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Abstract

In this work, we follow three different approaches to study the optimal scheduling

problem in emerging wireless networks. The results gained from these three ap-

proaches complement each other and provide a better understanding for the schedul-

ing function in such networks. In the first part, we model the wireless network by a

discrete queuing system that comprises of a set of symmetrical queues (users), served

by a set of identical servers (radio channel resources). The queue-server (channel) con-

nectivity is modeled by a sequence of independent and identically distributed (i.i.d.)

Bernoulli random variables. At any time slot, a queue may be allocated one or more

of the servers that are connected to it during that time slot. We identify a class of

policies, namely, the Most Balancing (MB) policies, to be optimal. The optimal pol-

icy is the one that minimizes (in a stochastic ordering sense) a set of cost functions of

the queue sizes in the system. We provide a theoretical proof of the optimality of MB

policies using the dynamic coupling method. We also provide simulation results to

compare the performance of other work conserving policies to the optimal one under

different setups and under some generalizations and relaxations of the mathematical

assumptions. The MB policies are shown to dominate all other policies for every

setup used.

In the second part of this work, we present an analytic model and a methodology

to find the optimal scheduling policy in 3G (third generation) High Speed Downlink

Packet Access systems. In this case, the optimal policy is the one that maximizes cell
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throughput while maintaining a desired level of fairness between users in that cell.

In the proposed model, the arrivals to each queue are assumed to be a sequence of

independent Bernoulli random variables; and users’ wireless channels are modeled by

independent Finite State Markov Channel (FSMC) processes. However, the arrivals,

as well as the channel connectivities, for different queues (users) do not have to be

identical. We use stochastic dynamic programming to model the operations of the

downlink scheduler as a Markov Decision Process (MDP) problem. This model is

solved numerically for the optimal policy, using value iteration. The optimal policy is

shown to have a switch-over structure with respect to the queue lengths. A heuristic

approach is developed based on the information gained from studying the optimal

policy structure. Simulation is then used to study the performance of the resulted

heuristic scheduling policy and to compare it to the optimal one.

The third part of this work focuses on studying the effect of the channel variability

on quality of service (QoS) in emerging wireless networks. We develop a server sharing

model for 3G wireless systems to evaluate the effect of channel quality on the level

of service differentiation that can be achieved. The model is solved to find the server

sharing scheme that can achieve a given service differentiation requirement. Although

this methodology will result in long-run (static) average server allocation, it has much

less computational complexity compared to dynamic allocation methodologies.
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Chapter 1

Introduction

The modern life style in most of the developed countries (and many of the developing

ones) is highly dependent on the evolution of technology. Computer networks and

telecommunication technologies in particular played a major role in reshaping our

communities and the way we work, socialize and communicate with each other. Fur-

thermore, the fast-moving life style we adopted contributed to the demand of reliable,

high-speed and portable access networks. One can easily notice the future trend of

all wireless access networks connected by a wired backbone.

The emerging wireless networks become increasingly important nowadays as access

networks. The ever increasing demand for application versatility and seamless access

to the Internet resulted in the evolution of modern wireless networks towards high-

speed IP-based packet networks. This trend best manifests itself in emerging third

and fourth generation (3G/4G) wireless networks. The third Generation Partner-

ship Project (3GPP) was formed in 1998 to address the need for high-speed IP-based

mobile networks. 3GPP is a coalition of a number of telecommunications standards

bodies and market representation partners whose goal is to produce globally applica-

ble technical specifications and technical reports for a third generation mobile system

(and beyond) based on evolved GSM core networks and the radio access technologies

that they support [1].
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The higher data rates were achieved by these systems through the deployment

of several ground breaking technologies such as fast scheduling, data rate adaptation

and hybrid ARQ. Fast scheduling plays a major role in achieving the targeted rates in

emerging wireless systems. It also serves as the main tool in quality and service control

in these systems. Scheduling in such systems involves the allocation of different types

of resources (such as channels, time slots, frequency carriers and antennas) at the same

time to maximize spectrum utilization and users’ experiences. For example, HSDPA

(a 3G wireless network) uses Code and Time Division Multiplexing (CDM/TDM) on

the downlink and has 15 codes to be allocated in each two milliseconds Transmission

Time Interval (TTI). Scheduling in this system involves not only time slots (i.e., TTI )

allocation, but also CDMA code allocation.

1.1 Scheduling in Wireless Networks

In general, scheduling is the process of distributing the available resources between

a variety of possible tasks. In wireless networks, a scheduling policy is a rule that

decides which user is scheduled for transmission in the next transmission time interval.

The decision should optimize some performance metrics, such as throughput and

packet delay, subject to some constraints such as users’ transmission needs, fairness

requirements, channel state, etc.

Scheduling is similar to random access in that both are schemes that allow multiple

users to share the same transmission channel. However, they differ in that scheduling

has a centralized control to coordinate the allocation of channel resources among

all users, an approach that is not possible in random access networks. Although

a distributed approach, such as random access, requires only local information (in

contrast to a centralized approach), the performance in this case (e.g., throughput)

deteriorates rapidly especially in crowded networks.
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Rate adaptation is used in emerging wireless networks to adapt the transmis-

sion rate to the instantaneous channel conditions. Scheduling may take advantage

of multiuser diversity (i.e., the fact that different users may have different channel

conditions, and hence different data rates, at a given transmission time interval) to

maximize network performance. It does so by scheduling the user with the best

channel conditions (highest data rate) to transmit at every transmission time interval

resulting in the maximum throughput every time. Maximizing throughput is a de-

sirable feature of scheduling policies, however, there are other important issues that

must be taken into consideration. Fairness is one of these issues that might contra-

dict throughput maximization. There is a trade-off between fairness and performance

when implementing scheduling in wireless networks. There are several metrics that

can be used to represent fairness, for example, proportional fairness, max-min fair-

ness, long-term and short-term fairness [3], [4], [6]. Another issue is the packet delay

which has significant importance for users running real-time applications.

In wireless networks, scheduling is usually used for downlink multiuser transmis-

sion. Each user in this case has its own data buffer. The scheduling controller chooses

packets from these buffers to be transmitted at every transmission time interval. If a

reliable feedback channel exists then scheduling can also be used on the uplink. We

can classify the scheduling techniques in wireless networks as follows:

1- Opportunistic scheduler (Max C/I): The scheduler allocates the resources to

the user with the maximum signal to noise ratio (best channel) at every transmission

time interval. This scheme maximizes the network performance (spectrum utilization

and throughput) on the expense of fairness. Such scheduling mechanisms are called

opportunistic because they take advantage of favorable channel conditions in assigning

channel resources to users.

2- Max-min fairness scheduler: The scheduler allocates resources to the user with

the minimal received QoS. Such scheme has the advantage of delivering extreme
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fairness to all users in the same priority class. However, this scheduler does not take

advantage of the multiuser diversity and channel variability and thus results in a

reduced network performance compared to the previous scheduler.

3- Proportional fair scheduler (PF): The previous two types of schedulers represent

the two extremes of the fairness and performance trade-off. PF scheduler provides a

middle ground between these two types. The basic concept behind proportional fair-

ness is to weight the scheduling priorities by both channel conditions and transmission

history.

4- Mixed strategy scheduler: This type of schedulers is proposed to accommodate

different types of users who use services that have different QoS requirements. An

example is a scheduling scheme in a system that supports a mixture of real-time and

non-real-time users.

More information regarding scheduling in wireless networks and the above sched-

uler types can be found in [2], [5], [7] and [8].

1.2 Techniques for Optimal Control

This work lies in the broader field of optimal control of queuing systems. In the

literature, there are three major techniques that were used extensively to study opti-

mal control of queuing systems; Dynamic Programming (DP), Linear Programming

(LP) and Stochastic Dominance. Dynamic Programming is the traditionally favored

technique for optimization [9], [10], [11], [12]. In this technique, a cost function is

defined as a function of the system state and the sequence of decisions made by the

working policy. Then, using Value Iteration or Policy Iteration, one can identify the

policy that minimizes the cost function,(or at least some of its properties). When the

underlying random process resulted from this control problem is a Markov Decision

Process (MDP), then a feasible solution to the formulated DP equation is possible



5

most of the time. However, when the DP equation becomes somewhat complicated,

then a solution may be hard to find. A similar statement is true when the underlying

process is a Semi-Markov Decision Process. The DP equation can also be solved nu-

merically. However, when the state space and/or action space grow larger, then the

computational complexity will rapidly increase and may become a prohibiting factor.

For more details on Dynamic Programming, the reader may consult [13], [14], [15].

Linear Programming is another technique that can be used to solve optimization

problems in queuing systems. LP concerns the problem of maximizing (or minimizing)

a linear functional over a polyhedron [16]. In this technique, a linear functional, rep-

resenting the objective or cost, is maximized (or minimized) over a set of constraints

(linear system of inequalities). The general problem is to determine max{cx|Ax ≤ b},

where c, x, b are vectors and A is a matrix; it is assumed that all quantities have com-

patible sizes. Integer Linear Programming is yet another optimization technique that

investigates LP problems where the variables are restricted to integer values. The

problem in this case has the form max{cx|Ax ≤ b;x ∈ Z}, where Z is the set of all

integers. LP is used in the literature to describe and solve Markov Decision Processes

and to find the optimal dynamic control policies in systems that can be modeled

by these processes [17], [18], [19]. In this work, we did not use LP or ILP in our

treatments.

Stochastic Dominance is another important technique in stochastic modeling,

analysis and optimization [20]. It refers to the ordering of probability distributions,

i.e., the case when one probability distribution can be ranked as “superior” to an-

other. This technique provides tools that can be used in ordering random variables

and random processes in distribution. The ability to do this has apparent significance

in optimal stochastic control. The underlying processes resulted from applying dif-

ferent controls can be ordered stochastically (in distribution) and the optimal control

will be the one that “dominates” all the other ones. However, proving such ordering
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can be tricky sometimes. A dynamic coupling method [21] is one way to do that.

In this method, the underlying random process can be coupled with a realization of

another process on the same probability space using results from stochastic domi-

nance [20], [14]; we will present some of these results later. Then we can order the

coupled processes almost surely (i.e., with probability 1), by comparing these pro-

cesses for all sample values at all times. Coupling is used in the literature to prove

optimality in many scheduling and routing problems, c.f. [22], [23], [24].

This work is divided into three parts that are complimentary to each other. All

three parts tackle the problem of packet scheduling in emerging wireless networks.

They cover the theoretical, performance and implementation aspects of the optimal

scheduling policy in such networks. In the following, we will briefly introduce, provide

motivation and list the contributions of the research done in each one of the three

parts. Full details and results will be reported in the subsequent chapters of the

thesis.

1.3 Part I: Optimal Control in Emerging Wireless

Networks

This part deals with the theoretical treatment of the scheduling problem in the emerg-

ing wireless networks we are studying in this research. We propose a queuing model

that covers the packet scheduling function in many of these networks. We identify

(and provide mathematical characterization for) a class of optimal policies, the Most

Balancing (MB) policies. Then we provide theoretical proof of their optimality us-

ing dynamic coupling method and stochastic dominance. We also provide simulation

results to study the performance of these policies and compare it to that of several

other work-conserving policies. The findings of this part of the work are presented in
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Chapters 2 and 3.

1.3.1 Motivation

The optimal policy characterization and the proof of its optimality that we present

in this part play a major role in understanding packet scheduling in multi-server

wireless networks with independent random connectivity. Our intuition suggests that

the Most Balancing policies described in this work can be shown (in future work) to

be optimal for a wide range of scheduling and routing problems in wireless systems.

Therefore, this work not only provides a proof for the optimality of MB policies in

the system under investigation, but it also opens the door for a wide set of important

research problems for future investigation. This work provides the characterization

of the class of MB policies and a methodology to prove their optimality theoretically.

The model we present in this part of the work can be applied to the schedul-

ing problems in the 3G/4G wireless networks. The results obtained provide insight

and better understanding of the significant role of the packet scheduler in such net-

works. The work also provide a practically implementable algorithm for optimal

packet scheduling in these networks. These results can be used by scheduler design-

ers as guidelines for designing scheduling policies for more complex systems (e.g.,

differentiated services for QoS scheduling, priority scheduling, etc.).

Yet another motivation for this work is the significance of this model from the

theoretical (and academic research) point of view. It provides a contribution to the

field of stochastic optimization and optimal control and has applicability in areas other

than wireless network modeling, such as resource management, admission control and

other problems in the area of operational research.



8

1.3.2 List of Contributions

The main contributions presented in this part can be summarized by the following:

1. We provide a formulation for the optimal server allocation problem in multi-

server, homogeneous wireless systems with independent connectivity.

2. We introduce the class of Most Balancing (MB) policies and prove theoreti-

cally (using stochastic dominance and dynamic coupling method) that they are

optimal.

3. Using the same methodology, we also prove that MB policies are optimal in a

similar system with the ability to retransmit packets when their service is not

completed.

4. We suggest an implementation algorithm for an MB policy.

5. We also propose the Least Connected Server First/Longest Connected Queue

(LCSF/LCQ) policy as a low-overhead approximation of MB policies and pro-

vide an easily programmable algorithm for constructing the LCSF/LCQ policy.

6. We compare the performance of several policies, including LCSF/LCQ via sim-

ulations.

1.4 Part II: Optimal Scheduling in HSDPA Net-

works: Dynamic Programming Approach

In this part, we study the downlink scheduler in the 3G High Speed Downlink Packet

Access networks. We provide a model and a methodology (based on Dynamic Pro-

gramming) to calculate the optimal packet scheduling policy in such networks. The

optimal policy we investigate is the one that maximizes overall system throughput
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for a given fairness criterion. We study the structure of this policy and we provide a

heuristic policy based on the information we collect from the structure and behavior

of the optimal policy. Simulation results are also presented in this part. These results

provide performance evaluation and comparison of the optimal, heuristic and Round

Robin packet scheduling policies. The findings of this part are presented in Chapter

4.

1.4.1 Motivation

The HSDPA system is a typical example of the emerging wireless networks. It is high-

speed, packet-based and all-IP network. It utilizes most of the technologies used in 3G

and 4G wireless systems, such as hybrid ARQ, adaptive modulation and coding and

fast scheduling. The downlink scheduler in this system is of a particular interest to our

work, since it plays a major role in achieving the high data rates in an HSDPA system.

The model in Part I provided an intuition to the structure of the optimal policy in

such systems. However, Part I is concerned with symmetrical (homogeneous) systems

and the direct application of the MB policies in non-homogeneous systems may not be

practical. Therefore, we develop a new formulation for this problem (using dynamic

programming) to study the effect of asymmetry on the optimal policy structure. We

also develop a near-optimal, heuristic policy that can be applied to real systems.

Because of the resemblance (of technologies used) of the HSDPA system to the most

recent 3GPP releases, such as Long Term Evolution (LTE), the presented approach

and results can be easily adapted to these systems.

Until the publication of this work, most of the available work in scheduler design

in HSDPA system was based on the intuition and creativity of the designers. The

designer usually selects an optimization criterion that represents some important per-

formance measure (in his/her opinion), builds an algorithm based on that criterion

and then tries to establish confidence in that algorithm using backward analysis or
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simulation. Most likely, this will result in a suboptimal algorithm at best, that per-

forms well in some scenarios and poorly in others. The new features used in HSDPA

system (and later releases) introduced many new and interrelated tuning parameters

which cannot be grasped by a single selected optimality criterion. This motivated

the pursuance of a declarative approach by building a model that captures the effects

of all these entwined parameters. Another observation is the lack of work on sched-

ulers that dynamically allocate codes as well as time slots to the users in an HSDPA

system.

1.4.2 List of Contributions

The contributions of the work presented in this part can be summarized by the

following:

1. We provide an analytical approach to model the downlink scheduler in a 3G

HSDPA system. This approach can be extended to other 3G/4G wireless sys-

tems.

2. Using the theory of Dynamic Programming, we present an optimization frame-

work for the determination of the optimal policy for the HSDPA downlink packet

scheduler.

3. A near-optimal, heuristic policy is proposed, based on the structural properties

of the optimal policy and its dependence on changing system parameters.

4. We conduct a simulation study to quantify the effect of different model param-

eters on the behavior of the optimal policy. We also study the performance of

the proposed heuristic policy and compare it to that of the optimal policy.
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1.5 Part III: Analytic Evaluation of Downlink Ser-

vice Rate in 3G Wireless Networks

The effect of the data rate adaptation to channel quality on system performance

(e.g., throughput and fairness) in 3G wireless networks is studied in this part. We

provide a stochastic analytical model for such systems. This model is used to evaluate

the achievable average data rate in 3G wireless networks. The wireless channel is

modeled by a Finite State Markov Channel (FSMC). This model results in a system

of equations that are solved analytically. We conduct a numerical evaluation of the

resulted solution (e.g., relations between the throughput and different parameters in

the system) for different cases and we plot these results. This model helps researchers

understand the relation between the various system parameters and the maximum

achievable throughput and fairness limitations in systems with rate adaptation. This

model does not provide a dynamic scheduling policy as the previous models; instead, it

provides a static evaluation of the achievable data rate per user on average, regardless

of the dynamic policy used. This information is crucial for providing Quality of Service

to different users with different channel qualities. The results obtained show that the

QoS that can be provided to a user depends on its channel quality. Therefore, this

model can be used as a guideline in conjunction with the dynamic packet scheduling

schemes to provide a feasible QoS scheduling in 3G wireless systems. The findings

are presented in Chapter 5.

1.5.1 Motivation

This part of the research was conducted initially to understand the complexity of

scheduling in wireless systems in general and in 3G wireless systems in particular.

The methodology presented in this work provides a mathematical model that can
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be computed easily (has low computational complexity) to answer some important

questions about the achievable service rates in these systems and the relative quality

of service that can be achieved for given channel conditions. This part uses mean

value analysis and will result in static allocation of resources (e.g., TTIs and codes),

in contrast to Parts I and II, which provide dynamic allocations of these resources.

Nevertheless, the results obtained in this part can be used in addition to those ob-

tained in the previous parts to provide long-run fairness or service differentiation (i.e.,

QoS scheduling) in many emerging wireless networks.

1.5.2 List of Contributions

The main contributions of the work presented in this part are summarized by the

following:

1. We use stochastic modeling to provide a server sharing model for the downlink

scheduler in 3G wireless networks.

2. We derive a relationship between the service rate achieved by each user in the

system and the server share allocated to that user.

3. The model is solved to determine the achievable average service rate of a user

as a function of the channel state and the server share scheduled to that user.

4. We present some numerical results for different scheduling schemes such as fair

scheduler, equal shares scheduler and differentiated services.

1.6 Contributions to the Literature

The contributions to the literature that resulted from this work are listed below:
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Chapter 2

Optimal Control in Emerging Wireless

Networks

In this chapter, we investigate an optimal scheduling problem in a discrete-time sys-

tem of L parallel queues that are served by K identical servers. This model has been

widely used in studies of emerging 3G/4G wireless systems. We introduce the class of

Most Balancing (MB) policies and provide their mathematical characterization. We

prove that MB policies are optimal among all work-conserving policies; we define opti-

mality as minimization, in stochastic ordering sense, of a range of cost functions of the

queue lengths, including the process of total number of packets in the system. We use

dynamic coupling arguments for our proof. We provide am algorithm to implement

an MB policy. During each time slot, the server-queue (channel) connectivities as well

as arrivals to each queue, are modeled by independent Bernoulli random variables.

The arrivals to individual queues are assumed to be symmetrical and independent

across the queues in the system and independent of the connectivities. We conduct a

simulation study to compare the performance of several work-conserving policies to

that of the optimal one. In the simulations, we study different scenarios with different

packet arrival models including batch and correlated Bernoulli arrival processes.

15
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2.1 Introduction and Model Description

Emerging 3G/4G wireless networks can be categorized as high-speed, IP-based packet

access networks. They utilize the channel variability, using data rate adaptation, and

user diversity to increase their channel capacity. These systems usually use a mixture

of Time and Code Division Multiple Access (TDMA/CDMA). Time is divided into

equal size slots, each of which can be allocated to one or more users. To optimize

the use of the enhanced data rate, these systems allow several users to share the

wireless channel simultaneously, using CDMA. This will minimize the wasted capacity

resulted from the allocation of the whole channel capacity to one user at a time even

when that user is unable to utilize all of that capacity. Another reason for sharing

system capacity between several users, at the same time slot, is that some of the user

equipments at the receiving side might have design limitations on the amount of data

they can receive and process at a given time.

The connectivity of users to the base station in any wireless system is varying

with time and can be best modeled as a random process. In the following subsection,

we provide a more formal model description and motivation for the problem at hand.

2.1.1 Model Description

In this work, we assume that time is slotted into equal-length deterministic intervals.

We model the wireless system under investigation as a set of L parallel, symmetrical

queues with infinite capacity (see Figure 2.1); the queues correspond to the different

users in the system. The queues share a set of K identical servers, each server rep-

resenting transmission channels (or any other network resource, e.g., power, CDMA

codes, etc.). We make no assumption regarding the number of servers relative to the

number of queues, i.e., K can be less than, equal to or greater than L. The packets

in this system are assumed to have constant length, and require one time slot to
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complete service. A server can serve one packet only at any given time slot. A server

can only serve connected, non-empty queues. Therefore, the system can serve up to

K packets during each time slot. Those packets may belong to one or several queues.

The connectivity between a user and a channel is random. The state of the channel

connecting the ith queue to the jth server during the nth time slot is denoted by Gi,j(n)

and can be either connected (Gi,j(n) = 1) or not connected (Gi,j(n) = 0). Hence,

Gi,j(n) will determine (in a real system) if a transmission channel j can be used by

user i or not.

The number of arrivals to the ith queue during time slot n is denoted by Zi(n). We

require that Zi(n) have the same Bernoulli distribution for all i and be independent

of Gi,j(n) for all i = 1, 2, . . . , L, j = 1, 2, . . . , K and n. This means that Zi(n) could

be any sequence of integer-valued random variables, as long as they have symmetrical

distribution across the queues and are independent of the connectivities. We define

Xi(n) to represent the number of packets in the ith queue at the beginning of time

slot n.

The symmetry of the system will allow us to use coupling arguments to prove the

optimality of the MB policies. If this condition is violated, then it will not be possible

to use coupling argument any more, since the distribution of the arrival process and

the connectivity process will not be permutation-invariant. In this case for example,

if we swap the arrival variables of two queues in the system at a given time slot, as we

usually do in a coupling argument, the resulted distribution of the permuted system,

will be different than the original one. Therefore, the comparison will be invalid and

the argument fails.

A scheduler (or server allocation or scheduling policy) decides, at the beginning

of each time slot, what servers will be assigned to which queue during that time slot.

The objective of this work is to identify and study the optimal scheduling policy

that minimizes, in a stochastic ordering sense, a range of cost functions of the system
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Figure 2.1: Abstraction of downlink scheduler in a 3G wireless network.

queue occupancies, including the total number of queued packets, in the aforemen-

tioned system. The choice of the class of cost functions and the minimization process

will be discussed later.

2.2 Previous Work and Our Contributions

In the literature, there is substantial research effort focusing on the optimal server

allocation in wireless networks. Tassiulas and Ephremides [23] for example, tackled

a similar problem where a single server (i.e., L = 1) can only be allocated to one

user and can only serve one packet at each time slot. They proved, using a cou-

pling argument, that LCQ (Longest Connected Queue) is optimal. In our work, we

show that LCQ is not always optimal in a multi-server system since servers can be

assigned to one or more queues simultaneously. Bambos and Michailidis [25] worked

on a similar model (a continuous time version of [23] with finite buffer capacity) and

found that, under stationary ergodic input job flow and modulation processes, both

MCW (Maximum Connected Workload) and LCQ dynamic allocation policies max-

imize the stability region for this system. Furthermore, they proved that C-FES, a

policy that allocates the server to the connected queue with the fewest empty spaces,
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stochastically minimizes the loss flow and maximizes the throughput [26].

Another relevant result is that reported by Ganti Modiano and Tsitsiklis [24].

They presented a model for a satellite node that has K transmitters. The system

was modeled by a set of parallel queues with symmetrical statistics competing for

K identical servers. At each time slot, no more than one server is allocated to each

scheduled queue. They proved, using stochastic coupling arguments, that LCQ, a

policy that allocates the K servers to the K longest connected queues at each time

slot, is optimal. This model is similar to the one we consider in this work, except

that in our model one or more servers can be allocated to each queue in the system.

A further, stronger difference between the two models is that we consider the case

where each queue has independent connectivities to different servers. We make these

assumptions for a more suitable representation of the 3G wireless systems described

earlier. These differences make it substantially harder to identify (and even describe)

the optimal policy (see Section 2.4). A more recent result that has relevance to our

work is the one reported by Kittipiyakul and Javidi in [27]. They proved, using

dynamic programming, that a maximum-throughput and load-balancing (MTLB)

policy minimizes the expected average cost for a two-queue, multi-server system. In

our research work we proved the optimality of the most balancing policies in the more

general problem of a multi-queue (more than two queues) and multi-server system

with random channel connectivity. A stronger distinction of our work is that we

proved the optimality in a stochastic ordering sense which is a stronger notion of

optimality compared to the expected average cost criterion that was used in [27].

Lott and Teneketzis [28] tackled a multi-class system of N weighted-cost, parallel

queues and M servers. They also used the one server per queue restriction used

in [24]. They showed that an index rule is optimal and provided conditions sufficient,

but not necessary, to guarantee its optimality.

Koole et al [29] studied a model similar to that of [23] and [26]. They found that
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the Best User (BU) policy maximizes the expected discounted number of successful

transmissions. Liu et al [30], [31] studied the optimality of opportunistic schedulers

(e.g., Proportional Fair (PF) scheduler). They presented the characteristics and op-

timality conditions for such schedulers. However, Andrews [32] showed that there are

six different implementation algorithms of PF scheduler, none of which is stable. For

more information on resource allocation and optimization in wireless networks the

reader may consult [33], [34], [35], [36], [37], [38], [39] and [40].

In summary, our main contributions in this chapter are the following:

• We introduce the class of Most Balancing (MB) policies for server allocation in

the model of Figure 2.1 and prove their optimality for minimizing, in stochas-

tic ordering sense, a set of functions of the queue lengths (e.g., total system

occupancy).

• An MB policy attempts to balance all queue sizes at every time slot, so that the

total sum of queue size differences will be minimized. Such a policy exists and

may be determined through a finite search of all possible server allocations. In

our work, we present a method that reduces this search by searching for policies

that assign servers to the “longest connected queue” (LCQ allocation) in an

ordered manner.

• We provide a heuristic approximation for an MB policy. At any time slot, such

policies allocate the “least connected servers first” to their “longest connected

queues” (LCSF/LCQ). These policies require reduced complexity, O(L × K)

for their implementation. We further show, using simulation, that their perfor-

mance (on average) is virtually indistinguishable (falls within the margin of the

confidence interval) of that achieved by MB policies.

The rest of the chapter is organized as follows. In section 2.3, we introduce

notation and define the server allocation policies. In section 2.4, we introduce and
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provide a detailed description of the MB server allocation policies. We also present an

implementation algorithm for such policies. In section 2.5, we provide some theoretical

background that is necessary for the upcoming proof. In section 2.6, we present the

main result, i.e., the optimality of MB policies. In section 2.7, we present the Least

Balancing (LB) policies, and show that these policies perform the worst among all

work-conserving policies. MB and LB policies provide upper and lower performance

bounds. In section 2.8, we introduce a practical, low-overhead approximation for

such policies, namely the LCSF/LCQ policy and the MCSF/SCQ policy, with their

implementation algorithms. In section 2.9, we present simulation results for varous

scheduling policies. We present proofs for some of our results in Appendix A – C.

