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We present an analytic model and a methodology to determine the optimal packet scheduling
policy in a High Speed Downlink Packet Access (HSDPA) system. The optimal policy is the

one that maximizes cell throughput while maintaining a level of fairness between the users in
the cell. A discrete stochastic dynamic programming model for the HSDPA downlink scheduler

is presented. Value iteration is then used to solve for the optimal scheduling policy. We use a

FSMC (Finite State Markov Channel) to model the HSDPA downlink channel. A near optimal
heuristic scheduling policy is developed. Simulation is used to study the performance of the

resulted heuristic policy and compare it to the computed optimal policy. The results show that

the performance of the heuristic policy is very close to that of the optimal policy. The heuristic
policy has much less computational complexity which makes it easy to deploy, with only slight

reduction in performance compared to the optimal policy.
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1. INTRODUCTION

In this paper, we investigate the problem of scheduling in emerging wireless net-
works, specifically the High Speed Downlink Packet Access (HSDPA). We focus
on theoretical, performance and implementation sides of the optimal scheduling
policy in this system. HSDPA is a 3G wireless network that provides high cell
peak data rate (up to 14.4 Mbps for Revision 5) on the downlink by incorporating
Adaptive Modulation and Coding (AMC), Hybrid ARQ and fast scheduling [Holma
and Toskala 2004][Castro 2004]. The development of this system represents an im-
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portant step in the effort to establish an ubiquitous wireless access paradigm that
provides a host of services in a cost effective, high speed and reliable manner. This
motivated our initial interest in this problem.

Our work in this paper also lies in the broader area of optimal control of queuing
systems. There are three major techniques that were used extensively to study
optimal control in such systems; Dynamic Programming (DP), Linear Programming
(LP) and Stochastic Dominance. Dynamic Programming is the traditionally favored
technique for optimization [Stidham 1985][Hajek 1984][Rosberg et al. 1982][Lin and
Kumar 1984]. In this technique, a cost function is defined as a function of the
system state and the sequence of decisions made by the working policy. Then using
value iteration or policy iteration, one can identify the policy (or at least some
of its properties) that minimizes the cost function. When the underlying random
process resulted from the control problem is a Markov Decision Process (MDP),
then a feasible solution to the formulated DP equation is possible in most cases.
However, when the DP equation becomes somewhat complicated (i.e., has complex
formulation), then a solution may be hard to find. Similar statement is true when
the underling process is a Semi-Markov Decision Process. The DP equation can
also be solved numerically. However, when the state space and/or action space grow
large, then the computational complexity will rapidly increase and may become a
prohibiting factor. For more details on Dynamic Programming, the reader may
refer to [Puterman 1994][Ross 1983][Kumar and Varaiya 1986].

Linear Programming (including Integer LP) is another technique that can be
used to solve optimization problems in queuing systems. LP concerns the prob-
lem of maximizing (or minimizing) a linear functional over a polyhedron [Schri-
jver 1986][Rosberg et al. 1982]. In this technique, a linear functional, representing
the objective or cost, is maximized (or minimized) over a set of constraints (lin-
ear system of inequalities). Stochastic dominance is another important technique
in stochastic modeling, analysis and optimization [Stoyan 1983]. A useful result
from stochastic dominance is the stochastic coupling of random variables and pro-
cesses. Stochastic coupling is used in literature to prove optimality in many schedul-
ing and routing problems, for example, [Walrand 1984][Tassiulas and Ephremides
1993][Ganti et al. 2007][Al-Zubaidy et al. 2009].

Scheduling in HSDPA systems involves not only transmission time intervals
(TTI) allocation but also code allocation [Castro 2004]. On the downlink, HS-
DPA uses Code and Time Division Multiplexing (CDM/TDM) and has 15 codes to
be allocated per TTI. Most of the available work in scheduler design (e.g. [Wei and
Izmailov 2004], [Bonald 2004] and [Jeon et al. 2004]) is based on the intuition and
creativity of the designers. The designer usually selects an optimization criterion
that represents some important performance measure (in his/her opinion), builds
an algorithm based on that criterion and then tries to establish confidence in it
using backward analysis or simulation. This method can be described as a proce-
dural approach. This, most likely, will result in a suboptimal algorithm at the best,
that performs well in some setups and poor in others. This happens especially in
systems such as HSDPA, since it uses a very complex set of features such as Hy-
brid Automatic Repeat reQuest (H-ARQ) and Adaptive Modulation and Coding
(AMC). These features introduced many new and interrelated tuning parameters
ACM Transactions on Modeling and Computer Simulation, submitted for review.
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which cannot be grasped by one selected optimality criterion. Another observation
is the lack of work on schedulers that dynamically allocate codes as well as time
slots to the users in an HSDPA system. Scheduling related processes in this system
span across both layer 1 (physical) and layer 2 (media access control). Hence, a
cross-layer design is desirable for such systems [Jiang et al. 2005].

In literature there are many efforts to model and optimize schedulers in wireless
systems. In one well-known study [Tassiulas and Ephremides 1993], the authors
investigated an optimal scheduling problem in wireless networks with one server
that is shared by several users (queues) with random connectivity. They proved
that the LCQ (Longest Connected Queue) policy minimizes the total number of
packets in the system. In [Koole et al. 2001] a model similar to that of [Tassiulas
and Ephremides 1993] was studied. In that work, the Best User (BU) policy was
proven to maximize the expected discounted number of successful transmissions.
Liu et al studied the optimality of opportunistic schedulers (e.g., Proportional Fair
(PF) scheduler) under certain conditions [Liu et al. 2003]. They presented the
characteristics and optimality conditions for such schedulers. However, Andrews
showed that there are six implementation algorithms of PF scheduler, none of them
are stable [Andrews 2004].

In this work we built and analyzed a realistic model of an optimal HSDPA sched-
uler using stochastic dynamic programming. This model introduces a simplifying
abstraction of the real scheduler which estimates system behavior under different
operating conditions and describes the role of various system components. This
model can be readily solved numerically to obtain the optimal code allocation pol-
icy for a given objective function.

This approach can be considered as a unified approach since the same model
can be used when solving for different objective function by simply changing the
reward associated with the model to reflect a new optimality objective. Different
objective functions may result in different optimal policies. The proposed approach
produces an optimal scheduling policy in the sense that it maximizes cell throughput
for a given fairness. It provides an elegant and presentable analytic foundation for
scheduling problems and may be used as a benchmarking tool for other (suboptimal)
schedulers or to test against heuristics.

