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Abstract—We investigate an optimal scheduling problem in
a discrete-time system of L parallel queues that are served
by K identical servers. This model has been widely used
in studies of emerging 3G/4G wireless systems. We introduce
the class of Most Balancing (MB) policies and provide their
mathematical characterization. We prove that MB policies are
optimal among all work conserving policies; we define optimality
as minimization, in stochastic ordering sense, of a range of cost
functions of the queue lengths, including the process of total
number of packets in the system. We use dynamic coupling
arguments for our proof. We also introduce the Least Connected
Server First/Longest Connected Queue (LCSF/LCQ) policy as
an approximate implementation of MB policies. We conduct a
simulation study to compare the performance of several work
conserving policies to that of the optimal one. In the simulations
we relax some of the mathematical assumptions we required for
the analytical proofs. The simulation results show that: (a) in all
cases, MB policies outperform the other policies, (b) randomized
policies perform fairly close to the optimal one, and, (c) the
performance advantage of the optimal policy over the other
work conserving policies increases as the channel connectivity
decreases.

I. INTRODUCTION, MODEL DESCRIPTION AND PRIOR
RESEARCH

Emerging 3G/4G wireless networks can be categorized as
high speed IP-based packet access networks [3]. They utilize
the channel variability, using data rate adaptation, and user
diversity to increase their channel capacity. These systems
usually use a mixture of Time and Code Division Multiple
Access (TDMA/CDMA). Time is divided into equal size slots,
each of which can be allocated to one or more users. To
optimize the use of the enhanced data rate, these systems allow
several users to share the wireless channel simultaneously
using CDMA. This will minimize the wasted capacity due
to the allocation of the whole channel capacity to one user
at a time even when that user is unable to utilize all of that
capacity. Another reason for sharing system capacity between
several users, at the same time slot, is that some of the user
equipment at the receiving side might have design limitations
on the amount of data it can receive and process at a given
time. The connectivity of users to the base station in any
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wireless system is varying with time and can be best modelled
as a random process. In the following subsection, we provide a
more formal model description and motivation for the problem
at hand.

A. Model Description

In this work, we assume that time is slotted into equal
length deterministic intervals. We model the wireless system
under investigation as a set of L parallel, symmetrical queues
with infinite capacity (see figure 1); the queues correspond
to the different users in the system. The queues share a set
of K identical servers, each server representing transmission
channels (or any other network resource, e.g., power, CDMA
codes, etc.). We make no assumption regarding the number of
servers relative to the number of queues, i.e., K can be less,
equal or greater than L. The packets in this system are assumed
to have constant length, and require one time slot to complete
service. A server can serve one packet only at any given time
slot. A server can only serve connected non-empty queues.
Therefore, the system can serve up to K packets during each
time slot. Those packets may belong to one or several queues.

The connectivity between a user and a channel is random.
The state of the channel connecting the ith queue to the
jth server during the nth time slot is denoted by Gi,j(n)
and can be either connected (Gi,j(n) = 1) or not connected
(Gi,j(n) = 0). Hence, Gi,j(n) will determine (in a real
system) if a transmission channel j can be used by user i
or not.

The number of arrivals to the ith queue during time slot n is
denoted by Zi(n). We assume that Zi(n) and Gi,j(n) for all
i = 1, 2, . . . , L and j = 1, 2, . . . ,K are independent Bernoulli
random variables. Furthermore, we assume that Zi(n), for all
i, n are i.i.d with parameter α. Similarly, Gi,j(n), for all i, j, n
are i.i.d with parameter p. We define Xi(n) to represent the
number of packets in the ith queue at the beginning of time
slot n.

A scheduler (or server allocation or scheduling policy)
decides, at the beginning of each time slot, what servers will
be assigned to which queue during that time slot. In figure
1, we used qj(t) to represent the index of the queue selected
by the scheduler to be served by server j during time slot t.
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Fig. 1. Abstraction of downlink scheduler in a 3G wireless network.

The vector ei ∈ {0, 1}L is an L-dimensional vector such that
ei = 1, ek = 0,∀k 6= i.

The objective of this work is to identify and study the
optimal scheduling policy that minimizes a range of cost
functions of the system queue occupancies, including the total
number of queued packets, in the aforementioned system. The
choice of the class of cost functions and the minimization
process will be discussed later.