2.3 Policies for Server Allocation

Recall that L and K denote the number of queues and servers respectively in the

model introduced in Figure 2.1. We will use bold face, UPPER CASE and lower

case letters to represent vector/matrix quantities, random variables and sample val-

ues respectively. In order to represent the policy action that corresponds to “idling”

a server, we introduce a special, “dummy” queue which is denoted as queue 0. Al-

locating a server to this queue is equivalent to idling that server. By default, queue

0 is permanently connected to all servers, contains only “dummy” packets. Let 1{A}

denote the indicator function for condition A. Throughout this paper, we will use the

following notation:

• G(n) is an (L+ 1)×K matrix, where Gi,j(n) for i > 0 is the channel connec-

tivity random variable as defined in Section 2.1.1. We assume that G0,j(n) = 1

for all j, n.

• X(n) = (X0(n), X1(n), X2(n), . . . , XL(n))T is the vector of queue lengths at the
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beginning of time slot n, measured in number of packets. We assume X0(1) = 0.

• Q(n) = (Q1(n), . . . , QK(n))T is the server allocation control vector. Qj(n) ∈

{0, 1, . . . , L} denotes the index of the queue that is selected (according to some

rule) to be served by server j during time slot n. Note that serving the “dummy”

queue, i.e., setting Qj(n) = 0 means that server j is idling during time slot n.

• V(n) is a (L + 1) × K matrix such that Vi,j(n) = 1{i=Qj(n)} · Gi,j(n), i =

0, . . . , L and j = 1, . . . , K. Hence Vi,j(n) will be equal to 1 if and only if server

j is both connected to queue i and assigned to serve it.

• Y(n) = (Y0(n), Y1(n), Y2(n), . . . , YL(n))T is the vector of the number of packets

withdrawn from the system during time slot n. For any i, Yi(n) ∈ {0, 1, . . . , K}

denotes the number of packets withdrawn from queue i (and assigned to servers)

during time slot n.

• Z(n) = (Z0(n), Z1(n), Z2(n), . . . , ZL(n))T is the (column) vector of the number

of exogenous arrivals during time slot n = 1, 2, . . . . Arrivals to queue i 6= 0

are as defined in Section 2.1.1. The number of arrivals at the dummy queue is

defined as Z0(n) = Y0(n). This will insure that X0(n) = 0,∀n.

• The tuple (X(n),G(n)) denotes the “state” of the system at the beginning of

time slot n.

For future reference, we will call Q(n) the scheduling (or server allocation) con-

trol and Y(n) the withdrawal control. The matrix V(n) will be useful in describing

feasibility constraints on such controls (see Equations (2.2) and (2.3)).
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2.3.1 Feasible Scheduling and Withdrawal Controls

Using the previous notation and given a scheduling control vector Q(n) we can com-

pute the withdrawal control vector as:

Yi(n) =
K∑
j=1

1{i=Qj(n)}, i = 0, 1, 2, . . . , L. (2.1)

We assume that the controller has complete knowledge of the system state in-

formation at the beginning of each time slot. Then we say that a given vector

Q(n) ∈ {0, 1, . . . , L}K is a feasible scheduling control (during time slot n) if: (a)

a server is allocated to one connected queue, and, (b) the number of servers allocated

to a queue cannot exceed the size of the queue at time n. Mathematically, these

conditions are captured by the following (necessary and sufficient) constraints:

VT (n) · IL+1 = IK (2.2)

V∗(n) · IK ≤ X(n) (2.3)

where Il is a column vector of size l, with all entries equal to one, and

V ∗i,j(n) =


0, i = 0;

Vi,j(n), otherwise.

The K constraints in Equation (2.2) capture condition (a) above; indeed, equality

in Equation (2.2) is not possible if a server j is allocated to a non-connected queue,

since Vi,j(n) = 0 for all i in this case. The point-wise inequality in Inequality (2.3)

captures condition (b); with the choice of V∗(n) we guarantee that Inequality (2.3) is

satisfied for the dummy queue. Note that allocating more than one server to a queue

is feasible.
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Similarly, we say that a given vector Y(n) ∈ {0, 1, . . . , K}L+1 is a feasible with-

drawal control (during time slot n) if there is a matrix V(n) that satisfies the feasibility

constraints (2.2) and (2.3) such that

Y(n) = V(n) · IK (2.4)

From constraints (2.2), it is clear that a server can be allocated to one and only

one connected queue; summing the constraints, we can see that the controller can

only withdraw a total of up to K packets from the connected nonempty queues in

the system. For any feasible Y(n), from the definition of Vi,j(n) and Inequality (2.3)

it follows that, at any time slot, the number of packets withdrawn from any queue

cannot be larger than the size of the queue or larger than the total number of servers

connected to the queue. Therefore, a feasible withdrawal control Y(n) satisfies the

(necessary) conditions

0 ≤ Yi(n) ≤ min

(
Xi(n),

K∑
j=1

Gi,j(n)

)
, ∀n, i 6= 0, (2.5)

L∑
i=0

Yi(n) = K, ∀n. (2.6)

It is clear that conditions (2.5) and (2.6) are not sufficient for the feasibility of the

withdrawal vector Y(n). For future reference, we denote the set of all feasible with-

drawal controls while in state (x,g) by Y(x,g).

Note from Equation (2.1) that, given a feasible scheduling control Q(n), the with-

drawal control Y(n) is determined uniquely and is feasible (Equations (2.4) and (2.1)

are the same, for a feasible scheduling control). However, for a given system state

Equation (2.4) may have more than one solution, i.e., V(n) (and hence Q(n)), that
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satisfy Equations (2.2) and (2.3). The feasibilities of withdrawal control and schedul-

ing control are entwined and by definition imply each other. Nevertheless, deriving

Q(n) from a feasible withdrawal control is not straightforward. One way to do that

is to devise an algorithm that searches through all possible scheduling vectors to find

one that satisfies Equation (2.4).

For the rest of this chapter, we will refer to q(n) as an implementation of the

given feasible control y(n).

2.3.2 Definition of Policies for Server Allocation

For any feasible control (Y(n)), the system described earlier evolves according to

X(n+ 1) = X(n)−Y(n) + Z(n), n = 1, 2, . . . (2.7)

We assume that arrivals during time slot n can only be added after removing

served packets. Therefore, packets that arrive during time slot n have no effect on

the controller decision at that time slot and may only be withdrawn during t = n+ 1

or later.

A packet scheduling policy π (or policy π for simplicity) is a rule that determines

feasible withdrawal vectors Y(n) for all n, as a function of the past history and

current state of the system H(n). The state history is given by the sequence of

random variables

H(1) = (X(1)), and

H(n) = (X(1),G(1),Z(1), . . . ,G(n−1),Z(n−1),G(n)),

n = 2, 3, . . . (2.8)

LetHn be the set of all histories up to time slot n. Then a policy π can be formally
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defined as the sequence of measurable functions

un : Hn 7−→ ZL+1
+ ,

s.t. un(H(n)) ∈ Y(X(n),G(n)), n = 1, 2, . . . (2.9)

where Z+ is the set of non-negative integers and ZL+1
+ = Z+ × · · · × Z+, where the

Cartesian product is taken L+ 1 times.

At each time slot, the following sequence of events happens: first, the connectivi-

ties G(n) and the queue lengths X(n) are observed. Second, the packet withdrawals

Y(n) are determined according to the policy in effect. Finally, the new arrivals Z(n)

are added to determine the next queue length vector X(n+ 1).

We denote by Π the set of all policies described by Equation (2.9). We will show in

Section 2.6.4 that a special subset, namely the set of Most Balancing (MB) policies we

introduce next are optimal: they minimize (in the stochastic ordering sense) a range

of cost functions including the process of total number of packets in the system.

2.4 The Class of MB Policies

In this section, we provide a formal description and mathematical characterization of

the class of MB policies.

Intuitively, the MB policies “attempt to balance the lengths of all queues in the

system as much as possible, at every time slot n”; they do so by choosing a control

(y(n) ∈ Y(x,g)) that minimizes the total difference between the queues in the system.

This will hopefully result in the “smallest possible differences in the lengths of the

longest queues in the system” (i.e., will achieve a most balancing effect).

For a more formal definition of MB policies, we first define the following:

Given a state (x(n),g(n)) and a policy π that chooses the feasible control y(n)
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at time slot n, define x̂i(n) = xi(n) − yi(n) as the size of queue i, i = 1, . . . , L, after

applying the control yi(n) and just before adding the arrivals during time slot n. For

notational simplicity we also define x̂0(n) = 0. Furthermore, we define the “imbalance

index”, κn(π), as the total sum of differences of the L + 1-dimensional vector x̂(n)

under the policy π at time slot n (where π takes the control y(n) ∈ Y(x,g) at time

slot n), i.e.,

κn(π) =
L+1∑
i=1

L+1∑
j=i+1

(x̂[i](n)− x̂[j](n)) (2.10)

where [k] denotes the index of the kth longest queue after applying the control

y(n) and before adding the arrivals at time slot n. By convention, queue ‘0’ (the

“dummy queue”) will always have order L + 1 (i.e., the queue with the minimum

length). It follows from Equation (2.10) that the minimum possible imbalance index

is L · x̂[L] (i.e., all L queues have the same length which is equal to the shortest queue

length) which is indicative of a fully balanced system. Let ΠMB denote the set of all

MB policies, then we define the elements of this set as follows:

Definition: A Most Balancing (MB) policy is a policy π ∈ ΠMB that, at n = 1, 2, . . .,

chooses feasible withdrawal vectors y(n) ∈ Y(x,g) such that the imbalance index is

minimized at every n, i.e.,

ΠMB =
{
π : argmin

y(n)∈Y(x,g)

κn(π), ∀n
}

(2.11)

The set ΠMB in Equation (2.11) is well-defined and non-empty, since the mini-

mization is over a finite set.

The set of MB policies may have more than one element. This could happen, for

example, when at a given time slot n, a server k is connected to two or more queues

of equal size, which happen to be the longest queues connected to this server. Then,



28

serving either one of them will satisfy Equation (2.11) even if these allocations result

in different Y(n) (i.e., different policies). The resulting queue length vectors (x̂(n))

under any of these policies will be permutations of each other.

Remark: Note that the LCQ policy in [23] is a most balancing (MB) policy for

K = 1 (i.e., the one server system presented in [23]). Extension of LCQ to K > 1

(i.e., allocating all the servers to the longest queue) may not result in a MB policy. �

2.4.1 Possible Implementation of MB Policies

A determination of an MB policy given X(t) and G(t) can be done using a direct

search over all possible server allocations. This can be a challenging computational

task. In what follows we present a more efficient approach for the construction of an

MB policy.

We consider a given permutation (ordering) of the K servers in the system. For

this permutation we define a “sequential LCQ server allocation,” a process of allo-

cating the servers to queues in K steps as follows: Starting from the first server, we

assign it to its longest connected queue and we update (i.e., reduce by one) the queue

size. We continue with the second server following the same principle until we exhaust

all servers in K steps. There are K! server orderings that we have to consider. We

will show that at least one “sequential LCQ server allocation” corresponding to an

ordering among the K! server permutations will result in an MB policy. We introduce

the following notation:

We define the set Mt
i as the set of servers connected to queue i during time slot

t. Let Mi(t) , |Mt
i| be the number of servers that are connected to queue i during

time slot t, that is

Mi(t) =
K∑
j=1

Gi,j(t) (2.12)

Let Qk , {i : k ∈ Mt
i} denote the set of queues that are connected to server k
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during time slot t; we omit the dependence on t to simplify notation. Let Θ denote the

set of all possible permutations of the set {1, . . . , K}. We define a server ordering at

time n as a permutation θ(n) ∈ Θ. There are |Θ| = K! possible server orderings. We

use the subscript [j]θ to denote the jth server to be allocated under the ordering rule

θ(n). Algorithm 1 presents the pseudo-code for the approach we described previously.

Algorithm 1 (MB Policy Implementation).

1. for t = 1, 2, . . . do
{

2. Input: X(t),G(t).Calculate: Q[k], k = 1, . . . , K.

3. Let: κmint = L ·max
l
Xl ; maximum possible κt

4. forall θ ∈ Θ do
{

; loop |Θ| = K! times

5. X′ ←− X(t), Y′ ←− 0, Q′ ←− 0

6. for j = 1 to K
{

; allocate servers sequentially

7. Q′[j]θ = min

(
k : k ∈

{
argmax
l:l∈Q

[j]θ

(X ′l |X ′l > 0)

})

8. Let: i = Q′[j]θ

9. Y ′i = Y ′i + 1

10. X ′i = X ′i(t)− 1
}

11. Compute: κθt from Equation(2.10)

12. if (κθt < κmint )
{

13. κmint = κθt

14. y(t)←− Y′, q(t)←− Q′, θ(t)←− θ
}

15.
} }

; End of Algorithm 1.
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2.5 Theoretical Background

We will have to present some theoretical background before tackling the proof of the

optimality of MB policies.

2.5.1 Stochastic Dominance

Stochastic ordering of random variables and random processes is explained by Stoyan

[20]. Readers may also consult Ross [41].

Let f : Rn → R be a measurable function such that f(x) ≤ f(y) for every real

valued sequences x, y ∈ Rn, n ∈ Z+ such that xi(t) ≤ yi(t) ∀ i and t ∈ Z+. A

discrete-time stochastic process, X = {X(t)}∞t=1 is stochastically smaller than the

process Y = {Y (t)}∞t=1 (written X ≤st Y), if P [f(X) > a] ≤ P [f(Y) > a] for all

a ∈ R. According to Stoyan [20], X ≤st Y if for all t, X(t) ≤st Y (t).

The following proposition, known as coupling, provides an important tool that is

used frequently to prove stochastic order relationships. We will use it in our proof.

For more information about coupling methods, the reader may refer to [21].

Proposition 1: [14] If F and G are two distributions such that F (z) ≥ G(z), then

there exist random variables X ′ and Y ′ that are distributed according to F and G

respectively, such that

P [X ′ ≤ Y ′] = 1.

The proof is given in Appendix B.1.

Corollary 1. If X ≤st Y, then there exists a stochastic process X′ = {X ′(t)}∞t=1 with

the same probability distribution as X such that, X ′(t) ≤ Y (t) for every t ∈ Z+.

Proof. The proof of the corollary is straightforward from proposition 1 and the rela-

tion X ′(t) ≤st Y (t), ∀t implies X′ ≤st Y.
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Theorem 1. Let X and Y be two discrete-time random processes on a common

probability space. Then X ≤st Y is equivalent to P [f(X(t1), . . . , X(tn)) > z] ≤

P [f(Y (t1), . . . Y (tn)) > z] for all {t1, . . . , tn}, n, z, and for any measurable, mono-

tonically increasing functions f : Rn → R+, i.e., xj ≤ yj for all 1 ≤ j ≤ n implies

f(x1, . . . , xn) ≤ f(y1, . . . , yn).

The proof is given in Appendix B.2.

2.5.2 The Coupling Method

If we want to perform some kind of comparison of probability measures on a measur-

able space, then sometimes it is possible to construct random elements, with these

measures as their distributions, on a common probability space, such that the compar-

ison can be carried out in terms of these random elements rather than the probability

measures. The term coupling is usually used to refer to any such construction. A

formal definition of coupling of two probability measures on the measurable space

(E, E) (the state space, e.g., E = R,Rd,Z+, etc.) is given below [21].

A coupling of the probability measures P and P ′ on a measurable space (E, E) is

a probability measure P̂ on (E2, E2) such that

P = P̂ u−1 and P ′ = P̂ (u′)−1, (2.13)

where u(x, x′) = x, u′(x, x′) = x′ for (x, x′) ∈ E2. Therefore, P and P ′ are marginals

of P̂ .

The above definition is not easy to utilize in practical sense. A more usable

definition will follow. First, we define a random element in (E, E) to be a quadruple

(Ω,F ,P, X), where (Ω,F ,P) is the sample space and X is the class of measurable

mappings from Ω to E (X is an E-valued random variable, s.t. X−1(B) ∈ F for all
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B ∈ E).

Definition: A coupling of the two random elements (Ω,F ,P, X) and

(Ω′,F ′,P′, X ′) in (E, E) is a random element (Ω̂, F̂ , P̂, (X̂, X̂ ′)) in (E2, E2) such

that

X
D
= X̂ and X ′

D
= X̂ ′, (2.14)

where
D
= means ’equal in distribution’.

This means that P̂(X̂, X̂ ′)−1 is a coupling of PX−1 and P′X ′−1 in the same sense

as in (2.13) above.

The following corollary is a direct result of Corollary 1 above. We will use it to

show that the above definition can be utilized even when X and X ′ are sequences

of random variables (or discrete random processes) and the state space (E, E) is a

vector space.

Corollary 2. If X and Y are two discrete time random processes such that X
D
= Y,

then there exist a stochastic process X′ = {X ′(t)}∞t=1 with the same probability distri-

bution as X such that, X ′(t) = Y (t) almost surely for every t ∈ Z+.

Corollary 2 is a strict version of Corollary 1 (since equal in distribution is a special

case of ≤st which is basically an ordering in distribution).

Remark: The above definition makes no assumption about the distribution of

the random variables in X; for example, X may be a sequence of non-i.i.d. random

variables. �

2.6 Optimality of MB Policies

In this section, we present the main result in this chapter, that is, the optimality

of MB policies among all feasible policies. We will establish the optimality of MB
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policies for a wide range of performance criteria including the minimization of the

total number of packets in the system. We introduce the following definition first.

2.6.1 Definition of Preferred Order

First we define the relation � on Z(L+1)
+ ; we write x̃ � x if:

1- x̃i ≤ xi for all i (i.e., point wise comparison),

2- x̃ is obtained from x by permuting two of its components; the two vectors differ

only in two components i > 0 and j > 0, such that x̃i = xj and x̃j = xi, or

3- x̃ is obtained from x by performing a “balancing interchange”. The two vectors

differ in two components i > 0 and j > 0 only, where xj ≤ x̃j ≤ xi and

xj ≤ x̃i ≤ xi, under the constraints that: x̃i = xi − 1 and x̃j = xj + 1.

To prove the optimality of MB policies, we will need a methodology that enables

comparison of the queue lengths under different policies. Towards this end, we define

a “preferred order” as follows:

Definition: (Preferred Order). The transitive closure of the relation � defines a

partial order (which we call preferred order and use the symbol ≺p to represent) on

the set Z(L+1)
+ . �

The transitive closure [42] of � on the set Z(L+1)
+ is the smallest transitive relation

on Z(L+1)
+ that contains the relation �. From the engineering point of view, x̃ ≺p x

if x̃ is obtained from x by performing a sequence of reductions, permutations of two

components and/or balancing interchanges.

For example, if x̃ = (3, 4, 5) and x = (4, 5, 3) then x̃ ≺p x since x̃ can be obtained

from x by performing the following two consecutive two-component permutations:

first swap the second and third components of x, yielding x1 = (4, 3, 5) then swap

the first and second components of x1, yielding x2 = (3, 4, 5) = x̃.
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Suppose that x̃,x represent queue size vectors. Case (3) in this case describes

moving a packet from one real, large queue i to another real, smaller one j (note

that the queue with index j = 0 is excluded since it represents the dummy queue in

our formulation). We say that x̃ is more balanced than x when (3) is satisfied. For

example, if L = 2 and x = (0, 5, 2) then a balancing interchange (where i = 1 and

j = 2) will result in x̃ = (0, 4, 3). In summary, the queue size vector x̃ is preferred

over x (x̃ ≺p x) if x̃ can be obtained from x by performing a sequence of packet

removals, permutations or balancing interchanges.

2.6.2 The Class F of Cost Functions

Let x̃,x ∈ Z(L+1)
+ be two vectors representing queue lengths. Then we denote by F

the class of real-valued functions on Z(L+1)
+ that are monotone, non-decreasing with

respect to the partial order ≺p; that is, f ∈ F if and only if

x̃ ≺p x ⇒ f(x̃) ≤ f(x) (2.15)

From (2.15) and the definition of preferred order, it can be easily seen that the

function f(x) = x1 + x2 + . . . + xL belongs to F . This function corresponds to the

total number of queued packets in the system1.

2.6.3 Definition of The Subsets Πh
n, 0 ≤ h ≤ K

Recall that in Section 2.3 we defined a dummy queue that we refer to as queue 0.

Allocating a server to queue 0 is equivalent to idling that server. We have x0(1) = 0 by

assumption. Furthermore, we let z0(n) = y0(n),∀n. We define x̂0(n) = x0(n)− y0(n)

such that x̂0(n) ∈ Z, i.e., we allow x̂0(n) to be negative. This definition will insure

1Another example is the function f ′(x) = max{x1, . . . , xL} which also belongs to the class F .
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that x0(n) = 0,∀n and therefore will not affect the calculation of the cost function

f(·) ∈ F .

For any fixed n ≥ 1, let Πn denote the set of policies that have the MB property

at time slots t = 1, 2, . . . , n. We can easily see that these sets form a monotone

sequence, with Πn ⊆ Πn−1. Then the set ΠMB in Equation (2.11) can be defined as

ΠMB =
⋂∞
n=1 Πn.

Two-queue packet interchanges

Let f ∈ {0, 1, . . . , L}, t ∈ {0, 1, . . . , L} represent the indices of two queues that we

refer to as the from and to queues. Define the (L+ 1)× 1-dimensional vector I(f, t),

whose j-th element is given by2:

Ij(f, t) =



0, t = f ;

+1, j = f, f 6= t;

−1, j = t, t 6= f ;

0, otherwise.

(2.16)

Let 1{A} denote the usual indicator function. We can restate (2.16) as follows

Ij(f, t) = 1{j=f} − 1{j=t}, ∀j = 0, 1, . . . , L (2.17)

Fix an initial state x(n) at time slot n; consider a policy π with a (feasible)

withdrawal vector y(n). Let

y∗(n) = y(n) + I(f, t), f 6= t, (2.18)

2Intuitively, I(f, t) represents an operation of removing a packet ‘from’ queue f and adding it
‘to’ queue t.
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be another withdrawal vector. The two vectors y(n),y∗(n) differ only in the two

components t, f ; under the withdrawal vector y∗(n), an additional packet is removed

from queue f , while one packet less is removed from queue t. Note that either t or f

can be the dummy queue.

y∗f (n) = yf (n) + 1 (2.19)

y∗t (n) = yt(n)− 1 (2.20)

y∗i (n) = yi(n), ∀i 6= f, t. (2.21)

In the sequel, we will call I(f, t) an interchange between queues f and t. We will

call I(f, t) a feasible interchange if it results in a feasible withdrawal vector y∗(n).

From Equations (2.7) and (2.19) – (2.21), it is clear that the I(f, t) interchange will

result in a new vector x̂∗(n) such that:

x̂∗f (n) = x̂f (n)− 1, f ∈ {0, 1, . . . L} (2.22)

x̂∗t (n) = x̂t(n) + 1, t ∈ {0, 1, . . . L} (2.23)

x̂∗i (n) = x̂i(n), ∀i 6= f, t; i ∈ {0, 1, . . . L} (2.24)

or, in vector notation,

x̂∗(n) = x̂(n)− I(f, t), f 6= t. (2.25)

Implementation of two-queue packet interchanges

The interchange I(f, t) in Equation (2.18) can be implemented via a series of m ≥ 1

server reallocations. For example, suppose that a server k is connected to both queues

t and f (i.e., gf,k(n) · gt,k(n) = 1), and that the server is allocated to queue t, under

y(n) (i.e., 1{qk(n)=t} = 1 and x̂f (n) ≥ 1). Then reallocating server k to queue f will

result in the interchange I(f, t) in Equation (2.18); this is the case m = 1.
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f = r1 
k1

r2 

t = rm+1 

km

k2

ri+1 

ki

ri 

Figure 2.2: The sequence of m server interchanges that implement the interchange
I(f, t).

Note that the condition gf,k(n) · gt,k(n) · 1{qk(n)=t} = 1 and x̂f (n) ≥ 1 is sufficient

but not necessary for I(f, t) to be feasible.

In general, we define the series of m server reallocations required to implement

I(f, t) through the sequence of indices of the queues involved in that interchange. Let

r ∈ Zm+1 be such a sequence, where r1 = f and rm+1 = t. Let ki : ki ∈ {1, 2, . . . , K}

be the server reallocated to queue ri from queue ri+1.

For the interchange operation of Equation (2.18), the following are sufficient fea-

sibility constraints:

m∑
i=1

gri,ki(n) · gri+1,ki(n) · 1{qki (n)=ri+1} = m, (2.26)

x̂f (n) ≥ 1, if f ∈ {1, 2, . . . , L}, (2.27)

x̂i(n) ≥ 0, if ∀i 6= f, i ∈ {1, 2, . . . , L} (2.28)

x̂0(n) ≤ 0, (2.29)

for some integer m ≥ 1 and r ∈ Zm+1.
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Constraint (2.26) is sufficient to ensure that connectivity conditions allow for the

series of m server reallocations. Server k reallocation to queue j is feasible only if

queue j is non-empty (i.e., x̂j(n) ≥ 1) and is connected to server k (i.e., gj,k(n) = 1).

Furthermore, the feasibility of y∗(n) implies that constraint (2.26) must hold for at

least one m ≥ 1 and one r ∈ Zm+1. Therefore, if C(r,m) is one such constraint, then⋃
r,mC(r,m), 1 ≤ m ≤ K, r ∈ Zm+1 is a “necessary” feasibility constraint. Note that

1 ≤ m ≤ K, r ∈ Zm+1 are exhaustive in the sense that they cover all possible server

allocations.

Constraint (2.27) is necessary since a packet will be removed from queue f to

be added to queue t, therefore, queue f must contain at least one packet for the

interchange to be feasible. A special case is the dummy queue (queue 0) that has

queue length equal to 0 at the beginning of every time slot and therefore, x̂0(n) has

a length that does not exceed 0. The remaining queues may be empty. The sequence

of intermediate interchanges starts by removing a packet from queue f = r1 and

adding a packet to queue r2. Therefore, constraints (2.26) – (2.29) insure that queue

r2 will contain at least one packet for the second intermediate server reallocation to

be feasible even when x̂r2(n) = 0. Same is true for any queue ri, i ∈ {2, 3, . . .m}.

Therefore, these constraints are also sufficient for feasibility of (2.18).

“Balancing” two-queue packet interchanges

In light of the above definition, we can restate the definition of balancing interchange

as follows:

Definition: A feasible interchange I(f, t) is called “balancing” if

x̂f (n) ≥ x̂t(n) + 1 (2.30)
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I(f, t) is called “unbalancing” if

x̂f (n) ≤ x̂t(n) (2.31)

According to Lemma 11 of Appendix A, a balancing interchange will not increase

the imbalance index. In particular, the new policy π∗ resulting from applying one bal-

ancing interchange to policy π’s withdrawal vector y(n) (in accordance with Equation

2.18) during time slot n will have a cost that is given by:

κn(π∗) = κn(π)− 2(s− l) · 1{x̂[l](n)≥x̂[s](n)+2} (2.32)

where l (respectively s) is the order of queue f (respectively t) in x̂(n) when ordered

in descending manner3. By the definition of the balancing interchange, we have s > l.

In words, Equation (2.32) states that an interchange I(f, t), when balancing,

results in a cost reduction of 2(s− l) when x̂f (n) = x̂[l](n) ≥ x̂[s](n) + 2 = x̂t(n) + 2

and keeps it unchanged otherwise, i.e., when x̂f (n) = x̂t(n) + 1. The latter makes

intuitive sense, since the balancing interchange in this case will result in permuting

the lengths of queues f and t which does not change the total sum of differences (and

hence the imbalance index) in the resulted queue length vector. Check the second

part of the proof of Lemma 11 for details.

Lemma 1. The feasible interchange I(f, 0), f > 0 is a balancing interchange.

Proof. By definition, x0(n) = 0. Since y0(n) ≥ 0, therefore x̂0(n) = x0(n)−y0(n) ≤ 0.

According to the feasibility constraint (2.27), the interchange I(f, 0) is feasible only

when x̂f (n) ≥ 1. Therefore, x̂f (n) ≥ x̂0(n) + 1, and it follows that I(f, 0) is a

balancing interchange.

