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Abstract—This paper considers frequency division duplexing
massive multiple-input multiple-output systems in which the base
station (BS) is equipped with either a uniform linear antenna
array (ULA) or a uniform rectangular antenna array (URA).
For these systems, we develop novel uplink-to-downlink channel
covariance estimation schemes. These schemes can be expressed
in the form of easy-to-implement affine transformations which
depend only on the uplink and downlink carrier frequencies,
and the BS array configurations. We derive upper bounds on
the estimation errors, and we use these bounds to show that the
accuracy of the proposed schemes increases with the number
ULA/URA antennas, the compactness and differentiability class
of the periodic extension of a non-linearly transformed version
of the angular power spread. Performance superiority of the
proposed schemes over their existing counterparts is confirmed
through numerical simulations.

I. INTRODUCTION

The massive multiple-input multiple-output (mMIMO) tech-

nology is one of the key enablers for 5G and beyond net-

works [1]. In this technology, users equipped with a small

number, e.g., one or two, antennas communicate with a base

station (BS) equipped with potentially hundreds of antennas.

Such a large number of antennas enables the BS to commu-

nicate reliably within a given bandwidth at aggregate rates of

hundreds of bits per channel use (bpcu) [2], [3], [4].

Emerging cellular systems are expected to operate either

in the time division duplexing (TDD) or in the frequency

division duplexing (FDD) mode. In TDD, the uplink (UL) and

downlink (DL) transmissions occur within the same frequency

band, but during different time intervals. If these intervals

lie within the same coherence time of the channel, the UL

channel state information (CSI) and its DL counterpart are

approximately equal, giving rise to the so-called channel

reciprocity [5]. In contrast with TDD, in the FDD mode, the

UL and DL transmissions occur simultaneously in different

frequency bands [6] that are potentially separated by a large

spectral gap. This gap results in significant discrepancies

between the UL and DL CSIs, thereby invalidating the channel

reciprocity assumption.

Acquiring DL CSI in FDD mMIMO systems must overcome

two challenges. The first challenge arises due to the large

number of antennas at the BS and is common between TDD

and FDD mMIMO systems. To see this, we note that the

time required for transmitting the pilot symbols required to

assist the receiver in estimating the CSI is proportional to

the number of transmit antennas [7], [8]. Hence, while it is

easy for the BS to acquire the UL CSI, acquiring the DL CSI

is significantly more challenging. In particular, the significant

overhead required to estimate the DL CSI may infringe on

the resources available for actual communication, reducing the

system spectral efficiency, and potentially causing the pilot

transmission time to exceed the channel coherence time [9],

[10]. The second challenge encountered in acquiring the DL

CSI of FDD mMIMO systems is specific to these systems and

arises from the fact that channel reciprocity characteristic of

TDD systems [5] is not present in FDD ones. This difficulty

is more pronounced when the spectral gap between the UL

and DL channels is large. One approach to achieve effective

communication despite the lack of DL CSI is to replace this

CSI with its second order statistics, i.e., the spatial DL channel

covariance matrix (DCCM) [11], [12].

Estimating the DCCM in FDD mMIMO systems with-

out using DL pilots has been considered in e.g., [13]–[20].

Therein, the DCCMs are inferred from the corresponding

uplink channel covariance matrices (UCCMs). For example,

the scheme proposed in [19] uses a dictionary of known

UCCM-DCCM pairs to estimate a DCCM whenever a new

UCCM estimate becomes available. The DCCM estimates are

refined by interpolating between the entries of the dictionary.

Another class of techniques for estimating DCCMs without

DL pilots relies on the fact that both FDD and TDD systems

feature a form of reciprocity in the angular domain. In partic-

ular, signal propagation analysis and practical measurements

suggest that the angular distribution of power observed by the

antenna array at the receiver, which is known as the angular

power spectrum (APS), is much less sensitive to variations in

frequency than the actual CSI [21]. This partial insensitivity

plays a key role in facilitating the estimation of the DCCM

from the UCCM.

In contrast with the technique in [19], APS reciprocity has

been exploited by several schemes for estimating DCCMs

from their UCCM counterparts in FDD mMIMO systems with

uniform linear arrays (ULAs) [13]–[19] and with uniform rect-

angular arrays (URAs) [20]. These schemes can be classified

into two classes viz., APS-Explicit and APS-Implicit schemes.

APS-Explicit schemes use the UCCM to estimate the APS

and subsequently use this APS to estimate the DCCM [13],

[14]. The explicit estimation of the APS results in high

computational complexity especially for a large number of

array antennas. Therefore, scalability is the main challenge for

these schemes. For instance, in [13], [14], the UCCM is used

in optimization framework to obtain estimates of the APS at

a large number of angles that are uniformly distributed on the
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angular span of the antenna array. The APS is reconstructed

from the estimates provided by the optimization framework

and is subsequently used to obtain the DCCM. The perfor-

mance of this scheme depends heavily on the choice of the

number of angles at which the APS is estimated; the larger

this number the more accurate the estimate of the DCCM.

Unfortunately, choosing a large number for the angles at which

the APS is estimated results in an impractical computation

complexity. Another limitation of this scheme is that it cannot

be used when the enter-antenna spacing is larger than half the

DL carrier wavelength.

Unlike their APS-Explicit counterparts, APS-Implicit

schemes directly transform the UCCM to a DCCM estimate

without estimating the APS explicitly. For instance, the scheme

proposed in [18] uses APS reciprocity to estimate the DCCM

by a linear frequency calibration transformation of the UCCM

samples. Another technique that uses a similar philosophy

is the one proposed in [16]. In that scheme, the APS is

represented as a linear transformation of the UCCM samples.

Using another linear map, the APS is transformed to obtain

an estimate of the DCCM. The composition of the two linear

transformations is equivalent to one linear transformation that

maps the UCCM to the DCCM without explicitly estimating

the APS. The transformation matrices of the schemes in [18]

and [16] are completely determined by the array geome-

try and the carrier frequencies, i.e., they can be computed

offline and stored for future use; however, obtaining these

matrices involves the evaluation of a numerical integration

for each element of those matrices, which is computationally

demanding. In [17], APS reciprocity is used to show that

DCCM samples can be obtained by sampling the UCCM at a

factor determined by the ratio of DL-to-UL carrier frequencies.

The DCCM is reconstructed by interpolating these samples

using cubic splines. One of drawbacks of this scheme is

that it requires the interpolation operations to be repeated

every time the APS of the channel changes. In other words,

no closed-form transformation that can be computed offline

independently of the channel and can be used repeatedly is

available. Furthermore, this scheme uses separate interpolation

operations for the amplitudes and the phases of the UCCM

samples which adds to its complexity.

In this paper, we propose novel UCCM-to-DCCM trans-

formation schemes for FDD mMIMO systems equipped with

ULAs and URAs. These schemes exploit the properties of the

respective channel covariance matrices to improve estimation

accuracy and reduce computational complexity. In particular,

following the standard approach, the UCCM corresponding

to ULAs and URAs are estimated using UL pilots [13], [16],

[18]. Based on the periodicity of the APS, we show that partic-

ular elements of the UCCM can be regarded as the coefficients

of a truncated Fourier series of a periodic extension of a non-

linearly transformed version of the APS. Such a transformation

is in contrast with the linear transformations proposed in [18]

and [16]. The truncated Fourier series representation enables

us to obtain a continuous approximation of the transformed

APS. Invoking reciprocity, the continuous approximation is

used to obtain closed-form estimates of the entries of the

DCCM. These estimates can be regarded as samples of the

Whittaker–Shannon (sinc) interpolated UCCM [22]. Curiously,

this interpolating-sampling process can be represented as a

linear transformation that maps the estimates of UCCM ele-

ments to estimates of the DCCM. Analytical upper bounds on

the estimation errors of the proposed schemes are derived to

expose their dependence on the number of antennas, antenna

spacing, and APS support and differentiability.

