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Abstract—This paper presents a novel methodology for finding
the network connectivity in wireless mesh networks while taking
into account dependencies existing between links of geometrically
co-located nodes, as well as the effect of a finite network
boundary. We show that the commonly used assumption of
link independence almost always underestimate the network
connectivity. We also show that the assumption of infinite network
boundary is invalid as it overestimates the network connectivity
by a non negligible amount. We use our methodology to derive
accurate upper bounds for network connectivity in the optimal
triangular lattice topology. A comparison study shows that the
error due to either assumptions depends on the link connectivity
as well as the network size, and can be very significant. The
devised methodology can also be applied to any lattice topology
in order to quantify the error and define the range of link
conductivities within which the assumptions can be used.

I. I NTRODUCTION

Network Connectivity is a vital metric that is frequently
utilized in the design and network planning process, as wellas
in describing and comparing networks. Network connectivity
often refers to the probability that nodes in a network can
communicate with each other at any given time.

In wireless networks, connectivity is often expressed in
terms of individual links’ connectivities. To the best of our
knowledge, all previous work embeds either or both of the
following assumptions:

1) Inter-node links’ connectivities are independent of one
another.

2) Border nodes are assumed to have the same connectivity
as the interior nodes in a network.

The first assumption implies that the probability a node is
connected is independent of that of the other nodes in the
same network. The second assumption is based on the invalid
perception that if the network is large enough to be assumed
infinite, then the border nodes will have the same connectivity
as the rest of the interior nodes in the network.

Although these simplifications are adopted by many re-
searchers such as [1]–[5], the impacts of such assumptions
were never examined.

In this work, we present a methodology to derive a closed
form upper bound for the node connectivity in wireless net-
works taking into account dependencies existing between links
of geometrically co-located nodes, as well as the effect of a
finite network boundary. Although we derive the model and
analyze the results for the optimal triangular lattice topology,
the qualitative conclusions will generally hold for similar
topologies.

Next in Section II, we define the problem. Section III
presents the derivation of the model. We present our resultsin
Section IV. The conclusions are given in Section V.

II. PROBLEM DEFINITION

A network formed by a set of nodes located in an areaA is
said to be fully connected if and only if there is a path between
each pair of nodes inA. For a path to exist between a pair
of wireless nodes, all links along the path must be connected.
Hence, in wireless networks, connectivity is usually expressed
in terms of the probability of individual link connectivity.

In radio links, the probability that a link exist between two
nodes depend among other things on the geometric distance
between the two nodes. Hence, link connectivity in one direc-
tion implicitly depends on that of the opposite direction. The
amount of correlation, or the extent of dependency between the
two unidirectional links is affected by several factors such as
multi-path fading, shadowing, and the difference in the nodes’
transmitting powers.

In this work, we present a methodology for finding a closed
form expression for the connectivity in wireless networks
while taking into account inter-node links dependencies.

A wireless network is composed of nodes that are allocated
in an areaA according to the topologyT. Define the following:

• L to be the set of wireless nodes inA. L = {1, 2, . . . , L}.
• Di ⊂ L to be the set of nodes that are neighbors of

node i ∈ L, that is, nodes that are one-hop away from
node i.

• lij to be the event that a link exists betweennode i and
node j, wherei ∈ L andj ∈ Di.

• rij to be the probability that a link exists betweennode i

andnode j, that isP (lij), ∀i ∈ L and∀j ∈ Di, where
P (e) is the probability of evente happening.

A. Basic Assumptions

Some realistic assumptions were made, these are:

• Similar to most researchers, we consider interference as
a capacity-affecting factor that reduces the capacity of a
link instead of lowering the probability of connectivity.

• Symmetric bidirectional links that are fully dependant.
That is,P (lij) = P (lji) ∀i ∈ L and∀j ∈ Di,

• Nodes are equidistantly located, and thatA has a homoge-
nous shadowing and fading conditions. Hence,P (lij) =
rij = r, ∀i ∈ L and∀j ∈ Di.

• P (lij) = 0 ∀j 6∈ Di, i.e. node i can only be connected
through one or more of its neighbors (i.e. nodes inDi).