The presented approach can be used to tackle optimal packet scheduling in the
most recent releases of 3GPP (e.g., Long Term Evolution (LTE)). These systems
use the same basic components at the link layer level (e.g., HARQ and AMC) that
are used in HSDPA system. They also use other new technologies in the physical
layer (that was not used in HSDPA systems) to increase downlink/uplink data
rates up to 150Mbps/50Mbps, namely orthogonal frequency-division multiplexing
(OFDM) and multiple-input multiple-output (MIMO) antenna system [Ekstrom
et al. 2006][Peisa et al. 2007]. The packet scheduler in these systems is responsible
for frequency allocation (frequency carriers that correspond to OFDM) as well as
CDM codes during each TTI [Kela et al. 2008][Monghal et al. 2008]. The model we
are presenting here may be extended for the LTE system. Overall, the contributions
of this work can be summarized by the following:

(1) We provide analytical approach to model the downlink scheduler in 3G HSDPA
system. This approach can be extended to other 3G/4G wireless systems.
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(2) Using the theory of Dynamic Programming we present an optimization frame-
work for the determination of the optimal policy for the HSDPA downlink
packet scheduler. The applicability of this framework is demonstrated using
a two user/queue case (in this case the pictorial visualization of the optimal
policy structure is possible).

(3) A near optimal heuristic policy is proposed based on the structural properties
of the optimal policy and its behavior with the changing system parameters.

(4) We conducted a simulation study to quantify the effect of different model pa-
rameters on the behavior of the optimal policy. We also studied the performance
of the proposed heuristic policy and compared it to that of the optimal policy.

The rest of this paper is organized as follows; Section 2 defines the problem. The
optimal policy is studied in section 3. In section 4, the optimal policy for 2-user case
is computed. In section 5, we extend our model to include packet retransmissions.
In sections 6 and 7, we present a near optimal heuristic policy for scheduling.
Performance analysis and comparison are given in section 8. Conclusions are given
in section 9. We also provide an online supplement as an electronic appendix that
contains the appendices with material that could not be otherwise included due to
space limitation. Directions on accessing this supplement is given at the end of this
paper.

2. PROBLEM DEFINITION

2.1 HSDPA General Description

Third generation release R’5 [3GPP 2004], also called High-Speed Downlink Packet
Access (HSDPA), is an IP-based network that can offer users a high speed asym-
metric radio link with downlink peak bit rate up to 14.4 Mbps. The HSDPA
uses a single time shared channel, called High Speed Downlink Shared CHannel
(HS-DSCH), per cell/sector. This channel is divided into 2 ms Transmission Time
Intervals (TTI). Each TTI may be used to transfer packets to one or more users at
a rate that depends on their User Equipment (UE) capabilities and needs. The UE
can use up to 15 codes simultaneously to achieve higher rate. More than one user
can share the same slot by dividing the available 15 CDM codes between them. In
such case, the scheduler need to choose not only the user/users to be served in the
next time slot, but also the number of codes each user will receive.

The HSDPA system uses Adaptive Modulation and Coding (AMC) technique to
adapt the transmission rate to the user’s channel conditions. The selected modula-
tion scheme and coding rate are chosen such that a fixed low error rate is achieved
(usually 10%). The erroneous packets will be retransmitted during the next sched-
uled TTI using Hybrid ARQ [Lin and Costello 1983]. In this technique, a retrans-
mitted packet will be soft combined at the receiver with the previous unsuccessful
transmitted versions of itself (i.e., combining the signal energy of multiple retrans-
missions of the same packet) to increase it’s SNR and it’s detection probability.
HSDPA supports two combining techniques: Chase Combining (CC) and Incre-
mental Redundancy (IR). In CC, the base station (which is called NodeB in the
3GPP technical specification [3GPP 2004]) retransmits the exact same set of coded
symbols of the original packet. Then the receiver combines the packet energy with
ACM Transactions on Modeling and Computer Simulation, submitted for review.
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the energy of previously received unsuccessful transmissions of this packet. With
IR, the same principle is used except that different redundancy information can
be sent (i.e., using different error coding rate) in every re-transmissions. This will
result in incremental increase in the coding gain and hence, fewer retransmissions
will be needed (compared to CC) and is particularly useful when the initial trans-
mission uses high coding rates. However, it increases the complexity requirements
for the UE [Frenger et al. 2001].

Our objective is to investigate a methodology that determines the optimal schedul-
ing regime, controlling the allocation of the time-code resources fairly between all
the active users while maximizing the overall cell throughput. The desired schedul-
ing algorithm should have the following characteristics: channel awareness, fairness
and high speed resource allocation.

2.2 HSDPA Downlink Scheduler Abstraction

The HSDPA downlink channel uses a mix of Time Division Multiplexing and Code
Division Multiplexing:

—Time is slotted into fixed length 2 ms TTIs.
—During each TTI, there are 15 available codes that may be allocated to one or

more users.

During one TTI, the channel capacity associated to one single user depends on
the number of allocated codes and on the channel condition. This is mainly due
to the fact that HSDPA uses AMC to adapt the transmission rate to the current
channel conditions. A mobile user with good channel conditions will experience
higher data rate than the other users.

The diagram in Figure 1 depicts a conceptual realization of the HSDPA down-
link scheduler. Different users have separate buffers in the base station (Node-B
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Fig. 1. HSDPA scheduler model (downlink)

according to 3GPP), and they are competing for the system resources. a channel
state monitor/predictor is necessary to monitor current channel conditions of each
user and predict his channel state during the next TTI. This information will then
be used to adapt the transmission rate to the expected channel conditions. The
arrived Service Data Units (SDU) are assumed to be segmented by the Radio Link
Control (RLC) into ui fixed size Protocol Data Units (PDU) (for user i) before
delivering them to Node-B. The PDUs then will be classified and inserted into
the proper buffers awaiting transmission to the intended user. RNC is the Radio
Network Controller unit which implements the RLC protocol.
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2.3 HSDPA Downlink Channel Model

The wireless channel for the HSDPA system is modeled as a Finite-State Markov
Channel (FSMC) following [Wang and Moayeri 1995]. The FSMC was proved to be
a good model of the wireless medium and has been shown to be in good agreement
with realistic cases (c.f. [Zhang and Kassam 1999][Hassan et al. 2004]). FSMC
modeling is done by partitioning the signal to noise ratio (SNR) into finite number
of intervals, each representing a state in a Markov Chain. Assuming that the fading
is slow enough then the channel states for consecutive time epochs are neighboring
states. In this case, the model will be reduced into a discrete time birth and death
process, as shown in Figure 2.