3Intuitively, we use s and l to refer to a “shorter” and a “longer” queues respectively.
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The difference vector D

The following defines a difference vector of policy π from MB policy during a given

time slot n. This vector and the results we present in this section are crucial for the

proof of the optimality of MB policies.

Definition: Consider a given state (x(n),g(n)) and a policy π ∈ Πn−1 that

chooses the feasible withdrawal vector y(n) during time slot n. Let yMB(n) be a

withdrawal vector chosen by an MB policy during the same time slot n. We define

the (L+ 1)× 1-dimensional vector D ∈ ZL+1 as follows:

D = yMB(n)− y(n) (2.33)

where, for simplicity, we omit the dependence of D on the policy π.

Lemma 2. For a given policy π ∈ Πn−1 and a time slot n,

L∑
i=0

Di · 1{Di>0} = −
L∑
j=0

Dj · 1{Dj<0} (2.34)

i.e., the sum of all positive elements of D equals the sum of all negative elements of

D.

Proof. For any withdrawal vector y, we have

L∑
i=0

yi(n) = K,

where K is the number of servers. From equation (2.33), we have then:

L∑
i=0

Di =
L∑
i=0

yMB
i (n)−

L∑
i=0

yi(n)

= K −K = 0,
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and Equation (2.34) follows.

Lemma 3. Consider a given state (x(n),g(n)) during time slot n. Let f, t ∈

{0, 1, . . . , L} be any two queues such that I(t, f) is feasible. A policy π ∈ Π that

results in x̂f (n) ≤ x̂t(n)− 2 is not an MB policy.

Proof. The interchange I(t, f) is a balancing interchange by definition. Since x̂f (n) ≤

x̂t(n) − 2, then the balancing interchange I(t, f) reduces the imbalance index by

a factor of two according to Equation (2.32). Therefore, π does not achieve the

minimum imbalance index during time slot n, and hence, is not an MB policy.

Lemma 4. Consider a given state (x(n),g(n)) and a feasible withdrawal vector y(n).

Any feasible interchange I(f, t) where Df ≥ +1, Dt ≤ −1 is a balancing interchange.

Proof. We observe that f 6= t must be true. Otherwise, we arrive at a contradiction,

i.e., +1 ≤ Df ≤ −1. This leaves three cases to consider:

Case 1: f = 0.

This case is not possible by contradiction. By assumption, D0 ≥ +1, which means

that yMB
0 (n) ≥ y0(n) + 1. This case states that an MB policy idled at least one more

server than π. Therefore, x̂MB
0 (n) ≤ −1. This makes queue 0 the shortest queue.

Allocating the idled server to queue t, i.e., the interchange I(t, 0), is both feasible

(since y(n) is feasible by assumption) and balancing (by Lemma 1). The interchange

I(t, 0) will result in a withdrawal vector y′(n) = yMB + I(t, 0).

Let s be the order of queue f = 0 when ordering the vector x̂MB(n) in a descending

manner. Therefore, s = L + 1. Furthermore, in order for I(t, 0) to be feasible queue

t must not be empty (according to feasibility constraint (2.27)) which implies that

x̂MB
t (n) ≥ 1 and the order of queue t is l < s. Therefore, x̂MB

f (n) ≤ x̂MB
t (n) − 2

and the interchange I(t, 0) will reduce the imbalance index by 2(s − l) according to

Equation (2.32). This implies that the new policy has less imbalance index than an
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MB policy. This contradicts the fact that any MB policy minimizes the imbalance

index.

Case 2: t = 0.

When t = 0 then the interchange I(f, t) is the process of allocating an idled server

to queue f > 0. This, according to Lemma 1, is a balancing interchange.

Case 3: t, f > 0.

We will show that this case will also result in a balancing interchange. Let y(n)

be the original withdrawal vector. Let y∗(n) be the withdrawal vector resulted from

the interchange I(f, t), i.e.,

y∗(n) = y(n) + I(f, t)

Using the assumption Dt ≤ −1 and Equation (2.20), we arrive at the following:

yMB
t (n)− yt(n) ≤ −1

yMB
t (n) ≤ yt(n)− 1 = y∗t (n)

yMB
t (n) ≤ y∗t (n) = yt(n)− 1 (2.35)

and,

xt(n)− yMB
t (n)≥xt(n)− y∗t (n) = xt(n)− (yt(n)− 1)

x̂MB
t (n)≥ x̂∗t (n) = x̂t(n) + 1, t > 0 (2.36)
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Similarly, using the assumption Df ≥ +1 and Equation (2.19), we have

yMB
f (n)− yf (n) ≥ +1

yMB
f (n) ≥ yf (n) + 1 = y∗f (n)

yMB
f (n) ≥ y∗f (n) = yf (n) + 1 (2.37)

and,

xf (n)− yMB
f (n)≤xf (n)−y∗f (n) = xf (n)− (yf (n) + 1)

x̂MB
f (n)≤ x̂∗f (n) = x̂f (n)− 1, f > 0 (2.38)

To show that I(f, t) in this case is a balancing interchange, we have to show that

x̂f (n) ≥ x̂t(n)+1. Suppose to the contrary that x̂f (n) ≤ x̂t(n); then, from Equations

(2.36) and (2.38), we have

x̂f (n) ≤ x̂t(n)

x̂∗f (n) + 1 ≤ x̂∗t (n)− 1

x̂∗f (n) ≤ x̂∗t (n)− 2 (2.39)

From (2.36) and (2.38), we have

x̂MB
f (n) ≤ x̂∗f (n) ≤ x̂∗t (n)− 2 ≤ x̂MB

t (n)− 2

x̂MB
f (n) ≤ x̂MB

t (n)− 2 (2.40)

The differences Df ≥ +1 and Dt ≤ −1 by assumption, i.e., there is at least one

more (respectively one less) server allocated to queue f (respectively queue t) under

the MB policy. Therefore, y∗(n) = yMB(n) + I(t, f) is feasible. Therefore, Inequality
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(2.40) is a contradiction according to Lemma 3. Therefore, x̂f (n) ≥ x̂t(n) + 1 and by

definition the interchange I(f, t) is a balancing interchange

Lemma 5. Consider a given state (x(n),g(n)) and a policy π. If D = 0, then π has

the MB property. Conversely, if π has the MB property, the vector D has components

that are 0,+1, or −1 only.

Proof. Assume that D = 0; then, using Equation (2.33), we have:

y(n) = yMB(n)

x(n)− y(n) = x(n)− yMB(n)

x̂(n) = x̂MB(n) (2.41)

From Equations (2.41) and (2.10), we have that κn(π) = κn(πMB) and thus π has the

MB property during time slot n.

To prove the converse part of the lemma, assume that π has the MB property.

Therefore, κn(π) = κn(πMB). From Lemma 11 this is only possible if either: (i)

x̂(n) = x̂MB(n), or (ii) x̂(n) is obtained by performing a balancing interchange be-

tween the pair of the lth and the sth longest queues (l < s) in x̂MB(n) such that

x̂[l](n) = x̂[s](n) + 1, is satisfied; note that there may be multiple such queue pairs.

The balancing interchange in case (ii) will affect the length of two queues only (call

them i and j) such that x̂i(n) = x̂MB
i (n) − 1 and x̂j(n) = x̂MB

j (n) + 1, where i = [l]

and j = [s] (for each given pair). Therefore,

yi(n) = xi(n)− x̂i(n) = xi(n)− (x̂MBi (n)− 1)

= yMBi (n) + 1, (2.42)
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and,

yj(n) = xj(n)− x̂j(n) = xj(n)− (x̂MBj (n) + 1)

= yMBj (n)− 1, (2.43)

while withdrawals from the remaining queues will be the same, i.e.,

yb(n) = yMB
b (n),∀b 6= i, j. (2.44)

From Equations (2.42) through (2.44), we conclude that the vector D has compo-

nents that are 0,+1, or −1 only.

Lemma 6. For any policy π ∈ Πn−1, at most 0 ≤
∑

i |Di|/2 ≤ K balancing inter-

changes are required to make the resulting policy π∗ ∈ Πn.

Proof. The policy π ∈ Πn−1 ⊆ Π and therefore y(n) is a feasible withdrawal vector.

A necessary feasibility condition is the one given by Equation (2.6), i.e.,

L∑
i=0

yi(n) = K (2.45)

Therefore, the total difference between the two vectors is bounded by:

0 ≤
L∑
i=0

|yMB
i (n)− yi(n)| ≤ 2K, (2.46)

or equivalently,

0 ≤
L∑
i=0

|Di| ≤ 2K (2.47)

When the sum equals 0, then π has the MB property during time slot n according to

Lemma 5. When the sum equals 2K, then one can conclude using Lemma 2 that the
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sum of positive terms is equal to the sum of negative terms in the summation above.

To put it differently, there are at most K (+1)’s and K (-1)’s in the difference vector

D.

According to Lemma 4, I(f, t) where Df ≥ +1 and Dt ≤ −1 is a balancing inter-

change. Since we have
∑

i |Di|/2 such pairs of queues, then applying the balancing

interchange described by Lemma 4 for
∑

i |Di|/2 times will result in a new difference

vector D∗ = 0, i.e., y∗(n) = yMB(n). To show that an interchange I(f, t) that is

feasible does exist, consider the following:

Consider a given state (x(n),g(n)) and two policies π, π′ ∈ Π that choose the

feasible withdrawal vectors y(n),y′(n) during time slot n. Let q(n),q′(n) denote two

implementations of y(n),y′(n) respectively. We can write

y′(n) = y(n) +
K∑
k=1

I(q′k(n), qk(n)) (2.48)

where, by definition, server k is connected to both queues qk(n) and q′k(n). Therefore,

each interchange I(q′k(n), qk(n)) is feasible. Note that qk(n) = q′k(n) is possible, for

some k, in which case I(q′k(n), qk(n)) = 0. By construction, all the interchanges in

the right hand side of Equation (2.48) are feasible. If π′ is an MB policy then for any

arbitrary feasible policy π, there exist a sequence of feasible interchanges that satisfy

Equation (2.48).

Therefore, we conclude that for any arbitrary feasible policy π ∈ Πn−1 and a cor-

responding withdrawal vector y(n), at most
∑

i |Di|/2 feasible balancing interchanges

are required to make y∗(n) = yMB(n) and hence the resulting policy π∗ ∈ Πn.

Given the state (x(n),g(n)) and a policy π that resulted in a withdrawal vector

y(n). We define h ∈ Z+ as the distance of π from an MB policy (in terms of balancing
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interchanges) during time slot n. Using Lemma 6, h can be calculated as follows:

h =
L∑
i=0

|Di|/2, (2.49)

According to Lemma 6, we have 0 ≤ h ≤ K. If h = 0 then π has the MB property

during time slot n according to Lemma 5.

Now we are ready to define the sets Πh
n.

Definition: Define the set Πh
n, 0 ≤ h ≤ K as the set that contains all feasible

policies π ∈ Πn−1, such that π has a distance of at most h =
∑L

i=0 |Di|/2 balancing

interchanges from an MB policy.

The above defines subsets of the set Πn−1. The set Πn−1 is divided into K + 1

intervals Πh
n, 0 ≤ h ≤ K where Π0

n = Πn. Note that all policies that belong to any of

these subsets also belong to Πn−1.

2.6.4 Main Result

In this section we present and prove the optimality of MB policies with respect to

cost functions f ∈ F . In the following, XMB and Xπ represent the queue sizes under

a MB and an arbitrary policy π. For two real-valued random variables A and B,

A ≤st B defines the usual stochastic ordering [20].

Theorem 2. Consider a system of L queues served by K identical servers, as shown

in Figure 2.1 with the assumptions of Section 2.1.1. Then a Most Balancing (MB)

policy dominates any arbitrary policy when applied to this system, i.e.,

f(XMB(t)) ≤st f(Xπ(t)), ∀ t = 1, 2, . . . (2.50)

for all π ∈ Π and all cost functions f ∈ F .
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Proof. From (2.15) and the definition of stochastic dominance, it is sufficient to show

that XMB(t) ≺p Xπ(t) for all t and all sample paths in a suitable sample space.

The sample space is the standard one used in stochastic coupling methods [21]; see

Appendix C for more details.

Denote by yπ(n) (resp. yMB(n)) the (feasible) withdrawal vector under policy π

(resp. under an MB policy) during time slot n.

To prove the optimality of an MB policy, πMB, we start with an arbitrary policy

π and apply a series of modifications that result in a sequence of policies (π1, π2, . . .).

The modified policies have the following properties: (a) π1 dominates the given policy

π, (b) πi ∈ Πi, i.e., policy πi has the MB property at time slots t = 1, 2, . . . , i, and,

(c) πj dominates πi for j > i (and thus πj has the MB property for a longer period of

time than πi). The following lemma is needed to complete the proof of Theorem 2.

Lemma 7. For any policy π ∈ Πh
τ and h > 0, a policy π̃ ∈ Πh−1

τ can be constructed

such that π̃ dominates π.

The proof of Lemma 7 is given in Appendix C.

We now proceed with the proof of Theorem 2. Let π be any arbitrary policy;

then π ∈ Π0 = ΠK
1 . We construct a sequence of policies starting from π by applying

Lemma 7 repeatedly. Each of these policies dominates the previous one. According

to Lemma 7, we obtain policies that belong to ΠK
1 ,Π

K−1
1 , . . . ,Π0

1 = Π1. We call the

last such policy π1, and by construction π1 ∈ ΠK
2 . By recursively continuing in this

fashion we construct πn ∈ Πn for n = 1, 2, . . .. From the construction of πn, we can

see that it satisfies properties (a), (b) and (c) above.

For any value of n, this sequence of policies defines a limiting policy π∗ that agrees

with πn until time n. Thus π∗ acts similar to πMB at all times and dominates all the

previous policies, including π.

Remark: The optimality of MB policies is intuitively apparent; any such policy
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will tend to reduce the probability that any server idles. This is because the MB

policies distribute the servers among the longest connected queues in the system and

try to keep packets spread in a “uniform” manner among all the queues. The MB

policies also outperform a Longest Connected Queue (LCQ) policy which assigns all

K servers to the longest connected queue at each time slot. �

2.7 The Least Balancing Policies

The Least Balancing (LB) policies are the server allocation policies that at every

time slot (n = 1, 2, . . .), choose a packet withdrawal vector y(n) ∈ Y(x,g) that

“maximizes the differences” between queue lengths in the system (i.e., maximizes

κn(π) in Equation (2.10)). In other words, if ΠLB is the set of all LB policies and

ΠWC is the set of all work conserving policies then

ΠLB =
{
π : argmax

y(n)∈Y(x,g)

κn(π), π ∈ ΠWC , ∀n
}

(2.51)

The maximization of the imbalance index can be achieved by serving packets from

the shortest nonempty queues in the system. Such action maximizes the number of

empty queues in the system, thus maximizing the chance that servers are forced to

idle in future time slots because they are connected to empty queues only. This

intuitively suggests that LB policies will be outperformed by any work conserving

policy. Furthermore, a non-work conserving policy can by constructed such that it

will perform worse than LB policies, e.g., a policy that idles all servers. The next

theorem states this fact formally. Its proof is analogous to that of Theorem 2.

Theorem 3. Consider a system of L queues served by K identical servers, under the

assumptions described in Section 2.1.1. A Least Balancing (LB) policy is dominated
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by any arbitrary work-conserving policy when applied to this system, i.e.,

f(Xπ(t)) ≤st f(XLB(t)), ∀ t = 1, 2, . . . (2.52)

for all π ∈ ΠWC and all cost functions f ∈ F .

An LB policy has no practical significance, since it maximizes the cost functions

presented earlier. Intuitively, it should also minimize the system stability region

and hence the system throughput. However, it is interesting to study the worst

possible policy behavior and to measure its performance. The LB and MB policies

provide lower and upper limits to the performance of any work-conserving policy.

Furthermore, the performance of any policy can be measured by the deviation of its

behavior from that of the MB and LB policies.

2.8 MB and LB Approximate Implementation Al-

gorithms

In this section, we present two policies that approximate the behavior of the MB and

LB policies respectively. We present a feasible implementation algorithm for each of

the two policies. These algorithms can be used as approximate implementations for

the MB and LB policies in practical and simulated systems.

2.8.1 Approximate Implementation of MB Policies

We introduce the Least Connected Server First/Longest Connected Queue

(LCSF/LCQ) policy, a low-overhead approximation of an MB policy, with O(L×K)

computational complexity. We show that it results in a feasible withdrawal vector.

The policy is stationary and depends only on the current state (X(n),G(n)) during
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time slot n.

The LCSF/LCQ implementation during a given time slot is described as follows:

The least connected server is identified and is allocated to its longest connected queue.

The queue length is updated (i.e., decremented). We proceed accordingly to the

next least connected server until all servers are assigned. In algorithmic terms, the

LCSF/LCQ policy can be described/implemented as follows:

Recall that Qj denotes the set of all queues that are connected to server j at time slot

t. Let Q[i] be the ith element in the sequence (Q1, . . . ,QK), when ordered in ascending

manner according to their size (set cardinality), i.e., |Q[l]| ≥ |Q[m]| if l > m. Ties are

broken arbitrarily. Then under the LCSF/LCQ policy, the K servers are allocated

according to the following algorithm:

Algorithm 2 (LCSF/LCQ Implementation).

1. for t = 1, 2, . . . do
{

2. Input: X(t),G(t). Calculate Q[l], l = 1, . . . , K.

3. X′ ←− X(t), Y ←− 0, Q←− 0

4. for j = 1 to K
{

; allocate servers sequentially

5. Q[j] = min

(
l : l ∈

{
argmax
k:k∈Q[j]

(X ′k|X ′k > 0)

})
6. for i = 1 to L

{
7. Yi = Yi + 1{i=Q[j]}

8. X ′i = Xi(t)− Yi
} }

9. Output: y(t)←− Y,q(t)←− Q ; report outputs

10.
}

; End of Algorithm 2.

Note that in line 5 of Algorithm 2, if the set Q[j] is empty, then the argmax returns
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the empty set. In this case, the jth order server will not be allocated (i.e., will be

idle during time slot t). Algorithm 2 produces two outputs, when it is run at t = n:

y(n) and q(n) as shown in line 9 of the algorithm. In accordance to the definition

of a policy in Equation (2.9), the LCSF/LCQ policy can be formally defined as the

sequence of time-independent mappings u(x(n),g(n)) that produce the withdrawal

vector y(n) described in line 9 above. The following lemma asserts that the mapping

defines feasible controls.

Lemma 8. The policy obtained from applying Algorithm 2 results in a feasible with-

drawal vector at every time slot n and any state (x(n),g(n)).

Proof. Let y(n) and q(n) denote the outputs of Algorithm 2; the inputs are

(x(n),g(n)). Let V(n) be the matrix with elements:

Vij(n) = 1{i=qj(n)} · gi,j(n). (2.53)

We must show that the output y(n) can be written as

y(n) = V(n) · IK (2.54)

and that V(n) satisfies the feasibility constraints (2.2) and (2.3).

From Algorithm 2, line 5, it can be seen that for every server [j], only the set

of queues that are connected to server [j] are considered as candidates for allocating

this server. Therefore, Vi[j](n) = 1 is true only when gi,[j](n) = 1 and 1{i=q[j](n)} = 1

are true, establishing Equation (2.53). From Equations (2.54) and (2.3) we can easily

see that

y(n) ≤ x(n) (2.55)

is a sufficient condition for Inequality (2.3) to hold. Note that queue i will be selected

in Algorithm 2, line 5 (to be served by server [j]) only if its current size X ′i is strictly
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positive. This will ensure that the number of servers allocated to any queue is no larger

than the number required to empty that queue. Therefore, yi(n) ≤ xi(n), i = 1, . . . , L,

proving Inequality (2.55).

Constraints (2.2) are satisfied. To prove that, fix a server [j]; the initialization in

step 3 assigns this server to the dummy queue. Observe that even though the inner

for-loop in Algorithm 2 is executed L + 1 times, the indicator function 1{i=Q[j]} in

line 7 is nonzero for only one value of i ∈ {0, 1, . . . , L}; each server is allocated to one

queue only, either the dummy queue or the queue with the minimum index out of the

outcome of the argmax function in line 5 of Algorithm 2. Therefore the statement

L∑
i=0

1{i=q[j](t)} = 1

is true for all j, proving equality (2.2).

Although allocating the available servers to their longest connected queues in the

order specified by Algorithm 2 may not be “most balancing” in some occasions, the

LCSF/LCQ is expected to perform very close to any MB policy.

Lemma 9. LCSF/LCQ is not an MB policy.

Proof. To prove lemma 9 we present the following counter example. Consider a system

with L = 4 and K = 7. At time slot n the system has the following configuration:

The queue state at time slot n is x(n) = (5, 5, 5, 4). Servers 1 to 6 are connected

to queues 1, 2 and 3 and server 7 is connected to queues 1 and 4 only.

Under this configuration, we can show that the LCSF/LCQ algorithm will result

in x̂(n) = (0, 2, 3, 3, 4) (where the first element represents the dummy queue that

by assumption holds no real packets) and κn(LCSF/LCQ) = 18. A policy π can

be constructed that selects the feasible server allocation q = (1, 2, 3, 1, 2, 3, 4) which

yields the state x̂(n) = (0, 3, 3, 3, 3) and κn(π) = 12 < κn(LCSF/LCQ). Therefore,

the LCSF/LCQ does not belong to the class of MB policies.
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The LCSF/LCQ policy is of particular interest for the following reasons: (a)

It follows a particular server allocation ordering (LCSF) to their longest connected

queues (LCQ) and thus it is closely related to Algorithm 1, (b) the selected server

ordering (LCSF) and allocation (LCQ) intuitively attempt to maximize the opportu-

nity to target and reduce the longest connected queue in the system thus minimizing

the imbalance among queues, and (c) as we will see in Section 2.9, the LCSF/LCQ

performance is statistically indistinguishable from that of an MB policy (implying

that the counterexamples similar to the one in Lemma 9 proof has low probability of

occurrence under LCSF/LCQ system operation).

2.8.2 Approximate Implementation of LB Policies

In this section, we present the MCSF/SCQ policy as a low complexity, easy-to-

implement approximation of LB policies. We also provide an implementation al-

gorithm for MCSF/SCQ using the sequential server allocation principle that we used

in the previous algorithms.

The Most Connected Server First/Shortest Connected Queue (MCSF/SCQ) pol-

icy is the server allocation policy that allocates (in a sequential manner) each one

of the K servers to its shortest connected queue (not counting the packets already

scheduled for service) starting with the most connected server first.

The MCSF/SCQ implementation algorithm is analogous to Algorithm 2 except

for lines 4 and 5 which are described next:
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Algorithm 3 (MCSF/SCQ Implementation).

1. for t = 1, 2, . . . do
{

...

4. for j = K to 1
{

; Servers in descending order

5. Q[j] = min

(
l : l ∈

{
argmin
k:k∈Q[j]

(X ′k|X ′k > 0)

})
...

10. ; End of Algorithm 3.

Comments analogous to those valid for Algorithm 2 are also valid for Algorithm 3.

2.9 Performance Evaluation and Simulation Re-

sults

We used simulation to study the performance of the system under these two policies

and to compare against the system performance under several other policies. The

metric we used in this study is EQ , E(
∑L

i=1Xi), the average of the total number

of packets in the system.

We focused on two groups of simulations. In the first, we evaluate the system

performance with respect to number of queues (L) and servers (K) as well as channel

connectivity (Figures 2.3 to 2.11). Random arrivals to queues are assumed to be i.i.d.

Bernoulli. In the second group of simulations (Figures 2.12 to 2.14) we consider batch

arrivals with random (uniformly distributed) burst size.

The policies used in this simulation are: LCSF/LCQ, as an approximation of an

MB policy; MCSF/SCQ, as an approximation of an LB policy. An MB policy was
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implemented following Algorithm 1 and its performance was indistinguishable from

that of the LCSF/LCQ. Therefore, in the simulation graphs the MB and LCSF/LCQ

are represented by the same curves. Other policies that were simulated include the

randomized, Most Connected Server First/Longest Connected Queue (MCSF/LCQ),

and Least Connected Server First/Shortest Connected Queue (LCSF/SCQ) policies.

The randomized policy is the one that at each time slot allocates each server, randomly

and with equal probability, to one of its connected queues. The MCSF/LCQ policy

differs from the LCSF/LCQ policies in the order that it allocates the servers. It

uses the exact reverse order, starting the allocation with the most connected server

and ending it with the least connected one. However, it resembles MB policies in

that it allocates each server to its longest connected queue. The LCSF/SCQ policy

allocates each server, starting from the one with the least number of connected queues,

to its shortest connected queue. The difference from an MB policy is obviously

the allocation to the shortest connected queue. This policy will result in greatly

unbalanced queue lengths and hence a performance that is closer to the LB policies.

Figure 2.3 shows the average total queue occupancy versus arrival rate under the

five different policies. The system in this simulation is a symmetrical system with 16

parallel queues (L = 16), 16 identical servers (K = 16) and i.i.d. Bernoulli queue-to-

server (channel) connectivity with parameter p = P [Gi,j(t) = 1] = 0.2.

The curves in Figure 2.3 follow a shape that is initially almost flat and ends

with a rapid increase. This abrupt increase happens at a point where the system

crosses a “stability threshold”. In this case, the queue lengths in the system will grow

fast and the system becomes unstable. The graph shows that LCSF/LCQ, the MB

policy approximation outperforms4 all other policies. It minimizes EQ and hence

the queuing delay. We also noticed that it maximizes the system stability region and

499% confidence intervals are very narrow and would affect the readability of the graphs and
therefore are not included.
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Figure 2.3: Average total queue occupancy, EQ, versus load under different policies,
L = 16, K = 16 and p = 0.2.

hence the system throughput as well. As expected, the performance of the other three

policies lies within the performance of the MB and LB policies.

The MCSF/LCQ and LCSF/SCQ policies are variations of the MB and LB policies

respectively. The performance of MCSF/LCQ policy is close to that of the MB policy.

The difference in performance is due to the order of server allocation. On the other

hand, the LCSF/SCQ policy shows a large performance improvement on that of the

LB policy. This improvement is a result of the reordering of allocations of servers.

Figure 2.3 also shows that the randomized policy performs reasonably well. More-

over, its performance improves as the number of servers in the system decreases, as

the next set of experiments shows.

2.9.1 The Effect of The Number of Servers

In this section, we study the effect of the number of servers on policy performance.

Figures 2.4 (K = 8) and 2.5 (K = 4) show EQ versus arrival rate per queue under

the five policies, in a symmetrical system with L = 16 and p = 0.2. Comparing these
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Figure 2.4: Average total queue occupancy, EQ, versus load, L = 16, K = 8 and
p = 0.2.

two graphs to the one in Figure 2.3, we notice the following:

First, the performance advantage of the LCSF/LCQ (an hence of an MB policy)

over the other policies increases as the number of servers in the system increases.

The presence of more servers implies that the server allocation action space is larger.

Selecting the optimal (i.e., MB) allocation, over any arbitrary policy, out of a large

number of options will produce better performance as compared to the case when the

number of server allocation options is reduced.

Second, the stability region of the system becomes narrower when less servers are

used. This is true because fewer resources (servers) are available to be allocated by

the working policy in this case.

Finally, we notice that the MCSF/LCQ performs very close to the LCSF/LCQ

policy in the case of K = 4. Apparently, when K is small, the order of server

allocation does not have a big impact on the policy performance.
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Figure 2.5: Average total queue occupancy, EQ, versus load, L = 16, K = 4 and
p = 0.2.

2.9.2 The Effect of Channel Connectivity

In this section we investigate the effect of channel connectivity on the performance

of the five policies. Figures 2.6 and 2.11 show this effect under two different setups

with respect to L and K. We can make the following observations:

First, we notice that for larger channel connection probabilities (p ≥ 0.9), the

effect of the policy behavior on the system performance becomes less significant.

Therefore, the performance difference among the various policies is getting smaller.