The proposed schemes feature the following advantages.

First, in contrast with the scheme in [13], the accuracy of

the proposed schemes improves with the increase in the

number of ULA/URA antennas for any spacing between the

antenna elements. This feature is observed in [16] only when

the spacing between the array elements is equal to half the

UL wavelength. In particular, under certain conditions, the

DCCMs estimated via the proposed schemes approach the

true DCCMs as the number of antennas goes to infinity.

In addition to this advantage, our analysis shows that the

accuracy of the proposed schemes not only depends on the

number of antennas, but also on the compactness and dif-

ferentiability class to which the APS belongs. In particular,

highly differential APSs with narrow support will result in

more accurate DCCM estimation than less differentiable APSs

with wider support. This is because the accuracy of the Whit-

taker–Shannon interpolation used to implicitly reconstruct the

APS improves with the number of array antennas. Moreover,

for an infinite number of antennas, the Whittaker–Shannon

interpolation uniquely and completely determines the DCCM.

The second advantage of the proposed schemes is that they

exhibit a lower computational complexity than their existing

counterparts. This computational advantage stems from the

fact that these schemes make use of the Toeplitz and block

Toeplitz structures of the ULA and URA channel covariance

matrices to pick specific elements of the UCCM and to use

these elements to obtain the DCCM. This is in sharp contrast

to other schemes that use all UCCM elements to obtain the

DCCM [16], [18], [19]. In particular, whereas the number

of UCCM elements needed for the scheme in [16] grows

quadratically with the number of antennas, this number grows

only linearly in the proposed schemes. The third advantage of

the proposed schemes is that their implementation can be cast

in the form of linear transformations that depend solely on

the ratio between the UL and DL carrier frequencies and the

geometry of the antenna array, but not on the explicit APS.

This is in contrast with the scheme in [13], [23], which requires

solving an optimization problem that depends not only on

these parameters, but also on the APS and UCCM estimates.

Hence, unlike the method in [13], [23], the transformations

underlying the proposed schemes can be computed offline and

stored for future use, irrespective of the APS of the channel.

In addition, the elements of the transformation matrix of our

schemes are samples of the closed-form sinc functions for both

ULA and URA. This is in contrast with the scheme proposed

in [18] and [16] wherein the computation of transformation

matrix elements involves evaluating numerical integration. An

exception to this observation is the scheme proposed in [16]

for ULAs. Finally, as demonstrated by numerical simulations,

the proposed schemes exhibit superior performance over ex-

isting ones when the number of antennas is large.
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The paper is organized as follows. The system model for

ULA and URA is presented in Section II. Section III gives

the details of the proposed schemes. Simulation results are

provided in Section IV, and Section V concludes the paper.

Notations: Bold upper and lower case letters will be

used to denote matrices and column vectors, respectively. The

transpose, complex conjugate and Hermitian of a matrix A

will be denoted by, AT , A∗ and A†, respectively. The all

one column vector of dimension N will be denoted by 1N .

The p, q-th entry of A will be denoted by [A]p,q , whereas the

j, k-th entry of the p, q-th block of a block matrix Q will be

denoted by [Q](p,q),(j,k). Finally, we will use f(x) = o
(

g(x)
)

to imply that limx→∞
f(x)
g(x) = 0.

II. SYSTEM MODEL

In this paper, we consider an mMIMO FDD system com-

posed of single antenna users communicating with a BS

equipped with multiple antennas arranged in either a ULA

or a URA configuration over narrowband channels, that is,

the UL and DL transmission bandwidths are much less that

their respective carrier frequencies. The UL and DL carrier

frequencies are denoted by f (ul) and f (dl), respectively, and

the ratio of these frequencies is denoted by α = f(dl)

f(ul) .

We assume that both the UL and DL channels are multipath

frequency-flat following the wide sense stationary uncorrelated

scattering (WSSUS) model. In this model, the channel correla-

tion function is time-invariant and the scatterers with different

angles of arrival (AoAs) are uncorrelated [24], [25]. Using

this model, the UL and DL channel vectors and covariance

matrices for the ULA and URA cases are described in the

following subsections.

A. ULA System Model

In this subsection, we assume that the BS is equipped with

an M -antenna ULA, M ≫ 1, with uniform antenna spacing

denoted by L, cf. Figure 1a. We denote the complex channel

gain by ζ(t, θ), where θ is the AoA of the radio-frequency

wave incident on the ULA. Following the WSSUS model, the

channel gain autocorrelation function is given by [23], [26]:

E {ζ(t, θ)ζ∗(t′, θ′)} = η(t− t′)ρ(θ − θ′)δ(θ − θ′), (1)

where the temporal correlation function, η(·), satisfies η(0) =
1 and η(τ) ≈ 0 for τ greater than the coherence time

of the channel, and the APS, ρ(θ) ∈ R+, describing the

channel power distribution in the angular domain satisfies
∫ π

−π ρ(θ) dθ = 1. To obtain expressions for the UCCM and

DCCM in this case, we recall that the UL/DL channel vector

h(i)(t) ∈ C
M , i ∈ {ul, dl}, between each user and the M -

antenna BS can be modeled as [26], [27]

h(i)(t) =

∫ π

−π
ζ(t, θ)a(i)(θ)dθ, i ∈ {ul, dl}, (2)

where a(i)(θ) ∈ C
M is the ULA UL/DL steering vector, which

is given by, i ∈ {ul, dl}:

a(i)(θ) =
[

1 e
2π L

λ(i)
sin(θ)

. . . e
2π L

λ(i)
(M−1) sin(θ)

]T

,

(3)

where λ(i) = f(i)

c0
is the UL/DL wavelength; c0 is the speed

of light.

θ

L

(a) ULA
x

z

y

Lz

Ly
θ

φ

(b) URA

Fig. 1: ULA and URA configurations.

Using the channel vector given in (2) along with (1),

the spatial UCCM/DCCM R(i) ∈ C
M×M can be expressed

as [13], [16], [18]:

R(i)= E
{

h(i)(t)h(i)†(t)
}

,

=

∫ π

−π
ρ(θ)a(i)(θ)a(i)†(θ) dθ, i ∈ {ul, dl}. (4)

Using (3) and (4), the p, q-th element of the ULA

UCCM/DCCM can be expressed as:

[R(i)]p,q =

∫ π

−π
ρ(θ)e

 2π

λ(i)
L(p−q) sin(θ)

dθ,

p, q = 1, . . . ,M, i ∈ {ul, dl}. (5)

We make the standard assumption that the APS, ρ(θ), is

frequency-independent and unknown at both the user and the

BS. In contrast, the steering vector, a(i)(θ) in (3) is frequency-

dependent and known at both the user and the BS [13], [18].

(For notational convenience, the dependence of a(i)(θ) on

f (i) has been suppressed throughout.) This assumption along

with (4) show that, in FDD systems, R(ul) and R(dl) are

inherently related. This is the key property which will enable

us to estimate the DCCM using the observed UCCM.

Using the channel covariance matrices in (4) and the

steering vectors in (3), it can be readily shown that, for a

ULA system, channel covariance matrices are Hermitian, i.e.

R(i)† = R(i), positive semi-definite, i.e., x†R(i)x ≥ 0 for

any x ∈ C
M , and Toeplitz, i.e., [R(i)]p,q = [R(i)]p+1,q+1,

p, q ∈ {1, . . . ,M − 1}. These properties will enable us to

construct the entire covariance matrix using only the elements

of the first column, thereby yielding valuable reduction in the

computational complexity, specially when M is large.