B. Upper bound for connectivity

Finding the exact connectivity of a wireless network is
very costly in terms of computational complexity. Instead,we
find the probability that none of the nodes in the network is
isolated,P (no node isolated). However, a situation may arise
where one or more islands of nodes are formed causing the
network to be partitioned. Hence, the probability that noneof
the nodes in a network is isolated is an upper bound for the
connectivity of a network, that is:

P (network connected) ≤ P (no node isolated)

= P (n1, n2, . . . , nL) (1)

whereni is a random variable that denotes the connectivity
of node i, that is:

ni =







1 if node i is not isolated with probabilityP (ni)

0 if node i is isolated with probability1 − P (ni)
(2)

where

P (ni) ≡ P (at least one link (lij : ∀j ∈ Di) is connected)
(3)

According to Erdös and Rényi [6], this bound for connec-
tivity is tight for nodes whose topology are purely random.
Hence, this upper bound is expected to be even tighter for
a network of fixed topology, and where nodes are placed
equidistantly apart.

C. Link and Node Independence

We compare our computed upper bound for connectivity,
P (no node isolated), that takes into account link depen-
dance and a finite network boundary, with the upper bound,
P (no node isolated)∗ commonly utilized in the literature,
and which assumes link independence. The probability that
none of the nodes in a given network are isolated assuming
independent links is:

P (no node isolated)∗ =
∏

∀i∈L

P (ni)

=
∏

∀i∈L

(1 − P (ni))

=
∏

∀i∈L



1 −
∏

∀j∈Di

P (lij)



 (4)

where α denotes the complement of eventα; the first line
follows from applying the assumption of node independence
on (1); the second line follows the complement rule; the third
line follows from applying the assumption of link indepen-
dence and the complement rule on (3).

D. Infinite Boundary Assumption

Prior to this work, most researchers avoid the effect of
reduced node connectivity of border nodes by assuming that
the networks examined are infinitely large. Border nodes have
less neighbors, and hence, less chances of being connected.

The embedded assumption here is that the effect of such
nodes on the overall network connectivity in an infinitely
large network is negligible. We argue against that, and derive
expressions for network connectivity that take into account the
reduced connectivity of border nodes.

III. C ONNECTIVITY MODEL

A. Modeling Link Dependencies

We apply our methodology to find the connectivity in a
wireless network, whose topology,T, is a triangular lattice.
This topology is obtained when nodes are placed on the
vertices of an equilateral triangular lattice, or equivalently,
at the centers of regular hexagons. A 2-tier triangular lattice
topology is shown in Figure 1. It was previously proven that
the triangular lattice topology results in the minimum number
of nodes needed to achieve full coverage of a plane [7]. The
goal is to derive the joint probability in (1) for this network.

Fig. 1: Nodes in a Triangular Lattice Topology

DefineLi ⊂ L to be the set of indices for the nodes that
have not yet been considered. That is:

Li = {i + 1, i + 2, . . . , L}

where the nodes inT are numbered in sequence from the
center outwards, starting withnode 1 for the center node.

Define the setQi ⊆ Di to be the set of all neighboring
nodes ofi that have not yet been considered. Therefore,

Qi = Li ∩Di.

Defineqi
ξ ∈ Qi to indicate theξth element inQi, andN ≡

|Qi|. Hence, we can re-write (1) as follows:

P (n1, n2, . . . , nL)

= P (n1|n2, . . . , nL) · P (n2, . . . , nL)

=

L−1
∏

i=1

P (ni|ni+1, . . . , nL) · P (nL)

=

L−1
∏

i=1

P (ni|nqi
1

, . . . nqi
N

) · P (nL) (5)

where the first line follows from the definition of conditional
probability; the second line is obtained by iteratively applying
the definition of conditional probability; the third line follows
from the assumption thatnode i can only be connected
through one or more of its neighbors, that is,ni depends only
on nodes inQi.