0 1 M-1

P01 

P10

P00

P11

Fig. 2. FSMC model for HSDPA downlink channel.

Depending on the expected SNR state, different modulation and error-correcting
coding rates can be dynamically selected from a set of Modulation and Coding
Schemes (MCS) [Kolding et al. 2002]. The higher the order of the MCS selected
the higher the transmission rate. The SNR is mapped directly into MCS and hence
into data rates. In light of this, the states in our channel model will equivalently
represent data rate levels rather than SNR.

3. OPTIMAL POLICY DETERMINATION

In this section, we propose an approach, based on Markov Decision Process (MDP),
to find the optimal code allocation policy for the HSDPA downlink scheduler. We
present a general model for this system and suggest a reward function.

To describe a system as a MDP model, the states, actions, rewards and tran-
sition probabilities have to be defined first. In our proposed model, time is slot-
ted in constant intervals of size ∆t. Let T denote the set of decision epochs of
the system (it is assumed that the decision epochs are at the beginning of each
time slot, PDUs that arrive during any time slot can only be considered for trans-
mission in the subsequent time slots), and T = {1, 2, . . .}. At time t ∈ T , we
denote by s(t) and a(s), the system state and the action taken at that state (to
be defined later) respectively. HSDPA downlink scheduler is modeled by the 5-
tuple (T, S,A, Pss′(a), R(s,a)), where S and A are the state and action spaces,
Pss′(a) , Pr(s(t + 1) = s′|s(t) = s,a(s) = a) is the state transition probability,
and R(s,a) is the immediate reward function (to be introduced shortly) when at
state s and taking action a.

3.1 Basic Assumptions

There are L active users in the cell. A user i ∈ I = {1, 2, . . . , L} is allocated a
buffer of finite size B. Initially, error free transmission will be assumed to eliminate
the need for retransmission queues and to reduce the model complexity. Later (in
section 5), the more general problem with retransmission will be examined. SDUs
arrive at the RNC during the current TTI will be segmented by RLC into a fixed
ACM Transactions on Modeling and Computer Simulation, submitted for review.



Optimal Scheduling in High Speed Downlink Packet Access Networks · 7

number of PDUs (ui) and delivered to Node-B to be inserted into their respected
buffer at the beginning of the next TTI. For each user i ∈ I and slot t ∈ T , we
define:

—yi(t) the number of scheduled PDUs,
—xi(t) ∈ X = {0, 1, 2, ..., B} the queue size,
—zi(t) ∈ {0, ui} the number of arriving PDUs per slot.

The SDUs destined to user i arrives at the RNC during one TTI according to the
Bernoulli distribution with parameter qi. Arrivals are assumed to be independent
of the system state and of each other. The PDU size is chosen to be equal to the
minimum Transport Format and Resource Combination (TFRC) for one code (i.e.,
one code is needed to transmit one PDU when the channel is in state 1). The
scheduler can assign the available 15 codes as chunks of c codes at a time to active
users in the system. The chunk size c must divide the total number of codes (15);
therefore, c ∈ {1, 3, 5, 15}. For example, choosing c = 5 means that the policy can
assign 0, 5, 10, or 15 of the available 15 codes to any user at any given TTI. We
introduced the chunk size c in our analysis in order to reduce the action set size
and the computational complexity.

3.2 FSMC State Space

The channel state of user i during time slot t is denoted by γi(t); and its associ-
ated channel state space is the set M = {0, 1, . . . ,M − 1}, where M is the total
number of available channel states. M constitutes a subset of the available MCS
set recommended by 3GPP. The elements of M were ordered in a way such that
γi(t) ∈M is directly proportional to the number of PDUs that can be transmitted
by user i in one TTI. This assumption is in good agreement with the corresponding
RFC [3GPP 2004]. Furthermore, we assume that user i channel can handle up to
γi(t) PDUs per code, i.e., a γi(t) = 2 means that at time t, user i can transmit two
PDUs using one code and up to 30 PDUs when using all the 15 codes. The state
transition probability Pγiγ′

i
is assumed known since it can be calculated (from SNR

measurements) for any mobile environment with Rayleigh fading channel [Wang
and Moayeri 1995].

3.3 State Space and Action Set

The system state s(t) ∈ S is a vector comprised of multiple state variables repre-
senting the queue sizes and the channel states for the L users. In other words,

s(t) = (x1(t), x2(t), . . . , xL(t), γ1(t), γ2(t), . . . , γL(t)) (1)

and the state space of the system, S = {X ×M}L, has finite size since the buffers
have finite sizes and the channel state spaces are also finite.

The action space A is the set of all possible actions. The action a(s) ∈ A is taken
when the system is in state s. The action taken at each slot corresponds to the
number of codes allocated to each user. Let D = {0, 1, . . . , 15/c} be the action space
for a single user, where c is the code chunk size (the minimum number of codes that
can be allocated at any given time). For example, if c = 5 then D = {0, 1, 2, 3}.
Let ai(s) ∈ D be the number of code chunks allocated to user i when in state s.
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Then the number of codes allocated to user i during time slot t is ai(t)c and the
number of scheduled (for transmission) PDUs from queue i (corresponding to user
i) is yi(t) = ai(t)γi(t)c. In this case, a(s) will be the collection of code allocation
to all users, that is

a(s) = (a1(s), a2(s), . . . , aL(s)) (2)

subject to
L∑
i=1

ai(s) · c ≤ 15, and ai(s) ≤
⌈
xi(t)
γi(t)c

⌉
The first constraint means that the policy can not allocate more than the available
15 codes at each time slot. The second makes the policy conserving by allocating
no more codes to user i than that required to empty its buffer. The right side of the
second constraint represents the number of code chunks required to empty queue i.

3.4 Reward Function

In this subsection, we introduce the reward function used to determine the optimal
allocation policy. As stated previously, the objective is to maximize the throughput
while maintaining fairness between active users. Let the fairness factor, denoted
by σ ≥ 0, be a parameter that reflects the significance of fairness in the reward
function and hence the optimal policy structure (i.e., the fairness of the resulted
optimal policy increases as σ increases). Define x̄ as the average instantaneous size
of the L queues in the system at time t, i.e., x̄ = 1

L

∑L
i=1 xi, (we suppressed the time

index to simplify notation). The reward function R(s,a) will have two components
corresponding to two objectives (throughput and fairness) and it is given by

R(s,a) =
L∑
i=1

yi − σ
L∑
i=1

(xi − x̄) 1{xi=B} =
L∑
i=1

aiγic− σ
L∑
i=1

(B − x̄) 1{xi=B} (3)

where 1{·} is the indicator function. The positive term of the reward relates to
the cell throughput. If the reward is composed of this part only, then the policy
will always favor the users with good channel conditions. Therefore the users with
less favorable channels will starve; their queues will grow larger and start loos-
ing packets. We introduced the second term, which guarantees a level of fairness
and reduces dropping probability. Lower σ will result in a policy that favors cell
throughput over fairness, while higher σ has the opposite effect. Overall, R(s,a)
will produce a policy that maximizes cell throughput for a given σ.