B. URA System Model

In this subsection, we assume that the BS is equipped with

an M×N -antenna URA located in the yz plane. In particular,

the URA consists of N Ly-uniformly-spaced antennas in each

row and M Lz-uniformly-spaced antennas in each column, cf.

Figure 1b.

Using a procedure similar to that used in Section II-A, an

expression analogous to (4) can be obtained for the URA

UCCM/DCCM, R(i) ∈ C
MN×MN , i ∈ {ul, dl}. In particular,

we have, i ∈ {ul, dl}, [28]

R(i) =

∫ π
2

−π
2

∫ π

−π
ρ(θ, φ)a(i)(θ, φ)a(i)†(θ, φ) dθ dφ, (6)
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where θ and φ are the azimuth and elevation AoAs, respec-

tively, and ρ(θ, φ) ∈ R+ is the URA APS which satisfies
∫ π

2

−π
2

∫ π

−π ρ(θ, φ)dθdφ = 1. In this expression, a(i)(θ, φ) ∈
C
MN is the UL/DL URA steering vector which is given by:

a(i)(θ, φ) =
[

a
(i)T

1 (θ, φ) . . . a
(i)T

N (θ, φ)

]T

, i ∈ {ul, dl},
(7)

where a
(i)
n (θ, φ) ∈ C

M , n = 1 . . . , N , is the steering vector

corresponding to the n-th column of the URA and is given by

a(i)
n (θ, φ) =

[

a
(i)
n,1 . . . a

(i)
n,M

]T

, i∈ {ul, dl}. (8)

The m-th entry of the n-th steering vector, a
(i)
m,n, corre-

sponding to the n,m element of the URA antenna grid,

n ∈ {1, . . . , N}, m ∈ {1, . . . ,M}, is given by, i ∈ {ul, dl}:

a(i)n,m = e
 2π

λ(i)

(

(n−1)Ly sin(θ) cos(φ)+(m−1)Lz sin(φ)
)

, (9)

Using (6), (7) and (8) and letting p = (n1−1)M +m1 and

q = (n2−1)M+m2, n1, n2 = 1, . . . , N , m1,m2 = 1, . . . ,M ,

the p, q-th entry of the URA UCCM/DCCM can be expressed

as, i ∈ {ul, dl}:

[R(i)]p,q =

∫ π
2

−π
2

∫ π

−π
ρ(θ, φ)e

 2π

λ(i)
D(θ,φ)

dθ dφ,

Dn1n2m1m2
(θ, φ) = (n1 − n2)Ly sin(θ) cos(φ)

+ (m1 −m2)Lz sin(φ), (10)

Analogous to the ULA case, we assume that the APS, ρ(θ, φ),
is frequency-independent and unknown, whereas the steering

vectors a(i)(θ, φ), i ∈ {ul, dl} in (7) are frequency-dependent

and known. Analogous to the ULA case, it can be seen

from (6) that R(ul) and R(dl) are inherently related, which will

enable us to estimate the DCCM using the observed UCCM.

III. PROPOSED DCCM ESTIMATION SCHEMES FOR ULA

AND URA SYSTEMS

We propose novel DCCM estimation schemes for ULA and

URA systems. The main philosophy of these schemes is to

express particular elements of the UCCM as the coefficients

of a truncated Fourier series of a periodic extension of a

non-linearly transformed version of the APS. These truncated

Fourier series coefficients allow us to obtain a continuous

approximation of the transformed APS, which is subsequently

used to obtain closed-form estimates of the DCCM entries.

Analytical upper bounds on the estimation errors of the

proposed schemes are derived to expose their dependence on

the number of antennas, antenna spacing, and APS support

and differentiability. In particular, we show that the accuracy

of these schemes increases when the number of ULA/URA

antennas is large and the transformed APS is highly differen-

tiable with support span less than 2π. Under these conditions,

the proposed schemes exhibit superior performance at a signif-

icantly less computational cost than their existing counterparts.

A. Proposed Scheme for ULA

Towards developing the proposed scheme, we use (4) to

provide new characterizations of the UCCM and DCCM,

which are provided in the following lemma.

Lemma 1: Let λ(ul) be the wavelength of the UL transmis-

sion from a single-antenna user to a BS equipped with a ULA

composed of M L-uniformly-spaced antennas. Let ρ(θ) be the

APS, γ = L
λ(ul) , and let α = f(dl)

f(ul) . Furthermore, let

ρ′(u) =
ρ(arcsin u

2πγ ) + ρ(π − arcsin u
2πγ )

√

γ2 − ( u2π )
2

, (11)

and let µ
(ul)
m (u) = mu and µ

(dl)
m (u) = αµ

(ul)
m (u). Using this

notation, the p, q-th entry of the UCCM/DCCM, [R(i)]p,q , i ∈
{ul, dl}, can be expressed as, p, q = 1, . . . ,M :

[R(i)]p,q =
1

2π

∫ π

−π
ϑ(u)eµ

(i)
p−q

(u) du+ δ
(i)
p−q, (12)

where

ϑ(u) =

{

ρ′(u) |u| ≤ min(π, 2πγ),

0 otherwise,
(13)

and

δ(i)m =
1

2π

∫ 2πγ

−2πγ

ρ′(u)eµ
(i)
m (u) du− 1

2π

∫ π

−π
ϑ(u)eµ

(i)
m (u) du.

(14)

Proof: See Appendix A.

We note that ρ′(·) in (11) constitutes a non-linear trans-

formation of the APS, ρ(·). Furthermore, whereas ρ(·) is

periodic with period 2π, ρ′(·) is aperiodic. However, from

Appendix A, it can be seen that the variable u in (11) is given

by u = 2πγ sin(θ). Hence, every period of ρ(θ) maps to the

aperiodic function ρ′(u) with u ∈ [−2πγ, 2πγ] in (11). When

γ ≤ 1
2 , the support of ρ′(u) is within the interval [−π, π),

but when γ > 1
2 , the support extends beyond this interval.

The first term on the right hand side (RHS) of (12) accounts

for ρ′(u) in the interval (−π, π) whereas the second term,

i.e., δ
(i)
p−q which is defined in (14), accounts for ρ′(u) beyond

(−π, π). From (14), it can be readily seen that, when γ ≤ 1
2 ,

δ
(i)
p−q = 0, and when γ > 1

2 , δ
(i)
p−q 6= 0, unless ρ′(·) = 0

outside the interval (−π, π). An illustration of the functions

ρ′(u) and ϑ(u) for γ > 1
2 is given in Figure 2.

ρ′(u)

−π−π 2πγ2πγ ππ −2πγ−2πγ
uu

ϑ(u)

Fig. 2: ρ′(u) and ϑ(u) for γ > 1
2

The characterization of R(i) in Lemma 1 enables us to use

the entries of the UCCM to obtain a continuous approximation

of a periodic extension of ϑ(u). This approximation will

be used to provide closed form estimates of the DCCM

elements. Since the DCCM is Toeplitz and Hermitian (cf.

Section II-A), it can be uniquely reconstructed from its first
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column. Considering (12), the first column elements of the

UCCM and the DCCM can be described by

r(i)m = [R(i)]p,q

∣

∣

∣

m=p−q
,

m = 0, . . . , (M − 1), i ∈ {ul, dl}, (15)

that is, {r(i)m } are obtained from (12) by substituting m for

p − q. Using this notation, the elements of the first row of

the UCCM and the DCCM are given by r
(i)
m , m = −(M −

1), . . . , 0, and i ∈ {ul, dl}. In the following theorem, we will

use this notation to obtain {r(dl)m } from {r(ul)m }.