The LCSF/LCQ policy still has a small advantage over the rest of the policies, even

though statistically indistinguishable. MCSF/SCQ continues to have the worst per-

formance. As p increases, the probability that a server will end up connected to a

group of empty queues will be very small regardless of the policy in effect. In fact,

when the servers have full connectivity to all queues (i.e., p = 1.0) we expect that

any work conserving policy will minimize the total number of packets in a symmet-

rical homogeneous system of queues. Therefore, any (work-conserving) policy will be

optimal in a system with full connectivity.



60

Second, from all graphs we observe that there is a maximum input load that

results in a stable system operation (maximum stable throughput). An upper bound

(for stable system operation) for the arrival rate α for each queue can be shown to be

α <
K

L

(
1− (1− p)L

)
(2.56)

In other words, the average number of packets entering the system (αL) must be

less than the rate they are being served. When p = 1.0, the stability condition in

Inequality (2.56) will be reduced to αL < K, which makes intuitive sense.

Finally, we noticed that the MCSF/LCQ policy performs very close to the

LCSF/LCQ policy. However, its performance deteriorates in systems with higher

number of servers and lower channel connectivity probabilities. It is intuitive that

with more servers available, the effect of the order of server allocations on perfor-

mance will increase. Since MCSF/LCQ differs from LCSF/LCQ only by the order of

server allocation, therefore, more servers implies larger performance difference. Also,

the lower the connectivity probability, the higher the probability that a server will

end up with no connectivity to any nonempty queue, and hence be forced to idle.

2.9.3 Batch Arrivals With Random Batch Size

We studied the performance of the presented policies in the case of batch arrivals

with uniformly distributed batch size, in the range {1, . . . , u}. Figures 2.12–2.14

show EQ versus load for three cases with u = 2, 5, 10, and hence average batch sizes

1.5, 3, and 5.5. The MB policy clearly dominates all the other policies. However,

the performance of all the policies (including the MB policy) deteriorates when the

arrivals become burstier, i.e., the batch size increases. The performance of the other

policies, including the LB policy approaches that of the LCSF/LCQ policy as the

average batch size increases.
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Figure 2.6: Average total queue occupancy, EQ, versus load under different policies,
L = 8, K = 4 and p = 0.3.
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Figure 2.7: Average total queue occupancy, EQ, versus load under different policies,
L = 8, K = 4 and p = 0.5.
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Figure 2.8: Average total queue occupancy, EQ, versus load under different policies,
L = 8, K = 4 and p = 0.9.
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Figure 2.9: Average total queue occupancy, EQ, versus load under different policies,
L = 12, K = 4 and p = 0.3.
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Figure 2.10: Average total queue occupancy, EQ, versus load under different poli-
cies, L = 12, K = 4 and p = 0.5.
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Figure 2.11: Average total queue occupancy, EQ, versus load under different poli-
cies, L = 12, K = 4 and p = 0.9.
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Figure 2.12: Average total queue occupancy, EQ, versus load, batch arrivals, L =
16, K = 16 and p = 0.3; batch size =U(2).
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Figure 2.13: Average total queue occupancy, EQ, versus load, batch arrivals, L =
16, K = 16 and p = 0.6; batch size =U(5).



65L=16, K=16, p=0.8, Batch Size=U(10)

10

100

1000

0.495 0.605 0.715 0.825 0.935

Arrival Rate per Queue (Packets/slot)

To
ta

l Q
ue

ue
s 

O
cc

up
an

cy
 (P

ac
ke

ts
)

MB Policy
MCSF/LCQ
Randomized Policy
LCSF/SCQ
LB Policy

Figure 2.14: Average total queue occupancy, EQ, versus load, batch arrivals, L =
16, K = 16 and p = 0.8; batch size =U(10).

2.9.4 Correlated Arrivals

The graphs in Figures 2.15–2.17 show the effect of correlation in the arrivals to each

queue (the arrivals to different queues still being i.i.d.) on the different policies

performance. The correlation was generated in the simulation using the following

technique:

We define the random sequence Un, n = 0, 1, . . . where the initial state U0 is

a uniformly distributed random variable in [0, 1], i.e., U0 ∼ U [0, 1]. Let Vn ∼

U [−ci, ci], ∀n = 0, 1, . . . be another uniformly distributed random sequence, where

0 < ci ≤ 0.5 is the correlation interval. Then Un+1 is given by

Un+1 =< Un + Vn >

where < A > returns |A mod 1|. The amount of correlation in this case depends on

the value of ci. The larger this value is the less the correlation between the elements

of the resulted sequence. If ci = 0.5 then there is no correlation between the sequence
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Figure 2.15: Average total queue occupancy, EQ, versus load, correlated arrivals,
L = 16, K = 16 and p = 0.2; correlation interval =0.2.

elements. The random variables Vn, ∀n = 0, 1, . . . are computed as follows:

V n = (2 · vn − 1) · ci (2.57)

where vn ∼ U [0, 1] is a uniformly distributed random variable that is generated for

every time n. Now let αi be the arrival rate to queue i, and let the arrival process to

queue i be the following

Zi(n) = 1{Un≥αi}, ∀n = 1, 2, . . . (2.58)

In this case the arrivals to queue i will be correlated in time. The amount of

correlation between arrivals in consecutive time slots depends on the parameter ci.

The simulation results show that the higher correlation has adverse effect on the

performance of all policies. As Figures 2.15–2.17 show, for higher correlation (ci =

0.05) the system stability region is reduced and the total number of packets in the

system is increased compared to the other cases (i.e., when ci = 0.1 and ci = 0.2).

In all cases the simulation results show that an MB policy (namely the LCSF/LCQ)

still outperforms the other policies under study. They also show that an LB policy

(MCSF/SCQ) performs the worst among the policies we studied.
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Figure 2.16: Average total queue occupancy, EQ, versus load, correlated arrivals,
L = 16, K = 16 and p = 0.2; correlation interval =0.1.
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Figure 2.17: Average total queue occupancy, EQ, versus load, correlated arrivals,
L = 16, K = 16 and p = 0.2; correlation interval =0.05.



Chapter 3

Optimal Multi-Server Allocation to

Parallel Queues With Random

Connectivity and Retransmissions

In this chapter, we investigate an optimal scheduling problem for a discrete-time sys-

tem of two parallel queues with infinite capacity, sharing two symmetrical servers.

This model can be used to study a variety of scheduling problems in wireless net-

works. At any time slot, a queue can be served by one or two connected servers;

the queue-server connectivity is assumed to be random and modeled by a two-state

Markov chain. The arrivals to each queue are assumed to be independent and iden-

tically distributed. A scheduled packet completes service successfully with a given

probability. Otherwise, it has to be retransmitted in a later time slot. The opti-

mal scheduling policy is defined as the server allocation policy that minimizes, in a

stochastic ordering sense, the total number of packets in the system. We prove, using

a dynamic coupling method, that a “Most Balancing” policy, a policy that attempts

to balance the lengths of the two queues at every time slot, is optimal. We also

compare the performance of the optimal policy to that of a few other policies via

simulations.
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3.1 Introduction

In this chapter, we investigate an optimal queuing control problem similar to the one

in Chapter 2 with the addition of preemptive service completion and the ability of

retransmission. In such models, time is slotted in constant length slots. The packets

in this system are assumed to have constant length, equal to one time slot. In order

to capture noise, interference, etc. effects, models with retransmissions assume that

a scheduled packet completes its service with a given probability. The packet has to

be retransmitted if it does not complete service.

The objective of this work is to identify the optimal server allocation policy that

minimizes, in a stochastic sense, the total queue occupancy (and hence queuing delay)

in a queuing system with two servers, random queue-server connectivity and retrans-

missions. Our main contribution is to prove, using stochastic coupling argument, that

a Most Balancing policy, a policy that attempts to balance the lengths of the two

queues (defined precisely in Section 2.4), is optimal.

3.2 Model Description

We consider the system of two queues served by two servers, as depicted in Figure

3.1. We define the following random sequences to be used in this chapter:

• Xi = {Xi(t)}∞t=1, where Xi(t), i = 1, 2, is the length of queue i at time t.

• Zi = {Zi(t)}∞t=1, where Zi(t), i = 1, 2, is the number of exogenous arrivals to

queue i at time t.

• µj = {µj(t)}∞t=1, j ∈ {1, 2}, where µj(t) = 1 (resp. 0) denotes that a packet

served by server j completes (resp. does not complete) service at time t.
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Figure 3.1: The queuing model under consideration.

• Gi,j = {Gi,j(t)}∞t=1, i, j ∈ {1, 2}, where Gi,j(t) = 1 (resp. 0) denotes that queue

i is connected (resp. not connected) to server j at time t.

• Vi,j = {Vi,j(t)}∞t=1, i, j ∈ {1, 2}, where Vi,j(t) = 1 (resp. 0) if server j is serving

(resp. not serving) a packet from queue i during time slot t. Vi,j represents the

control actions taken by the scheduling policy (to be defined precisely in the

next section).

• W = {W (t)}∞t=1, where W (t) =
∑2

i=1Xi(t) is the total number of packets in

the system at time t.

Upon successful completion of service, the packet is removed from (the head of) its

queue; otherwise, the packet remains at the head of its queue and will be retransmitted

at a later time slot, when a connected server is allocated to its queue. Note that the

system can serve up to two packets (that belong to one or both queues) at each time

slot.

We make the following statistical assumptions. The arrival sequences (Zi, i = 1, 2)

are assumed to be i.i.d. Bernoulli, with parameter P [Zi(t) = 1] = α, independent of i.

For fixed i, j, the connectivity sequence Gi,j is assumed to be a 2-state Markov chain,

whose transition probabilities do not depend on i, j. The packet service completion

sequences µj are assumed to be i.i.d. Bernoulli, with P [µj(t) = 1] = Psc, independent

of j. It is further assumed that the connectivity, arrival and service completion

sequences are independent of each other.
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Let [e]+ equal e if e ≥ 0 and 0 otherwise. Assuming unlimited buffer capacity, the

length of queue i evolves according to the following equation for all t ∈ T = {1, 2, . . .}

Xi(t)=

[
Xi(t−1)−

2∑
j=1

Vi,j(t) ·Gi,j(t) · µj(t)

]+

+ Zi(t) (3.1)

By convention and during any time slot t, events in this system happen in the

following order: the scheduler observes the channel state Gi,j(t). It sets the values of

Vi,j(t) depending on the information it has about the history of the system state. If a

scheduled packet service (by server j) is completed (i.e., if µj(t) = 1) then the packet

is removed from the system, otherwise it remains in its respected queue. Arrivals are

added after packet removals. With this interpretation, Equation (3.1) captures the

operations of a wireless packet transmission network.

3.3 Optimal Server Allocation Policies

In the system depicted in Figure 3.1, a packet scheduling policy π is a rule that at

each time slot t determines how servers are allocated to queues. More precisely, a

policy π determines the value of the four variables Vi,j(t), i = 1, 2, j = 1, 2. We

assume that at the beginning of each time slot, the policy has complete knowledge

of the history of the “system state” (i.e., the queue connectivity and lengths) up to

time t.

Let A = {(0, 0), (0, 1), (1, 0), (1, 1), (0, 2), (2, 0)}. Denote by π(t) = (a, b) the fact

that at time slot t the policy π allocates a =
∑2

j=1 V1,j(t) servers to queue 1 and

b =
∑2

j=1 V2,j(t) servers to queue 2. We say that the policy π is feasible if it “does

not allocate more than the system capacity”, i.e., if

2∑
i=1

2∑
j=1

Vi,j(t) ≤ 2, ∀t ∈ T (3.2)
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We call the set Π, of all policies that satisfy Inequality (3.2), the set of all feasible

policies, over which we will determine the optimal one.

3.3.1 Definition of Most Balancing Policies

A “Most Balancing” (MB) policy, πMB, is any (feasible) work-conserving packet

scheduling policy that at every time slot t selects a control that minimizes the dif-

ference between the two queue lengths. Let X̂i(t) = Xi(t) −
∑2

j=1 Vi,j(t) denote the

length of queue i after subtracting the number of servers allocated to queue i under

the policy π. Let ΠWC be the set of all work conserving packet scheduling policies,

then πMB can be defined via1:

πMB = argmin
π∈ΠWC

∣∣∣X̂1(t)− X̂2(t)
∣∣∣ (3.3)

We can easily check that π∗ is a MB policy if it allocates the available servers to

the two longest connected queues at time slot t as follows:

π∗(t) =


(1, 1) if X1(t− 1) = X2(t− 1) > 0,

(2, 0) if X1(t− 1) > X2(t− 1) > 0,

(0, 2) if X2(t− 1) > X1(t− 1) > 0.

(3.4)

When a server is connected to one nonempty queue only then the server is allocated

to that queue. When any server is disconnected then idling it is the only feasible

action.

Let WMB,Wπ denote the sequences of total number of packets in the system

under policies πMB and π respectively. The optimal policy that we investigate in this

section is the policy that minimizes the total number of packets in the system in a

1X̂i(t) depends on the policy π through the control Vi,j(t).
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stochastic ordering sense (the reader may refer to [20] for the definition of stochastic

ordering). Minimizing this sequence will also minimize the average queuing delay

according to Little’s law and since stochastic ordering implies the ordering of the

expected values. The following theorem states the optimality of the MB policy among

all policies that belong to the class Π. The full proof of Theorem 4 is provided in

Section 3.4.

Theorem 4. An MB policy minimizes, in the stochastic ordering sense, the sequence

of total number of packets in the system, i.e.,

WMB ≤st Wπ, ∀π ∈ Π. (3.5)

3.3.2 Implementation Algorithm for MB Policies

The definition of an MB policy in Equation (3.3) is not constructive; moreover, note

that it does not guarantee uniqueness of MB policies. For the system presented in Sec-

tion 3.2, the Least Connected Server First/Longest Connected Queue (LCSF/LCQ)

algorithm allocates the least connected server to its LCQ, updates the queue lengths

and allocates the other connected server to its LCQ (refer to Section 2.8.1). We

can easily verify that Equation (3.4), and hence Equation (3.3), is satisfied by the

LCSF/LCQ algorithm. Therefore, LCSF/LCQ is an exact implementation of an MB

policy, with low computational complexity compared to brute force search through

the complete set of feasible policies Π.

3.3.3 Least Balancing Policies

We define a “Least Balancing” (LB) policy, πLB, as the work-conserving packet

scheduling policy that at every time slot selects a control that maximizes the dif-

ference between the two queues, i.e.,
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πLB = argmax
π∈ΠWC

∣∣∣X̂1(t)− X̂2(t)
∣∣∣ (3.6)

Intuitively, this policy increases the probability that the scheduler will end up

with empty connected queue(s) and hence be forced to idle. Let WLB denote the

sequence of total number of packets in the system under πLB. This policy performs

the worst among all work-conserving policies for the scheduler model presented in the

previous section. The following theorem states this result formally:

Theorem 5. Among all work conserving policies, the LB policy maximizes, in the

stochastic ordering sense, the sequence of total number of packets in the system, i.e.,

Wπ ≤st WLB, ∀π ∈ ΠWC . (3.7)

The proof of Theorem 5 is analogous to that of Theorem 4.

We present the Most Connected Server First/Shortest Connected Queue

(MCSF/SCQ) algorithm as an implementation of an LB policy. At every time slot,

this algorithm allocates the most connected server to its shortest connected non-empty

queue, updates the queue lengths and then allocates the other connected server to its

shortest connected non-empty queue (refer to Section 2.8.2). It can be easily shown

that this algorithm satisfies Equation (3.6).

3.4 Optimality of MB Policies

The basic idea behind the proof of Theorem 4 is to show that an arbitrary policy π

can be improved by “making it act similar to an MB policy” for at least one time slot.

More precisely, suppose that there exists a (potentially infinite) sequence of instants

t1 < t2 < · · · < ti < · · · , ti ∈ T, T = 1, 2, . . ., such that π(ti) 6= πMB(ti). The idea

is to show that we can construct a policy π1 such that π1(t) = πMB(t), for t ≤ t1



75

and such that Wπ1 ≤st Wπ. Then we can use this technique to create a sequence of

policies, (πn : n = 1, 2, . . .), each of which outperforms π and acts similar to πMB up

to time tn.

We will need the following result to prove Theorem 4. The proof of Lemma 10 is

given in Appendix D.

Lemma 10. Consider an arbitrary policy π, such that π(t) = πMB(t) for all t ≤ τ

for some τ ∈ T ; a policy π̄ can be constructed such that π̄(t) = π(t), for t ≤ τ ,

π̄(t) = πMB(t), for t = τ + 1 and

Wπ̄ ≤st Wπ (3.8)

Proof of Theorem 4. We start by constructing a set of policies, {πi}, using Lemma

10 as follows:

1- For any policy π, construct a policy π1 which acts similar to MB at t = 1

and such that their corresponding total number of packets Wπ and Wπ1 respectively

satisfy

Wπ1 ≤st Wπ

2- Construct a policy π2 that acts similar to π1 at t = 1 and similar to MB at t = 2

such that

Wπ2 ≤st Wπ1

3- For any policy πi we construct a policy πi+1 that acts similar to πi up until

time slot t = i and similar to MB at t = i+ 1 and such that

Wπi+1
≤st Wπi
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4- Repeat the argument in step 3 above m times. The resulting policies πi, i =

1, 2, . . . ,m agree with MB for the time slots t = 1, 2, . . . , i and their corresponding

total number of packets sequences define a monotonic ordering sequence that satisfy

the following

Wπm ≤st Wπm−1 ≤st . . . ≤st Wπ1 ≤st Wπ (3.9)

For an increasing value of m, the sequence in (3.9) defines a limiting policy π∗

that acts similar to MB at all time slots and dominates any arbitrary policy π in the

sense that

Wπ∗ ≤st Wπ

Theorem 4 follows from the fact that WMB ≤st Wπ∗ since π∗ ≡ πMB by construction.

3.5 Simulation Results

In this section, we present some simulation results that help understand the behavior

of MB policies for the system described in Section 3.2. The metric we used in the

simulation is denoted by EQ, the long-run average of the total number of queued

packets in the system. The 99% confidence interval was computed for all results and

is shown (when relevant) in the graphs below.

Similar to Chapter 2, we consider five policies in this simulation. They are: MB

(i.e., LCSF/LCQ), LB (i.e., MCSF/SCQ), randomized, MCSF/LCQ, and LCSF/SCQ

policies. The MB/LB policies provide “upper and lower” performance limits, in the

sense of Theorems 4 and 5. The definitions of these five policies can be found in

Section 2.9.

Figures 3.2 and 3.3 are samples of the simulation results we obtained. They depict
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Figure 3.2: EQ versus load under different policies; p = 0.4 and Psc = 0.85.

EQ, the average total number of packets queued in the system, versus the offered load

for different policies with channel connection probability p = 0.4 and packet service

completion probabilities Psc = 0.85 and Psc = 0.95 respectively.

The above figures show that the MB policy outperforms the other policies. How-

ever, the performance enhancement of the MB compared to MCSF/LCQ is very small

and is within the boundaries of the confidence interval. Hence, we can say that the

MCSF/LCQ policy performance is comparable to the MB policy. This conclusion

makes an intuitive sense since both policies take the same action most of the time.

Figure 3.4 depicts the behavior of the MB policy for different values of Psc. The

graph clearly shows the effect of the service completion probability on the policy

performance. The higher the value of Psc, the better the MB policy performs.
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Figure 3.3: EQ versus load under different policies; p = 0.4 and Psc = 0.95.
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Figure 3.4: EQ versus load under an MB policy for different Psc; p = 0.4.



Chapter 4

Optimal Scheduling in HSDPA Networks:

Dynamic Programming Approach

In this chapter, we present an analytic model and a methodology to determine the

optimal packet scheduling policy in a High Speed Downlink Packet Access (HSDPA)

system. The optimal policy is the one that maximizes cell throughput while main-

taining a level of fairness between the users in the cell. A discrete stochastic dynamic

programming model for the HSDPA downlink scheduler is presented. Value itera-

tion is then used to solve for optimal scheduling policy. In this chapter, we use a

FSMC (Finite State Markov Channel) to model the HSDPA downlink channel. A

near-optimal heuristic scheduling policy is developed. Simulation is used to study the

performance of the resulted heuristic policy and compare it to the computed optimal

policy.

4.1 Introduction

The rapid development in wireless technology enabled the implementation of services

which are so far available only on IP-based networks. Each one of these services has

its own Quality of Service (QoS) requirements, in terms of bandwidth (Web browsing

79
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service for instance), or end-to-end delay for real-time applications such as voice over

IP (VoIP). The increasing demand on such services triggered the evolution of third

generation wireless networks toward IP-based, packet-switched networks. The new 3G

systems (e.g., HSDPA, CDMA2000) were designed to have an IP-based infrastructure

that enables the reuse of the available IP resources and technologies and to reduce

the operational system cost [43]. Nevertheless, the added packet switching capability

introduced new challenges that have to be dealt with.

One of the challenges is to meet the QoS requirements of the offered services.

Wireless links in general have different channel characteristics compared with wireline

links. They are subject to time- and location-dependent signal attenuation, fading

and interference, which will result in bursty errors and time varying channel capacities.

Therefore, the direct application of the available wireline QoS methods is impractical.

Furthermore, it is extremely difficult to provide hard (absolute) QoS guarantees and

only soft QoS (Differentiated Services) can be implemented [44]. Packet scheduling

is one of the most important QoS control approaches for wireless communications

[45]. The scheduling algorithms in wireless systems should take into consideration

the variation in channel characteristics, make use of the user diversity to maximize

throughput, and aim at providing all users with a fair share of the network resources.

High-Speed Downlink Packet Access (HSDPA) is a 3G wireless network that pro-

vides high cell peak data rate (up to 14.4 Mbps for Revision 5) on the downlink

by incorporating Adaptive Modulation and Coding (AMC), Hybrid ARQ and fast

scheduling [46], [47]. The development of this system represents an important step

in the effort to establish a ubiquitous wireless access paradigm that provides a host

of services in a cost-effective, high-speed and reliable manner. This motivated our

initial interest in this problem.

Scheduling in HSDPA systems involves not only Transmission Time Interval

(TTI) allocation but also code allocation. On the downlink, HSDPA uses Code and
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Time Division Multiplexing (CDM/TDM) and has 15 codes to be allocated per TTI.

Most of the available work in scheduler design (e.g. [44], [48] and [49]) is based on the

intuition and creativity of the designers. The designer usually selects an optimization

criterion that represents some important performance measure (in her/his opinion),

builds an algorithm based on that criterion and then tries to establish confidence in it

using backward analysis or simulation. Such an approach can be described as a pro-

cedural approach. This, most likely, will result in a suboptimal algorithm at the best,

that performs well in some scenario and poorly in others. This happens especially

in systems such as HSDPA, since it uses a complex set of features such as Hybrid

Automatic Repeat reQuest (H-ARQ) and Adaptive Modulation and Coding (AMC).

These features introduced many new and interrelated tuning parameters which can-

not be grasped by a single selected optimality criterion. Another observation is the

lack of work on schedulers that dynamically allocate codes as well as time slots to the

users in an HSDPA system. Scheduling related processes in this system spans across

both layer 1 (physical) and layer 2 (media access control). Hence, a cross-layer design

is desirable for such systems [50].

In this chapter, we present a novel approach for scheduling in 3G systems. Using

stochastic dynamic programming, we built and analyzed a realistic model of a HSDPA

scheduler. This model introduces a simplifying abstraction of the real scheduler which

estimates system behavior under different operating conditions and describes the role

of various system components. This model can be readily solved numerically to obtain

the optimal code allocation policy for a given objective function.

This approach can be considered as a unified approach since the same model can

be used when solving for different objective functions by simply changing the reward

associated with the model to reflect a new optimality objective. Different objective

functions may result in different optimal policies. For example, if the objective is to

maximize the cell throughput, then a greedy Max C/I scheduler can achieve this goal
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by favoring the user with the best channel conditions. However, this policy will result

in starvation of the users with poor channel quality. On the other hand, Max-min

scheduler will divide the resources fairly between all the users in the cell to achieve

fairness at the expense of cell throughput. The optimal policy lies somewhere in the

middle and depends on what degree of fairness is required. The proposed approach

produces an optimal scheduling policy in the sense that it maximizes cell throughput

for a given fairness. It provides an elegant analytic foundation for scheduling problems

and may be used as a benchmarking tool for other schedulers or to test against

heuristics.

The presented approach can also be used to tackle optimal packet scheduling in

the most recent releases of 3GPP, e.g., Long Term Evolution (LTE). These systems

use the same basic components at the link layer level (e.g., HARQ and AMC) that

are used in HSDPA systems. They also use other new technologies in the physical

layer (that was not used in HSDPA systems) to increase downlink/uplink data rates

up to 150Mbps/50Mbps, namely orthogonal frequency-division multiplexing (OFDM)

and multiple-input multiple-output (MIMO) antenna systems [51], [52]. The packet

scheduler in these systems is responsible for frequency allocation (frequency carriers

that correspond to OFDM) as well as CDM codes during each TTI [53], [54]. The

model we present here may be extended for an LTE system. For this we need to

modify the feasible actions available to the scheduler to include frequency allocation

during each TTI.

Overall, the contributions of the work presented in this chapter can be summarized

by the following:

1. We provide an analytical approach to model the downlink scheduler in a 3G

HSDPA system. This approach can be extended to other 3G/4G wireless sys-

tems.
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2. Using the theory of Dynamic Programming we present an optimization frame-

work for the determination of the optimal policy for the HSDPA downlink packet

scheduler. The applicability of this framework is demonstrated using a two

user/queue case (in this case the pictorial visualization of the optimal policy

structure is possible).

3. A near-optimal, heuristic policy is proposed, based on the structural properties

of the optimal policy and its dependence on changing system parameters.

4. We conduct a simulation study to quantify the effect of different model param-

eters on the behavior of the optimal policy. We also study the performance of

the proposed heuristic policy and compare it to that of the optimal policy.

4.2 Problem Definition

4.2.1 General Description of HSDPA System

Third generation release R’5 [43] [55], also called High-Speed Downlink Packet Ac-

cess (HSDPA), is an IP-based network that can offer users a high-speed asymmetric

radio link with downlink peak bit rate up to 14.4 Mbps. The HSDPA uses a single

time-shared channel, called High Speed Downlink Shared CHannel (HS-DSCH), per

cell/sector. This channel is divided into 2-ms Transmission Time Intervals (TTI).

Each TTI may be used to transfer packets to one or more users at a rate that de-

pends on their User Equipment (UE) capabilities and needs. The UE can use up to

15 codes simultaneously to achieve higher rate. More than one user can share the

same slot by dividing the available 15 CDM codes between them. In such case, the

scheduler need to choose not only the user/users to be served in the next time slot,

but also the number of codes each user will receive.

The HSDPA system uses Adaptive Modulation and Coding (AMC) technique to
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adapt the transmission rate to the user’s channel conditions. The selected modula-

tion scheme and coding rate are chosen such that a fixed low error rate is achieved

(usually 10%). The erroneous packets will be retransmitted during the next scheduled

TTI using Hybrid ARQ [56]. In this technique, a retransmitted packet will be soft

combined at the receiver with the previous unsuccessful transmitted versions of itself

(i.e., combining the signal energy of multiple retransmissions of the same packet)

to increase its SNR and its detection probability. HSDPA supports two combin-

ing techniques: Chase Combining (CC) and Incremental Redundancy (IR). In CC,

the base station (which is called NodeB in the 3GPP technical specification [43])

retransmits the exact same set of coded symbols of the original packet. Then the

receiver combines the packet energy with the energy of previously received unsuc-

cessful transmissions of this packet. With IR, the same principle is used except that

different redundancy information can be sent (i.e., using different error coding rate) in

every re-transmission. This will result in incremental increase in the coding gain and

hence, fewer retransmissions will be needed (compared to CC). This is particularly

useful when the initial transmission uses high coding rates. However, it increases the

complexity requirements for the UE [57].