3.5 State Transition Probability

Pss′(a) denotes the probability that choosing an action a at time t when in state
s will lead to state s′ at time t + 1. Using equations (1) and (2), Pss′(a) can be
stated as follows

Pss′(a) , Pr(s(t+ 1) = s′|s(t) = s,a(t) = a)
= Pr(x′1, . . . , x

′
L, γ

′
1, . . . , γ

′
L|x1, . . . , xL, γ1, . . . , γL, a1, . . . , aL) (4)

The evolution of the queue size (xi) is given by

x′i = min
(

[xi − yi]+ + z′i , B
)

= min
(

[xi − aiγic]+ + z′i , B
)

(5)
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where, z′i is the arrival to queue i at t + 1, [e]+ equals e if e ≥ 0 and 0 otherwise.
The channel state γi depends only on the previous channel state, that is Pr(γ′i|s) =
Pr(γ′i|γi) = Pγiγ′

i
. Accordingly, we can write equation (4) as follows (Appendix A)

Pss′(a) =
L∏
i=1

(
Pxix′

i
(γi, ai)Pγiγ′

i

)
(6)

where Pγiγ′
i

is the Markov transition probability of the FSMC. Define W1 and W2
as follows

W1 = [xi − aiγic]+ + ui; W2 = [xi − aiγic]+

Pxix′
i
(γi, ai) can be analytically derived using equation (5) and the total probability

law (refer to Appendix B), and is given by the following expression

Pxix′
i
(γi, ai) =



1 if x′i = xi = B & aiγi = 0,
qi if x′i = xi = B & 0 < aiγic ≤ ui,
qi if x′i = B & xi < B & W1 ≥ B,
qi if x′i < B & x′i = W1,
1− qi if x′i < B & x′i = W2,
0 otherwise.

(7)

The first three cases in equation (7) correspond to the boundary state/condition
(i.e., when the queue length reaches the buffer size), while the remaining cases
correspond to interior states.

3.6 Dynamic Programming Formulation

In this work, we investigate an infinite-horizon MDP. We use the total expected dis-
counted reward optimality criterion with discount factor λ, where 0 < λ < 1, in or-
der to find the policy π among all policies, that maximizes the value function V π(s).
Let V ∗(s) be the maximal discounted value function (i.e., V ∗(s) = supπ V π(s)),
attained when applying the optimal policy π∗. Then the following optimality equa-
tion (also known as Bellman equation) is used to characterize the optimal policy
[Bellman 1957][Sennott 1999]

V ∗(s) = max
a∈A

[R(s,a) + λ
∑
s′∈S

Pss′(a)V ∗(s′)] (8)

Value iteration [Puterman 1994] (also known as successive approximation) is used
to solve this model numerically. The first step is to define V0(s) to be an arbitrary
bounded function. Then Vn(s), n > 0 is determined by the following recursion

Vn(s) = max
a∈A

[R(s,a) + λ
∑
s′∈S

Pss′(a)Vn−1(s′)]

Vn converges to V ∗ as n→∞ [Ross 1983]. For a given ε > 0, the algorithm can be
stopped after n iterations, provided that

‖Vn+1 − Vn‖ < ε(1− λ)/2λ (9)
ACM Transactions on Modeling and Computer Simulation, submitted for review.
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where ‖v‖ = sups∈S |v(s)|. If (9) holds, then ‖Vn+1 − V ∗‖ < ε/2, according to
[Puterman 1994].

The results obtained here can be extended to the infinite horizon expected average
reward using results from [Puterman 1994] and [Ross 1983]. This extension is out
of the scope of this work and will not be presented here.

4. TWO USERS WITH 2-STATE FSMC

The approach presented earlier was used to model the case when there are two users
(i.e., L = 2) sharing the same cell. The channel for user i is modeled as a two-state
FSMC with transition probability matrix Pi

Pi =
[

1− αi αi
βi 1− βi

]
(10)

The two user case will yield a policy that is easy to visualize, evaluate, and to
deduct conclusions for the optimal policy. It also serves as a verification for the
proposed approach, since it is possible to visualize and plot the optimal policy in
this case as will be shown later. The obtained results can then be generalized to
more complex cases involving more than 2 queues.

User i is said to be connected when γi = 1 with probability P (γi = 1) = αi/(αi+
βi), and not connected (γi = 0) with probability P (γi = 0) = βi/(αi + βi).

The remaining parameters were chosen as follows: B = 25, σ = 0.5, λ = 0.95, ε =
0.1, and c =3, 5 or 15. The action space depends on the value of c. For example, if
c = 5 then there are four possible actions for each user (i.e., D = {0, 1, 2, 3}). Since
a = (a1, a2) corresponds to a1c codes assigned to user 1 and a2c codes assigned to
user 2, we get A = {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (3, 0)}.
Similarly, when c = 15 then there are two possible actions per user (D = {0, 1})
and when c = 3 then there are six possible actions per user (D = {0, 1, 2, 3, 4, 5}).

4.1 Optimal Policy Structure

The model is solved using value iteration (section 3.6) to determine the optimal
scheduling policy. The effect of the channel quality and arrival probability on the
behavior of the optimal policy was studied. Figures 3-5 provide general structure
of the optimal policy for c =15, 5, and 3 respectively. For the sake of brevity and
due to space limitations Figures 4 and 5 contains only two cases. The remaining
cases for these figures can be found in the electronic appendix (check the end of the
paper).

4.1.1 Optimal Policy for Two Symmetrical Users. The optimal policy for two
symmetrical users with the same channel characteristics (αi = βi = p) for all
0 ≤ p ≤ 1 and with P (zi = 5) = 0.5 for all i ∈ {1, 2} is shown in Figures 3-5(a).
Results for the case when the two users are connected, i.e., γi = 1, is shown here,
since the two users are competing for the system resources. The other three cases
when one or both of them are not connected, i.e., γi = 0, resulted in a policy that
assigns all the codes (required) to the connected user and nothing to the other.