Theorem 1: For an M -antenna ULA, let r̂
(ul)

contain the

first row and the first column of the UCCM, i.e., r̂
(ul) =

[

r
(ul)
−(M−1) · · · r

(ul)
0 · · · r(ul)(M−1)

]T

, and let r(dl) contain the first

column of the DCCM, i.e., r(dl) =
[

r
(dl)
0 · · · r(dl)(M−1)

]T

. A

transformation that maps r̂
(ul)

to r(dl) is given by

r(dl) = Φr̂
(ul) + ε(dl), (16)

where the p, q-th element of Φ ∈ C
M×2M−1 is given

by [Φ]p,q = sinc
(

α(p − 1) + (M − q)
)

, p = 1, . . . ,M ,

q = 1, . . . , 2M − 1, α = f(dl)

f(ul) . Moreover, ε(dl) =
[

ε
(dl)
0 . . . ε

(dl)
M−1

]T

where

|ε(dl)m | ≤M
(

1− 1

2π

∫ π

−π
ϑ(u) du

)

+ o(M−r), (17)

where γ = L
λ(ul) and r is the highest continuous derivative of

the periodic extension of ϑ(·), cf. Lemma 1.

Proof: See Appendix B.

From this theorem, it can be seen that for sufficiently small

‖ε(dl)‖, we can write

r(dl) ≈ Φr̂
(ul). (18)

In particular, whereas the first term of the DCCM estimate,

r(dl), in (16) depends only on the UCCM information, i.e.,

r̂
(ul)

, which is available at the BS, the second term, i.e., ε(dl),

depends on the APS, ρ(·), which is unknown at the BS. This

term accounts for the estimation error.

An upper bound on the error incurred by the approximation

in (18) is provided in (17). This bound contains two terms.

First, we consider the first term. This term arises only for

γ > 1
2 and is directly proportional to M , the number of ULA

antennas, and the leakage of the transformed APS, i.e., ρ′(·),
outside the interval (−π, π), i.e., 1− 1

2π

∫ π

−π ϑ(u) du. There-

fore, when γ > 1
2 , the approximation error corresponding to

given number of antennas is smaller for more compact APSs,

that is, APSs for which 1
2π

∫ π

−π ϑ(u)du is close to unity. Next,

we consider the second term of (17). This term arises for all

values of γ, and depends on the number of antennas, M , and

the differentiability class, r, of the periodic extension of the

transformed APS, ϑ(·). This term, decreases by increasing

M and r. In other words, when γ ≤ 1
2 , the estimation

accuracy of the proposed scheme increases with the number

of antennas and the differentiability of the periodic extension

of the transformed APS.

Three remarks are in order. First, the proposed scheme

yields the exact DCCM when the number of antennas goes to

infinity, γ ≤ 1
2 , and the periodic extension of the transformed

APS in (13) is infinitely differentiable, i.e., of class C∞.

Second, the proposed scheme uses only 2M − 1 out of

the M2 elements of UCCM to compute the DCCM, and

third, the entries of the matrix Φ in (16) are samples of

the sinc-function, which depend solely on the ULA antenna-

spacing and the ratio of the DL to UL carrier frequencies.

Hence, Φ can be computed offline and stored for future use.

These observations guarantee that the proposed scheme not

only features superior performance under the aforementioned

conditions, but also exhibits a computational complexity that

is suitable for practical applications.

B. Proposed Scheme for URA

In this subsection, we propose a novel DCCM estimation

scheme for URA systems. Analogous to the scheme proposed

for ULA DCCM estimation, this estimation scheme exploits

the properties of the URA covariance matrices. These proper-

ties are recorded in the following lemma.

Lemma 2: Let R(i) ∈ C
NM×NM , i ∈ {ul, dl} be the

UCCM/DCCM of a URA composed of M antennas in each

column and N antennas in each row. The matrix R(i) is a

block-Hermitian and block-Toeplitz matrix, that is,

R(i) =















R
(i)
0 R

(i)
−1 · · · R

(i)
−(N−1)

R
(i)
1 R

(i)
0 · · · R

(i)
−(N−2)

...
... · · ·

...

R
(i)
N−1 R

(i)†

N−2 · · · R
(i)
0















, i ∈ {ul, dl},

(19)

with the following properties:

• The main diagonal blocks, i.e., R
(i)
0 ∈ C

M×M , are

positive semi-definite, Hermitian and Toeplitz with unity

diagonal elements.

• The off-diagonal blocks, i.e., R(i)
n ∈ C

M×M , n =
±1, . . . ,±(N − 1), are Toeplitz.

• The off-diagonal blocks satisfy R
(i)
−n = R(i)†

n , n =
1, . . . , N − 1.

Proof: See Appendix C.

The properties of the UCCM and the DCCM in Lemma 2

will be used to develop the proposed DCCM-estimation

scheme. Towards that end, in the following lemma, we will

develop a new characterizations of the UCCM and DCCM.

Lemma 3: Let R(i), i ∈ {dl, ul}, be the UCCM/DCCM of

the channel between a single-antenna user and a BS equipped

with a URA in the yz-plane consisting of N Ly-uniformly-

spaced antennas in each row and M Lz-uniformly-spaced

antennas in each column. Let ρ(θ, φ) be the two-dimensional

APS where θ and φ are the azimuth and elevation AoAs,

respectively, and define ρ′(u, v) as follows:

ρ′(u, v) =






ρ(χ(u,v),ψ(v))+ρ(π−χ(u,v),ψ(v))
√

(a21−u2)
(

(a1a2)2−(a2u)2−(a1v)2
)

, |u| < γy
γz

√

a22 − v2,

0 otherwise,

(20)
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where

χ(u, v) = 8π3γy arcsin
a2u

a1
√

a22 − v2
,

ψ(v) = 8π3γy arcsin
v

a2
, (21)

where a1 = 2πγy , a2 = 2πγz , γy =
Ly

λ(ul) , and γz = Lz

λ(ul) .

Moreover, let µ
(ul)
n,m(u, v) = nu + mv and µ

(dl)
n,m(u, v) =

αµ
(ul)
n,m(u, v), then the m1,m2-th element of the n1, n2-th

block of R(i), i.e., [R(i)](n1,n2),(m1,m2), is given by:

[R(i)](n1,n2),(m1,m2) =

1

(2π)2

∫ π

−π

∫ π

−π
ϑ(u, v)eµ

(i)
n1−n2,m1−m2

(u,v)
du dv

+ δ
(i)
n1−n2,m1−m2

, i ∈ {ul, dl}, (22)

where

ϑ(u, v) =
{

ρ′(u, v), |u| ≤ min(π, 2πγy), |v| ≤ min(π, 2πγz),

0 otherwise,

(23)

and

δ(i)n,m =
1

(2π)2

∫ 2πγz

−2πγz

∫ 2πγy

−2πγy

ρ′(u, v)eµ
(i)
n,m(u,v) du dv

− 1

(2π)2

∫ π

−π

∫ π

−π
ϑ(u, v)eµ

(i)
n,m(u,v) du dv. (24)

Proof: See Appendix D.

The structure of the UCCM and the DCCM in (19) implies

that these matrices are completely defined by their first block-

column. Furthermore, R
(i)
0 in this column is itself completely

defined by its first column since it is Hermitian and Toeplitz.

In contrast, since {R(i)
n }N−1

n=1 , are only Toeplitz (cf. Lemma 2),

they are completely defined by their first row and first column.

Hence, to construct R(i), we use (22) to obtain the elements

of the first row and the first column of each block of the first

block-column and the first block-row. (For R
(i)
0 , it suffices to

obtain the elements of the first column.) In particular,

r(i)n,m = [R(i)](n1,n2),(m1,m2)

∣

∣

∣ n=n1−n2
m=m1−m2

, (25)

n = 0,±1, . . . ,±(N − 1), m = 0,±1, . . . ,±(M − 1),

that is, the elements {r(i)n,m} are obtained from (22) by sub-

stituting n and m for n1 − n2 and m1 − m2, respectively.