Our objective is to investigate a methodology that determines the optimal schedul-

ing regime, controlling the allocation of the time-code resources fairly between all the

active users while maximizing the overall cell throughput. The desired scheduling al-

gorithm should have the following characteristics: channel awareness, fairness and

high-speed resource allocation.

4.2.2 HSDPA Downlink Scheduler Abstraction

The HSDPA downlink channel uses a mix of Time Division Multiplexing and Code

Division Multiplexing:
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• Time is slotted into fixed-length, 2-ms TTIs.

• During each TTI, there are 15 available codes that may be allocated to one or

more users.

During one TTI, the channel capacity associated to a single user depends on the

number of allocated codes and on the channel condition. This is mainly due to the

fact that HSDPA uses AMC to adapt the transmission rate to the current channel

conditions. A mobile user with good channel conditions will experience higher data

rate than the other users.

The diagram in Figure 4.1 depicts a conceptual realization of the HSDPA downlink

scheduler. Different users have separate buffers in the base station (Node-B according
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Figure 4.1: HSDPA scheduler model (downlink)

to 3GPP), and they are competing for the system resources. A channel state mon-

itor/predictor is necessary to monitor current channel conditions of each user and

predict channel states during the next TTI. This information will then be used to

adapt the transmission rate to the expected channel conditions. The arrived Service

Data Units (SDU) are assumed to be segmented by the Radio Link Control (RLC)

into ui fixed size Protocol Data Units (PDU) (for user i) before delivering them to

Node-B. The PDUs then will be classified and inserted into the proper buffers await-

ing transmission to the intended user. RNC is the Radio Network Controller unit

which implements the RLC protocol.
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4.2.3 HSDPA Downlink Channel Model

The wireless channel for the HSDPA system is modeled as a Finite-State Markov

Channel (FSMC) following [58]. The FSMC was proved to be a good model of the

wireless medium and has been shown to be in good agreement with realistic cases

(c.f. [59], [60]). FSMC modeling is done by partitioning the signal-to-noise ratio

(SNR) into finite number of intervals, each representing a state in a Markov Chain.

Assuming that the fading is slow enough then the channel states for consecutive

time epochs are neighboring states. In this case, the model will be reduced into a

discrete-time birth and death process, as shown in Figure 4.2.

0 1 M-1

P01 

P10

P00

P11

Figure 4.2: FSMC model for HSDPA downlink channel.

The FSMC model is a more accurate representation of the wireless channel with

rate adaptation (as it is the case with third generation networks and beyond) than

the traditionally used Gilbert-Elliott two-state channel model.

Depending on the expected SNR state, different modulation and error-correcting

coding rates can be dynamically selected from a set of Modulation and Coding

Schemes (MCS) [61]. The higher the order of the MCS selected the higher the trans-

mission rate. The SNR is mapped directly into MCS and hence into data rates. In

light of this, the states in our channel model will equivalently represent data rate

levels rather than SNR.



87

4.3 Optimal Policy Determination

In this section, we propose an approach, based on Markov Decision Process (MDP),

to find the optimal code allocation policy for the HSDPA downlink scheduler. We

present a general model for this system and suggest a reward function that captures

the objective function.

To describe a system as a MDP model, the states, actions, rewards and transition

probabilities have to be defined first. In our proposed model, time is slotted in

constant intervals of size ∆t. Let T = {1, 2, . . .} denote the set of decision epochs of

the system (it is assumed that the decision epochs are at the beginning of each time

slot, PDUs that arrive during any time slot can only be considered for transmission

in the subsequent time slots). At time t ∈ T , we denote by s(t) and a(s), the system

state and the action taken at that state (to be defined later) respectively. HSDPA

downlink scheduler is modeled by the 5-tuple (T,S, A, Pss′(a), R(s,a)), where S and

A are the state and action spaces, Pss′(a) , Pr(s(t + 1) = s′|s(t) = s,a(s) = a) is

the state transition probability, and R(s,a) is the immediate reward function (to be

introduced shortly) when at state s and taking action a.

4.3.1 Basic Assumptions

There are L active users in the cell. A user i ∈ I = {1, 2, . . . , L} is allocated a

buffer of finite size B. Initially, error-free transmission will be assumed to eliminate

the need for retransmission queues and to reduce the model complexity. Later (in

Section 4.5), the more general problem with retransmission will be examined. SDUs

arrive at the RNC during the current TTI will be segmented by RLC into a fixed

number of PDUs (ui) and delivered to Node-B to be inserted into their respected

buffer at the beginning of the next TTI.

For each user i ∈ I and slot t ∈ T , we define:
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• yi(t) the number of scheduled PDUs,

• xi(t) ∈ X = {0, 1, 2, ..., B} the queue size,

• zi(t) ∈ {0, ui} the number of arriving PDUs per slot.

The SDUs destined to user i arrive at the RNC during one TTI according to a

Bernoulli process with parameter qi. Arrivals are assumed to be independent of the

system state and of each other. The PDU size is chosen to be equal to the minimum

Transport Format and Resource Combination (TFRC) for one code (i.e., one code is

needed to transmit one PDU when the channel is in state 1). The scheduler can assign

the available 15 codes as chunks of c codes at a time to active users in the system. The

chunk size c must divide the total number of codes (15); therefore, c ∈ {1, 3, 5, 15}.

For example, choosing c = 5 means that the policy can assign 0, 5, 10, or 15 of the

available 15 codes to any user at any given TTI. We introduced the chunk size c in

our analysis in order to reduce the action set size and the computational complexity.

At the same time, this formulation enables us to measure the system performance

sensitivity to the resolution of code allocation in HSDPA systems as it will be shown

later.

4.3.2 FSMC State Space

The channel state of user i during time slot t is denoted by γi(t); and its associated

channel state space is the set N = {0, 1, . . . , N − 1}, where N is the total number

of available channel states. N constitutes a subset of the available MCS set recom-

mended by 3GPP. The elements of N were ordered in a way such that γi(t) ∈ N is

directly proportional to the number of PDUs that can be transmitted by user i in

one TTI. This assumption is in good agreement with the corresponding RFC [43].

Furthermore, we assume that user i channel can handle up to γi(t) PDUs per code,

i.e., a value of γi(t) = 2 means that at time t, user i can transmit two PDUs using one
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code and up to 30 PDUs when using all the 15 codes. The state transition probability

Pγiγ′i is assumed known since it can be calculated (from SNR measurements) for any

mobile environment with Rayleigh fading channel [58].

4.3.3 State Space and Action Set

The system state s(t) ∈ S is a vector comprised of multiple state variables represent-

ing the queue sizes and the channel states for the L users. In other words,

s(t) = (x1(t), x2(t), . . . , xL(t), γ1(t), γ2(t), . . . , γL(t)) (4.1)

and the state space of the system, S = {X × N}L, has finite size since the buffers

have finite sizes and the channel state spaces are also finite.

The action space A is the set of all possible actions. The action a(s) ∈ A is

taken when the system is in state s. The action taken at each slot corresponds to

the number of codes allocated to each user. Let D = {0, 1, . . . , 15/c} be the action

space for a single user, where c is the code chunk size (the minimum number of codes

that can be allocated at any given time). For example, if c = 5 then D = {0, 1, 2, 3}.

Let ai(s) ∈ D be the number of code chunks allocated to user i when in state s.

Then the number of codes allocated to user i during time slot t is ai(t)c and the

number of scheduled (for transmission) PDUs from queue i (corresponding to user i)

is yi(t) = ai(t)γi(t)c. In this case, a(s) will be the collection of code allocation to all

users, that is

a(s) = (a1(s), a2(s), . . . , aL(s)) (4.2)
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subject to

L∑
i=1

ai(s) · c ≤ 15, (4.3)

ai(s) ≤
⌈
xi(t)

γi(t)c

⌉
, (4.4)

γi(t) > 0 (4.5)

The constraint in (4.3) means that the policy can not allocate more than the available

15 codes at each time slot. The constraint in (4.4) makes the policy conserving by

allocating no more codes to user i than that required to empty its buffer. The right

side of (4.4) represents the number of code chunks required to empty queue i.

4.3.4 Reward Function

In this subsection, we introduce the reward function used to determine the optimal

allocation policy. As stated previously, the objective is to maximize the throughput

while maintaining fairness between active users. Let the fairness factor, denoted by

σ > 0, be a parameter that reflects the significance of fairness in the optimal policy.

Define x̄ as the average instantaneous size of the L queues in the system at time

t, i.e., x̄ = 1
L

∑L
i=1 xi, (we suppressed the time index to simplify notation). The

reward function R(s,a) will have two components corresponding to two objectives

(throughput and fairness) and it is given by

R(s,a) =
L∑
i=1

yi − σ
L∑
i=1

(xi − x̄) 1{xi=B}

=
L∑
i=1

aiγic− σ
L∑
i=1

(B − x̄) 1{xi=B} (4.6)

where 1{·} is the indicator function. The positive term of the reward relates to the

cell throughput. If the reward is composed of this part only, then the policy will
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always favor the users with good channel conditions. Therefore the users with less

favorable channels will starve; their queues will grow larger and start loosing packets.

We introduced the second term, which guarantees a level of fairness and reduces

dropping probability. Lower σ will result in a policy that favors cell throughput over

fairness, while higher σ has the opposite effect. Overall, R(s,a) will produce a policy

that maximizes cell throughput for a given fairness factor σ.

4.3.5 State Transition Probability

Pss′(a) denotes the probability that choosing an action a at time t when in state s

will lead to state s′ at time t + 1. Using Equations (4.1) and (4.2), Pss′(a) can be

stated as follows

Pss′(a) , Pr(s(t+ 1) = s′|s(t) = s,a(t) = a)

= Pr(x′1, . . . , x
′
L, γ

′
1, . . . , γ

′
L|x1, . . . , xL, γ1, . . . , γL, a1, . . . , aL) (4.7)

The evolution of the queue size (xi) is given by

x′i = min
(
[xi − yi]+ + z′i , B

)
= min

(
[xi − aiγic]+ + z′i , B

)
(4.8)

where, z′i is the number of packets arriving at queue i at t+ 1, [e]+ equals e if e ≥ 0

and 0 otherwise. The channel state γi depends only on the previous channel state,

that is Pr(γ′i|s) = Pr(γ′i|γi) = Pγiγ′i . Accordingly, we can write Equation (4.7) as

follows (refer to Appendix E.1 for detailed derivation of (4.9))

Pss′(a) =
L∏
i=1

(
Pxix′i(γi, ai)Pγiγ′i

)
(4.9)
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where Pγiγ′i is the Markov transition probability of the FSMC. Define W1 and W2 as

follows

W1 = [xi − aiγic]+ + ui

W2 = [xi − aiγic]+

Pxix′i(γi, ai) can be analytically derived using Equation (4.8) and the total proba-

bility law (see Appendix E.2), and is given by the following expression

Pxix′i(γi, ai) =



1 if x′i = xi = B & aiγi = 0,

qi if x′i = xi = B & 0 < aiγic ≤ ui,

qi if x′i = B & xi < B & W1 ≥ B,

qi if x′i < B & x′i = W1,

1− qi if x′i < B & x′i = W2,

0 otherwise.

(4.10)

The first three cases in Equation (4.10) correspond to the boundary

state/condition (i.e., when the queue length reaches the buffer size), while the re-

maining cases correspond to interior states.

4.3.6 Dynamic Programming Formulation

In this work, we investigate an infinite-horizon MDP. We use the total expected dis-

counted reward optimality criterion with discount factor λ, where 0 < λ < 1, in order

to find the policy π among all policies, that maximizes the value function V π(s). Let

V ∗(s) be the maximal discounted value function (i.e., V ∗(s) = supπ V
π(s)), attained
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when applying the optimal policy π∗. Then the following optimality equation (also

known as Bellman equation) is used to characterize the optimal policy [62], [63]:

V ∗(s) = max
a∈A

[R(s,a) + λ
∑
s′∈S

Pss′(a)V ∗(s′)] (4.11)

Value iteration [13] (also known as successive approximation) is used to solve

this model numerically. The first step is to define V0(s) to be an arbitrary bounded

function. Then Vn(s), n > 0 is determined by the following recursion

Vn(s) = max
a∈A

[R(s,a) + λ
∑
s′∈S

Pss′(a)Vn−1(s′)]

Vn converges to V ∗ as n→∞ [14]. For a given ε > 0, the algorithm can be stopped

after n iterations, provided that

‖Vn+1 − Vn‖ < ε(1− λ)/2λ (4.12)

where ‖v‖ = sups∈S |v(s)|. If (4.12) holds, then ‖Vn+1 − V ∗‖ < ε/2, according to [13].

4.4 Two Users with 2-State FSMC

The approach presented earlier was used to model the case when there are two users

(i.e., L = 2) sharing the same cell. The channel for user i is modeled as a two-state

FSMC with transition probability matrix Pi

Pi =

 1− αi αi

βi 1− βi

 (4.13)

The two-user case will yield a policy that is easy to visualize, evaluate, and to
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(a) Symmetrical case
 

 
 
 
(b) P (γ1 = 1) = 0.8 and P (γ2 = 1) =
0.5

 
 
 
 

(c) P (z1 = 5) = 0.8 and P (z2 = 5) = 0.5
 

 
 
 
(d) P (γ1 = 1) = 0.8 and P (γ2 = 1) =
0.3

 
 
 
 
(e) P (z1 = 5) = 0.8 and P (z2 = 5) = 0.3

 
 
 
 
(f) P (z1 = 5) = 0.8, P (z2 = 5) = 0.5,
P (γ1 = 1) = 0.8 and P (γ2 = 1) = 0.5

Figure 4.3: Optimal and heuristic (dotted line) policies for two user case; c = 15
(i.e., 0 or 1 chunks of size 15 codes can be assigned to a user), arrival batch size
u = 5.
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deduct conclusions for the optimal policy. It also serves as a verification for the

proposed approach, since it is possible to visualize and plot the optimal policy in this

case as it will be shown later. The obtained results can then be generalized to more

complex cases involving more than 2 queues.

User i is said to be connected when γi = 1 with probability P (γi = 1) = αi/(αi +

βi), and not connected (γi = 0) with probability P (γi = 0) = βi/(αi + βi).

The remaining parameters were chosen as follows: B = 25, σ = 0.5, λ = 0.95,

ε = 0.1, and c =3, 5 or 15. The action space depends on the value of c. For example,

if c = 5 then there are four possible actions for each user (i.e., D = {0, 1, 2, 3}). Since

a = (a1, a2) corresponds to a1c codes assigned to user 1 and a2c codes assigned to

user 2, we get A = {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (3, 0)}.

Similarly, when c = 15 then there are two possible actions per user (i.e., D = {0, 1})

and when c = 3 then there are six possible actions per user (i.e., D = {0, 1, 2, 3, 4, 5}).

4.4.1 Optimal Policy Structure

The model is solved using value iteration (Section 4.3.6) to determine the optimal

scheduling policy. The effect of the channel quality and arrival probability on the be-

havior of the optimal policy was studied. Figures 4.3-4.5 provide the general structure

of the optimal policy for c =15, 5, and 3 respectively.

Optimal Policy for Two Symmetrical Users (Homogeneous System)

The optimal policy for two symmetrical users with the same channel characteristics

(αi = βi = p) for all 0 ≤ p ≤ 1 and with P (zi = 5) = 0.5 for all i ∈ {1, 2} is shown

in Figures 4.3(a)-4.5(a). Results for the case when the two users are connected, i.e.,

γi = 1, is shown here, since the two users are competing for the system resources. The

other three cases when one or both of them are not connected, i.e., γi = 0, resulted
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(c) P (z1 = 5) = 0.8 and P (z2 = 5) = 0.5
 

 

 

 

(d) P (γ1 = 1) = 0.8 and P (γ2 = 1) = 0.3

 
 
 
 

(e) P (z1 = 5) = 0.8 and P (z2 = 5) = 0.3
 

 

 

 

(f) P (z1 = 5) = 0.8, P (z2 = 5) = 0.5,
P (γ1 = 1) = 0.8 and P (γ2 = 1) = 0.5

Figure 4.4: Optimal and heuristic (dotted line) policies for two user case; c = 5
(i.e., 0,1,2 or 3 chunks of size 5 can be assigned to a user), u = 5.
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(e) P (z1 = 5) = 0.8 and P (z2 = 5) = 0.3
 

 

 

 

(f) P (z1 = 5) = 0.8, P (z2 = 5) = 0.5,
P (γ1 = 1) = 0.8 and P (γ2 = 1) = 0.5

Figure 4.5: Optimal and heuristic (dotted line) policies for two user case; c = 3
(i.e., 0,1,2,3,4 or 5 chunks of size 3 can be assigned to a user), u = 5.
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in a policy that assigns all the codes (required) to the connected user and nothing to

the other.

The symmetrical users case is a special case of the model presented in Chapter 2,

since a queue (user) in this model has the same connectivity variables to all servers

(codes) at any given TTI (a special case of independent connectivity assumption of

the model in Chapter 2). The optimal policy in this case can be described as follows:

divide the codes between the connected users in proportion to their queue length. This

conclusion agrees with the results of Chapter 2, since this action can be shown to be a

most balancing one, i.e., the code allocation policy for the homogeneous case is an MB

policy. When c = 15, the action space will be reduced to A = {(0, 0), (0, 1), (1, 0)}

and the policy will be equivalent to serve the longest connected queue (LCQ), which

makes intuitive sense and matches with the findings in [23] for a case similar to our

c = 15 case.

The Effect of Channel Quality on Policy Structure

The effect of the channel quality on the optimal policy structure when γ1 = γ2 = 1

is shown in Figures 4.3(b)-4.5(b). When P (γ1 = 1) > P (γ2 = 1) the policy favors

user 2, which is less likely to be connected compared to user 1. The bias in favor of

user 2 is depicted in Figures 4.3(b)-4.5(b) by a larger dark area, which corresponds

to optimal action (0,1), (0,3) or (0,5) respectively, compared to Figures 4.3(d)-4.5(d).

We noticed that this bias increases as the difference between P (γ1 = 1) and P (γ2 = 1)

increases. The reason is that using an LCQ in this situation will result in unbalanced

system (queue 2 will grow larger and will have more packet drops than queue 1).

User 2 will start experiencing unfairness in terms of higher delay and more drops.

Hence, more resources have to be assigned to the user with the worst channel to

avoid such a result. The resource sharing in this case will depend on the difference

∆Pγ = P (γ1 = 1)− P (γ2 = 1) as well as their relative queue length.
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The Effect of Arrival Probability on Policy Structure

The arrival probability has an analogous effect (to that of the channel quality) on

the optimal policy structure. The relative increase in one of the users arrival proba-

bility will result in more traffic inserted in that user’s buffer and it will require more

resources to keep the queue lengths stable and achieve fairness between the two users.

Figures 4.3(c)-4.5(c) show the optimal policy when P (z1 = 5) = 0.8 and P (z2 =

5) = 0.5 and both users have the same channel quality. The policy shifts in favor of

the user with higher arrival probability (user 1 in this case). By comparing Figures

4.3(c)-4.5(c) to Figures 4.3-4.5(e), we noticed that this shift is proportional to the

difference ∆Pz = P (z1 = u)− P (z2 = u).

Figures 4.3(f)-4.5(f) show that when ∆Pz = ∆Pγ = 0.3 the optimal policy favors

user 2, i.e., the user with less connectivity. This agrees with intuition since both users

share the available server capacity (the number of codes). The exogenous arrivals

will always be added to the corresponding buffer (provided the availability of space

in that buffer), while departures depend not only on the channel connectivity, but

also on the maximum server capacity (total number of departures is bounded by the

server capacity during each time slot; 15 PDUs in this case).

4.5 HSDPA System with Retransmission

We now expand our model to include the case of packet retransmission for unsuc-

cessful packet transmissions. The resulting model will have two queues per user, a

transmission queue and a retransmission queue. The state space for this system will

be S = {X × W × N}L, where W = {0, 1, . . . , Br} is the state space for the re-

transmission queue; and X , N are the same as defined earlier. The computational

complexity for finding the optimal policy for such system is substantially greater than

the previous model and could become a prohibitive factor for a system with a large
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number of users. Instead, we present an alternative model for this system, having

less computational complexity. In order to avoid the increased dimensionality due

to the retransmission queue, we consider a Bernoulli random process {µi(t)}∞t=1 that

indicates the status of a packet transmission. This will result in a retransmission

model with i.i.d. geometric service time, an assumption well-vetted in the literature,

e.g., [23] and [25]. When codes are allocated to user i at time slot t, then the trans-

mission is successful (µi(t) = 1) with a probability ξ (corresponding to the probability

of successful transmission). When µi(t) = 0, then the transmission is unsuccessful

and the PDUs have to be retransmitted. This happens with probability 1 − ξ. The

HSDPA scheduler with retransmissions is modeled as shown in Figure 4.6 below.

The evolution of the queue size (xi) is given by

xi(t+ 1) = min
(
[xi(t)− yi(t)µi(t)]+ + zi(t+ 1) , B

)
= min

(
[xi(t)− γi(t)ai(s)cµi(t)]

+ + zi(t+ 1), B
)

(4.14)

where ai(s)c is the number of codes allocated to user i when in state s and a(s) =

(a1(s), a2(s), . . . , aL(s)). Equation (4.14) means that PDUs removed from the head

of the queue only when a transmission is successful, and remain there otherwise.

 

Server 
15 Codes

  

User i 

zi(t+1) yi(t).µixi(t)

  

User 1 
x1(t)

z1(t+1) y1(t).µ1

yL(t).µL

  

User L xL(t)
zL(t+1) 

Figure 4.6: model for HSDPA downlink scheduler with retransmission
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4.5.1 Reward Function

The reward function R(s,a) is similar as before and is given by

R(s,a) =
L∑
i=1

(yiµi)− σ
L∑
i=1

[
(xi − x̄) 1{xi=B}

]
(4.15)

where yi = aicγi. Similar as before, the objective is to maximize throughput while

providing a fair allocations of resources (depending on the value of σ) to all users in

the system.

4.5.2 Transition Probability Function

The MDP state transition probability Pss′(a) can be formed as before, namely equa-

tions (4.7) and (4.9). In this case however, the queue state transition probability

depends on µi. Using the total probability law, this probability can be rewritten as

Pxix′i(γi, ai) , P (x′i|xi, γi, ai)

= Pxix′i|µi=1(γi, ai)P (µi = 1) + Pxix′i|µi=0(γi, ai)P (µi = 0)

= Pxix′i|µi=1(γi, ai) · ξ + Pxix′i|µi=0(γi, ai) · (1− ξ) (4.16)

4.5.3 Queue State Transition Probability

The marginal queue state transition probabilities needed to find Pxix′i(γi, ai) are given

below (refer to Appendix E.3 for complete derivation). We remind the reader that B



102

is the buffer size for each user buffer in the model.

Pxix′i|µi=1(γi, ai) =



1 if x′i = xi = B, γiai = 0

qi if x′i = xi = B, 0 < yi ≤ ui

qi if x′i = B, xi < B, [xi − yi]+ + ui ≥ B

qi if x′i < B, x′i = [xi − yi]+ + ui

1− qi if x′i < B, x′i = [xi − yi]+

0 Otherwise

(4.17)

and,

Pxix′i|µi=0(γi, ai) =



1 if x′i = xi = B

qi if x′i = B, xi < B, xi + ui ≥ B

qi if x′i < B, x′i = xi + ui

1− qi if x′i < B, x′i = xi

0 Otherwise

(4.18)

The overall queue transition probability Pxix′i can be determined by substituting equa-

tions (4.17) and (4.18) in (4.16).

4.6 The Heuristic Policy

In this section, we will present a heuristic approach for code allocation in our HSDPA

model, by focusing on the cases where c =15, 5 or 3. We will utilize the information

(regarding the structure of the optimal policy) we obtained from the results of Section

4.4.
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4.6.1 Optimal Policy Structural Analysis and Weight Func-

tion Estimation

Analyzing the results obtained in Section 4.4.1 we observe that the optimal policy

exhibits the following structural characteristics:

• When there is only one connected user then the optimal policy allocates all the

15 codes to that user or as many codes as required to empty its queue if its

queue length is less than 15 PDUs.

• When both users are connected, then both are competing for the available 15

codes. From Figures 4.3–4.5 we observe the following trends:

1. The optimal action a1 (respectively a2) is increasing in x1 (respectively

x2).

2. There is one switch-over region for every action vector. These regions are

depicted by different colors (or shades) and labeled by their corresponding

action vector in Figures 4.3–4.5.

3. When x1 + x2 ≤ 15, then the optimal policy allocates no more codes to a

user than those required to empty its queue.

4. In the symmetrical case and when x1+x2 > 15, then the border(s) between

neighboring regions is (are) a staircase function that can be approximated

by a line with slope 1 (Figure 4.4(a)). Those border lines define parallel

stripes that have a constant width.

5. In the asymmetrical cases and when x1 + x2 > 15 (Figures 4.3–4.5(b)-(f)),

the aforementioned regions, while still equidistant, are no longer delimited

by linear borders. The approximate border slope as a function of x1 and

x2 depends on the difference in arrival rates ∆Pz and the difference in the
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connectivities ∆Pγ. For example the approximate slope (the dotted line)

in Figure 4.3 is: 1 in the symmetrical case (Figure 4.3(a)), less than 1

when ∆Pγ = 0.3 (Figure 4.3(b)) and more than 1 when ∆Pz = 0.3 (Figure

4.3(c)).

From observation (4) above, we can approximate each of the switch-over boundary

lines between the policy switch-over regions for the symmetrical case by a straight

line with slope 1. This approximation is a good fit in the symmetrical case as shown

in Figures 4.3-4.5(a). To extend this approximation to the asymmetrical cases, we

introduce the weight vector w = (w1, w2), where wi, i = 1, 2 is a function of ∆Pz

and ∆Pγ. Then the boundary lines between the different regions can be linearly

approximated by the following equation:

w1x1 = w2x2 + C (4.19)

where C is a constant. Observations of Figures 4.4 and 4.5 suggest that C is a multiple

of ±2c (C = ±2ck, k = 0, 1, . . . , 0.5(15/c − 1)). Equation (4.19) defines a family of

lines that have a slope equal to w2/w1. For the symmetrical case, w1 = w2 = 1 and

Equation (4.19) will be reduced to x1 = x2 + C.

The weight w1 (respectively w2) is increasing (respectively decreasing) in ∆Pz and

decreasing (respectively increasing) in ∆Pγ (the reader may verify this from the fig-

ures, for example Figures 4.3(b) and 4.3(c)). We observed the behavior of the optimal

policy under different arrivals and connectivity parameters, by solving the dynamic

programming equation (Equation 4.11) numerically for these cases. The results ob-

tained were analogous to the ones in Figures 4.4-4.5. Following these observations,
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we approximated w1 and w2 as follows

w1 ≈ 1 + 1.5[−∆Pγ]
+ − 0.7[−∆Pz]

+ (4.20)

w2 ≈ 1 + 1.5[∆Pγ]
+ − 0.7[∆Pz]

+ (4.21)

The coefficients for ∆Pγ and ∆Pz were chosen empirically based on a variety of com-

putations (value iterations to determine the optimal policy) under different channel

connectivity and arrival parameters.

The linear approximation may not be perfect for asymmetric cases (see for exam-

ple Figures 4.3-4.5(b) and (c)). A non-linear approximation would result in a better

fit in those cases (and may be a future research problem). However, (as we will show

in Section 4.7.3) the heuristic scheduling policy, resulted from our linear approxima-

tion, compares favorably (in throughput and fairness/queuing delay terms) with the

optimal policy.

4.6.2 Detailed Characterization of The Heuristic Policy

1. Case for c = 15. In this case, the optimal policy is a switch-over policy as

depicted in Figure 4.3. We can identify three regions which correspond to the

three possible actions: (0,0), (1,0) and (0,1). The heuristic policy is a weighted

LCQ and it assigns codes to users according to the following rules:

• Rule1: when there is only one connected user then assign all the needed

codes to that user.