The optimal policy in this case can be described as follows: divide the codes
between the connected users in proportion to their queue length. When c = 15, the
action space will be reduced to A = {(0, 0), (0, 1), (1, 0)} and the policy will be
ACM Transactions on Modeling and Computer Simulation, submitted for review.
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5) = 0.5, P (γ1 = 1) = 0.8 and
P (γ2 = 1) = 0.5

Fig. 3. Optimal and heuristic (dotted line) policies for two user case; c = 15 (i.e., 0 or 1 chunks

of size 15 codes can be assigned to a user), arrival batch size u = 5.
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(a) Symmetrical case

 
 
 
 

1,0 0,0 2,0 

 
0,1 

 
0,2 

(b) P (γ1 = 1)=0.8 and P (γ2 = 1)=0.5

Fig. 4. Optimal and heuristic (dotted line) policies for two user case; c = 5 (i.e., 0,1,2 or 3 chunks

of size 5 can be assigned to a user), u = 5.

equivalent to serve the longest connected queue (LCQ), which makes intuitive sense
and matches with the findings in [Tassiulas and Ephremides 1993] for a case similar
to our c = 15 case.

4.1.2 The Effect of Channel Quality on Policy Structure. The effect of the chan-
nel quality on the optimal policy structure when γ1 = γ2 = 1 is shown in Figures
3-5(b). When P (γ1 = 1) > P (γ2 = 1) the policy favors user 2 which is less likely to
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(a) Symmetrical case
 

1,0 0,0 2,0 3,0 4,0 

0,1 

0,2 

0,3 

0,4 

1,1 3,0 

(b) P (z1 =5)=0.8 and P (z2 =5)=0.5

Fig. 5. Optimal and heuristic (dotted line) policies for two user case; c = 3 (i.e., 0,1,2,3,4 or 5

chunks of size 3 can be assigned to a user), u = 5.

be connected compared to user 1. The bias in favor of user 2 is depicted in Figure
3(b) by a larger dark area, which corresponds to optimal action (0,1) and (0,3)
respectively, compared to Figure 3(a). We noticed that this bias increases as the
difference between P (γ1 = 1) and P (γ2 = 1) increases. The reason is that using an
LCQ in this situation will result in unbalanced system (queue 2 will grow larger and
will have more packet drops than queue 1). User 2 will start experiencing unfairness
in terms of higher delay and more drops. Hence, more resources have to be assigned
to the user with the worst channel to avoid such result. The resource sharing in
this case will depend on the difference ∆Pγ = P (γ1 = 1) − P (γ2 = 1) as well as
their relative queue length.

4.1.3 The Effect of Arrival Probability on Policy Structure. The arrival proba-
bility has an analogous effect on the optimal policy structure. The relative increase
in one of the users arrival probability will result in more traffic inserted in that
user’s buffer and it will require more resources to keep the queue length stable and
achieve fairness between the two users.

Figure 3(c) shows the optimal policy when P (z1 = 5) = 0.8 and P (z2 = 5) = 0.5
and both users have the same channel quality. The policy shifts in favor of the
user with higher arrival probability (user 1 in this case). By comparing Figure
3(c) to Figure 3(e), we noticed that this shift is proportional to the difference
∆Pz = P (z1 = u)− P (z2 = u).

Figure 3(f) shows that when ∆Pz = ∆Pγ = 0.3 the optimal policy favors user 2,
i.e., the user with less connectivity. This agrees with intuition since both users
share the available server capacity (the number of codes). The exogenous arrivals
will always be added to the corresponding buffer (provided the availability of space
in that buffer), while departures depend not only on the channel connectivity, but
also on the maximum server capacity (total number of departures is bounded by
the server capacity during each time slot; 15 PDUs in this case).
ACM Transactions on Modeling and Computer Simulation, submitted for review.
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5. HSDPA SYSTEM WITH RETRANSMISSION

We now expand our model to include the case of packet retransmission for unsuc-
cessful packet transmissions. The resulting model will have two queues per user,
a transmission queue and a retransmission queue. The state space for this system
will be S = {X ×W ×M}L, where W = {0, 1, . . . , Br} is the state space for the
retransmission queue and Br is the retransmission buffer size. X , M are the same
as defined earlier. The computational complexity for finding the optimal policy for
such system is substantially greater than the previous model and could become a
prohibitive factor for a system with a large number of users. Instead, we present an
alternative model for this system, having less computational complexity. In order
to avoid the increased dimensionality due to the retransmission queue, we consider
a Bernoulli random process {µi(t)}∞t=1 that indicates the status of a packet trans-
mission. This will result in a retransmission model with i.i.d. geometric service
time, an assumption well vetted in the literature, e.g.,[Tassiulas and Ephremides
1993] and [Bambos and Michailidis 2002]. When codes are allocated to user i at
time slot t, then the transmission is successful (µi(t) = 1) with a probability ξ (cor-
responding to the probability of successful transmission). When µi(t) = 0, then the
transmission is unsuccessful and the PDUs have to be retransmitted. This happens
with probability 1 − ξ. The HSDPA scheduler with retransmissions is modeled as
shown in Figure 6. The evolution of the queue size (xi) in this case is given by

xi(t+ 1) = min
(

[xi(t)− yi(t)µi(t)]+ + zi(t+ 1) , B
)

= min
(

[xi(t)− γi(t)ai(s)cµi(t)]
+ + zi(t+ 1), B

)
(11)

where ai(s)c is the number of codes allocated to user i when in state s and a(s) =
(a1(s), a2(s), . . . , aL(s)). Equation (11) means that PDUs removed from the head
of the queue only when a transmission is successful, and remain there otherwise.

5.1 Reward Function

The reward function R(s,a) is similar as before and is given by

R(s,a) =
L∑
i=1

(yiµi)− σ
L∑
i=1

[
(xi − x̄) 1{xi=B}

]
(12)

where yi = aicγi. Similar as before, the objective is to maximize throughput while
providing a fair allocations of resources (depending on the value of σ) to all users
in the system.

5.2 Transition Probability Function

The MDP state transition probability Pss′(a) can be formed as before, namely
equations (4) and (6). In this case however, the queue state transition probability
depends on µi. Using the total probability law, this probability can be rewritten as

Pxix′
i
(γi, ai) , P (x′i|xi, γi, ai)

= Pxix′
i|µi=1(γi, ai)P (µi = 1) + Pxix′

i|µi=0(γi, ai)P (µi = 0)
= Pxix′

i|µi=1(γi, ai) · ξ + Pxix′
i|µi=0(γi, ai) · (1− ξ) (13)
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Fig. 6. model for HSDPA downlink scheduler with retransmission

5.3 Queue State Transition Probability

The marginal queue state transition probabilities needed to find Pxix′
i
(γi, ai) are

given below (refer to Appendix C for complete derivation). We remind the reader
that B is the buffer size for each user buffer in the model.