Using this notation, r
(i)
n,m denotes the first-row elements of the

(n+1)-th block of the first block-column, n = 0, . . . , N − 1,

m= −(M−1), . . . , 0. Moreover, r
(i)
n,m denotes the first row of

the (1−n)-th block of the first block-row, n =−(N−1), . . . , 0,

m = −(M − 1), . . . , 0. In the following theorem, we will

provide a scheme to obtain {r(dl)n,m} from {r(ul)n,m}.

Theorem 2: For an N × M -antenna URA, let the matrix

R̂
(ul) ∈ C

2M−1×2N−1 contain the first row and the first col-

umn of each block the first block-column and the first block-

row of the UCCM, i.e., R̂
(ul)

=
[

r
(ul)
−(N−1) · · · r

(ul)
(N−1)

]

,

where r
(ul)
n =

[

r
(ul)
n,−(M−1) · · · r

(ul)
n,(M−1)

]T

. Moreover,

let the vector r
(dl)
n ∈ C

2M−1, n = 0, . . . , N − 1, con-

tain the first row and the first column of the (n + 1)-
th block of the first column-block of the DCCM, i.e.,

r
(dl)
n =

[

r
(ul)
n,−(M−1) · · · r

(dl)
n,0 · · · r

(dl)
n,(M−1)

]T

. A trans-

formation that maps R̂
(ul)

to r
(dl)
n is given by:

r(dl)n = ΨR̂
(ul)

φn + ε(dl)n , n = 0, . . . , N − 1, (26)

where the p, q-th element of Ψ ∈ C
(2M−1)×(2M−1) is

[Ψ]p,q = sinc (−α(M − p) + (M − q)), p, q = 1, . . . , 2M −
1, φn ∈ C

2N−1 is given by

φn =
[

sinc(αn+ (N − 1)) · · · sinc(αn)

· · · sinc
(

αn− (N − 1)
) ]T

. (27)

Moreover, ε
(dl)
n =

[

ε
(dl)
n,−(M−1) · · · ε

(dl)
n,(M−1)

]T

, n =

0,±1, . . . ,±(N − 1), m = 0,±1, . . . ,±(M − 1), where

|ε(dl)n,m| ≤ 4MN
(

1− 1

(2π)2

∫ π

−π

∫ π

−π
ϑ(u, v) du dv

)

+ o
(

(

min(N,M)
)−k)

, (28)

where γy =
Ly

λ(ul) , γz =
Lz

λ(ul) and k is the highest continuous

derivative of the the periodic extension of ϑ(·, ·), cf. Lemma 3.

Proof: See Appendix E

Analogous to Theorem 1, from this theorem it can be seen

that, for sufficiently small ‖ε(dl)n ‖, we can write

r(dl)n ≈ ΨR̂
(ul)

φn. (29)

In particular, whereas the first term of the DCCM estimate,

r
(dl)
n , in (26) depends only on the UCCM information, i.e.,

R̂
(ul)

, which is available at the BS, the second term, i.e., ε,

depends on the APS, ρ(·, ·), which is unknown at the BS. This

term accounts for the estimation error.

An upper bound on the error incurred by the approxi-

mation in (29) is provided in (28). The first term of this

bound arises only when either γy > 1
2 , γz > 1

2 , or

both. This term is directly proportional to NM , the num-

ber of URA antennas, and the leakage of the transformed

APS, ρ′(u, v), outside the square,
{

(u, v)|u ∈ (−π, π), v ∈
(−π, π)

}

, i.e., 1 − 1
(2π)2

∫ π

−π
∫ π

−π ϑ(u, v) du dv. Therefore,

when at least one of γy and γz is greater than 1
2 , the

approximation error corresponding to a given number of

antennas is smaller for more compact APSs, that is, APSs

for which 1
(2π)2

∫ π

−π
∫ π

−π ϑ(u, v) du dv is close to unity. Next,

we consider the second term of (28). This term arises for

all values of γy and γz , and depends on min(N,M), and

the differentiability class, k, of the periodic extension of the

transformed APS, ϑ(·, ·). This term, decreases by increasing

min(N,M) and k. In other words, when γy ≤ 1
2 and γz ≤ 1

2 ,

the estimation accuracy of the proposed scheme increases with

min(N,M) and the differentiability of the periodic extension

of the transformed APS.

Analogous to the case of the ULA (Section III-A), for the

URA, we have the following remarks. First, the proposed

scheme yields the exact DCCM when min(N,M) goes to

infinity, γy ≤ 1
2 , γz ≤ 1

2 , and the periodic extension
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of the transformed APS in (23) is infinitely differentiable,

i.e., of class C∞. Second, the proposed scheme uses only

(2N − 1)(2M − 1) out of the (NM)2 elements of UCCM to

compute the DCCM, and third, the entries of the matrix Ψ and

the entries of the vectors {φn} in (26) are samples of the sinc-

function, which depend solely on the URA antenna-spacing

and the ratio of the DL to UL carrier frequencies. Hence, Φ

and {φn} can be computed offline and stored for future use.

These observations, analogous to the ULA observations (cf.

Section III-A), guarantee that the proposed scheme not only

features superior performance under the aforementioned con-

ditions, but also exhibits a computational complexity that is

suitable for practical applications. An additional insight that

can be drawn from this analysis is that, for a URA with a

given number of antennas equal to NM , the best configuration

that minimizes the upper bound in (28) is the one in which

min(N,M) is maximized. For instance, if the number of

antennas is a complete square, it is optimal to place these

antennas on a square grid.

IV. SIMULATION

To evaluate the performance of the proposed schemes, we

consider a single-antenna user communicating with a BS

equipped with either a ULA or a URA. The UL and DL

channels between the user and the BS antenna array are

assumed to be frequency-flat with zero-mean unit-variance

Gaussian fading coefficients which are independent, and iden-

tically distributed (i.i.d) in time domain and correlated in the

spatial domain [13], [16].

We compare the performance of the proposed schemes with

that of the scheme presented in [13] and [16]. Since these

schemes were proposed for ULA systems, we have extended

them to URA systems to in order to compare the with the

proposed schemes.

A main motivation for DCCM estimation is for the BS

to perform beamforming along the principal eigenvector of

the estimated DCCM. Hence, to assess the accuracy of the

proposed algorithms, it is necessary to assess the deviation of

the principal eigenvector of the estimated DCCM from that

of the actual one. Towards that end, we define the deviation

metric L
R(dl)(v) for any unit norm vector v to be given by

L
R(dl)(v) = 1− v†R(dl)v

Γ
(dl)
max

,

where Γ
(dl)
max is the maximum eigenvalue of R(dl). This metric

satisfies the inequality 0 ≤ LRdl(v) ≤ 1. The zero lower

bound of this inequality is achieved if and only if v is the

principal eigenvector of the actual R(dl). Hence, in the numer-

ical results reported in this section, the metric L
R(dl)(v̂max) is

plotted versus α = fd
fu

, where v̂max is the principal eigenvector

of the estimated DCCM. As a baseline benchmark, we also

present simulation results for the case in which the UCCM

observed at the BS is directly used as the DCCM. Next, we

outline the main steps used in the simulations.

A. Simulation Steps

1) For M -antenna ULA systems, we generate a random

APS ρ(θ) satisfying
∫ π

2

−π
2
ρ(θ)dθ = 1. Analogously, for

N ×M -antenna URA systems, we generate a random

APS ρ(θ, φ) satisfying
∫ π

2

−π
2

∫ π

−π ρ(θ, φ)dθdφ = 1.