B. Previous Work and Our Contributions

In the literature, there is substantial research effort focusing
on the optimal server allocation in wireless networks. Tassiulas
and Ephremides [4] for example, tackled a similar problem
where a single server (i.e., L = 1) can only be allocated to
one user and can only serve one packet at each time slot.
They proved, using coupling arguments, that LCQ (Longest
Connected Queue) is optimal. In our work we show that LCQ
is not always optimal in a multi-server system since servers can
be assigned to one or more queues simultaneously. Bambos
and Michailidis [5] worked on a similar model (a continuous
time version of [4] with finite buffer capacity) and found
that under stationary ergodic input job flow and modulation
processes, both MCW (Maximum Connected Workload) and
LCQ dynamic allocation policies maximize the stability region
for this system. Furthermore, they proved that C-FES, a policy
that allocates the server to the connected queue with the
fewest empty spaces, stochastically minimizes the loss flow
and maximizes the throughput [6].

Another relevant result is that reported by Ganti et al [7].
They presented a model for a satellite node that has K trans-
mitters. The system was modelled by a set of parallel queues
with symmetrical statistics competing for K identical servers.
At each time slot, no more than one server is allocated to
each scheduled queue. They proved, using stochastic coupling
arguments, that LCQ, a policy that allocates the K servers to
the K longest connected queues at each time slot, is optimal.
This model is similar to the one we consider in this work,
except that in our model one or more servers can be allocated
to each queue in the system. A further, stronger difference
between the two models is that we consider the case where
each queue has independent connectivities to different servers.
We make these assumptions for a more suitable representation
of the 3G wireless systems described earlier. These differences
make it substantially harder to identify (and even describe)
the optimal policy (see section III-A). Lott and Teneketzis

[8] tackled a multi class system of N weighted cost parallel
queues and M servers. They also used the same restriction
of one server per queue used in [7]. They showed that an
index rule is optimal and provided conditions sufficient, but
not necessary, to guarantee its optimality.

Koole et al [9] studied a model similar to that of [4] and
[6]. They found that the Best User (BU) policy maximizes the
expected discounted number of successful transmissions. Liu
et al [10][11] studied the optimality of opportunistic schedulers
(e.g., Proportional Fair (PF) scheduler). They presented the
characteristics and optimality conditions for such schedulers.
However, Andrews [13] showed that there are six different
implementation algorithms of PF scheduler, none of which
is stable. For more information on resource allocation and
optimization in wireless networks the reader may consult [12],
[14], [15], [16], [17], and [18].

In summary the main contributions of our work are the
following: We introduce the class of Most Balancing (MB)
policies and prove theoretically that they are optimal among all
work conserving policies. The proof is based on coupling ar-
guments of considerable complexity. We also provide an easily
programmable algorithm for constructing the Least Connected
Server First/Longest Connected Queue (LCSF/LCQ) policy
as a viable approximation of MB policies. We compare the
performance of several work conserving policies to that of the
optimal one via simulations. In the simulations we relax some
of the mathematical assumptions (on the arrival distribution)
we required for the analytical proofs. The simulation results
show that: (a) in all cases, MB policies outperform the other
policies, (b) randomized policies perform fairly close to the
optimal one, and, (c) the performance advantage of the optimal
policy over the other work conserving policies increases as
the channel connectivity decreases and the number of servers
in the system increases (a result that is fully justified by
intuition).

The rest of the paper is organized as follows. In section II,
we introduce notation and formulate the optimization prob-
lem. In section III, we introduce the MB policies for server
allocation in the described system. In section IV, we present
the main result, i.e., the optimality of MB server allocation
policies. In section V, we present the Least Balancing policies,
and show that these policies perform the worst among all
work conserving policies. In section VI, we present simulation
results for the MB and four other policies.

II. PROBLEM FORMULATION

Throughout this work, we will use the following notation:
• X(n) = (X1(n), X2(n), . . . , XL(n)) is the vector of

queue lengths (measured in number of packets) at the
beginning of time slot n.

• Z(n) = (Z1(n), Z2(n), . . . , ZL(n)) is the vector of the
number of exogenous arrivals during time slot n.

• Y(n) = (Y1(n), Y2(n), . . . , YL(n)) is the vector of the
number of packets withdrawn from the system during
time slot n. Yi(n) ∈ {0, 1, . . . ,K} denotes the number
of packets withdrawn from queue i during time slot n.