Pxix′
i|µi=1(γi, ai) =



1 if x′i = xi = B, γiai = 0
qi if x′i = xi = B, 0 < yi ≤ ui
qi if x′i = B, xi < B, [xi − yi]+ + ui ≥ B
qi if x′i < B, x′i = [xi − yi]+ + ui

1− qi if x′i < B, x′i = [xi − yi]+

0 Otherwise

(14)

and,

Pxix′
i|µi=0(γi, ai) =



1 if x′i = xi = B

qi if x′i = B, xi < B, xi + ui ≥ B
qi if x′i < B, x′i = xi + ui

1− qi if x′i < B, x′i = xi

0 Otherwise

(15)

The overall queue transition probability Pxix′
i

can be determined by substituting
equations (14) and (15) in (13).

6. THE HEURISTIC POLICY

In this section, we will present a heuristic approach for code allocation in our
HSDPA model, by focusing on the cases where c =15, 5 or 3. We will utilize the
information (regarding the structure of the optimal policy) we obtained from the
results of section 4.

6.1 Optimal Policy Structural Analysis and Weight Function Estimation

Analyzing the results obtained in sections 4.1.1-4.1.3 we observe that the optimal
policy exhibits the following structural characteristics:

— When there is only one connected user then the optimal policy allocates all
the 15 codes to that user or as many codes as required to empty its queue if its
queue length is less than 15 PDUs.
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— When both users are connected then both are competing for the available 15
codes. From Figures 3–5 we observe the following trends:
(1) The optimal action a1 (respectively a2) is increasing in x1 (respectively x2).
(2) There is one switch-over region for every action vector. These regions depicted

by different colors (or shades) and labeled by their corresponding action vector
in Figures 3–5).

(3) When x1 + x2 ≤ 15, then the optimal policy allocates no more codes to a user
than that required to empty its queue.

(4) In the symmetrical case and when x1 + x2 > 15, then the border(s) between
neighboring regions is (are) a staircase function that can be approximated by a
line with slope 1 (Figure 4(a)). Those border lines define parallel stripes that
have a constant width.

(5) In the asymmetrical cases and when x1 +x2 > 15 (Figures 3(b)-(f)), the afore-
mentioned regions while still equidistant, are no longer delimited by linear
boarders. The approximate boarder slope as a function of x1 and x2 depends
on the difference in arrival rates ∆Pz and the difference in the connectivities
∆Pγ . For example the approximate slope (the dotted line) in Figure 3 is: 1
in the symmetrical case (Figure (a)), less than 1 when ∆Pγ = 0.3 (Figure (b))
and more than 1 when ∆Pz = 0.3 (Figure (c)).

From observation (4) above, we can approximate each of the switch-over bound-
ary lines between the policy switch-over regions for the symmetrical case by a
straight line with slope 1. This approximation is a good fit in the symmetrical case
as shown in Figure 3(a). To extend this approximation to the asymmetrical cases,
we introduce the weight vector w = (w1, w2), where wi, i = 1, 2 is a function of ∆Pz
and ∆Pγ . Then the boundary lines between the different regions can be linearly
approximated by the following equation:

w1x1 = w2x2 + C (16)

where C is a constant. Observations of Figures 4 and 5 suggest that C is a multiple
of ±2c (C = ±2ck, k = 0, 1, . . . , 0.5(15/c − 1)). Equation (16) defines a family of
lines that have a slop equals to w2/w1. For the symmetrical case, w1 = w2 = 1 and
equation (16) will be reduced to x1 = x2 + C.

The weight w1 (respectively w2) is increasing (respectively decreasing) in ∆Pz
and decreasing (respectively increasing) in ∆Pγ (the reader may verify this from the
figures, for example Figures 3(b) and 3(c)). We observed the behavior of the optimal
policy under different arrivals and connectivity parameters, by solving the dynamic
programming equation (equation 8) numerically for these cases. The results ob-
tained were analogous to the ones in Figures 4-5. Following these observations, we
approximated w1 and w2 as follows

w1 ≈ 1 + 1.5[−∆Pγ ]+ − 0.7[−∆Pz]+, and w2 ≈ 1 + 1.5[∆Pγ ]+ − 0.7[∆Pz]+ (17)

The coefficients for ∆Pγ and ∆Pz were chosen empirically based on a variety of
computations (value iterations to determine the optimal policy) under different
channel connectivity and arrival parameters.

The linear approximation may not be perfect for asymmetric cases (see for ex-
ample Figures 3(b) and (c)). A non-linear approximation would result in a better
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fit in those cases (and may be a future research problem). However, (as we will
show in section 7.3) the heuristic scheduling policy, resulted from our linear ap-
proximation, compares favorably (in throughput and fairness/queuing delay terms)
with the optimal policy.

6.2 Detailed Characterization of The Heuristic Policy

(1) Case for c = 15. In this case, the optimal policy is a switch-over policy as
depicted in Figure 3. We can identify three regions which correspond to the three
possible actions: (0,0), (1,0) and (0,1). The heuristic policy is a weighted LCQ and
it assigns codes to users according to the following rules:
—Rule1: when there is only one connected user then assign all the needed codes to

that user,
—Rule2: when both users are not connected (i.e., γ1 = γ2 = 0) then no codes will

be allocated to any user,
—Rule3: when the two users are connected allocate code chunks according to (18)

a(t) =

{
(1, 0) if w1x1 > w2x2,
(0, 1) if w1x1 ≤ w2x2

(18)

(2) Case for c = 5. The optimal policy defines ten regions specifying the optimal
code allocation. However, only four of these regions are of interest. They lie within
the area where the demand exceeds the available resources as shown in Figure 4.
Based on this observation, the heuristic policy partitions the state space into four
major regions that corresponds to the actions (3,0), (2,1), (1,2), and (0,3). The
policy rules 1 and 2 are the same as before. Rule3 is modified as follows:
—Rule3: when the two users are connected, if x1 + x2 < 15 then allocate codes to

the two users in proportion to their queue length, else allocate the code chunks
as follows

a(t) =


(3, 0) if w1x1 > w2x2 + 10,
(2, 1) if w2x2 < w1x1 ≤ w2x2 + 10,
(1, 2) if w2x2 − 10 ≤ w1x1 ≤ w2x2,
(0, 3) if w1x1 < w2x2 − 10,

(19)