Furthermore,

P (ni|nqi
1

, . . . nqi
N

) =
P (ni, nqi

1

, . . . nqi
N

)

P (nqi
1

, . . . nqi
N

)
for i < L (6)



also using the definition of conditional probability.� � ������������
� � �� �� � ������� �� ����� ��

Fig. 2: Location of various node types

Depending on the location ofnode i in the topology, the
number of elements in the setQi will be different. Therefore,
the quotient resulting from (6) will differ depending on the
location of node i. Because of the assumption of equal
network-wide link connectivity, only the number of elements
in Qi matters. The exact node id is irrelevant. In order to
simplify matters, we leverage on the geometry and recursive
decomposition of the triangular lattice topology. Similarto
most research, we also ignore the border effect of the outer
most tier (nodes in the outer tier only have three or four
neighbors); in a way, we assume that the network exists in
an infinitely large topology, so every node has 6 neighbors.
Hence, there are four cases to consider (Refer to Figure 2):����� 	
 ����� �� ���� ����� �� ����� �
Fig. 3: Neighbors and Dependencies for various node types

Case 1: node1
We start by first considering the node located at the center of
the topology, that isnode 1. D1 similar toDi for all nodesi
will be comprised of the six nodes surroundingnode i. Since
node 1 is the first node to consider in the computation,L1

will contain all nodes in the topology except this center node.
Hence,Q1 = L1 ∩D1 = D1. That is,Q1 is comprised of all
six nodes neighboringnode 1, and |Q1| = 6. There are 12
link dependencies as denoted by the dashes in Figure 3.

Case 2: nodes of typeβ
We find that for each node of typeβ, Qi is comprised of four
of the six nodes neighboring it, that is|Qi| = 4. The two
remaining nodes are not elements ofLi (they were already
considered in the previous term and hence eliminated from
the consequent terms), and therefore are not elements inQi.
There are 7 link dependencies as denoted by the dashes in
Figure 3. We also note that except for the outer tier, each of
the remaining tiers will include six nodes of typeβ.

Case 3: nodes of typeγ
For nodes of typeγ, we find thatQi is comprised of three
of the six neighboring nodes, that is|Qi| = 3. The three
remaining nodes are not elements ofLi (they were already
considered in the computation), and are consequently not
elements inQi. There are 5 link dependencies as denoted by
the dashes in Figure 3.

Case 4: nodeL
Lastly, we note that we need to findP (nL) in order to solve
(5). However, no dependencies need to be considered since
we do not need to findnode L’s marginal probability.

For a triangular lattice topology whose number of tiers,T ,
is greater than 1, there are exactly the following occurances
of the above node types:

• node 1: 1 occurrence;
• node typeβ: 6T − 1 occurrences;
• node typeγ:

∑T

t=1 6(t − 1) = 3T (T − 1) occurrences;
• nodeL: 1 occurance.

Hence, we re-write (5) in terms ofnodes 1, β, γ, andL:

P (n1, n2, . . . , nL) =

P (n1|n2, . . . , n7) · P (nβ|nq
β

1

, n
q

β

2

, n
q

β
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, n
q

β

4

)6T−1 ·

P (nγ |nq
γ
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, nq
γ
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γ

3

)3T (T−1) · P (nL) (7)

Finally substituting (6) into each of the conditional proba-
bilities in (7) yield:

P (n1, n2, . . . , nL) =
(

P (n1, n2, . . . , n7)

P (n2, . . . , n7)

)

·

(

P (nβ, n
q

β
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·

(
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γ
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γ
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γ

3

)

P (nq
γ

1
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γ
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)3T (T−1)

· P (nL) (8)

B. Modeling the Finite Network Boundary

We now extend our developed model to take into account the
effect of a finite network. In such network, nodes belonging to
the outer tier (i.e. nodes at the border of the network) will have
reduced connectivity due to the reduced number of neighbors.
Hence, two additional node types,λ andλ◦, will need to be
considered in the computation of the joint probability in (1).
Figure 4 shows the locations of the various node types in
triangular lattice topology whoseT = 3.

Case 5: nodes of typeλ and λ◦

We shall now consider nodes comprising the outer tier of a
finite triangular lattice (i.e. nodes on the network boundary).
We find that these nodes can only have either three neighbors
(i.e. nodesλ◦ with |Di| = 3) or four neighbors (i.e. nodesλ
with |Di| = 4). Out of these three or four neighbors, only one
(the node that follows in the same tier) remains an element
in Li, the rest were already considered in the computation.
Hence,|Qi| = 1 for nodes of typeλ andλ◦. Therefore, there
is 1 link dependency as denoted by the dash in Figure 5.



� �� � ������� �� ����� ��
Fig. 4: Location of various node types in the finite topology����� ����� ����  !
Fig. 5: Neighbors and Dependencies for additional node types

Note than node L will only have 3 neighbors (i.e.
|Di| = 3). However, no dependencies need to be considered
since we do not need to findnode L’s marginal probability.