• Rule2: when both users are not connected (i.e., γ1 = γ2 = 0) then no codes

will be allocated to any user.

• Rule3: when both users are connected, allocate code chunks according to
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(4.22) below

a(t) =


(1, 0) if w1x1 > w2x2,

(0, 1) if w1x1 ≤ w2x2

(4.22)

2. Case for c = 5. The optimal policy defines ten regions specifying the optimal

code allocation. However, only four of these regions are of interest. They lie

within the area where the demand exceeds the available resources as shown in

Figure 4.4. Based on this observation, the heuristic policy partitions the state

space into four major regions that correspond to the actions (3,0), (2,1), (1,2),

and (0,3). The policy rules 1 and 2 are the same as before. Rule3 is modified

as follows:

• Rule3: when both users are connected, if x1 +x2 < 15 then allocate codes

to the two users in proportion to their queue length, else allocate the code

chunks as follows

a(t) =



(3, 0) if w1x1 > w2x2 + 10,

(2, 1) if w2x2 < w1x1 ≤ w2x2 + 10,

(1, 2) if w2x2 − 10 ≤ w1x1 ≤ w2x2,

(0, 3) if w1x1 < w2x2 − 10,

(4.23)

3. Case for c = 3. There are 21 different regions in the state space as shown in

Figure 4.5. The heuristic rules used earlier can be extended to this case. Again

only Rule3 needs to be modified as shown below:

• Rule3: when both users are connected, if x1 +x2 < 15 then allocate codes

to the two users in proportion to their queue length, else allocate the code
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chunks as follows

a(t) =



(5, 0) if w1x1 > w2x2 + 12,

(4, 1) if w2x2 + 6 < w1x1 ≤ w2x2 + 12,

(3, 2) if w2x2 < w1x1 ≤ w2x2 + 6,

(2, 3) if w2x2 − 6 < w1x1 ≤ w2x2,

(1, 4) if w2x2 − 12 < w1x1 ≤ w2x2 − 6,

(0, 5) if w1x1 ≤ w2x2 − 12,

(4.24)

Figures 4.3-4.5(a)-(c) show the heuristic policy (the dotted line) superimposed on

the optimal policy from Section 4.4 for different loading and channel quality con-

ditions. From these figures, it is fair to say that the heuristic policy reasonably

approximated the slope of border lines between the different regions of the optimal

policy.

Motivated by the heuristic policy construction for the two-user case, we can extend

the methodology to more than two users.

4.6.3 Extended Heuristic Policy

The optimal policy for three or more users still has a switch-over structure. However,

it is not possible to visualize it on a two dimensional plane (e.g., for the case of

three users, the possible action can be described by a three-dimensional vector, i.e.,

a(s) = (a1, a2, a3), therefore, it is not possible to pictorially visualize the structure of

the policy in this case). Motivated by the heuristic policy construction for the two-user

case, we can extend this heuristic policy (presented in the previous subsection) to any

finite number of users. We can do this by ordering all users in the system according

to their weighted queue lengths. The weight will be a function of the different users’
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arrival probabilities and channel states. We can then allocate the available code

chunks to the connected queues according to their weighted queue length using rules

analogous to those in the previous section. The added complexity of this extension

(compared to the heuristic policy we presented in the previous section) is minimal

and is mainly due to the user ordering phase of the algorithm.

4.7 Performance Evaluation

In this section, we study the performance of the optimal policy and compare it with

that of the devised heuristic policy. We also compare both policies with the Round

Robin fair queuing, keeping the same assumptions as before. The evaluation is based

on the simulation of several cases with constant buffer size B = 50. All simulations

were performed using the C programming language. The simulation ran for 50,000

time slots and 10,000 replications. The 95% confidence interval (CI) was computed

for all simulation results. For clarity of presentation, only the CI’s with maximum

width among simulated performances for each offered load (corresponding to a point

on the x-axis) are plotted at the top of each figure.

4.7.1 The Effect of Code Allocation Granularity

The total number of codes available in one TTI is 15 codes according to [43] and

in our approach, the scheduler allocates chunks of these codes to active users. The

chunk size c was introduced in Section 4.3.1. It ranges from the finest (when c = 1)

to the coarsest (when c = 15); in the former case, the policy can assign as little as

1 code to a user at a time, while in the latter case, all the 15 codes are assigned to

one single user at a time. Figures 4.7-4.10 show the effect of the chunk size c on the

system performance for various offered load ρ =
∑

i Pziui/rπ with rπ is the measured

system capacity under the policy π. The channel state probability for the two users
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 Figure 4.7: The effect of policy granu-

larity on queue length.

 
 Figure 4.8: The effect of policy granu-

larity on the queuing delay.

 
 Figure 4.9: The effect of policy granu-

larity on scheduler throughput.

 
 Figure 4.10: The effect of policy gran-

ularity on scheduler drop prob.

is set to P (γ1 = 1) = 0.8 and P (γ2 = 1) = 0.5. Using (4.13), the channel model

parameters (αi and βi) for each user were selected as follows

P1 =

 0.4 0.6

0.15 0.85

 , and P2 =

 0.4 0.6

0.6 0.4


The results show that in light and moderate load conditions, the average queue

length is shorter when the assigned code chunks have finer granularity. However,

when ρ→ 1 the difference becomes smaller (and within the confidence interval) when

ρ becomes greater or equal to 1.
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Another observation is that the performance gain when moving from c = 5 to c = 3

is less significant and may not justify the added implementation and computational

cost. It is interesting to see that the optimal policy under all of the three values of c

achieved approximately the same throughput (see Figure 4.9). The slight throughput

loss when c = 15 in moderate to high load is within the confidence interval and is

due to the increased drops under these particular conditions as it is shown in Figure

4.10. The intuition behind this behavior can be summarized as follows:

1. For light loads (ρ < 0.7), the chunk size (c) does not have a significant effect

on the dropping probability in the two queues since the drops are unlikely in

this case (Figure 4.10). Therefore, the optimal policy for any value of c achieves

throughputs that are not substantially different.

2. As the load increases (ρ = 0.7 ∼ 1.1) the drops become more likely to occur. A

coarser code allocation granularity (c = 15) will serve one queue only at a given

TTI thus resulting in more drops for the other, while a finer granularity (c = 5)

would keep both queue sizes balanced (thus resulting in a lower total loss).

3. For higher load (ρ > 1.1), the losses escalate dramatically and chunk granularity

has no significant effect on drops between the two queues in this case.

4.7.2 The Effect of Channel Model

The performance of the optimal policy, when using a 3-state FSMC channel model, is

evaluated using simulation and compared to the 2-state FSMC model. The channel

models used are

• Two-state FSMC with P (γ1 = 1) = 0.8, P (γ2 = 1) = 0.5.

• Three-state FSMC with P (γ1 = 1) = 0.4, P (γ1 = 2) = 0.4, P (γ2 = 1) = 0.25

and P (γ2 = 2) = 0.25.
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The two cases above are analogous in the sense that in both cases user 1 channel (re-

spectively user 2 channel) is connected with probability P (γ1 ≥ 1) = 0.8 (respectively

P (γ2 ≥ 1) = 0.5). To achieve this, the 3-state FSMC model parameters for each user

were selected as follows

P1 =


0.4 0.6 0.0

0.3 0.3 0.4

0.0 0.4 0.6


, and P2 =


0.8 0.2 0.0

0.4 0.3 0.3

0.0 0.3 0.7


Figures 4.11 and 4.12 show the system throughput and the drop probability versus

average arrival rate (
∑

i Pziui for all i ∈ {1, 2}). In the 2-state model, the system

reaches its capacity at about 6.5 PDUs/sec (Figure 4.11). For the case of a 3-

state FSMC model, the saturation performance is better since more PDUs can be

transmitted on average (compared to the 2-state FSMC model) when connected (the

FSMC model is presented in Section 4.3.2), for the given state transition probabilities.

Figures 4.13 and 4.14 depict the average queue length behavior for both users as

a function of the arrival rate; we can see that when the fairness factor σ = 0.5 the

policy keeps almost equal queue occupancy for both users. On the other hand, when

σ = 0.0 the difference in the average queue lengths of the two users is more than 10

PDUs. This will result in unfairness and increased losses for user 2 traffic. In this

case, the queuing delay increases and results in poor delay performance for user 2 as

shown in Figure 4.15.

The fairness factor (σ), that did not have an effect in the 2-state case, has a

significant effect when using the 3-state FSMC model as seen in Figures 4.13 and

4.14. When the load increases, the optimal policy with σ = 0.0 achieves higher

system throughput compared to that with σ = 0.5. This agrees with intuition since
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 Figure 4.11: System throughput vs. average arrival rate to the system. First four

cases in legend corresponds to the optimal policy with 3-state FSMC model.

the policy corresponding to σ = 0.0 aims at optimizing the throughput at the expense

of fairness. Higher σ will result in more fairness at the cost to the overall system

throughput as shown in Figures 4.13 and 4.15.

Remark: The 3-state FSMC model obviously is more accurate representation of

the HSDPA downlink transmission system than the 2-state model. In 3GPP R’5

standard [43] there are 31 transmission levels (TFRC) which corresponds to 32 channel

states. However, in real life only a subset of that range (usually 6 TFRCs) is used

(see [46] for an example). �

4.7.3 Heuristic Policy Evaluation

The system throughputs under the heuristic policy we developed in Section 4.6, the

optimal and Round Robin policies are shown in Table 4.1 for different loading condi-

tions. The channel model parameters were chosen (2-state FSMC channel is assumed)
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 Figure 4.12: Average drop probability (average dropped/average arrived PDUs).

First four cases in legend corresponds to the optimal policy with 3-state FSMC
model.

 
 Figure 4.13: Average queue length vs. load compared to the 2-state FSMC model.

First eight cases in legend corresponds to the optimal policy with 3-state FSMC
model.
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Figure 4.14: Average queue length vs. load compared to Round Robin scheduling.
First eight cases in legend corresponds to the optimal policy with 3-state FSMC
model.

such that P (γ1 = 1) = 0.8 and P (γ2 = 1) = 0.5. Table 4.1 shows that the throughput

performance of the heuristic policy is very close to that of the optimal policy. It also

shows that RR performance is close to that of the optimal policy in case of light

loading (e.g., ρ = 0.5). However, RR performs around 27% worse than the optimal

policy in heavy load conditions when ρ = 1.2.

The queuing delay performance of the heuristic policy is compared with that of

Table 4.1: System throughput (PDUs/msec) for different policies and loading con-
ditions.

ρ Optimal Heuristic RoundRobin

0.5 3.25 3.25 3.25

0.8 5.0 4.95 4.45

1.2 6.73 6.71 4.9
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 Figure 4.15: Average queuing delay vs. load; 3-state FSMC model compared to

2-state FSMC. First eight cases in legend corresponds to the optimal policy
with 3-state FSMC model.

Table 4.2: Queuing delay performance (in milliseconds) for different policies, P (γ1 =
1) = 0.8, P (γ2 = 1) = 0.5, q1 = 0.8, q2 = 0.5 and u = 10.

Optimal Heuristic RoundRobin

User1 8.0 7.4 13.6

User2 10.8 12.2 19.9

Difference 2.8 4.8 6.3

Table 4.3: Queue length (PDUs), ρ = 0.75, P (γ1 = 1) = 0.8, P (γ2 = 1) = 0.5,
q1 = 0.5, q2 = 0.5 and u = 10.

Optimal Heuristic RoundRobin

User1 11.5 11.0 16.5

User2 14.5 16.0 34.5

Difference 3.0 5.0 18.0
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Table 4.4: Queue length (PDUs), ρ = 1.1, P (γ1 = 1) = 0.6, P (γ2 = 1) = 0.6,
q1 = 0.8, q2 = 0.5 and u = 10.

Optimal Heuristic RoundRobin

User1 33.0 33.5 45.5

User2 28.5 27.5 32.5

Difference 4.5 6.0 13.5

RR and the optimal policy in Table 4.2. Queue lengths for the two users are shown

in Tables 4.3 and 4.4 for different channel and arrival parameters. From these tables,

the following conclusions can be drawn:

• The proposed heuristic policy compares favorably to the optimal one in terms

of throughput and delay performance.

• The optimal policy provides better fairness in comparison to the heuristic and

RR policies. This is apparent from the simulation results since the optimal

policy achieved the smallest difference between the two users’ queuing delay.

The heuristic policy provides a comparable performance to that of the optimal

policy, while the round robin is the least fair policy among the three.

• The difference in queue lengths of the two users resulted from using the heuristic

policy is reasonably close to that of the optimal policy under different channel

and arrival parameters (Tables 4.3 and 4.4). RR policy resulted in the largest

queue lengths (for the two users) compared to the optimal and heuristic policies.

• The performance of the RR policy is highly dependent on the loading conditions.

The results obtained proved that RR has poor performance in wireless channel.

A reason for the poor RR performance is that it does not take into account

the wireless channel quality variation, while the optimal policy depends on the

state of the channel.



Chapter 5

Analytic Evaluation of Downlink Service

Rate in 3G Wireless Networks

In this chapter, we use stochastic modeling to develop a server sharing model for

the downlink scheduler in 3G wireless networks. This model is used to find the

average achievable service rate per user for a given fairness criterion. The wireless

channel is modeled by a Finite State Markov Channel (FSMC) to reflect the effect of

Adaptive Modulation and Coding used in 3G wireless networks. This model can be

used to implement differentiated services in 3G wireless networks. It facilitates QoS

control on the last hop, i.e., the wireless link. This methodology provides qualitative

and quantitative evaluation of the wireless link sharing mechanisms in 3G wireless

networks.

5.1 Introduction

Third generation (3G) wireless networks are IP-based networks that can provide

high-speed packet access to their mobile users. Their IP-based infrastructure enables

them to benefit from the mature and widely available IP technologies. It also makes

available the wide variety of services that an IP-based network can provide to its

117
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users, e.g., web access, file transfer, video streaming and voice over IP. There are

two popular categories in 3G wireless networks: Wide-band CDMA (as described by

third generation partnership project, 3GPP) and Multi-Carrier CDMA (as described

by 3GPP2). An example of the first type is the High Speed Downlink Packet Access

(HSDPA) [43]. This network can provide asymmetric data access to its users with

a peak downlink rate of 14.4 Mbps (for R’5). An example of MC-CDMA is the

CDMA2000 EVDO (EVolution Data Optimized) which is a packet-based network

that can provide asymmetric access to its users with a maximum rate of 2.4 Mbps

per carrier on the downlink.

From the capacity modeling and scheduling points of view, the third generation

wireless networks (and their successors, 4G and beyond) have several characteristics

that differentiate them from other networks, mainly, channel variability, resource

multiplicity and data rate adaptation. Therefore, the previous models that were used

to evaluate service rate and QoS scheduler performance in other networks are no

longer sufficient or accurate for the modeling of 3G networks. Therefore, the effort

to study the effect of channel (and consequently the data rate per user) variability

on the achievable average service rate in emerging wireless networks is well justified.

Most of the work done in this area was based on simulation and was limited to

specific working scenarios. However, there were also attempts to model wireless access

networks, some of which are directly or indirectly related to 3G networks, e.g., [23],

[25], [24], [27] as well as the work we presented in the previous chapters of this

thesis. In that work, we presented and analyzed an analytical model of the emerging

wireless networks (including 3G networks). We mainly studied the structure (or

structural characteristics) of the optimal dynamic packet scheduling policy in these

networks. Although that work provided an important insight to the behavior of the

optimal packet scheduling policy in emerging wireless networks, it did not (and was

not intended to) compute the average achievable data rate or the maximum QoS
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provision that can be met by these networks.

In this part of our work, we develop an analytical model consisting of a set of

equations to describe downlink channel sharing in 3G wireless systems. This set of

equations is then solved to determine the long-run average share of resources required

to meet specific fairness/QoS requirements of users sharing a wireless link in a 3G

wireless network. The significance of this methodology rises from its inherent sim-

plicity (computation wise) and its direct approach which make it easy to understand

and to deduct conclusions when compared to previously used techniques. The model

can be used to represent different service classes competing for the resources in a 3G

wireless system.

The methodology and the results presented in this chapter can be used as a bench-

marking tool for the dynamic scheduling policies (e.g., to measure how well they

achieve their long-run expected throughput).

5.2 System Description and Modeling

The model we present here is an abstraction of the downlink scheduler in 3G wireless

access networks. The two main types presented earlier (WCDMA and MC-CDMA)

have some subtle differences; however, as much as this model is concerned, they both

have the same channel sharing principle where the network resources (codes and/or

time slots per cell/sector) have to be shared by the users in that cell. In the following,

we will concentrate on the WCDMA HSDPA system as an example of 3G networks.

Nevertheless, most of the descriptions are parallel to that of MC-CDMA system.

Radio Access Network (RAN) in HSDPA system consists of Radio Network Con-

trollers (RNC), each of which is connected to one or more Base Stations (BTS) (Figure

5.1). Serving and Gateway GPRS Support Nodes (SGSN and GGSN) are network

nodes that support the use of GPRS in the GSM core network. Each BTS resides
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Figure 5.1: 3G WCDMA Network

in the center of a cell in the coverage space of a cellular network. There are one

or more sectors per cell each of which uses a single, time-shared channel called HS-

DSCH. The system uses a combination of Code and Time Division Multiple Access

(CDMA/TDMA). The high-speed downlink shared data channel has 15 codes to be

allocated to one or more users every 2 milliseconds. In this system, AMC is used to

adapt the transmission rate of a scheduled user to its expected channel conditions in

the next transmission time interval. This is done by monitoring the user’s signal to

noise ratio and mapping it to a set of Modulation and Coding Schemes (MCS) [61].

The higher the order of the selected MCS, the higher the transmission rate. Hence,

the user’s service rate will depend on his channel conditions and the implemented

scheduling policy.

5.2.1 Wireless Channel Model

The system is assumed to have Rayleigh fading channel. Similar to the model in

Chapter 4, we model the wireless channel in this system by a Finite-State Markov

Channel (FSMC) as shown in Figure 4.2. The states in this channel model represent

data rate levels. The channel state of user i during time slot t is denoted by γi(t),

and its associated channel state space is the set N = {0, 1, . . . , N − 1}, where N is
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Figure 5.2: A model for L users sharing one HSDPA downlink channel

the total number of available channel states.

5.2.2 A Model for The Downlink Scheduler

A system with L users is modeled by L queues competing for the service of a single

server with a base capacity C. C corresponds to the minimum achievable transmission

rate when using the lowest order MCS (i.e., γi(t) = 1). The server capacity can be

shared, at any given time slot, by the connected users in the system. The achievable

capacity for each user depends on the user’s current channel condition and directly

proportional to γi(t). We refer to the vector ~γ = [γ1, γ2, . . . , γL] as the channel state

vector, where we suppressed the time index to simplify the notation. Each queue is

connected to the server (i.e., γi > 0) with probability 1−πi,0 : i ∈ I and not-connected

(γi = 0) with probability πi,0, where I = {1, 2, . . . , L} is the set of all queues in the

system and πi,j is the probability that user i FSMC (i.e., channel condition) is in

state j. Figure 5.2 shows the basic model described above.

5.2.3 Basic Assumptions and Definitions

In the following, we make some basic assumptions in order to facilitate the modeling

process and to make the model analytically tractable.
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1. Symmetrical arrival processes with arrival rates (αi = α for all i ∈ I). We

assume the system is operating under heavy loading conditions.

2. Channels for different users are independent, i.e., γi independent of γj for all

i, j ∈ I, i 6= j.

3. The achievable transmission rate for queue i (i.e., when the full server capacity

is allocated to user i) at time t is γi(t)C.

The first assumption is a valid assumption for heavily-loaded symmetrical systems.

The second assumption is also a valid one when the system uses orthogonal code

multiple access. The last assumption (i.e., the assumed linear relationship between

user’s channel state and its data rate) is a simplifying one and it can be relaxed later.

We define the following:

• xi the length of queue i at time t;

• µi the average service rate experienced by queue i;

• ~µ = [µ1, µ2, . . . , µL];

• mi ∈ [0, 1] the average share of the server assigned to queue i;

• ~πi = [πi,0, πi,1, . . . , πi,N−1], where πi,j is the probability that user i’s channel is

in state j.

The service rate received by queue i at any given time depends on its channel state.

Obviously when γi=0, the queue is not connected and no server share will be assigned

to it. On the other extreme, when only one queue is connected (i.e., γi = 1 and γj = 0

for all j ∈ I\{i}) then all the server capacity will be assigned to that queue.
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5.3 Service Rate Analysis

In this section we will derive an expression that relates the required server share

(mi) of each user to its channel state stationary distribution (~πi) and the targeted

service differentiation between the users in the system. This is done by deriving a

set of equations describing the average service rate per user, then solving this set

of equations to find the service sharing regime that will achieve fairness or given

QoS requirements. We will start by modeling a simple system with 2 users, each of

which has a 2-state channel. This step is necessary because in this case it is easier to

understand the argument used in the derivation of the average service rate equations.

The second step is to extend this model for all values of L and N .

5.3.1 Two-User System with 2-State FSMC

We begin with a simple, 2-user system (L = 2) with 2-state channel model (N = 2).

The system is modeled by two queues sharing one server. Queue 1 and queue 2

are connected with probabilities π1,1 and π2,1 respectively and not connected other-

wise. The average service rates for the two queues were derived using the following

argument:

Queue i can be served only if its channel is in a connected state, i.e., γi > 0. In

this case, if user 1 is connected and user 2 is not then the entire server capacity will

be assigned to serve queue 1. The probability of this event happening is π1,1π2,0, since

we assumed independent FSMCs for different users. When both users are connected

(with probability π1,1π2,1), then they will share the server according to the adopted

scheduling policy. Hence, the average service rate for queue 1 is given by,

µ1 = C(π1,1π2,0 +m1π1,1π2,1) packets per second

= C(π1,1 − π1,1π2,1 +m1π1,1π2,1) (5.1)
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where the second line in (5.1) above is obtained using the fact that π2,0 + π2,1 = 1

Using the same argument we used for queue 1 above, the service rate for queue 2

is give by

µ2 = C(π2,1π1,0 +m2π1,1π2,1) packets per second

= C(π2,1 − π1,1π2,1 +m2π1,1π2,1) (5.2)

To solve for m1 and m2, we assume differentiated service with rate ν. Such a

policy will assign service to both queues according to: µ1 = νµ2. Using (5.1) and

(5.2) we have

m1 − νm2 = (1− ν)− π1,1 − νπ2,1

π1,1π2,1

(5.3)

The second equation required is

m1 +m2 = 1 where 0 ≤ mi ≤ 1 (5.4)

since we cannot allocate more that 100% of the server resources. Solving (5.3) and

(5.4) for m1 and m2 yields

m1 =
1

1 + ν
(1− π1,1 − νπ2,1

π1,1π2,1

) (5.5)

m2 =
1

1 + ν
(ν +

π1,1 − νπ2,1

π1,1π2,1

) (5.6)

Substituting m1 and m2 in (5.1) and (5.2) above, we get

µ1 =
Cν

1 + ν
(π1,1 + π2,1 − π1,1π2,1) (5.7)

µ2 =
C

1 + ν
(π1,1 + π2,1 − π1,1π2,1) (5.8)
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To achieve fairness in the 2-user case, we choose ν = 1. In this case, the network

resources will be distributed in such a way that both users will receive the same

average service rate, i.e., µ1 = µ2. On the other hand, to implement QoS, one can use

a parameter ν 6= 1 to reflect the relative priority between the two users/classes (this

model may be used to represent two classes of service rather than two users). Then

the amount of service that each user must receive in order to achieve the required

QoS is given by (5.7) and (5.8). The policy used to allocate the server resources to

both users must assign all the resources to the connected user, when there is one

connected user, and divide the resources between the two users according to (5.5)

and (5.6) when both users are connected.

Fair Scheduler

A special and very important case of the previous model is the fair scheduler, when

ν = 1, (i.e., µ1 = µ2). In this case, The server is shared by the two users as follows

m1 =
1

2
(1− π1,1 − π2,1

π1,1π2,1

) (5.9)

m2 =
1

2
(1 +

π1,1 − π2,1

π1,1π2,1

) (5.10)

Then (5.7) and (5.8) will be reduced to

µ1 = µ2 =
C

2
(π1,1 + π2,1 − π1,1π2,1) (5.11)

This formula can be used to determine the average service rate experienced by each

user when applying a fair scheduling policy. It can also be used to determine the fair-

ness levels of different scheduling policies by comparing the service rate experienced

by each user to that in Equation (5.11).
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Equal Shares Scheduler

Another special case is when m1 = m2 = 1/2. This case depicts the policy that

divides the resources equally between the two users when connected. Hence, we call

this case equal shares scheduler. An important example of such policy is the round

robin scheduler (RR). In wire-line networks, RR is considered a fair scheduler. To see

how the performance of such scheduler is affected by the randomness of the channel,

we derive the average service rates for both users. In this case, the service rates are

given by:

µ1 = Cπ1,1(1− π2,1

2
) (5.12)

µ2 = Cπ2,1(1− π1,1

2
) (5.13)

From Equations (5.12) and (5.13) we can see that the policy will result in a service

differentiation that depends on the quality of the two users’ channels. The user with

better channel quality will experience higher service rate than the other user. This

policy is fair only when π1,1 = π2,1.

5.3.2 Extension to L Users and N-State FSMC

In order to extend the model we presented in the previous section to any number of

users and any number of channel states, we need to define the following sets

• I as defined in section 5.2.

• M(n,i) ⊆ I is a subset of I that contains the element {i} plus n other elements

of I.

We will extend the formulas we obtained in the 2-users case by using the same

argument we used in 5.3.1. Again the independent connectivity assumption is used
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here. We also use the assumption that “the achievable transmission rate for queue i

is γi(t)C”. The average service rate for user i is given by

µi = C

[
N−1∑
r=1

rπi,r
∏

l∈I\{i}

πl,0

+
∑

∀M(1,i)⊂I

[
mi∑

j∈M(1,i)

mj

·
N−1∑
r=1

rπi,r
∏

k∈M(1,i)\{i}

(
N−1∑
r=1

πk,r

) ∏
l∈I\M(1,i)

πl,0

]

+
∑

∀M(2,i)⊂I

[
mi∑

j∈M(2,i)

mj

·
N−1∑
r=1

rπi,r
∏

k∈M(2,i)\{i}

(
N−1∑
r=1

πk,r

)
·

∏
l∈I\M(2,i)

πl,0

]
+ . . .+

+
∑

∀M(n,i)⊂I

[
mi∑

j∈M(n,i)

mj

·
N−1∑
r=1

rπi,r
∏

k∈M(n,i)\{i}

(
N−1∑
r=1

πk,r

) ∏
l∈I\M(n,i)

πl,0

]
+ . . .+

+
mi∑

j∈I

mj

N−1∑
r=1

rπi,r
∏

k∈I\{i}

(
N−1∑
r=1

πk,r

)]
, ∀ i ∈ I, n < L− 1 (5.14)

Using a service criterion such as µ1 = ν2µ2 = . . . = νLµL will result in service

differentiation between the L users with parameters (ν2, ν3, . . . , νL). Using ν2 = ν3 =

. . . = νL = 1 will result in a fair scheduling between all the L users. Equating µ1

and µj for each j ∈ I\{1} will result in L − 1 equations with L unknowns. The Lth

equation needed to solve this system of equations for m1,m2, . . . ,mL is

L∑
i=1

mi = 1 where 0 ≤ mi ≤ 1 (5.15)
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5.3.3 Example Network; L = 3 and N = 3

We use the developed methodology to find the server sharing policy in a system with

three users (L = 3) and N = 3. In this case, Equation (5.14) will be reduced to

µi = C

[
2∑
r=1

rπi,r
∏

l∈I\{i}

πl,0 +
∑

∀M(1,i)⊂I

[
mi∑

j∈M(1,i)

mj

·
2∑
r=1

rπi,r
∏

k∈M(1,i)\{i}

(
2∑
r=1

πk,r

)

·
∏

l∈I\M(1,i)

πl,0

]
+

mi∑
j∈I

mj

2∑
r=1

rπi,r
∏

k∈I\{i}

(
2∑
r=1

πk,r

)]
(5.16)

For user 1, the average service rate µ1 is given by

µ1 = C
[
(π1,1 + 2π1,2)π2,0π3,0 +

m1

m1+m2

(π1,1+2π1,2)(π2,1+π2,2)π3,0 +
m1

m1+m3

(π1,1+2π1,2)(π3,1+π3,2)π2,0 +
m1

m1+m2+m3

(π1,1+2π1,2)(π2,1+π2,2)(π3,1+π3,2)
]
(5.17)

since there are two combinations in I that satisfy (∀M(1,i) ⊂ I): those are M(1,i) ∈

{{1, 2}, {1, 3}} and depicted as the second and third term in (5.17) respectively. The

other two users’ service rates can be obtained in a similar manner

µ2 = C
[
(π2,1 + 2π2,2)π1,0π3,0 +

m2

m1+m2

(π2,1+2π2,2)(π1,1+π1,2)π3,0 +
m2

m2+m3

(π2,1+2π2,2)(π3,1+π3,2)π1,0 +
m2

m1+m2+m3

(π2,1+2π2,2)(π1,1+π1,2)(π3,1+π3,2)
]
(5.18)
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and

µ3 = C
[
(π3,1 + 2π3,2)π1,0π2,0 +

m3

m1+m3

(π3,1+2π3,2)(π1,1+π1,2)π2,0 +
m3

m2+m3

(π3,1+2π3,2)(π2,1+π2,2)π1,0 +
m3

m1+m2+m3

(π3,1+2π3,2)(π1,1+π1,2)(π2,1+π2,2)
]
(5.19)

Substituting (5.17), (5.18) and (5.19) in µ1 = ν2µ2 and µ1 = ν3µ3 will yield two

equations with 3 unknowns. The third equation required to solve for m1,m2 and m3

is m1 +m2 +m3 = 1.