2) Substituting for ρ(θ) generated in step 1 in (4) yields

the M × M UCCM and DCCM of the M -antenna

ULA system. Analogously, substituting for ρ(θ, φ) in (6)

yields the NM×NM UCCM and DCCM of the N×M -

antenna URA system.

3) Using the UCCMs, R(ul), obtained in step 2, we gen-

erate K realizations of the UL channels using

h
(ul)
k = R(ul)

1
2
hk, k = 1, . . . ,K, (30)

where hk ∈ C
M for ULAs and hk ∈ C

NM for URAs is

a Gaussian random vector with zero mean and identity

covariance matrix. We set K = 104 throughout.

4) For the BS to estimate the respective UCCMs, the user

sends K unit pilots causing the signal received at the

BS to be represented by:

ĥ
(ul)

k = h
(ul)
k + nk, k = 1, . . . ,K, (31)

where nk ∈ C
M for ULAs and nk ∈ C

NM for URAs is

zero-mean Gaussian noise with covariance matrix σ2
nI ,

where I is the identity matrix. Using this notation, the

signal to noise ratio (SNR) can be expressed as β =
tr(R(ul))

σ2
n

. In all simulations, β is set to 35 dB.

5) Using (31), the UCCM observed at the BS can be

obtained by

R̂
(ul)

=
1

K

K
∑

k=1

ĥ
(ul)

k ĥ
(ul)†

k − σ2
nI. (32)

6) For the case of the ULA systems, the UCCM R(ul)

obtained in step 1 is Hermitian, positive semi-definite

and Toeplitz (cf. Section II-A). However, the UCCM

observed at the BS, R̂
(ul)

in (32), may not necessarily

possess these properties. To impose them, we project

R̂
(ul)

on the cone of Toeplitz, positive semi-definite

and Hermitian M × M matrices denoted by T M
+ .

Given R̂
(ul)

in (32), this projection can be described

as the following convex optimization [13], [16]:

R̃
(ul)

= argmin
T M
+

‖X − R̂
(ul)‖2. (33)

For the case of the URA systems, we consider a block-

Toeplitz structure for the UCCM R̂
(ul)

in (32) analogous

to the one in (19). In particular, considering the first

block-column, we denote the first block by R̂
(ul)

0 and

we denote the other blocks by R̂
(ul)

n , n = 1, . . . , N −1,

where each block {R̂(ul)

n }N−1
n=0 is an M×M matrix. The

UCCM obtained in step 1, for URA systems, is block-

Toeplitz where diagonal blocks are Hermitian, positive

semi-definite and Toeplitz while off-diagonal blocks are

only Toeplitz (cf. Lemma 2). As in the ULA case,

these properties may not hold for the UCCM in (32).

To impose this structure, for the diagonal blocks, we

use the projection in (33) wherein R̂
(ul)

is replaced
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by R̂
(ul)

0 and R̃
(ul)

is replaced by R̃
(ul)

0 . For the off-

diagonal blocks, we project each block on the cone of

M × M complex Toeplitz matrices denoted by T M .

This projection can be described by the following convex

optimization:

R̃
(ul)

n = argmin
T M

‖Xn − R̂
(ul)

n ‖2, n = 1, . . . , N − 1.

(34)

Using {R̃(ul)

n }N−1
n=0 , we construct R̃

(ul)
, cf. (19).

7) The ULA and URA UCCMs obtained in step 6 are used

in (18) and (29) to estimate the respective DCCMs.

B. ULA Simulation Results

In this section we compare the results obtained using the

scheme proposed herein for a BS equipped with an M -antenna

ULA with the schemes proposed in [23] and [16].

We note that, the scheme in [23] considers an angular range

limited to [−π
2 ,

π
2 ) whereas the scheme proposed herein and

the one proposed in [16] consider the angular range [−π, π).
For fair comparison, we will consider APSs that span the range

[−π
2 ,

π
2 ). Moreover, in implementing the scheme in [23], the

grid size used in APS estimation is set to 4M [23].

Example 1: In this example, we consider a ULA with 64
antennas and a deterministic weighted Gaussian APS given by

ρ(θ) =
w√
2πσθ

e
− (θ−mθ)2

2σ2
θ , (35)

where the mean, mθ, and the standard deviation, σθ, are uni-

formly drawn form [−π
3 ,

π
3 ] and [ π60 ,

π
20 ], respectively [16], and

w is chosen to ensure that
∫ π

2

−π
2
ρ(θ) dθ = 1. The performance

of the scheme proposed herein and that of the ones proposed

in [23] and [16] are depicted versus α = fd
fu

in Figures 3, 4

and 5, for γ = 0.3, γ = 0.5, and γ = 0.7, respectively. These

figures include the baseline where the observed UCCM at the

BS is used directly as the estimated DCCM.

Figure 3 shows that, for γ = 0.3, the scheme proposed

herein and the ones in [16] and [23] significantly outperform

the baseline. In particular, all three schemes experience close

performance for α ≤ 1.1. However, for α > 1.1, the proposed

scheme outperforms the other ones. For instance, at α = 1.2,

the proposed scheme exhibits a deviation metric of 6.5×10−4,

whereas the schemes proposed in [16] and [23] exhibit devi-

ation metrics of 1.2× 10−3 and 5× 10−3, respectively.

Similar to Figure 3, Figure 4 shows that, for γ = 0.5,

all three schemes outperform the baseline. In particular, the

scheme proposed herein and the one proposed in [16] provide

almost the same performance for all values of α and both out-

perform the scheme proposed in [23], specially for α > 1.06.

For instance, at α = 1.2, our scheme and the one in [16]

exhibit a deviation metric of 1.5× 10−3 whereas the scheme

in [23] exhibits a deviation metric of 5.5 × 10−3. A similar

phenomenon is observed for the scheme proposed in [16].

Finally, for γ = 0.7, Figure 5 shows that the scheme

proposed herein significantly outperforms the ones proposed

in [23] and [16] for all values of α. In fact, for any γ > 0.5,

the scheme proposed in [23] is unable to recover the APS

samples due to aliasing [23]. �
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Fig. 3: Performance of the proposed scheme, [23], and [16]

for a 64-antenna ULA when γ = 0.3.
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Fig. 4: Performance of the proposed scheme, [23], and [16]

for a 64-antenna ULA when γ = 0.5.
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Fig. 5: Performance of the proposed scheme, [23], and [16]

for a 64-antenna ULA when γ = 0.7.
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C. URA Simulation Results

In this section, we present the results obtained for a BS

equipped with an N×M -antenna URA URA. For comparison

purposes, we extended the scheme proposed in [23] for ULAs

to the URAs considered herein.

Example 2: In this example, we consider a URA with 64×64
antennas and a deterministic two-dimensional truncated nor-

malized Gaussian-shaped APSs that is, ρ(θ, φ) = ρ1(θ)ρ2(φ),
where ρi(·) = ρ(·) are given in (35), i = 1, 2, with distinct

means, variances and normalization factors. This choice of

the APSs ensures that
∫ π

−π
∫ π

2

−π
2
ρ(θ, φ) dθ dφ = 1. The means

and variances, mθ and σθ, are uniformly drawn from [−π
6 ,

π
6 ]

and [ π45 ,
π
20 ], respectively, while the means and variances, mφ

and σφ, are uniformly drawn from [−π
4 ,

π
4 ] and [ π180 ,

π
20 ],

respectively [20].

The performance of the scheme proposed herein and that of

the extended version of the one proposed in [23] are depicted

versus α in Figures 6, 7 and 8, for γy = γz = 0.3, γy = γz =
0.5, and γy = γz = 0.7, respectively. Similar to Example 1,

these figures include the baseline as a benchmark.