For a finite triangular lattice topology ofT > 1 tiers, there
are exactly the following occurrences of the various node
types (and combinations), each of which will have a different
marginal probability:

• node 1: 1 occurrence;
• node typeβ: 6(T − 1) occurrences;
• node typeγ:

∑T−1
t=2 6(t−1) = 3T 2−9T +6 occurrences;

• node typeλ followed by λ: 6(T − 2) occurrences;
• node typeλ followed by λ◦ (or L): 6 occurrences;
• node typeλ◦ followed by λ: 5 occurrences.
• nodeL: 1 occurrence.

Hence, we re-write (5) in terms ofnodes 1, β, γ, λ◦, λ, andL:

P (n1, n2, . . . , nL) =

P (n1|n2, . . . , n7), ·

P (nβ |nq
β
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Finally substituting (6) into each of the conditional proba-

bilities in (9) yield:

P (n1, n2, . . . , nL) =
(
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C. Computing the Model

The computational complexity for computing the joint
probability grows exponentially with the number of nodes
in the network; the computational complexity in calculating
P (ni, . . . , nj) is O(cj−i+1), where the constantc repre-
sents the number of events preventing a node in a given
topology from becoming isolated. Also note thatc grows
exponentially with the topology, that isc = 2dT − 1 where
dT = degree of a node in topologyT (dT = 6 for a triangular
lattice topology).

The manual computation of (8) and (10) are quiet cumber-
some. Hence, we developed a computer program to automate
this process. We utilized a cluster of processors running on
Sharcnet [8] in order to speed up the computation.

Due to space limitation and the complexity of the resulting
computation, we have only included the closed form expres-
sions of the constituents of the first term in (10). Refer to [9]
and [10] for the rest of the computations.

P (n1, n2, . . . , n7) =

87 r4q26 + 3678 r5q25 + 52913 r6q24 + 395652 r7q23 +

1906956 r8q22 + 6632116 r9q21 + 17782062 r10q20 +

38333088 r11q19 + 68331612 r12q18 + 102688686 r13q17 +

131860854 r14q16 + 146018842 r15q15 + 140287383 r16q14 +

117339336 r17q13 + 85551290 r18q12 + 54329784 r19q11 +

29970633 r20q10 + 14292982 r21q9 + 5850993 r22q8 +

2035632 r23q7 + 593768 r24q6 + 142506 r25q5 +

27405 r26q4 + 4060 r27q3 + 435 r28q2 + 30 r29q + r30 (11)

whereq = 1 − r, and



P (n2, . . . , n7) =

2 r3q27 + 249 r4q26 + 6582 r5q25 + 76365 r6q24 +

505440 r7q23 + 2253024 r8q22 + 7432948 r9q21 +

19215999 r10q20 + 40387200 r11q19 +

70736989 r12q18 + 105022794 r13q17 +

133752441 r14q16 + 147303096 r15q15 +

141017040 r16q14 + 117684414 r17q13 +

85685772 r18q12 + 54372282 r19q11 +

29981259 r20q10 + 14295006 r21q9 + 5851269 r22q8 +

2035656 r23q7 + 593769 r24q6 + 142506 r25q5 +

27405 r26q4 + 4060 r27q3 + 435 r28q2 + 30 r29q + r30

(12)

While understanding the resulting computations in (11) and
(12) is cumbersome, we will give few brief insights. For
simplicity, consider Equation (12). We note that the last term
resembles the probability of one extreme event occurring, that
is when all 36 links (6 links/node * 6 nodes) are connected.
Since 6 out of the 36 inter-node links are common (i.e.
dependant), the probability of such event occurring isr30.
Similarly, the first resembles the probability of the other
extreme event, when the 6 nodes are connected just enough
for none of them to be isolated. This event occurs when only
links between 3 pairs of adjacent nodes (i.e. nodes 2-3, 4-5,
6-7 or 7-2, 3-4, 5-6) are connected, the remaining 27 links
are not connected. Since such event can occur in two different
ways, the resulting probability is2r3q27. The middle terms in
(12) resemble the probabilities of all other events betweenthe
two discussed extremes.

IV. RESULTS

A. Effect of Independent Links

We present the probability that none of the nodes are
isolated for networks composed of 1, 3, and 5 tiers found
using our generated closed form solution that takes into
account internode link dependency. We compare our results to
computations based on the common assumption of internode
link independence.