• G(n) ∈ {0, 1}L×K , where Gi,j(n) is the channel con-
nectivity random variable as defined previously.

We will use the notation q(n) = (q1(n), . . . , qK(n)) to
denote the server allocation control vector, where qj(n) ∈
{0, 1, . . . , L} denotes the index of the queue that is served by
server j during time slot n. We also define a dummy queue,
queue 0, such that qj(n) = 0 means server j is idling during
time slot n. Hence,

Yi(n) =
K∑
j=1

1{i=qj(n)}, i = 1, 2, . . . , L (1)

where 1{A} returns 1 if A is true and 0 otherwise. For our
mathematical and theoretical treatment, the packet withdrawal
vector Y(n) is a more rigorous representation of the controller
action. On the other hand, from an engineering standpoint,
q(n) has a more intuitive interpretation as we will see later
in the implementation of the optimal policy.

Let the vector (X(n),G(n)) denote the state of the system
at the beginning of time slot n. We assume that the controller
has complete knowledge of the system state information at the
beginning of each time slot. We define the set Y(x,g) as the
set of feasible packet withdrawals (controls) in state (x,g).
A feasible control (Y(n) ∈ Y(X(n),G(n))) is the one that
designate one queue per server (at any given time slot) such
that it satisfies the following constraints:

0 ≤ Yi(n) ≤ min

Xi(n),
K∑
j=1

Gi,j(n)

 , ∀ i, n, (2)

such that
L∑
i=1

Yi(n) ≤ K, ∀ i, n. (3)

In other words, the controller can only withdraw a total of up
to K packets from the connected queues in the system and
no more than the number of packets in the scheduled queues
at any given time slot. We allow more than one server to be
allocated to one queue when connected. The constraints in
equations (2) and (3) are necessary but not sufficient, since
they do not force the controller to assign a server only to one
queue at a given time slot. That is why we needed to state
that explicitly in the definition of the feasible control above.

For any feasible control (Y(n)), the system described above
evolves according to the following equation

X(n+ 1) = X(n)−Y(n) + Z(n), n = 1, 2, . . . (4)

We assume that arrivals during time slot n can only be added
after removing served packets. Therefore, packets that arrive
during time slot n have no effect on the controller decision at
that time slot and may only be withdrawn during t = n + 1
or later.

III. MOST BALANCING (MB) POLICIES FOR SERVER
ALLOCATION

A server allocation policy π is a sequence of controls that
represents a family of mappings which determine Yi(n), for
all i and n, as a function of the past history and current state of

the system H(n), and such that Y(n) is a feasible withdrawal
vector. The history is given by

H(1) = (X(1)), and
H(n) = (X(1),G(1),Z(1), . . . ,G(n−1),Z(n−1),G(n)),

n = 2, 3, . . . (5)

Notice that we did not include the past controls, Yi(t), t < n
in the history, and we included only the initial queue length
vector X(1). This is because for any given policy π, these
quantities can be recovered using H(n) and equation (4)
above.

Let Hn be the set of all histories up to time slot n.
Then a policy π can be formally defined as the sequence of
measurable functions

un : Hn 7−→ ZL+,
s.t. un(H(n)) ∈ Y(X(n),G(n)), n = 1, 2, . . . (6)

where Z+ is the set of non-negative integers and ZL+ = Z+×
. . .×Z+, where the Cartesian product is taken L times.

At each time slot, the following sequence of event happens:
first, the connectivities G(n) and the queue lengths X(n)
are observed. Second, the packet withdrawals Y(n) are de-
termined according to the policy in effect. Finally, the new
arrivals Z(n) are added to determine the next queue length
vector X(n+ 1).

We will show in Section IV that the Most Balancing policies
we introduce next are optimal: they minimize (in the stochastic
ordering sense presented in the next section) a range of cost
functions including the process of total number of packets in
the system.

A. The Class of Most Balancing Policies

Given a state (x(n),g(n)) and a policy π that chooses the
feasible control y(n) at time slot n, define x̂i(n) = xi(n) −
yi(n) as the size of queue i, i = 1, . . . , L, after applying the
control yi(n) and just before adding the arrivals during time
slot n. The MB policies are the policies that minimize the total
queue lengths differences (i.e., x̂i(n)− x̂j(n), ∀i, j) between
the queues in the system. In other words, the set of MB policies
(ΠMB) is the set that satisfies the following relationship:

ΠMB = argmin
y(n)∈Y(x,g)

L∑
i=0

L∑
j=i

|x̂i(n)− x̂j(n)|, ∀n = 1, 2, . . .