Remark: The manual solution of the resultant system of equations can be awk-

ward especially for large L. However, many existing mathematical software packages

(e.g., MathCad and MATLAB) can provide numerical or even analytical solutions for

such systems. �

5.4 Results and Discussion

In this section, we will use the proposed methodology to model and study a 3G

wireless system with two users whose channels are modeled by 3-state FSMC. We

derived the server shares mi and the corresponding average service rates µi for the

two users, and are given by

m1 =
π1,1π2,1+π1,1π2,2+2π1,2π2,1+2π1,2π2,2 + νπ2,1 + 2νπ2,2 − π1,1 − 2π1,2

(2ν + 1)π1,1π2,2 + (ν + 1)π1,1π2,1 + (ν + 2)π1,2π2,1 + (2ν + 2)π1,2π2,2

(5.20)

m2 =
νπ1,1π2,1+2νπ1,1π2,2+νπ1,2π2,1+2νπ1,2π2,2 − νπ2,1 − 2νπ2,2 + π1,1 + 2π1,2

(2ν + 1)π1,1π2,2 + (ν + 1)π1,1π2,1 + (ν + 2)π1,2π2,1 + (2ν + 2)π1,2π2,2

(5.21)
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where 0 ≤ mi ≤ 1, ∀ i ∈ {1, 2}. The average service rates µ1 and µ2 are given by:

µ1 = C
[
π1,1 + 2π1,2 + (m1 − 1)(π1,1π2,2+π1,1π2,1 + 2π1,2π2,1+2π1,2π2,2)

]
(5.22)

µ2 = C
[
π2,1 + 2π2,2 + (m2 − 1)(2π1,1π2,2+π1,1π2,1 + π1,2π2,1+2π1,2π2,2)

]
(5.23)

In the following, we will study some special cases and present some of the numerical

results we computed for this system.

5.4.1 Case 1: Symmetrical Channel Parameters

In this case, both users have identical FSMC stationary distribution, i.e., ~πi =

~π, ∀ i ∈ {1, 2}. Figure 5.3 depicts the required server shares allocation to user1

and user2 (i.e., m1 and m2) to achieve service differentiation with rate (ν) for differ-

ent channel conditions (i.e., different ~π). In this figure we can see that ν = 1.0 is

a focal point at which both users will get 0.5 of the server capacity no matter what

are the values of ~πi, as long as they are equal. We can also notice that for ν 6= 1,

bigger share is assigned to the user with higher QoS requirements in order to achieve

the required service differentiation between users. Figure 5.4 illustrates the fact that

using the server sharing policy depicted in Figure 5.3 will achieve the desired service

differentiation within certain limits that are dictated by the channel conditions.

5.4.2 Case 2: Fair Scheduler (ν = 1.0)

Fair scheduler is the one that provides all users with the same average service rate

(when possible) regardless of their channel conditions. Figures 5.5 and 5.6 illustrate

the server sharing policy and the resulting average service rates for both users when

ν = 1.0. It can be seen that user’s share increases when its channel conditions

deteriorate. This policy will achieve the most possible fairness level, on the expense of
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Figure 5.3: Service share mi vs. ν for two users with symmetrical channel

overall system throughput in some cases (see Figure 5.6). However, fairness between

users can only be achieved within certain limits of their channel qualities. These

limits depends on the difference |~π1 − ~π2| (see Figure 5.6).

5.4.3 Case 3: Equal Shares Scheduler (m1 = m2 = 0.5)

The equal shares scheduler always assigns equal shares of the server capacity to each

user, when both are connected, regardless of their expected channel conditions. The

users’ service rates for such system are shown in Figure 5.7 for different values of ~π1

and ~π2. For simplicity of presentation, we assume that πi,1 = πi,2. It is obvious that

this setup is fair only when ~π1 = ~π2. The average service rates for the two users

diverge linearly when the difference |~π1 − ~π2| increases. We also include the case

when 2-state FSMC model is used (using Equations (5.12) and (5.13)) in this graph

for comparison.
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Figure 5.4: Average service rate µi vs. ν for two users with symmetrical channel

5.4.4 Case 4: Differentiated Services

Figure 5.8 shows the effect of the service differentiation rate (ν) on the average service

rates (µi) for two users with different channel conditions. It is obvious that the

required service differentiation might not be achievable for certain channel conditions.

The presented technique can be used in conjunction with any dynamic resource

allocation policy to aid in providing service differentiation between classes. This

can be done by using the dynamic policy to allocate the server instantaneously and

using the technique we presented here to monitor the long-run average server shares

and adjust the dynamic policy parameters when required. It can also be used to

measure the fairness level provided by other existing schedulers. The simplicity and

tractability of this technique comes with the price that this server sharing policy

does not utilize the dynamic variation of the wireless system to achieve higher system

throughput when the system uses rate adaptability. However, it is a powerful tool

for understanding server sharing in systems with random channel connectivity such

as 3G and 4G wireless systems.
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Figure 5.5: Service share (mi) vs. q1 when ν=1.0
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Figure 5.6: Service rate (µi) vs. ~π1 when ν = 1.0
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Chapter 6

Conclusions and Suggestions for Future

Work

6.1 Conclusions

6.1.1 Optimal Control in Emerging Wireless Networks

In this part, we presented a model for service sharing in emerging wireless systems.

We investigated the class of Most Balancing policies. These policies serve the longest

connected queues in the system in an effort to “equalize” the queue occupancies, i.e.,

minimize the total difference between queue lengths in the system. A theoretical proof

of the optimality of MB policies using stochastic dynamic coupling argument was pre-

sented. The LCSF/LCQ algorithm was designed as an approximate implementation

of MB policies.

A simulation study was conducted to study the performance of five different work

conserving policies including the optimal one. The results showed that the Most

Balancing policies outperformed all other policies, even when statistical assumptions

were relaxed. As expected, the Least Balancing policy performed the worst. We also

found that a randomized policy can perform very close to the optimal one in most

135
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situations.

The model was extended by incorporating the effect of retransmitting the unsuc-

cessful transmissions (packets with uncompleted service). Using stochastic coupling

argument, we proved that the MB policies are still optimal.

The presented model is an important one for the modeling of emerging wireless

systems, since these systems use channel sharing (using a combination of code division

multiple access and time division multiple access) to maximize system performance

and enhance fairness between users in the system. It also presents a typical scheduling

problem that possesses an inherent significance in the stochastic optimization theory

as an application for optimal service (or resource) allocation in queuing systems with

random server connectivity.

6.1.2 Optimal Scheduling in HSDPA Networks

In this part, we developed an MDP model for the scheduling problem in 3G-HSDPA

wireless system. We used dynamic programming and value iteration to determine

numerically the optimal scheduling policy in this system. Value iteration is com-

putationally demanding especially for large state space (e.g., larger number of users

and/or wireless channel states). To counter this, we developed a heuristic approach to

obtain a near-optimal heuristic policy. The suggested approach involves studying the

structural and behavioral characteristics of the optimal policy using the MDP model.

Then we use this data to determine a near-optimal heuristic scheduling policy that is

shown to compare favorably with the optimal one. Therefore, it is a good candidate

for practical application and use.

Towards the derivation of the heuristic policy, we approximated the policy switch-

ing curves linearly (Equations (4.22)-(4.24)). A non-linear approximation could be

used, although it may not necessarily provide substantial improvement.

We also studied (using simulation) the effect of the code allocation granularity on
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the optimal policy performance. Our results showed that a policy with finer gran-

ularity will perform better in light to moderate loading conditions, while a coarse

policy is more desirable in heavy loading conditions. We also showed that the perfor-

mance gain when using c < 5 is marginal and does not justify the added complexity.

Our results also proved that RR is undesirable in HSDPA systems due to the poor

performance and lack of fairness if deployed in such an environment.

6.1.3 Analytic Evaluation of Downlink Service Rate in 3G

Wireless Networks

In this part, a server sharing based stochastic model for 3G wireless networks was

presented. A closed-form formula to find the average service rate per user was pro-

vided. The channel was modeled by a N-state FSMC (finite state Markov channel).

A two-user system with 3-state FSMC channel was modeled by a set of equations.

The resultant set of equations was solved to determine the server shares and the cor-

responding average service rates for some special cases (e.g., Equal shares scheduler

and Fair scheduler). It is evident from the results that assigning equal shares of the

server capacity to all users in a 3G wireless system with independent random channel

connectivity will result in service differentiation that depends on the relative channel

quality. We also showed that fairness can only be achieved within a specific range

of the channels’ parameters. The qualitative results obtained for the 2-state FSMC

case seem to hold for the 3-state FSMC case. We can conjecture that these results

are extendable to any number of channel states.
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6.2 Suggestions for Future Work

For future work, we suggest the following:

1. Investigate the applicability and optimality of the class of MB policies (pre-

sented in Chapter 2) in other wireless models. We believe that these policies

(or a slightly different flavor of them) are optimal for a large set of scheduling

and routing problems in wireless networks.

2. Relax the symmetry assumption we imposed on the arrivals and connectivities

in the model presented in Chapter 2. The resultant model in this case will incor-

porate heterogeneous arrivals and/or heterogeneous connectivities to different

queues. An MB policy may not be optimal in this case. However, according to

our intuition, the optimal policy should be a weighted version of the MB poli-

cies, i.e., a policy that tries to balance a weighted version of the queue lengths

in this system. The weight will be a function of the differences in the different

queues arrival rates and the differences in their connectivities.

3. Extend the work presented in Chapter 2 to continuous time systems. We believe

that the MB policies are still optimal. The coupling argument in this case will

be performed in the instances were events (such as arrivals, service completions

or connectivity changes) happen.
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Appendix A

The Effect of A Balancing Interchange on

The Imbalance Index

In this appendix we present a lemma that quantifies the effect of performing a bal-

ancing interchange on the imbalance index κn(π). Recall that the “balancing inter-

change” is defined in Section 2.6.1.

Lemma 11. Let x be an L-dimensional vector; suppose that x∗ is obtained from x

by performing a balancing interchange. Then

L∑
i′=1

L∑
j′=i′+1

(x∗[i′] − x∗[j′]) ≤
L∑
i=1

L∑
j=i+1

(x[i] − x[j]) (A-1)

where x∗[k] (respectively x[k]) is the kth largest component of vector x∗ (respectively x).

Proof. We generate the vector x∗ by performing a balancing interchange of two com-

ponents (the lth and the sth largest components) in the vector x. The resulted vector

x∗ is characterized by the following:

x∗[l′] = x[l] − 1, x∗[s′] = x[s] + 1, x[l] > x[s]

x∗k = xk, ∀k 6= [l], [s] (A-2)
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where [l′] (respectively [s′]) is the new order (i.e., the order in the new vector x∗) of

the lth (respectively the sth) component in the original vector x.

From Equation (A-2) we can easily show that

L∑
i′=1

L∑
j′=i′+1

(x∗[i′] − x∗[j′]) =
L∑
i=1

L∑
j=i+1

(x[i] − x[j]), ∀i, j /∈ {l, s} and i′, j′ /∈ {l′, s′} (A-3)

For the remaining cases, i.e., when at least one of the indices i, j belongs to {l, s}

or i′, j′ belongs to {l′, s′}, we pair the index i′ (respectively j′) on the left hand side

with the index i (respectively j) on the right hand side of Equation (A-1). We first

assume that x[l] > x[s] + 1, then we can easily show that l′ ≤ s′. In this case, we have

the following five, mutually exclusive, cases to consider:

1. When i′ = l′, i = l, j′ = s′ and j = s. This case occurs only once, i.e., when

decomposing the double sum in Equation (A-1) we can find only one term that

satisfies this case. From Equation (A-2) we have

x∗[l′] − x∗[s′] = x[l] − x[s] − 2 (A-4)

2. When i′ = l′, i = l, j′ 6= s′ and j 6= s. There are L− l− 1 terms that satisfy this

case. Analogous to case (1) we can determine that

x∗[l′] − x∗[j′] = x[l] − x[j] − 1 (A-5)

3. When i′ 6= l′, i 6= l, j′ = s′ and j = s. There are s − 2 terms that satisfy this

case. In this case we can show that

x∗[i′] − x∗[s′] = x[i] − x[s] − 1 (A-6)
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4. When i′ 6= l′, s′, i 6= l, s, j′ = l′ and j = l. There are l− 1 terms that satisfy this

case. In this case we can show that

x∗[i′] − x∗[l′] = x[i] − x[l] + 1 (A-7)

5. When i′ = s′, i = s, j′ 6= l′, s′ and j 6= l, s. There are L − s terms that satisfy

this case. In this case we have

x∗[s′] − x∗[j′] = x[s] − x[j] + 1 (A-8)

The above cases (i.e., Equations (A-3)-(A-8)) cover all the terms in Equation (A-1)

when x[l] > x[s] + 1. Combining all these terms yields:

L∑
i′=1

L∑
j′=i′+1

(x∗[i′] − x∗[j′]) =
L∑
i=1

L∑
j=i+1

(x[i] − x[j])− 2 · (1)− 1 · (L− l − 1)− 1 · (s− 2)

+1 · (l − 1) + 1 · (L− s)

=
L∑
i=1

L∑
j=i+1

(x[i] − x[j])− 2 · (s− l) (A-9)

Since s > l by assumption (the vector x is assumed to be ordered in a descending

manner), then we conclude that Equation (A-1) is satisfied with strict inequality.

Furthermore, if x[l] = x[s] + 1, then from Equation (A-2) it is clear that x∗[l′] = x[s]

and x∗[s′] = x[l]. Therefore, Equation (A-1) is satisfied with strict equality.



Appendix B

Proofs of The Results of Section 2.5.1

B.1 Proof of Proposition 1:

Proof. Let X ′ have distribution F . Define Y ′ = G−1(F (X ′)), then

P [G−1(F (X ′)) ≤ z] = P [F (X ′) ≤ G(z)]

= P [X ′ ≤ F−1(G(z))]

= F [F−1(G(z))] = G(z)

Hence, Y ′ has distribution G. Since F ≥ G, then F−1 ≤ G−1 and

X ′ = F−1(F (X ′)) ≤ G−1(F (X ′)) = Y ′

and the result follows.

B.2 Proof of Theorem 1:

Proof. Let X and Y have probability distributions F and G respectively and

X ≤st Y. Using Proposition 1, we construct the independent random variables
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X∗(t1), . . . X∗(tn), ∀n, {t1, . . . , tn}, with distribution F , such that X∗(ti) ≤ Y (ti) for

all 1 ≤ i ≤ n. Then the process X∗ = {X∗(t)}∞t=1 generated by X∗(ti) has the same

probability distribution as X.

Since X∗(ti) ≤ Y (ti) by construction, then for any monotonically increasing func-

tion f() we have:

f(X∗(t1), . . . , X∗(tn)) ≤ f(Y (t1), . . . , Y (tn))

for all n, {t1, . . . , tn}. For any z we have

f(X∗(t1), . . . , X∗(tn)) > z ⇒ f(Y (t1), . . . , Y (tn)) > z

Hence,

P [f(X∗(t1), . . . , X∗(tn)) > z] ≤ P [f(Y (t1), . . . , Y (tn)) > z]

Since, X∗ has the same distribution as the process X, then

P [f(X(t1), . . . , X(tn)) > z] ≤ P [f(Y (t1), . . . , Y (tn)) > z] (B.1)

Conversely starting from (B.1) above and by integrating both sides, for all mono-

tonically increasing functions f : Rn → R and for any x ∈ Rn, we have

E(f(X(n))) =

∫ ∞
0

P [f(x) > z] dz ≤
∫ ∞

0

P [f(y) > z] dz = E(f(Y(n))) (B.2)

where X(n),Y(n) are the finite-dimensional projection of the stochastic processes

X and Y respectively.

For any a ∈ Rn, let fa denote the increasing function
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fa(x) =


1 if x > a

0 if x ≤ a

therefore,

E(fa(X(n))) = P [X(n) > a] and E(fa(Y(n))) = P [Y(n) > a]

it follows that X(n) ≤st Y(n).

Now, letting n approach the size of the entire time series of the processes X and

Y, we have X ≤st Y and the proof is complete.



Appendix C

Proof for Lemma 7 of Section 2.6.4

We apply the coupling method to our proof of Lemma 7 as follows: Let ω and π be a

given sample path and server allocation policy. The values of the sequences {X(n)}

and {Y (n)} can be completely determined by ω and π. We denote the ensemble

of all random variables as system S. A new sample path, ω̃ and a new policy π̃

are constructed as we specify in detail in the proof. We employ the tilde notation

in all random variables that belong to the new system; we denote the ensemble of

all random variables (in the new construction) as system S̃. Then, in the coupling

definition, ω̂ = (ω, ω̃) and the “coupled” processes of interest in Equation (2.14) will

be the queue sizes X̂ = {X(n)} and X̂′ = {X̃(n)}.

We define ω as the sequence of sample values of the random variables

(X(1),G(1),Z(1),G(2),Z(2), . . .), i.e., ω ≡ (x(1),g(1), z(1),g(2), z(2), . . .). The

sample path ω̃ ≡ (x̃(1), g̃(1), z̃(1), g̃(2), z̃(2), . . .) is constructed such that (a) x̃(1) =

x(1), (b) g̃(n) the same as g(n) except for two elements that are exchanged, (c)

z̃(n) the same as z(n) except for two elements that are exchanged. Which elements

are exchanged is detailed in the proof. In the symmetrical system we are studying,

{G̃(n), Z̃(n)} has the same distribution as {G(n),Z(n)}, since the distributions of

G(n) and Z(n) will not change when reordering their elements. The mappings from

G(n) to G̃(n) and from Z(n) to Z̃(n) are one-to-one.
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The new policy π̃ is constructed (by showing how π̃ chooses the withdrawal vector

ỹ(·)) as detailed in the proof. Then using Equation (2.7), the new states x(·), x̃(·)

are determined under π and π̃. The goal is to prove that the relation

x̃(t) ≺p x(t) (C.1)

is satisfied at all times t. Towards this end, the preferred order (introduced in Section

2.6.1) can be described by the following property:

Property D: x̃ is preferred over x (x̃ ≺p x) if and only if one of the following

statements holds:

(R1) x̃ ≤ x: the two vectors are component-wise ordered;

(R2) x̃ is a two-component permutation of x as described in (2) in Section 2.6.1.

(R3) x̃ is obtained from x by performing a “balancing interchange” as described in

(3) in Section 2.6.1.

The proof for Lemma 7 of Section 2.6.4 is given next.

Proof for Lemma 7. Fix an arbitrary policy π ∈ Πh
τ and a sample path ω =

(x(1),g(1), z(1), . . .), where x(.),g(.) and z(.) are sample values of the random vari-

ables X(.),G(.) and Z(.). Let , π∗ ∈ ΠMB be an MB policy that works on the same

system. The policy π∗ chooses a withdrawal vector y∗(t),∀t.

The proof has two parts; Part 1 provides constructions for ω̃ and π̃ (as defined by

Lemma 7 statement) for times up to t = τ . Part 2 does the same for t > τ .

Part 1: For the construction of ω̃, we let the arrivals and channel states be the same

in both systems at all time slots before τ , i.e., z̃(t) = z(t) and g̃(t) = g(t) for all

t < τ . We construct π̃ such that it chooses the same withdrawal vector as π, i.e.,

we set ỹ(t) = y(t) for all t < τ . In this case, at t = τ , the resulting queue sizes are
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equal, i.e., x̃(τ) = x(τ). In the remainder of Part 1, we will construct the policy π̃ at

time slot τ such that: (a) π̃ ∈ Πh−1
τ , i.e., π̃ is closer to π∗ ∈ ΠMB than π, and (b) the

resulting queue length under π̃ is preferred over that under the original policy π, i.e.,

x̃(τ + 1) ≺p x(τ + 1). Condition (b) is necessary for proving the second part of the

lemma, i.e., the domination of policy π̃ over π, a result that will be shown in Part 2

of this proof.

At time slot τ , let ω̃ have the same channel connectivities and arrivals as ω, i.e.,

let g̃(τ) = g(τ) and z̃(τ) = z(τ). Furthermore, let D = y∗(τ) − y(τ). Recall that

h =
∑L

i=0 |Di|/2. Then one of the following two cases may apply:

1- During time slot t = τ , the original policy π differs from π∗, the MB policy,

by strictly less than h balancing interchanges. Then π ∈ Πh−1
τ as well, so we set

ỹ(τ) = y(τ). In this case, the resulting queue sizes x̃(τ + 1),x(τ + 1) will be equal,

property (R1) holds true and (C.1) is satisfied at t = τ + 1.

2- During time slot t = τ , π differs from the MB policy π∗ by exactly h balancing

interchanges. Since π ∈ Πh
τ and h > 0 and following Lemma 6, we can identify two

queues l and s such that: (a) Dl ≥ 1, (b) Ds ≤ −1, and (c) I(l, s) is feasible.

The construction of π̃ is completed in this case by performing the interchange

I(l, s), i.e.,

ỹ(τ) = y(τ) + I(l, s), (C.2)

or equivalently,

˜̂x(τ) = x̂(τ)− I(l, s) (C.3)

According to Lemma 4, this interchange is balancing. To complete the con-

struction of ω̃, we examine the arrivals under ω during time slot τ . We set

z̃i(τ) = zi(τ),∀i 6= l, s. For queues l and s, we do the following: (i) if xl(τ) = xs(τ)+1

and zs(τ) > zl(τ) then we swap the arrivals for queues l and s, i.e., we let z̃l(τ) = zs(τ)

and z̃s(τ) = zl(τ), (ii) otherwise, let z̃l(τ) = zl(τ) and z̃s(τ) = zs(τ). The queue
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lengths at the beginning of time slot (τ + 1) under the two policies satisfy property

(R1) in case (i) and (R3) otherwise. In either case, (C.1) is satisfied at t = τ + 1.

Starting from a preferred state at t = τ + 1, we will show next, in Part 2 of the

proof, that a feasible control at time slot t > τ , such that the constructed policy

π̃ dominates the original one π, will always exist. We do that by showing one such

construction.

Part 2: In this part of the proof, we construct ω̃, π̃ for times t > τ , such that the

preferred order x̃(t) ≺p x(t) is valid for all t > τ . This will insure π̃ domination over

π. We will use induction to complete our proof. We assume that π̃ and ω̃ are defined

up to time n− 1 and that x̃(n) ≺p x(n). We will prove that at time slot n, π̃ can be

constructed so that x̃(n+ 1) ≺p x(n+ 1). Thus, we have to show that either R1, R2

or R3 holds at time slot n+ 1.

The following three cases, corresponding to properties (R1), (R2) and (R3) are

considered next.

Case (1) x̃(n) ≤ x(n). The construction of ω̃ is straightforward in this case. We

set z̃(n) = z(n) and g̃(n) = g(n). We construct π̃ such that ỹ(n) = y(n). In this

case, its obvious that x̃(n+ 1) ≤ x(n+ 1) and (C.1) holds at t = n+ 1.

Case (2) x̃(n) is a permutation of x(n), such that x̃(n) can be obtained from

x(n) by permuting components i and j (as described in property R2 of the preferred

order). For the construction of ω̃, we set g̃i,c(n) = gj,c(n) and g̃j,c(n) = gi,c(n), for

all c = 1, 2, . . . , K; z̃i(n) = zj(n) and z̃j(n) = zi(n) (refer to footnote 7 or [24]); the

connectivities and arrivals for each one of the remaining queues are the same as in

ω. We construct π̃ such that ỹi(n) = yj(n), ỹj(n) = yi(n) and ỹm(n) = ym(n) for

all m 6= i, j. As a result, x̃(n + 1) and x(n + 1) satisfy property (R2) and (C.1) is

satisfied at t = n+ 1.

Case (3) x̃(n) is obtained from x(n) by performing a balancing interchange for

queues i and j as defined in property (R3). In this case xi(n) ≥ xj(n) + 1, by the
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definition in (R3)1. There are three cases to consider:

(3.a) xi(n) = xj(n) + 1. Therefore, x̃i(n) = xj(n) and x̃j(n) = xi(n), i.e., the

vectors x(n) and x̃(n) have components i and j permuted and all other components

are the same. This case corresponds to case (2) above.

(3.b) xi(n) > xj(n) + 1 and yi(n) ≤ yj(n). We construct ω̃ as in case (1) above,

and we let ỹm(n) = ym(n), ∀m 6= j. Note that it is not feasible for policy π to empty

queue i in this case. Depending on whether π empties queue j or not at t = n, the

construction of π̃ will follow one of the following two cases:

(i) yj(n) < xj(n), i.e., π does not empty queue j at t = n, then let ỹj(n) = yj(n)

(i.e., π̃ is identical to π at t = n). In this case, property (R3) will be preserved

regardless of the arrivals pattern2, hence (C.1) is satisfied at t = n+ 1.

(ii) yj(n) = xj(n), i.e., π empties queue j at t = n. Then if under policy π all the

servers connected to queue j are allocated, then let ỹj(n) = yj(n). As in case (i)

above, property (R3) holds and (C.1) satisfied at t = n+ 1.

In the event that π empties queue j without exhausting all the servers connected

to queue j, then π̃ will be constructed such that one of these idling servers is allocated

to queue j, i.e., ỹj(n) = yj(n) + 1, so that π̃ preserves the work conservation property

at t = n. Since x̃j(n) = xj(n)+1 by property (R3) and z̃j(n) = zj(n) by construction,

then we have

x̃j(n+ 1) = xj(n+ 1) = zj(n)

Since x̃i(n) = xi(n) − 1 by property (R3), z̃i(n) = zi(n) and ỹi(n) = yi(n) by con-

struction, we have

x̃i(n+ 1) = xi(n+ 1)− 1

The rest of the queues will have the same lengths in both systems at t = n + 1.

1By definition, we have xi(n) > xj(n), x̃i(n) = xi(n)− 1 and x̃j(n) = xj(n) + 1.
2Note that if xi = xj + 1 then property (R2) is a special case of (R3).
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Therefore, (R1) holds with strict inequality and (C.1) is satisfied at t = n + 1. This

case shows that a “more” balancing policy results in a strict enhancement of the

original policy.