In assuming independence of links and nodes in a triangular
lattice topology, (4) simplifies to:

P (no node isolated)∗ =
(

1 − (1 − r)6
)1+3T (T+1)

(13)

The simplification in the above equation is due to the fact that
all nodes in the topology have 6 neighbors; the total number
of nodes is1 +

∑T

t=1 6t = 1 + 3T (T + 1) (we added1 for
the center node).

Figure 6a plots three sets of results corresponding to the
three sized networks. For each set, we plot our closed form
solution given by the computation resulting from (8), and its
independent link counterpart given by (13). Few observations
are noteworthy. Firstly, as expected,P (no node isolated)

increases with increasing probability of link connectivity, r.
Furthermore, for a given value ofr, P (no node isolated)
decreases as the number of nodes in a network increase. This
is expected since the addition of each node into the network
enhances the chances of at least one node in the network
becoming isolated. Lastly, the computedP (no node isolated)
exceeds the claimed upper boundP (no node isolated)∗.
Therefore, we proved that there are cases when the network
connectivity can exceedP (no node isolated)∗, and hence
established a new upper bound that can be computed using
(8).

Figure 6b plots the percentage of error in
P (no node isolated) due to the assumption of independent
links and nodes connectivities. It is evident that the error
decreases with increasing values ofr; it is almost negligible
for r ≥ 0.6. It is also evident that the error increases with
increasing number of nodes. Hence, for a given network size,
we can quantify the error resulting from the assumption of
link and node independence, as well as identify the critical
range of r at which the error is unacceptable for a given
application.

B. Effect of Infinite Boundary

Figure 7 highlights the effect of assuming an infinite bound-
ary on the connectivity of a triangular lattice topology. Wefirst
plot in Figure 7a our closed form expression resulting from
(10). In the same figure, the closed form expression resulting
from our earlier model which takes into account the effect of
link dependence but ignored the effect of an outer boundary is
given for comparison. It is evident thatP (no node isolated)
is erroneously higher when an infinite boundary is assumed.
This is contributed to the fact that outer tier nodes are only
surrounded by three or four neighbors (verses six when an
infinite boundary is assumed), therefore causing a significant
reduction in connectivity.

Figure 7b plots the percentage error inP (no node isolated)
due to assuming an infinitely large topology. We observe that
the error follows a bell-curve pattern; it first increases to
reach a peak, then starts decreasing as the link connectivity
increase. We also observe that the magnitude of the peak error
increases dramatically with increasing network size; the peak
error percentages are543%, 8960%, and124000% for the 1,
3, and 5 tiers respectively. Moreover, the error only drops to
10% whenr ≥ 0.75 (this is not evident from the figure due to
the big range on the y-axis). This hence shows that ignoring
the effect of the network boundary has a non-negligible effect
of overestimating the connectivity of the network.

V. CONCLUSION

In this work, we presented a novel methodology for finding
a closed form upper bound for wireless mesh network con-
nectivity. Our solution is the first to take into account the
effect of both: interdependence of connectivity of spatially
co-located nodes; and the effect of network boundary nodes’
connectivity. We used the methodology to find the connectivity
in the optimal triangular lattice topology. We first analyzed
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Fig. 6: Effect of assuming independent links on the connectivity of triangular lattice topologies
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Fig. 7: Effect of assuming an infinite boundary on the connectivity of triangular lattice topologies

the impact and validity of the commonly utilized assumption
of link independence. Results obtained show that there are
cases where the connectivity exceedsP (no node isolated)∗

that assumes independent links between nodes. Hence, the
assumption of independent links between co-located nodes is
invalid, and our derived expression for connectivity serveas
a new upper bound for network connectivity. We have also
examined the impact that the assumption of infinite network
boundary has on the network connectivity. Results show that
for most cases, this assumption overestimates the network con-
nectivity by a significant amount, and is hence invalid. Using
the proposed methodology, we quantified the errors resulting
from the two commonly used assumptions for triangular lattice
networks. We have also shown that the magnitudes of the
percentage error resulting from either assumptions increase
with the size of the network. The developed methodology
can similarly be applied to any network topology with equal
distance node allocation. The qualitative results obtained will
generally hold for similar topologies.
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