(3) Case for c = 3. There are 21 different regions in the state space as shown in
Figure 5. The heuristic rules used earlier can be extended to this case. Again only
Rule3 need to be modified as shown below
—Rule3: when the two users are connected, if x1 + x2 < 15 then allocate codes to

the two users in proportion to their queue length, else allocate the code chunks
as follows

a(t) =



(5, 0) if w1x1 > w2x2 + 12,
(4, 1) if w2x2 + 6 < w1x1 ≤ w2x2 + 12,
(3, 2) if w2x2 < w1x1 ≤ w2x2 + 6,
(2, 3) if w2x2 − 6 < w1x1 ≤ w2x2,
(1, 4) if w2x2 − 12 < w1x1 ≤ w2x2 − 6,
(0, 5) if w1x1 ≤ w2x2 − 12,

(20)
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Figures 3(a)-(c), 4(a)-(b) and 5(a)-(b) show the heuristic policy (the dotted line)
superimposed on the optimal policy from section 4 for different loading and channel
quality conditions. From these figures, it is fair to say that the heuristic policy
reasonably approximated the slope of border lines between the different regions of
the optimal policy.

6.3 Extended Heuristic Policy

The optimal policy for three users or more still has a switch-over structure. How-
ever, it is not possible to visualize on a two dimensional plane (e.g., for the case of
three users, the possible action can be described by a three-dimensional vector, i.e.,
a(s) = (a1, a2, a3), therefore, it is not possible to pictorially visualize the structure
of the policy in this case). Motivated by the heuristic policy construction for the
two-user case, we can extend this heuristic policy (presented in the previous sub-
section) to any finite number of users. We can do this by ordering all users in the
system according to their weighted queue lengths. The weight will be a function
of the different users’ arrival probabilities and channel states. We can then allo-
cate the available code chunks to the connected queues according to their weighted
queue length using rules analogous to those in the previous section. The added
complexity of this extension (compared to the heuristic policy we presented in the
previous section) is minimal and is mainly due to the users ordering phase of the
algorithm. Due to space limitation, we will not present this extension here.

7. PERFORMANCE EVALUATION

In this section, we study the performance of the optimal policy and compare it with
that of the devised heuristic policy. We also compared both policies with the Round
Robin fair queuing, keeping the same assumptions as previously. The evaluation
is based on the simulation of several cases with constant buffer size B = 50. All
simulations were performed using C programming language. The simulation ran
for 50,000 time slots and 10000 replications. The 95% confidence interval (CI) was
computed for all simulation results. For the sake of clarity of presentation, only
the CI’s with maximum width among simulated performances for each offered load
(corresponding to a point on the x-axis) are plotted at the top of each figure.

7.1 The Effect of Code Allocation Granularity

The total number of codes available in one TTI is 15 codes according to [3GPP
2004] and in our approach, the scheduler allocates chunks of these codes to active
users. The chunk size c was introduced in section 3.1. It ranges from the finest
(when c = 1) to the coarsest (when c = 15); in the former case, the policy can
assign as little as 1 code to a user at a time, while in the latter case, all the 15
codes are assigned to one single user at a time. Figures 7-10 show the effect of the
chunk size c on the system performance for various offered load ρ =

∑
i Pziui/rπ

with rπ as the system capacity under the policy π. The channel state probability
for the two users is set to P (γ1 = 1) = 0.8 and P (γ2 = 1) = 0.5. Using (10), The
channel model parameters (αi and βi) for each user were selected as follows

P1 =
[

0.4 0.6
0.6 0.4

]
, and P2 =

[
0.85 0.15
0.6 0.4

]
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Fig. 7. The effect of policy granularity on queue length

 
 

Fig. 8. The effect of policy granularity on the queuing delay experienced by the two users

The results show that in light and moderate load conditions, the average queue
length is shorter when the assigned code chunks have finer granularity. However,
when ρ → 1 the difference becomes smaller (and within the confidence interval)
when ρ becomes greater or equal to 1.

Another observation is that the performance gain when moving from c = 5 to
c = 3 is less significant and may not justify the added implementation and compu-
tational cost. It is interesting to see that the optimal policy under all of the three
values of c achieved approximately the same throughput (see Figure 9). The slight
throughput loss when c = 15 in moderate to high load is within the confidence
interval and is due to the increased drops under these particular conditions as it
is shown in Figure 10. The intuition behind this behavior can be summarized as
follows:
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Fig. 9. The effect of policy granularity on scheduler throughput

 
 

Fig. 10. The effect of policy granularity on scheduler dropping probability

(1) For light loads (ρ < 0.7), the chunk size (c) does not have a significant
effect on the dropping probability in the two queues since the drops are unlikely
in this case (Figure 10). Therefore, the optimal policy for any value of c achieves
throughput that is not substantially different.

(2) As the load increases (ρ = 0.7 ∼ 1.1) the drops become more likely to occur.
A coarser code allocation granularity (c = 15) will serve one queue only at a given
TTI thus resulting in more drops for the other, while a finer granularity (c = 5)
would keep both queue sizes balanced (thus resulting in a lower total loss).

(3) For higher load (ρ >∼ 1.1), the losses escalate dramatically and chunk gran-
ularity has no significant effect on drops between the two queues in this case.
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 Fig. 11. System throughput vs. average arrival rate to the system. First four cases in legend

corresponds to the optimal policy with 3-state FSMC model.

7.2 The Effect of Channel Model

The performance of the optimal policy, when using 3-state FSMC channel model, is
evaluated using simulation and compared to the 2-state FSMC model. The channel
models used are

—Two-state FSMC with P (γ1 = 1) = 0.8, P (γ2 = 1) = 0.5.
—Three-state FSMC with P (γ1 = 1) = 0.4, P (γ1 = 2) = 0.4, P (γ2 = 1) = 0.25

and P (γ2 = 2) = 0.25.

The two cases above are analogous in the sense that in both cases user 1 channel
(respectively user 2 channel) is connected with probability P (γ1 ≥ 1) = 0.8 (re-
spectively P (γ2 ≥ 1) = 0.5). To achieve this, the 3-state FSMC model parameters
for each user were selected as follows

P1 =

 0.4 0.6 0.0
0.3 0.3 0.4
0.0 0.4 0.6

 , and P2 =

 0.8 0.2 0.0
0.4 0.3 0.3
0.0 0.3 0.7


Figures 11 and 12 show the system throughput and the drop probability versus

average arrival rate (
∑
i Pziui for all i ∈ {1, 2}). In the 2-state model, the system

reaches its capacity at about 6.5 PDUs/sec (Figures 11). For the case of a 3-
state FSMC model, the saturation performance is better since more PDUs can be
transmitted on average (compared to the 2-state FSMC model) when connected (the
FSMC model is presented in section 3.2), for the given state transition probabilities.

