time
complexity (O(1)) as compared to the exponential time complexity
needed in the determination of the optimal policy.
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to the weighted queue length of the connected users.

@ The suggested heuristic policy has a reduced constant time
complexity (O(1)) as compared to the exponential time complexity
needed in the determination of the optimal policy.
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to the optimal policy.
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Conclusion and Future Work Conclusion

Conclusion

@ The optimal policy can be described as share the codes in proportion
to the weighted queue length of the connected users.

@ The suggested heuristic policy has a reduced constant time
complexity (O(1)) as compared to the exponential time complexity
needed in the determination of the optimal policy.

@ The performance of the resulted heuristic policy matches very closely
to the optimal policy.

@ The results also proved that RR is undesirable in HSDPA system due
to the poor performance and lack of fairness.
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Conclusion and Future Work Contributions

Contributions

© A novel approach and a methodology for scheduling in HSDPA
system were developed.

@ The HSDPA downlink scheduler was modeled by MDP, then Dynamic
Programming is used to find the optimal code allocation policy in
each TTI (refer to [1] and [2]).

© A heuristic approach was developed and used to find the near-optimal
heuristic policy for the 2-user case. This work was presented in [3].

@ An optimal policy for code allocation in HSDPA system using FSMC
was investigated and the optimal policy structure and the effect of
the increased number of channel model states on the optimal policy
structure and model accuracy was studied and presented in [4].

© An extension of the heuristic approach for any finite number of users
was derived analytically, using the information about the optimal
policy structure and Order Theory, and presented in [5].

@ An analytic model was developed, using stochastic modeling, to find
the average service rate and server share allocation policy for a group
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Pt Wit
Future Work

@ Prove analytically some of the optimal policy and value function
characteristics, such as monotonicity, multi-modularity, and the
switch-over behavior that we noticed before.
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Future Work

@ Prove analytically some of the optimal policy and value function
characteristics, such as monotonicity, multi-modularity, and the
switch-over behavior that we noticed before.

@ Relax the assumption of error free transmission and extend the model
to take into account retransmissions.
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Pt Wit
Future Work

@ Prove analytically some of the optimal policy and value function
characteristics, such as monotonicity, multi-modularity, and the
switch-over behavior that we noticed before.

@ Relax the assumption of error free transmission and extend the model
to take into account retransmissions.

@ Study the effect of using different arrival process statistics using
simulation obviously.
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Conclusion and Future Work Future Work
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Acronyms

HSDPA-High Speed Downlink Packet Access.
3GPP-Third Generation Partnership Project
MDP—-Markov Decision Process
TDMA-Time Division Multiple Access
CDMA-Code Division Multiple Access
TTI-Transmission Time Interval (2 ms)
FSMC—Finite State Markov Channel
SDU-Service Data Unit

RLC-Radio Link Control Protocol located at Radio Network
Controller (RNC)

PDU-Protocol data unit
o LQF-Longest Queue First
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