Figures 6 and 7 show that, for γy = γz = 0.3 and

γy = γz = 0.5, the scheme proposed herein and the extended

version of the one proposed in [23] significantly outperform

the baseline. Moreover, the proposed scheme outperforms the

extended version of the scheme proposed in [23] specially

for α > 1.1. For instance, at α = 1.2 and γy = γz = 0.5,

the proposed scheme exhibits a deviation metric of 2× 10−3,

whereas the extended version of the scheme proposed in [23]

exhibits a deviation metric of 1 × 10−2. These observations

mirror the ULA case in Example 1.

Figure 8 shows that, for γy = γz = 0.7, the scheme

proposed herein significantly outperforms the extended version

of the one proposed in [23] for all values of α. For instance, it

can be seen that the baseline scheme performs slightly better

than the extended version of the scheme proposed in [23].

This is due to the fact that the extended version of the scheme

proposed in [23] cannot recover the APS samples due to

aliasing when either γy , γz or both are greater than 0.5. This

is in line with the observations for the case of ULA seen in

Example 1. Moreover, it can be seen from Figures 6, 7 and 8

that our scheme exhibits low sensitivity to the changes in α

in contrast with the extended version of [23], which is highly

sensitive to these changes. �

V. CONCLUSION

This paper proposed DCCM estimation schemes for FDD

mMIMO systems in which the BS is equipped with either a

ULA or a URA. The proposed DCCM estimation schemes

have three attractive features: first, they can be represented

as affine transformations of the UCCM that depend only on

the array geometry and carrier frequencies; hence, they can be

computed offline. Second, they use few elements of the UCCM

observed at the BS; hence, they have low computational

complexity. Third, they exhibit low sensitivity to changes in

UL/DL carrier separation compared to other schemes proposed

in the literature. Upper bounds on the estimation error of

the proposed schemes were derived. These bounds showed
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Fig. 6: Performance of the proposed scheme and [23] for a

64× 64-antenna URA when γy = γz = 0.3.
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Fig. 7: Performance of the proposed scheme and [23] for 64×
64-antenna when γy = γz = 0.5.
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Fig. 8: Performance of the proposed scheme and [23] for 64×
64-antenna when γy = γz = 0.7.
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that, first, the accuracy of the proposed schemes increases

with the number of ULA/URA antennas, the compactness and

differentiability class of the periodic extension of the trans-

formed APS. In particular, for an infinite number of antennas,

under certain condition of compactness and differentiability,

the estimated DCCMs will be equal to the true DCCMs.

Numerical simulations confirm the performance superiority of

the proposed schemes over their existing counterparts.

APPENDIX A

PROOF OF LEMMA 1

Setting i = ul in (5), we can write

[R(ul)]p,q =

∫ π

−π
ρ(θ)e2π(p−q)γ sin(θ)dθ (36)

=

∫ π
2

−π
2

ρ1(θ)e
2π(p−q)γ sin(θ)dθ, ρ1(θ) = ρ(θ) + ρ(π − θ)

(37)

=

∫ 1

−1

ρ2(t)e
2π(p−q)γtdt, ρ2(t) =

ρ1(arcsin(t))√
1− t2

, t = sin(θ)

=
1

2π

∫ 2πγ

−2πγ

ρ′(u)e(p−q)udu, ρ′(u) =
ρ2
(

u
2πγ

)

γ
, u = 2πγt

(38)

Equation (37) results from the fact that both ρ(θ) and

exp((p − q)γ sin(θ)) in (36) are periodic with period of 2π.

In particular, changing the limits of integration to −π
2 and

3π
2 and, writing the integral as

∫ π
2

−π
2
ρ(θ)e2π(p−q)

d
λu

sin(θ)dθ+
∫ 3π

2
π
2
ρ(θ)e2π(p−q)

d
λu

sin(θ)dθ, and finally, using the following

change of variables in the second integral: θ1 = π − θ

yields (37). Analogously, following similar steps yields that

the pq-th DDCM element is given by

[R(dl)]p,q =
1

2π

∫ 2πγ

−2πγ

ρ′(u)e(p−q)αudu. (39)

Using (38) and (39), we can write

[R(i)]p,q =
1

2π

∫ 2πγ

−2πγ

ρ′(u)eµ
(i)
p,q(u)du, i ∈ {ul, dl},

ρ′(u) =
ρ(arcsin u

2πγ ) + ρ(π − arcsin u
2πγ )

√

γ2 − ( u2π )
2

, (40)

where

µ(i)
p,q(u) =

{

(p− q)u i = ul,

(p− q)αu i = dl.

Using ϑ(u) defined in (13), we can rewrite (40) as (12), which

completes the proof.

APPENDIX B

PROOF OF THEOREM 1

We consider a periodic extension of the transformed APS,

ϑ(·), which we refer to as ϑ′(·). In particular, for any u ∈
(−π, π), we assume that

ϑ′(u) = ϑ′(u+ 2nπ) = ϑ(u), n = ±1,±2, . . . . (41)

The Fourier series expansion of ϑ′(·) is given by

ϑ′(u) =
∞
∑

m=−∞
cme

−mu, (42)

where the coefficients {cm} are given by

cm =
1

2π

∫

2π

ϑ′(u)emudu. (43)

Comparing the Fourier series coefficients cm in (43) with

r
(i)
m , i = ul in (15) and invoking the definition of ϑ′(·) in (41),

it can be readily shown that

r(ul)m = cm + δ(ul)m , m = 0,±1, . . . ,±(M − 1). (44)

Substituting for {cm}M−1
m=−(M−1) from (44) in (42), we have

ϑ′(u) =
M−1
∑

m=−M+1

cme
−mu +

∑

|m|≥M
cme

−mu

=

M−1
∑

m=−M+1

r(ul)m e−mu −
M−1
∑

m=−M+1

δ(ul)m e−mu

+
∑

|m|≥M
cme

−mu. (45)

Using (41), we can substitute for ϑ(u) from (45) in (15) with

i = dl, which yields

r(dl)m =
1

2π

∫ π

−π

( M−1
∑

k=−M+1

r
(ul)
k e−ku

)

eαmu du

− 1

2π

∫ π

−π

( M−1
∑

k=−M+1

δ
(ul)
k e−ku

)

eαmu du

+
1

2π

∫ π

−π

(

∑

|k|≥M
cke

−ku
)

eαmu du+ δ(dl)m (46)

=

M−1
∑

k=−M+1

r
(ul)
k sinc(αm− k) + ε(dl)m , (47)

where

ε(dl)m = −
M−1
∑

k=−M+1

δ
(ul)
k sinc(αm− k)

+
∑

|k|≥M
ck sinc(αm− k) + δ(dl)m . (48)

To obtain (47) and (48), we switched the order of summation

and integral and used 1
2π

∫ π

−π e
jku du = sinc(k) in the first

three terms on the RHS of (46). We can rewrite (47) in the

following matrix format

r(dl) = Φr̂
(ul) + ε(dl), (49)

where r(dl), Φ and r̂
(ul)

are given in Theorem 1 and

ε(dl) =
[

ε
(dl)
0 · · · ε

(dl)
M−1

]T

. An upper bound on |ε(dl)m |,
m = 0, · · · , (M − 1), is provided in the following lemma.

This lemma along with (49) completes the proof.

Lemma 4: |ε(dl)m | is upper bounded by

|ε(dl)m | ≤ 2M
(

1− 1

2π

∫ π

−π
ϑ(u)du

)

+ o(M−r). (50)
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Proof: Using the fact that | sinc(·)| ≤ 1 in (48) yields:

|ε(dl)m | ≤
(M−1)
∑

k=−(M−1)

|δ(ul)k |+
∑

|k|≥M
|ck|+ |δ(dl)m |. (51)

First, we consider the first and third terms on the RHS of (51).