Figure 13 depicts the average queue length behavior for both users as a function
of the arrival rate; we can see that when the fairness factor σ = 0.5 the policy keeps
almost equal queue occupancy for both users. On the other hand, when σ = 0.0 the
difference between the average queue length is more than 10 PDUs between the two
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Fig. 12. Average drop probability (average dropped/average arrived PDUs). First four cases in

legend corresponds to the optimal policy with 3-state FSMC model.

 
 

Fig. 13. Average queue length vs. load compared to the 2-state FSMC model. First eight cases
in legend corresponds to the optimal policy with 3-state FSMC model.
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Fig. 14. Average queuing delay vs. load; 3-state FSMC model compared to 2-state FSMC. First
eight cases in legend corresponds to the optimal policy with 3-state FSMC model.

users. This will result in unfairness and increased losses to user 2 traffic. In this
case, the queuing delay increases and results in poor delay performance provided
to user 2 as shown in Figure 14.

The fairness factor (σ), that did not have an effect in the 2-state case, has a sig-
nificant effect when using the 3-state FSMC model as seen in Figure 13. When the
load increases, the optimal policy with σ = 0.0 achieves higher system throughput
compared to that with σ = 0.5. This agrees with intuition since the policy corre-
sponding to σ = 0.0 aims at optimizing the throughput at the expense of fairness.
Higher σ will result in more fairness at the cost to the overall system throughput
as shown in Figures 13 and 14.

Remark: The 3-state FSMC model is obviously a more accurate representation of
the HSDPA downlink transmission system than the 2-state model. In 3GPP R’5
standard [3GPP 2004] there are 31 transmission levels (TFRC) which corresponds
to 32 channel states. However, in real life only a subset of that range (usually 6
TFRCs) is used (see [Holma and Toskala 2004] for an example).

7.3 Heuristic Policy Evaluation

The system throughput when using the heuristic policy we developed in section 6
compared to the optimal and Round Robin policies is shown in Table I for differ-
ent loading conditions. The channel model parameters was chosen (2-state FSMC
channel is assumed) such that P (γ1 = 1) = 0.8 and P (γ2 = 1) = 0.5. Table I shows
that the throughput performance of the heuristic policy is very close to that of the
optimal policy. It also shows that RR performance is close to that of the optimal
policy in case of light loading (e.g., ρ = 0.5). However, it performs around 27%
worse than the optimal policy in heavy load conditions when ρ = 1.2.

Queuing delay performance of the heuristic policy is shown in Table II in com-
parison with that of RR and the optimal policy. Queue lengths for the two users
are shown in Tables III and IV for a different channel and arrival parameters. From
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Table I. System throughput (PDUs/msec) for different policies and loading

conditions.

ρ Optimal Heuristic RoundRobin

0.5 3.25(±0.12) 3.25(±0.12) 3.25(±0.13)
0.8 5.0(±0.13) 4.95(±0.12) 4.45(±0.14)

1.2 6.73(±0.18) 6.71(±0.17) 4.9(±0.18)

Table II. Queuing delay performance for different policies,

P (γ1 =1) = 0.8, P (γ2 = 1) = 0.5, q1 =0.8, q2 =0.5 and u=10.

Optimal Heuristic RoundRobin

User1 8.0(±0.42) 7.4(±0.38) 13.6(±0.46)
User2 10.8(±0.55) 12.2(±0.6) 19.9(±0.71)

Difference 2.8 4.8 6.3

Table III. Queue length, ρ = 0.75, P (γ1 =1)=0.8, P (γ2 =1)=0.5,
q1 = 0.5, q2 = 0.5 and u = 10.

Optimal Heuristic RoundRobin

User1 11.5(±0.54) 11.0(±0.45) 16.5(±0.6)

User2 14.5(±0.63) 16.0(±0.72) 34.5(±0.95)

Difference 3.0 5.0 18.0

these tables, the following conclusions can be drawn:

— The proposed heuristic policy compares favorably to the optimal one in terms
of throughput and delay performance.

— The optimal policy provides better fairness in comparison to the heuristic and
RR policies. This is apparent from the simulation results since the optimal policy
achieved the smallest difference between the two users queuing delay. The heuristic
policy provides a comparable performance to that of the optimal policy.

— The difference in queue lengths of the two users resulted from using the heuris-
tic policy is reasonably close to that of the optimal policy under different channel
and arrival parameters (Tables III and IV).

— The performance of the RR policy is highly dependent on the loading con-
ditions. The results obtained proved that RR has poor performance in wireless
channel.

8. CONCLUSION

In this work, we developed an MDP model for scheduling in 3G-HSDPA wireless
systems. We used dynamic programming and value iteration to determine numer-
ically the optimal scheduling policy. Value iteration is computationally demand-
ing especially for large state space (e.g., larger number of users and/or wireless
channel states). To counter this, we developed a heuristic approach to obtain a
near-optimal policy. The suggested approach involves studying the structure and
behavioral characteristics of the optimal policy using the MDP model. Based on
that, we then construct a near-optimal heuristic scheduling policy that is shown to
compare favorably with the optimal one.

Towards the derivation of the heuristic policy, we approximated the policy switch-
ing curves linearly (equations (18)-(20)). A non-linear approximation could be used,
although we suspect that it may not provide substantial improvement. Extensions
to more than two users can be realized following a similar approach.
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Table IV. Queue length, ρ = 1.1, P (γ1 =1)=0.6, P (γ2 =1)=0.6, q1 =0.8,

q2 =0.5 and u=10.

Optimal Heuristic RoundRobin

User1 33.0(±1.1) 33.5(±0.98) 45.5(±1.22)
User2 28.5(±0.8) 27.5(±0.74) 32.5(±0.92)

Difference 4.5 6.0 13.5

Furthermore, we studied the effect of the code allocation granularity on the op-
timal policy performance. Our results showed that a policy with finer granularity
will perform better in light to moderate loading conditions, while a coarse policy is
more desirable in heavy loading conditions. We also showed that the performance
gain when using c < 5 is marginal and does not justify the added complexity. Our
results also proved that Round Robin schedulers are not desirable in HSDPA system
due to their poor performance and lack of fairness.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Li-
brary by visiting the following URL: http://www.acm.org/pubs/citations/
journals/tomacs/20YY-V-N/p1-zubaidy.
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