(7)
where x0(n)=0 is the length of a dummy queue we introduced
to simplify the mathematical treatment for this model.

Intuitively, the MB policies “attempt to balance the lengths
of all queues in the system as much as possible, at every time
slot n”. The following example explains this behavior:

Let L = 5 and K = 4. Assume that at time slot n, we have
x(n) = (5, 1, 2, 3, 1) and let gi,j(n) = 1, ∀ i, j. Then the MB
policy will choose one of the following server allocations:
q(n) = (1, 1, 1, 4), q(n) = (1, 1, 4, 1), q(n) = (1, 4, 1, 1)
or q(n) = (4, 1, 1, 1). These are the only controls that will
result in a packet withdrawal vector that satisfies (7). The



withdrawal vector in this case will be Y(n) = (3, 0, 0, 1, 0),
and X(n) − Y(n) = (2, 1, 2, 2, 1). On the other hand, if
the controller chooses q′(n) = (1, 2, 3, 4), then Y′(n) =
(1, 1, 1, 1, 0), and X(n)−Y′(n) = (4, 0, 1, 2, 1). It is obvious
that the last control does not satisfy (7) at time slot n.

B. LCSF/LCQ Policy
We introduce the Least Connected Server First/Longest

Connected Queue (LCSF/LCQ) policy as a low complex-
ity approximation of MB policies. LCSF/LCQ is the server
scheduling policy that allocates each one of the K servers to
its longest connected queue (not counting the packets already
scheduled for service) starting with the least connected server
(i.e., the server with the minimum number of queues connected
to it).

Let Kj be the set of the non-empty queues that are
connected to server j at time slot t, i.e., Kj = {i : i =
1, 2, . . . , L, gi,j(t) = 1, xi(t) > 0}. Let K[i] be the ith element
in the sequence (K1, . . . ,KK), when ordered in ascending
manner according to their size, i.e., |K[l]| ≥ |K[m]| if l > m.
Ties are resolved arbitrarily. Then under the LCSF/LCQ policy,
at every time slot t, the K servers are allocated as follows:
Algorithm 1.
1. for t = 1, 2, . . . do

{
2. Input: X(t),G(t). Calculate K[l], l = 1, . . . ,K.
3. X′(t)←− X(t), Y(t)←− 0, q(t)←− 0

4. for j = 1 to K
{

; allocate servers sequentially

5. Q[j](t) = min

(
l : l ∈

{
argmax
k:k∈K[j]

(X ′k(t)|X ′k(t) > 0)

})
6. for i = 1 to L

{
7. Yi(t) = Yi(t) + 1{i=Q[j](t)}
8. X ′i(t) = Xi(t)− Yi(t)

} }
9.

}
; End of Algorithm 1.

In the example we presented earlier, the LCSF/LCQ policy
will choose the control q(n) = (1, 1, 1, 4). Note that in line
5 of Algorithm 1, if the set K[j] is empty, then the argmax
returns the empty set. In this case, the jth order server will not
be allocated (i.e., will be idle during time slot t). Algorithm 1
produces two outputs, when it is run at t = n: y(n)←− Y(t)
and q(n)←− Q(t). In accordance to the definition of a policy
in Equation (6), the LCSF/LCQ policy can be formally defined
as the sequence of time-independent mappings u(x(n),g(n))
that produce the withdrawal vector y(n) described in line 7.

IV. OPTIMALITY OF MB POLICIES

In this section, we outline the main result of this work, that
is, the optimality of the Most Balancing (MB) policies. We
will establish the optimality of MB policies for a wide range
of performance criteria including the minimization of the total
number of packets in the system. We introduce the following
definition.