Cases (i) and (ii) are the only possible ones, since π cannot allocate more servers

to queue j than its length.

(3.c) xi(n) > xj(n) + 1 and yi(n) > yj(n). We consider the following two cases:

(i) yi(n) = xi(n), i.e., π empties queue i at t = n. To construct ω̃ for this case,

we set z̃(n) = z(n), g̃m,c(n) = gm,c(n) for all m 6= i, j, and for all c. For queues i and

j we do the following:

Let server r be a server that is connected to queue i at time slot n such that

qr(n) = i (i.e., server r is allocated to queue i by policy π at t = n). Now, we switch

the connectivity of server r to queue i and that of server r to queue j, i.e., we set

g̃j,r(n) = gi,r(n) and g̃i,r(n) = gj,r(n) (refer to footnote 7 or [24]). The rest of the

servers will have the same connectivities to queues i and j under both policies, i.e.,

we set g̃i,c(n) = gi,c(n) and g̃j,c(n) = gj,c(n) for all c 6= r.

We construct π̃ such that q̃r(n) = j and q̃c(n) = qc(n),∀c 6= r. This means that

π̃ differs from π, at t = n, by one server allocation (server r) that is allocated to

queue j (under π̃) rather than queue i (under π). From equation (2.1), we can easily

calculate that the resulting queue lengths at t = n+ 1 (for any arrivals pattern) will

be:

x̃m(n+ 1) = xm(n+ 1), ∀m.

It follows that property (R1) is satisfied and therefore (C.1) is satisfied at t = n+1.

(ii) yi(n) < xi(n), i.e., π does not empty queue i at t = n. Then consider the

following:

If π does not empty queue j at t = n or if π empties queue j and in the process it
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exhausts all servers connected to queue j, i.e., π does not idle any server connected

to queue j, then we construct ω̃ and π̃ similar to case (3.c(i)) above and the same

conclusion holds.

If on the other hand, π empties queue j without exhausting all its connected

servers and therefore π is forced to idle some of the servers connected to queue j,

then let r′ be one such server. We set z̃(n) = z(n), g̃(n) = g(n). We construct

π̃ such that ỹj(n) = yj(n) + 1, by allocating server r′ to queue j under π̃, i.e., we

set q̃r′(n) = j. This is feasible since x̃j(n) = xj(n) + 1 by property (R3). We also

have x̃i(n) = xi(n)− 1 (by property (R3)). Since z̃(n) = z(n) by construction, then

similar to case (3.b(ii)), property (R1) holds with strict inequality at t = n + 1 for

any arrivals pattern, and (C.1) follows.

Since π cannot allocate more servers to queue j than its length, therefore, (i) and

(ii) are the only possible cases.

Note that policy π̃ belongs to Πh−1
τ by construction in Part 1; its dominance over

π follows from relation (2.15).



Appendix D

Proof of Lemma 10

Let S and S̄ refer to the queuing systems under policies π and π̄ respectively. Let

X = (X1,X2) and X̄ = (X̄1, X̄2) be the queue length sequences under π and π̄

respectively. Define the following indicator variables to represent the queues with the

longest and the shortest sizes in S and S̄ at time t:

s(t) = argmin
m=1,2

{Xm(t)}, s̄(t) = argmin
m=1,2

{X̄m(t)}

l(t) = argmax
m=1,2

{Xm(t)}, l̄(t) = argmax
m=1,2

{X̄m(t)} (D.1)

Ties are broken arbitrarily. To simplify notation, we will suppress the time argu-

ment for the indicator variables when used as a subscript, e.g., we write Xs(t) rather

than Xs(t)(t). We also define the partial order � on Z2
+, the set of ordered pairs of

nonnegative integers, as follows:

Definition: We say that X̄(t) ∈ Z2
+ is preferred toX(t) ∈ Z2

+, written as X̄(t) � X(t),

if and only if one of the following three relations is satisfied:
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Xl(t) ≥ X̄l̄(t) and Xs(t) ≥ X̄s̄(t) (D.2)

Xl(t) ≥ X̄l̄(t) + 1, Xs(t) ≥ X̄s̄(t)− 1

and X̄l̄(t)− X̄s̄(t) ≤ Xl(t)−Xs(t)− 1 (D.3)

Xl(t) ≥ X̄l̄(t) + 2, Xs(t) ≥ X̄s̄(t)− 2

and X̄l̄(t)− X̄s̄(t) ≤ Xl(t)−Xs(t)− 3 (D.4)

Relation (D.2) simply states the usual ordering of the queue lengths of queues

l(t), l̄(t), s(t) and s̄(t) on Z+. Relation (D.3) (respectively relation (D.4)) states that

the vector X̄(t) can be obtained from X(t) by performing a one-packet (respectively

a two-packet) “balancing interchange” and zero or more “packet removals”. We can

easily check that

X̄(t) � X(t)→ W̄ (t) ≤ W (t) (D.5)

Proof of Lemma 10. We use stochastic coupling to prove the lemma; for the rest of

this section, all (in)equalities are in the almost sure sense. The basic idea is to show

that X̄(t) � X(t); then from D.5, W̄ (t) ≤ W (t) and Equation (3.8) follows.

For notational simplicity, we assume that τ = 0. We couple the systems S and

S̄ by starting them from the same initial state x0 = (X1(0), X2(0)) = x̄0 and giving

them the same connectivity variables, i.e., gi,j(1) = ḡi,j(1),∀i, j = 1, 2. Note that π̄

will take the same actions as MB policy during time slot t = 1.

At t = 1, one of the following cases may apply: If gi,j(1) = 0,∀i, j = 1, 2, i.e.,

if both servers are disconnected or Xl(0) = Xs(0) = 0, then π̄(1) = (0, 0). Clearly,
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no service will be rendered under π or π̄. At t = 1, assign the same arrival variables

to the corresponding queues in S and S̄. In this case, from Equation (5.1) we can

easily check that X̄(t), X(t) satisfy relation (D.2) at t = 1. Otherwise, we have the

following two mutually exclusive, exhaustive cases (denoted as A and B) to consider:

Case A) Xl(0) = Xs(0). Consider the following sub-cases:

A1) If at t = 1, at least server m (respectively server n) is connected to queue

1 (respectively queue 2) m,n ∈ {1, 2} and n 6= m (refer to Figure D.1(a)), then

according to Equation (5.4), π̄(t) = (1, 1).

At t = 1, let Zi(t) = Z̄i(t) and µk(t) = µ̄k(t), i, k = 1, 2, i.e., the arrival variables

for queue l(t) (respectively s(t)) are the same as that for queue l̄(t) (respectively s̄(t))

and the service completion variable for server k is the same in both S and S̄. In this

case, the queue length sequences for systems S and S̄ may follow one of the following

trajectories (depending on the value of π(t)):

(i) π(t) = (0, 2) or π(t) = (2, 0) at t = 1. Then (D.2) holds if no packet completes

its service. If both packets complete their service (i.e., if µ1(n) = µ2(n) = 1),

then we can easily verify that (D.2) holds if there is an arrival to the shortest

queues (s and s̄). For all other arrival patterns, (D.3) holds. If only one packet

completes its service then we can verify that (D.2) holds for any arrival pattern.

(ii) Otherwise (D.2) will be satisfied at t = 1.

A2) In this sub-case we consider the case where only one queue is connected to

either one or both servers (refer to Figure D.1(b)). Assign the same arrival and service

variables as in case A1. If π(1) = π̄(1) then (D.2) holds at t = 1 with strict equality.

Otherwise (π idles servers at t = 1), (D.2) holds at t = 1 with strict inequality.

A3) If at t = 1, gi,m(t) = gj,m(t) = 1 and gi,n(t) = gj,n(t) = 0, m, n ∈

{1, 2} and m 6= n (a single server is connected to both queues, refer to Figure D.1(c)).
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(c) Case A3

Figure D.1: Different connectivity patterns for Case A (Lemma 10)

Assign the same arrival and service variables as in case A1. Then (D.2) holds at t = 1

with strict inequality if π idles the connected server and with strict equality otherwise.

Case B) Xl(0) > Xs(0).

We couple the systems S and S̄ by assuming they have the same arrival sequences,

i.e., Zk(t) = Z̄k(t), k = l(t), s(t), and the same service variables for each server. If no

packet completes service then (D.2) holds at t = 1. Otherwise, the following cases

will be considered:

B1) If at t = 1, gl,k(t) = 1, k = 1, 2 then π̄(t) = (Ȳl̄(t), Ȳs̄(t)) = (2, 0). One of the

following three cases may apply:

(i) If Xl(0) > Xs(0) + 2 then at t = 1 if π(t) = (1, 1) then let µ̄i(t) = µi(t) and

µ̄j(t) = µj(t), i.e., packets served by either server i or server j have the same service

completion variables in S and S̄. Now if only the packet in queue l(t) completes its

service then (D.2) holds; otherwise, we can verify that (D.3) holds for the remaining

cases. Else if π(t) = (0, 2) then let µ̄i(t) = µi(t) and µ̄j(t) = µj(t). If both scheduled

packets complete service, then (D.4) holds. If only one packet completes its service,

e.g., µi(t) = 0 and µj(t) = 1, then (D.3) holds. Otherwise, π(t) = π̄(t) and (D.2)

holds at t = 1.
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(ii) If Xl(0) = Xs(0) + 2, then, at t = 1 if π(t) = (1, 1) then let µ̄i(t) = µi(t) and

µ̄j(t) = µj(t). If only the packet in queue l(t) completes its service or if service is

completed for both servers and there are arrivals to queues s(t) and s̄(t) only during

time slot t = 1, then (D.2) holds; otherwise, (D.3) holds at t = 1. Else if π(t) = (0, 2)

then let µ̄i(t) = µi(t) and µ̄j(t) = µj(t). If service is completed, then (D.4) holds. If

only one packet completes its service, then (D.3) holds. Otherwise, π(t) = π̄(t) and

(D.2) holds at t = 1.

(iii) If Xl(0) = Xs(0) + 1, then, at t = 1 if π(t) = (1, 1) then let µ̄i(t) = µi(t) and

µ̄j(t) = µj(t). If only the packet in queue s(t) completes service and there are no

arrivals to queues s(t) and s̄(t) during time slot t = 1, then (D.3) holds; otherwise,

(D.2) holds at t = 1. Else if π(t) = (0, 2) then let µ̄i(t) = µi(t) and µ̄j(t) = µj(t). If

service is completed, then (D.3) holds. If only one packet completes its service and

there are arrivals to queues s(t) and s̄(t) only during time slot t = 1 then (D.2) holds.

Otherwise, π(t) = π̄(t) and (D.2) holds at t = 1.

B2) If at t = 1, gl,i(t) = 1 and gl,j(t) = 0, i, j ∈ {1, 2}, then π̄(t) = (1, 1). We

choose the same service variables for each pair of the scheduled packets in S and S̄.

If π(t) = (0, 2) at t = 1, then if service is not completed then (D.2) holds at t = 1.

If µ̄i(t) = 0 and µ̄j(t) = 1, i.e., the packet in s̄(t) completes its service while the

packet in l̄(t) does not, then (D.2) holds at t = 1. Otherwise, (D.3) holds at t = 1.

Else if π(t) = π̄(t) then (D.2) holds at t = 1.

B3) If at t = 1, gl,k(t) = 0, k = 1, 2, then π(t) = π̄(t). Assign the same service

variables for each pair of the scheduled packets in S and S̄. In this case, (D.2) holds

at t = 1.

The above two cases (A and B) are the only possible ones, because of the definition

of π̄. We showed that in both, the total queue length at t = 1 satisfies the relation

X̄(t) � X(t). (D.6)
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To complete the induction we show that if the queue lengths at t = n satisfy either

(D.2), (D.3), or (D.4) then at t = n + 1 we can couple the queue length sequences

X and X̄ by carefully selecting the arrival, connectivity, and service variables and

construct π̄ such that the queue lengths at t = n+1 satisfy one of the relations (D.2),

(D.3), or (D.4). As a result, (D.6) will hold at t = n+ 1.

We must consider the following three cases: (1) Relation (D.2) holds at t = n; (2)

Relation (D.3) holds at t = n; (3) Relation (D.4) holds at t = n.

Case 1) Relation (D.2) holds at t = n. At t = n+ 1, assign the same arrival, service

and connectivity variables to queues l(t) and l̄(t) and similarly for queues s(t) and

s̄(t). Let π̄(t) = π(t) at t = n+ 1. Then (D.2) will be satisfied again at t = n+ 1.

Case 2) Relation (D.3) holds at t = n. At t = n+ 1, couple the systems by assigning

the same arrival variables to queues l(t) and l̄(t) (do the same for queues s(t) and

s̄(t)). Also assign the same service variables for the servers in S and S̄. If service

is not completed for both scheduled packets, then let both systems have the same

connectivity variables and let π̄(t) = π(t); then (D.3) holds at t = n+ 1. Otherwise,

we consider the following cases:

2a) X̄l̄(n) > X̄s̄(n) + 2. At t = n+ 1, let gl,k(t) = ḡl̄,k(t) and gs,k(t) = ḡs̄,k(t), k =

1, 2. Let π̄(t) = π(t) at t = n+ 1. Then (D.3) holds at t = n+ 1.

2b) X̄l̄(n) = X̄s̄(n) + 2. At t = n+ 1, let gl,k(t) = ḡl̄,k(t) and gs,k(t) = ḡs̄,k(t), k =

1, 2. Let π̄(t) = π(t) at t = n + 1. Then, when π(t) = (2, 0) at t = n + 1 and if

both packets complete their service (i.e., µ1(n) = µ2(n) = 1) and there are arrivals

to queues s(t) and s̄(t) only, then (D.2) holds; otherwise (D.3) holds at t = n+ 1.

2c) X̄l̄(n) = X̄s̄(n) + 1. At t = n+ 1, let gl,k(t) = ḡl̄,k(t) and gs,k(t) = ḡs̄,k(t), k =

1, 2. Let π̄(t) = π(t) at t = n + 1. If π(t) = (2, 0) or if π(t) = (1, 1) and service is

completed for the packet in queue l(t) only and there is an arrival to queue s(t) only,

then (D.2) holds; otherwise (D.3) holds at t = n+ 1.

2d) X̄l̄(n) = X̄s̄(n). There are several cases to consider:
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(i) At t = n + 1, π(t) = (1, 1). Let gl,k(t) = ḡl̄,k(t) and gs,k(t) = ḡs̄,k(t), k = 1, 2.

Let π̄(t) = (1, 1) at t = n+ 1, then if during time slot t = n+ 1 service is completed

for both scheduled packets and there are arrivals only to queues s(t) and s̄(t), then

(D.2) holds, otherwise (D.3) holds at t = n+ 1.

(ii) At t = n+ 1, π(t) = (2, 0). Then let gl,i(t) = ḡl̄,i(t) and gl,j(t) = ḡs̄,j(t), i, j ∈

{1, 2}, i 6= j. Similarly, let gs,i(t) = ḡs̄,i(t) and gs,j(t) = ḡl̄,j(t) at t = n + 1. Let

π̄(t) = (1, 1) at t = n+ 1, then (D.2) holds at t = n+ 1.

(iii) Otherwise, let π̄(t) = π(t) at t = n+ 1. Use the connectivity assumptions in

case (2d(i)) in this case. Then (D.3) holds at t = n+ 1.

Case 3) Relation (D.4) holds at t = n. At t = n + 1, let the arrival and service

variables be the same as in Case 2 above. In addition let gl,k(t) = ḡl̄,k(t) and gs,k(t) =

ḡs̄,k(t), k = 1, 2 at t = n + 1. If service is not completed for both scheduled packets

then (D.4) holds at t = n+ 1. Otherwise, the following may apply1:

3a) X̄l̄(n) > X̄s̄(n) + 2. At t = n + 1, let π̄(t) = π(t). Then (D.4) holds at

t = n+ 1.

3b) X̄l̄(n) = X̄s̄(n) + 2. At t = n + 1, let π̄(t) = π(t). Then if π(t) = (2, 0) at

t = n+1, and if service is completed for both scheduled packets and there are arrivals

to queues s(t) and s̄(t) only, then (D.3) holds at t = n + 1; otherwise (D.4) holds at

t = n+ 1.

3c) X̄l̄(n) = X̄s̄(n) + 1. At t = n+ 1, let π̄(t) = π(t). Then either (D.3) or (D.4)

holds at t = n+1 depending on the arrivals and service completions during that time

slot.

3d) X̄l̄(n) = X̄s̄(n). Let π̄(t) = π(t) at t = n + 1. There are several cases to

consider:

(i) At t = n + 1, π(t) = (1, 1). Then either (D.3) or (D.4) holds at t = n + 1

1The arguments in this case are analogous to those in Case 2 above and therefore were summarized
when possible.
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depending on the arrivals and service completions during that time slot.

(ii) At t = n + 1, π(t) = (2, 0). Then (D.2), (D.3) or (D.4) may hold at t = n + 1

depending on the arrivals and service completions during that time slot.

(iii) Otherwise, (D.4) holds at t = n+ 1.

The above three cases (i.e., Case 1, Case 2 and Case 3) satisfy equation (D.6) at

t = n + 1. By forward induction, we can conclude that (D.6) is satisfied for every

t ∈ T and Lemma 10 follows.



Appendix E

Derivation of Transition Probabilities in

Chapter 4

E.1 The System State Transition Probability in

Section 4.3.5

To derive the state transition probability (Pss′(a)) that was introduced in section

2.3.2, we start from equation (4.7) as follows

P ′ss(a) , Pr
(
s(t+ 1) = s′|s(t) = s,a(t) = a

)
= Pr(x′1, . . . , x

′
L, γ

′
1, . . . , γ

′
L|x1, . . . , xL, γ1, . . . , γL, a1, . . . , aL) (E.1)

where xi denotes the queue size of user i, and γi is the FSMC state characterizing

the connectivity of user i wireless channel. Using conditioning we can decompose the

above joint probability as follows:

Pss′(a) = Pr(x′1, . . . , x
′
L|x1, . . . , xL, γ1, . . . , γL, a1, . . . , aL)

·Pr(γ′1, . . . , γ′L|x′1, . . . , x′L, x1, . . . , xL, γ1, . . . , γL, a1, . . . , aL) (E.2)
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Applying conditioning again, the second part of equation (E.2) yields

Pss′(a) = Pr(x′1, . . . , x
′
L|x1, . . . , xL, γ1, . . . , γL, a1, . . . , aL)

·Pr(γ′1|x′1, . . . , x′L, x1, . . . , xL, γ1, . . . , γL, a1, . . . , aL)

·Pr(γ′2|γ′1, x′1, . . . , x′L, x1, . . . , xL, γ1, . . . , γL, a1, . . . , aL) · . . .

·Pr(γ′L|γ′1, . . . , γ′L−1, x
′
1, . . . , x

′
L, x1, . . . , xL, γ1, . . . , γL, a1, . . . , aL) (E.3)

Since the wireless channel was modeled by means of a Markov process, the channel

state γi depends only on the most recent channel state. Hence, the channel state

transition probability can be written as:

Pr(γ′i|s) = Pr(γ′i|γi) , Pγiγ′i

Accordingly, we can rewrite (E.3) as follows:

Pss′(a) = Pr(x′1, . . . , x
′
L|x1, . . . , xL, γ1, . . . , γL, a1, . . . , aL) ·

L∏
i=1

Pγiγ′i (E.4)

Following the same approach, the joint probability of the queue size (first term in

equation (E.2)) can be decomposed as follows:

Pr(x′1, . . . , x
′
L|x1, . . . , xL, γ1, . . . , γL, a1, . . . , aL) =

= Pr(x′1|x1, . . . , xL, γ1, . . . , γL, a1, . . . , aL)

·Pr(x′2|x′1, x1, . . . , xL, γ1, . . . , γL, a1, . . . , aL) · . . .

·Pr(x′L|x′1, . . . , x′L−1, x1, . . . , xL, γ1, . . . , γL, a1, . . . , aL) (E.5)
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The evolution of the queue size (xi) is given by

x′i = min
(
[xi − yi]+ + z′i , B

)
= min

(
[xi − aiγic]+ + z′i , B

)
(E.6)

Since the queue size corresponding to user i at the next time slot (x′i) depends on its

current queue size (xi), the given action ai, its channel state γi and the arrived PDUs

z′i during (t, t + 1] and is independent of all other queue sizes, actions and channel

conditions corresponding to the remaining users. Hence

Pr(x′i|s) = Pr(x′i|xi, γi, ai) , Pxix′i(γi, ai)

Therefore, equation (E.5) reduces to

Pss′(a) =
L∏
i=1

Pxix′i(γi, ai)Pγiγ′i (E.7)

The state transition probability will be the product of the individual user queues

state transition probabilities and their FSMC channel transition probabilities. The

underlining assumption is that Pγiγ′i can in practice be estimated from measurements

and provided to the scheduler. The term Pxix′i(γi, ai) will be derived in the following

section.
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E.2 The Queue State Transition Probability in

Section 4.3.5

The queue transition probability is given by

Pxix′i(γi, ai) = Pr
(
xi(t+ 1) = x′i|xi(t) = xi, γi(t) = γi, ai(t) = ai

)
(E.8)

where

xi(t+ 1) = min
(
[xi(t)− yi(t)]+ + zi(t+ 1) , B

)
(E.9)

with yi(t) = ai(t)γi(t)c. From equation (E.9) we can differentiate two cases; (a)

[xi(t)− yi(t)]+ +zi(t+1) < B and (b) [xi(t)− yi(t)]+ +zi(t+1) ≥ B. The objective

of this section is to derive Pxix′i(γi, ai) for both cases. Substituting the two cases in

equation (E.8) yields the following

Case (a): [xi(t)− yi(t)]+ + zi(t+ 1) < B or equivalently

xi(t+ 1) = [xi(t)− yi(t)]+ + zi(t+ 1)

Equation (E.8) in this case can be rewritten as:

Pxix′i(γi, ai) = Pr
(

[xi(t)− yi(t)]+ + zi(t+ 1) = x′i |xi(t) = xi, γi(t) = γi, ai(t) = ai
)

= Pr
(

[xi − yi]+ + zi(t+ 1) = x′i
)

= Pr(zi(t+ 1) = x′i − [xi − yi]+
)

(E.10)

where yi = aiγic. The arrival process is assumed to be Bernoulli with parameter qi
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for user i (section 4.3.1) and is given by

zi(t) =


ui with probability qi

0 with probability 1− qi
(E.11)

Hence, the queue state transition probability in this case is

Pxix′i(γi, ai) =


qi if x′i = [xi − yi]+ + ui

1− qi if x′i = [xi − yi]+

0 Otherwise

(E.12)

Case (b): [xi(t)− yi(t)]+ + zi(t + 1) ≥ B or equivalently xi(t + 1) = B. In this

case, one can conclude that Pxix′i(γi, ai) = 0 when x′i 6= B. The remaining of this

section is devoted to the calculation of PxiB(γi, ai) as follows:

PxiB(γi, ai) = Pr
(

[xi(t)− yi(t)]+ + zi(t+ 1) ≥ B |xi(t) = xi, γi(t) = γi, ai(t) = ai
)

= Pr
(

[xi − yi]+ + zi(t+ 1) ≥ B
)

= Pr(zi(t+ 1) ≥ B − [xi − yi]+) (E.13)

Similar to case (a), we can write equation (E.13) as follows

PxiB(γi, ai) =


1− qi if [xi − yi]+ ≥ B

qi if [xi − yi]+ + ui ≥ B

0 Otherwise

(E.14)

Using our knowledge of queue evolution process, we can summarize all the possible
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transitions in (E.14) by partitioning the probability space of PxiB(γi, ai) as follows:

PxiB(γi, ai) =



1− qi if xi = B, γiai = 0

qi if xi = B, γiai = 0

qi if xi = B, 0 < γiaic ≤ ui

qi if xi < B, [xi − γiaic]+ + ui ≥ B

0 Otherwise

(E.15)

where the first case in equation (E.15) (corresponding to probability 1 − qi) is the

only possible conditions for the first case in equation (E.14). The other three cases

(corresponding to probability qi) represent all the possible partitions of the probability

space of the second case in equation (E.14).

The results obtained above in (E.12) and (E.15) can be summarized as follows

Pxix′i(γi, ai) =



1 if x′i = xi = B, γiai = 0

qi if x′i = xi = B, 0 < γiaic ≤ ui

qi if x′i = B, xi < B, [xi − γiaic]+ + ui ≥ B

qi if x′i < B, x′i = [xi − γiaic]+ + ui

1− qi if x′i < B, x′i = [xi − γiaic]+

0 Otherwise

(E.16)

E.3 The Queue State Transition Probability in

section 4.5.3

In this section, we present the derivation of queue state transition probabilities when

retransmission is considered (section 4.5.3). There are two parts for this derivation;
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(a) when the transmission is successful (equation (4.17)) and (b) when the trans-

mission is unsuccessful (equation (4.18)). In case (a), the conditional probability

Pxix′i|µi=1(γi, ai) is similar to that in equation (E.8) and the derivation is analogous

to that in the previous section and will not be repeated here.

The remainder of this section is devoted to derive the probability in case (b);

namely, the queue transition probability when the transmission is unsuccessful (i.e.,

µi(t) = 0). In this case, no PDUs are removed from the scheduled queues at the end

of the current TTI (since the transmission was unsuccessful). The conditional queue

state transition probability is given by

Pxix′i|µi=0(γi, ai),Pr
(
xi(t+ 1) = x′i|xi(t) = xi, γi(t) = γi, ai(t) = ai, µi = 0

)
(E.17)

where xi(t+ 1) is given by equation (4.14). Similar to section E.2, we can distinguish

the following two cases: case (b1): [xi(t)− yi(t)µi(t)]+ + zi(t+ 1) < B; equivalently,

xi(t+ 1) = [xi(t)− yi(t)µi(t)]+ + zi(t+ 1)

Equation E.17 can be rewritten as:

Pxix′i|µi=0(γi, ai) = Pr
(

[xi(t)− yi(t)µi(t)]+ + zi(t+ 1) = x′i |xi(t) = xi,

γi(t) = γi, ai(t) = ai, µi = 0
)

= Pr(xi + zi(t+ 1) = x′i)

= Pr(zi(t+ 1) = x′i − xi) (E.18)
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As mentioned previously, zi(t) has Bernoulli distribution with parameter qi. There-

fore, the marginal queue state transition probability is given by

Pxix′i|µi=0(γi, ai) =


qi if x′i = xi + ui

1− qi if x′i = xi

0 Otherwise

(E.19)

case (b2): [xi(t)− yi(t)µi(t)]+ + zi(t + 1) ≥ B equivalently xi(t + 1) = B, then

equation E.17 can be rewritten as

PxiB|µi=0(γi, ai) = Pr([xi(t)− yi(t)µi(t)]+ + zi(t+ 1) ≥ B |xi(t) = xi,

γi(t) = γi, ai(t) = ai, µi = 0)

= Pr(xi + zi(t+ 1) ≥ B)

= Pr(zi(t+ 1) ≥ B − xi) (E.20)

and Pxix′i|µi=0(γi, ai) = 0 when x′i 6= B.

Using equation (E.11), we can conclude that

PxiB|µi=0(γi, ai) =


qi if xi + ui ≥ B and xi < B

1 if xi = B

0 Otherwise

(E.21)

The second case in equation E.21 is the aggregation of two events (arrival and no

arrival), since both events will result in x′i = B when xi = B, i.e., if the queue is

full initially and no PDUs are removed from this queue in the current TTI (due to

unsuccessful transmission), then the queue will remain full regardless of the arrival

status.
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Combining equations (E.19) and (E.21) yields

Pxix′i|µi=0(γi, ai) =



1 if x′i = xi = B

qi if x′i = B, xi < B, xi + ui ≥ B

qi if x′i < B, x′i = xi + ui

1− qi if x′i < B, x′i = xi

0 Otherwise

(E.22)