A. Definition of Preferred Order

To prove the optimality of MB policies, we will need
a methodology that enables comparison of the joint queue
lengths under different policies. Definition D below defines
the partial order ≺p (Preferred over) on the set ZL+, where
ZL+ is as defined in section III.
Definition D: (Preferred Order). Let x̃, x ∈ ZL+. We say that
x̃ ≺p x (x̃ is preferred over x) if one of the following
statements holds:

1) x̃ ≤ x;
2) x̃ is a permutation of x. The two vectors differ only in

two components i and j, such that x̃i = xj and x̃j = xi;
3) x̃ is obtained from x by performing a “balancing inter-

change”. The two vectors differ in two components i and
j only, where xj ≤ min(x̃i, x̃j) ≤ max(x̃i, x̃j) ≤ xi,
such that: x̃i = xi − 1 and x̃j = xj + 1.

Case D1 defines a partial order on ZL+ such that x̃i ≤ xi
for all i. In case D2, x̃ can be obtained from x by permuting
components i and j. Case D3 describes a balancing inter-
change. We say that x̃ is more balanced than x, and can be
obtained from x by moving one packet from a larger queue
to a smaller one. For example, if L = 2 and x = (5, 2)
then a balancing interchange will result in x = (4, 3). In
summary, x̃ is preferred over x (x̃ ≺p x) if x̃ can be obtained
from x by performing a sequence of permutations, balancing
interchanges or packets removals.

B. The class F of cost functions

Let x̃, x ∈ ZL+ be two vectors of the queue lengths. Then
we denote by F , the class of real-valued functions on ZL+ that
are monotone, non-decreasing with respect to the partial order
≺p, that is, f ∈ F if and only if

x̃ ≺p x ⇒ f(x̃) ≤ f(x) (8)

It can be easily shown, from (8) and the definition of
preferred order, that f(x) = x1 + x2 + . . . + xL belongs to
F . This function corresponds to the total number of packets
in the system.

The following theorem states the optimality of the MB
policies, with respect to f(X(n)) for all n ∈ Z+ and
f ∈ F among the class of work conserving policies for server
allocation in the symmetric system of parallel queues that
was presented earlier. The full proof is presented in [19]. We
provide only an outline here.

Theorem 1: A MB policy dominates any arbitrary work
conserving policy in the system described earlier. That is,

{f(XMB(t))} ≤st {f(Xπ(t))} (9)

For a complete description of stochastic ordering the reader
may refer to [1].

C. Outline of The Proof

We use the stochastic coupling method [2] in our proof. It
is sufficient to show that XMB(t) ≺p Xπ(t) for all t and all
sample paths, where {XMB(t)} and {Xπ(t)} are the queue



lengths processes in the system under a MB policy and the
system under any arbitrary policy π respectively, and when
both systems start from the same initial state. Hence, for any
f ∈ F , we have f(XMB(t)) ≤ f(Xπ(t)), for all t and all
sample paths. Then using the definition of stochastic domi-
nance, the stochastic process {f(XMB(t))} ≤st {f(Xπ(t))},
that is, a MB policy dominates any other arbitrary policy π.

Proof of Theorem 1: For n ≥ 1, let Πn denote the set of poli-
cies that have the MB property at time slots t = 1, 2, . . . , n.
Let Π∞ =

⋂∞
n=1 Πn denote the set of policies that have MB

property at all times.

Denote by Qπn ≡ {qj(n) : j = 1, . . . ,K} the set of queues
served by the K servers under policy π during time slot n.
Then we say that π deviates from MB at time n by at most
h > 0, if at most h server reallocations are required to make
π have the MB property (i.e., QMB

n differs from Qπn by at
most h elements). Let Πh

n be the set of policies that have the
MB property before time slot n and deviate from MB at time
slot n by at most h, i.e., Πh

n ⊆ Πn−1. Then Π0
n = Πn, is the

policy that has the MB property up to time slot n.

To prove the optimality of πMB we start with an arbitrary
policy π and apply a sequence of modifications that result
in a sequence of policies (π1, π2, . . .). Each of these policies
dominates the previous one, and is such that if πi ∈ Πn and
i < j then πj ∈ Πm and n < m. This means that πj has
the MB property for a longer period of time than πi, and πj
dominates πi. We will need the following lemma to complete
the proof of Theorem 1.

Lemma 1: For any policy π ∈ Πh
τ and h > 0, a policy π̃ ∈

Πh−1
τ can be constructed such that π̃ dominates π.

The proof of Lemma 1 is omitted due to space limitations;
it can also be found in [19].

Now, we will proceed with the proof of Theorem 1. Let π
be any arbitrary policy. We construct a sequence of policies
starting from π by applying lemma 1 repeatedly. Each of these
policies dominates the previous one. According to lemma 1,
we obtain policies that belong to ΠK

1 ,Π
K−1
1 , . . . ,Π0

1. The last
such policy belongs to ΠK

2 . If we continue in such manner, we
will obtain a policy πn that belongs to Π0

n for increasing value
of n. From the construction of πn, we can see that it agrees
with the preceding policy πn−1 ∈ Π0

n−1 until time n− 1.

For any arbitrarily large value of n, this sequence of policies
defines a limiting policy π∗ that for every n agrees with πn

until time n. This means that π∗ acts similar to πMB at all
times and dominates all the previous policies including π. 2

The optimality of MB policies is intuitively apparent since
any such policy will “minimize the probability of server
idling”. This is because the MB policies serves the longest
connected queues in the system and try to keep packets spread
between all the queues in the system. Hence, minimizing the
probability that servers will end up with connected queues that
are all empty, and be forced to idle.

V. THE LEAST BALANCING POLICIES

The Least Balancing (LB) policies are the work conserving
server allocation policies that at every time slot (n = 1, 2, . . .),
choose a packet withdrawal vector y(n) ∈ Y(x,g) that
maximizes the differences between queues lengths in the
system. The LB policies can do that by minimizing the length
of the shortest non-empty queue in the system. Obviously,
this will maximize the number of empty queues in the system.
Hence, maximizing the chance that servers are forced to idle in
future time slots because they are connected to empty queues
only.

In other words, if ΠWC is the set of feasible work conserv-
ing policies for the system under consideration, and ΠLB is
the set of all LB policies then

ΠLB⊂ ΠWC , such that

ΠLB = argmax
y(n)∈Y(x,g)

L∑
i=0

L∑
j=i

|x̂i(n)− x̂j(n)|, ∀n = 1, 2, . . .

(10)

Intuitively, this algorithm will lead to the least balancing
configuration of the queue lengths in the system. As such, it
will yield the worst performance among all work conserving
policies. The next theorem states this intuition formally. Its
proof is analogous to that of Theorem 1 and will not be
presented.

Theorem 2: A LB policy is dominated by any arbitrary work
conserving policy.

We present next an approximate implementation of the LB
policies.

A. MCSF/SCQ Policy
The Most Connected Server First/Shortest Connected Queue

(MCSF/SCQ) policy is the service sharing policy that allocates
each one of the K servers to its shortest connected queue (not
counting the packets already scheduled for service) starting
with the most connected server first. A feasible implementation
algorithm of MCSF/SCQ policy is to allocate the K servers
according to the following algorithm:
Algorithm 2.

1. for t = 1, 2, . . . do
{

2. Input: X(t),G(t). Calculate K[l], l = 1, . . . ,K.
3. X′(t)←− X(t), Y(t)←− 0, q(t)←− 0

4. for j = K to 1
{

; Servers in descending order

5. Q[j](t) = min

(
l : l ∈

{
argmin
k:k∈K[j]

(X ′k(t)|X ′k(t) > 0)

})
6. for i = 1 to L

{
7. Yi(t) = Yi(t) + 1{i=Q[j](t)}
8. X ′i(t) = Xi(t)− Yi(t)

} }
9.

}
; End of Algorithm 2.



On the long run, Algorithm 2 may lead to the least balancing
configuration of the queues lengths in the system. Therefore,
the MCSF/SCQ policy is a good approximation of the class
of LB policies.

VI. SIMULATION RESULTS

We used simulation to study the performance of the system
described earlier under several work conserving policies. We
focused our simulations on two themes. In the first one (repre-
sentative results are shown in Figures 2 through 6), we study
how various parameters affect system performance. In the
second theme, we explored whether MB policies would still
outperform in systems where the mathematical assumptions
were relaxed. The metric we used in the simulation is EQ,
the long-run average of the total number of queued packets in
the system. Representative results are shown in Figures 7(a)
through 7(c). The results are not exhaustive, but they do verify
the strong intuition that MB policies would be optimal again.

The policies used in this simulation are: MB, LB, ran-
domized, MCSF/LCQ, and LCSF/SCQ policies. The MB/LB
policies provide “upper and lower” performance limits for
all work conserving policies. In the simulation we used
LCSF/LCQ, as described in section III-B, to approximate an
MB policy; we used the MCSF/SCQ policy, as described in
section V-A, to approximate an LB policy. The randomized
policy is the one that at each time slot allocates each server,
randomly and with equal probability, to one of its connected
queues. The Most Connected Server First/Longest Connected
Queue (MCSF/LCQ) policy differs from the LCSF/LCQ in
the order that it allocates the servers. While an LCSF/LCQ
policy allocates the servers after ordering them according to
their connectivities to queues, starting with the least connected
server first, the MCSF/LCQ use the reverse order, starting the
allocation with the most connected server and ending it with
the least connected one. However, it resembles LCSF/LCQ
policies in that it allocates the server to its longest con-
nected queue. The last policy that we studied is LCSF/SCQ
(Least Connected Server First/Shortest Connected Queue). It
allocates each server, starting from the one with the least
number of connected queues, to its shortest connected queue.
The difference from the LCSF/LCQ policy is obviously the
allocation to the shortest connected queue. This policy will
result in greatly unbalanced queues lengths and hence a
performance that is closer to the LB policies.

Figure 2 shows the (average) total queue occupancy (total
number of queued packets in the system) versus arrival rate
under the five different policies. The system in this simulation
is a symmetrical system with 16 parallel queues (L = 16),
16 identical servers (K = 16) and i.i.d. Bernoulli queue-to-
server (channel) connectivity with parameter p = 0.2, where
p = P [Gi,j(t) = 1], ∀ i, j, t.

The curves in figure 2 follow a distinctive shape that starts
flat (actually, increasing with small slope) and ends with a
rapid incline. This sudden increase happens at a point where
the system crosses a “stability threshold”. In this case, the
queue lengths in the system will grow uncontrollably and the

system becomes unstable. The graph shows that the MB policy
outperforms2 all other policies. It minimizes the (average)
system queue occupancy and hence the queuing delay. We also
noticed that it maximizes the system stability region and hence
maximizes the system throughput. Another observation is that
a LB policy is inferior to all the other policies we studied.
As expected, the performance of the other three policies lies
between that of the MB and the LB policies.
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Fig. 2. Total queue occupancy versus load under different policies, L =
16, K = 16 and p = 0.2.

The MCSF/LCQ and LCSF/SCQ policies are variations
of the MB and LB policies respectively. The performance
of MCSF/LCQ policy is close to that of the MB policy.
The difference in performance is due to the order of server
allocation. On the other hand, the LCSF/SCQ policy shows
a large performance improvement on that of the LB policy.
This improvement is a result of the reordering of allocations
of servers.

Figure 2 also shows that the randomized policy behaves
very close to the optimal policy. However, it deviates more as
the number of servers in the system increases, as the next set
of experiments shows.

A. The Effect of The Number of Servers

In this section, we study the effect of the number of servers
on policy performance. Figures 3 and 4 show the average
total queue occupancy versus arrival rate per queue under
the policies presented earlier, in a symmetrical system with
L = 16 and p = 0.2. The two figures are corresponding to
K = 8 and K = 4 respectively.

Comparing these two graphs to the one in figure 2, we
notice the following: First, the performance advantage of the
MB policy over the other policies increases as the number
of servers in the system increases. More servers means larger
action space. Selecting the optimal option, over any arbitrary
policy, out of a larger space will certainly produce higher
performance advantage than that selected from a smaller space.
Second, the stability region of the system becomes narrower
when less servers are used. This is true because less resources
(servers) are available to be allocated by the working policy

2We have calculated 99% confidence intervals for all our experiments; we
do not show them here for clarity of the graphs.
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Fig. 3. Total queues occupancy versus load, L = 16, K = 8 and p = 0.2.
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Fig. 4. Total queues occupancy versus load, L = 16, K = 4 and p = 0.2.

in this case. Finally, we noticed that the MCSF/LCQ performs
very close to the MB policy in the case of K = 4. Apparently,
when K is small, the order of server allocation does not have
a big impact on the policy performance.

B. The Effect of Channel Connectivity

In this section we investigate the effect of channel connec-
tivity on the performance of the different policies presented
previously. Figures 5 and 6 show this effect under two different
setups. Several observations are worth mentioning here.

First, we noticed that at higher channel connection prob-
abilities (p ≥ 0.9), the effect of the policy behavior on the
system performance became less significant. Therefore, all five
policies perform very close to each other. The MB policy still
has very small advantage over the rest of the policies. LB still
has the worst performance. As p increases, the probability that
a server will end up connected only to a group of empty queues
will be very small regardless of the policy in effect. Actually,
when the servers have full connectivity to all queues (i.e.,
p = 1.0) then any work conserving policy will minimize the
total number of packets in the symmetrical system we studied
and they all will have identical performance. In other words,
any work conserving policy will be optimal in a system with
full connectivity.

Second, we noticed from all experiments that we conducted
(as seen from the resulted simulation graphs) that there is
an upper limit for the service provided by the system under
investigation that is a function of the channel connectivity.
Therefore, in order to keep the system stable, the average
number of packets arrivals should never exceed that limit.

Furthermore, in the symmetrical system that we studied, this
limit is intuitively given by

α <
K

L

(
1− (1− p)L

)
(11)

where α is the arrival rate, e.g., for Bernoulli arrival, α =
P [Zi(t) = 1], ∀ i, t. In other words, the average number of
packets entering the system (αL) must be less than the rate
they are being served. The service rate is proportional to the
number of servers and the probability that a server is at least
connected to one queue (

∑K
i=1(1− (1− pi)L) = K(1− (1−

p)L) when pi = p, ∀i). When p = 1.0, the stability condition
in (11) will be reduced to αL < K, which makes intuitive
sense in a system with deterministic service such as this one.

Finally, we noticed that the MCSF/LCQ policy performs
very close to the MB policy. However, its performance deteri-
orates in systems with higher number of servers and lower
channel connectivity. The intuition here is that the more
servers are there the more effect the order of allocations of
servers have on the performance. Since MCSF/LCQ differs
from MB only by the order of servers allocation, therefore,
more servers means more performance deviation from the MB
policy. Also, the lower the connection probability the higher
the probability that a server will end up with no connectivity
to any non-empty queue, and hence be forced to idle.

C. Batch Arrival With Random Batch Size

We studied the performance of the presented policies in the
case of batch arrivals with uniformly distributed batch size.
Figure 7 shows the total number of packets in the system
versus load for the case of batch arrival with random batch
size. The MB policy clearly dominates all the other policies.
However, the performance of the other policies, including the
LB one, approaches that of the MB policy as the average batch
size increases. The performance of all the policies deteriorates
when the arrivals become more bursty, i.e., the batch size
increases. We conjecture that these trends will still apply for
any arrival distribution.

VII. CONCLUSION

In this work, we presented a model for service sharing
in emerging wireless systems. We investigated the class of
Most Balancing policies. These policies serve the longest
connected queues in the system in an effort to “equalize” the
queue occupancies in the long run. A theoretical proof of the
optimality of MB policies using stochastic dynamic coupling
argument was presented. The LCSF/LCQ policy was designed
as a low complexity approximation of MB policies.

A simulation study was conducted to study the performance
of five different work conserving policies including the optimal
one. The results showed that the Most Balancing policies
outperformed all other policies, even when statistical assump-
tions were relaxed. As expected, the Least Balancing policy
performed the worst. We also found that a randomized policy
can perform very close to the optimal one in most situations.
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(a) p = 0.3

1

10

100

1000

0.4 0.42 0.44 0.46 0.48 0.5

Arrival Rate Per Queue (Packets/Slot)

 
 
 
 

EQ
 (P

ac
ke

ts
)

LCSF/LCQ(MB) 
MCSF/LCQ
Random Policy
LCSF/SCQ
MCSF/SCQ(LB) 

(b) p = 0.5
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(c) p = 0.9

Fig. 5. Total number of packets in the system versus load under different policies, L = 8 and K = 4.
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(a) p = 0.3
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(b) p = 0.5
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(c) p = 0.9

Fig. 6. Total number of packets in the system versus load under different policies, L = 12 and K = 4.L=16, K=16, p=0.5, Batch Size=U(2)
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(a) p = 0.5, batch size =U(2)

L=16, K=16, p=0.6, Batch Size=U(5)
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(b) p = 0.6, batch size =U(5)

L=16, K=16, p=0.8, Batch Size=U(10)
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Fig. 7. Total number of packets versus load, batch arrivals, L = 16 and K = 16.
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