Using (14), it can be shown that

δ(i)m =
1

2π

∫ 2πγ

−2πγ

ρ′(u)eµ
(i)
m du

− 1

2π

∫ min(π,2πγ)

−min(π,2πγ)

ρ′(u)eµ
(i)
m du

=
1

2π

∫

A1\A2

ρ′(u)eµ
(i)
m du, (52)

where A1 =
{

u
∣

∣|u| ≤ 2πγ
}

and A2 =
{

u
∣

∣|u| ≤
min(π, 2πγ)

}

. Using (52) along with the definition of ϑ(·)
in (13), we can write

|δ(i)m | ≤ 1

2π

∫ 2πγ

−2πγ

ρ′(u) du− 1

2π

∫ min(π,2πγ)

−min(π,2πγ)

ρ′(u) du

= 1− 1

2π

∫ π

−π
ϑ(u) du. (53)

To obtain (53), we used the fact that the APS ρ(θ) is a real,

positive function satisfying
∫ π

−π ρ(θ) dθ = 1 and hence, ρ′(u)

in (40) is also real, positive satisfying 1
2π

∫ 2πγ

−2πγ
ρ′(θ)dθ = 1.

So far, we have obtained an upper bound on the first and

third terms on the RHS of (51). Now, we consider the second

term on the RHS of (51). To obtain an upper bound on that

term, we use the fact that, for a Cr-periodic function f(x),
i.e., f(x) has r continuous derivatives, the m-th Fourier series

coefficient decays faster than 1
mr , that is, |cm| = o( 1

mr ).
Assuming that ϑ′(u) belongs to Cr, we can write

∑

|k|≥M
|ck| =

∑

|k|≥M
o(k−r)

= o(M−r), (54)

To obtain (54), we used the fact that if |cK+i| = o
(

(k+ i)−r
)

then we have |cK+i| = o
(

k−r
)

. Using (53) and (54) in (51)

yields the bound in (50), and completes the proof of Lemma 4.

APPENDIX C

PROOF OF LEMMA 2

To prove this lemma, we begin by considering the matrix

A(i) = a(i)(θ, φ)a(i)†(θ, φ) ∈ C
NM×NM , R(i). Using (7), it

can be readily verified that A(i) has the following structure1:

A(i) =









a
(i)
1 a

(i)†

1 · · · a
(i)
1 a

(i)†

N
...

. . .
...

a
(i)
N a

(N)†

1 · · · a
(i)
N a

(i)†

N









, i ∈ {ul, dl}. (55)

1For notational convenience, the dependence on the (θ, φ) has been dropped
in this appendix.

Using (8) and (9), each block a
(i)
n1a

(i)†

n2 ∈ C
M×M , n1, n2 =

1, . . . , N , can be expressed by

a(i)
n1
a(i)†

n2
= ν







1 e−g(φ) . . . e−(M−1)g(φ)

...
...

. . .
...

e(M−1)g(φ) e(M−2)g(φ) . . . 1






,

(56)

where ν = e
 2π

λ(i)
(n1−n2)Ly sin(θ) cos(φ)

and g(φ) =
2π
λ(i)Lz sin(φ). Using (56), it can be seen that:

• a
(i)
n1a

(i)†

n1 = a
(i)
n2a

(i)†

n2 , ∀n1, ∀n2, that is, the main-diagonal

blocks of A(i) are equal;

• a
(i)
n1a

(i)†

n2 = a
(i)
n1+1a

(i)†

n2+1, n1, n2 = 1, . . . , N − 1, i.e.,

non-principal diagonal blocks are equal;

• each diagonal block a
(i)
n1a

(i)†

n1 , ∀n1, is positive semi-

definite, Hermitian and Toeplitz with diagonal elements

equal to 1; and,

• off-diagonal blocks a
(i)
n1a

(i)†

n2 , n1 6= n2, are only Toeplitz.

Combining these properties yields that the matrix A(i),

i ∈ {ul, dl}, is block-Hermitian (subsequently Hermitian) and

block-Toeplitz. Using the fact that ρ(θ, φ) is real and positive

for all θ and φ, it follows that the matrix R(i) defined in (6)

possesses the same properties as A(i), i ∈ {ul, dl}.

APPENDIX D

PROOF OF LEMMA 3

Using (10) with i = ul, γy =
Ly

λ(ul) , and γz = Lz

λ(ul) , it can

be shown that the m1m2-th element of the n1n2-th block of

R(ul), i.e., [R(ul)](n1,n2),(m1,m2), is given by:

[R(ul)](n1,n2),(m1,m2)

=

∫ π
2

−π
2

∫ π

−π
ρ(θ, φ)e

 2π

λ(ul)
Dn1n2m1m2

(θ,φ)
dθ dφ

=

∫ π
2

−π
2

∫ π
2

−π
2

ρ1(θ, φ)e
 2π

λ(ul)
Dn1n2m1m2

(θ,φ)
dθ dφ (57)

=

∫ 1

−1

∫

√
1−z2

−
√
1−z2
ρ2(y, z)e

 2π

λ(ul)

(

(n1−n2)Lyy+(m1−m2)Lzz
)

dy dz

(58)

=

∫ 1

−1

∫ 1

−1

ρ3(y, z)e
2π

(

γy(n1−n2)y+γz(m1−m2)z
)

dy dz

(59)

=
1

(2π)2

∫ 2πγz

−2πγz

∫ 2πγy

−2πγy

ρ′(u, v)e
(

(n1−n2)u+(m1−m2)v
)

du dv,

(60)

where Dn1n2m1m2
(θ, φ) is given in (10) and

ρ1(θ, φ) = ρ(θ, φ) + ρ(π − θ, φ),

ρ2(y, z) =
ρ1(arcsin

y√
1−z2 , arcsin z)

√

(1− y2)(1− y2 − z2)
,

y = sin(θ) cos(φ), z = sin(φ),

ρ3(y, z) =

{

ρ2(y, z), |y| <
√
1− z2,

0, otherwise,
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ρ′(u, v) =
1

γyγz
ρ3
( u

2πγy
,

v

2πγz

)

, u = 2πγyy, v = 2πγzz.

(61)

Following steps analogous to those used to obtain (37)

yields (57). To obtain (58), we used the change of variables:

z = sin(φ) and y = sin(θ) cos(φ) To obtain (59), we used

ρ3(y, z) from (61). Finally, to obtain (60), we used the change

of variables u = 2πγyy and v = 2πγzz. For the DL case,

using (10) and following steps analogous to those used above

for the UL yields:

[R(dl)](n1,n2),(m1,m2) =

1

(2π)2

∫ 2πγz

−2πγz

∫ 2πγy

−2πγy

ρ′(u, v)eα
(

(n1−n2)u+(m1−m2)v
)

dudv.

(62)

Combining (60) and (62), and defining ϑ(θ, φ) as in (23) yield

the statement of the lemma.

APPENDIX E

PROOF OF THEOREM 2

Analogous to the ULA, we consider a two-dimensional

periodic extension of the transformed APS, ϑ(·, ·), which we

refer to as ϑ′(·, ·). In particular, for any u, v ∈ (−π, π),

ϑ′(u, v) = ϑ′(u+ 2nπ, v + 2mπ) = ϑ(u, v),

n,m = ±1,±2, . . . . (63)

The Fourier series expansion of ϑ′(u, v) is given by

ϑ′(u, v) =
∞
∑

n=−∞

∞
∑

m=−∞
cn,me

−(nu+mv), (64)

where the coefficients {cn,m} are given by [29]

cn,m =
1

(2π)2

∫ π

−π

∫ π

−π
ϑ′(u, v)e(nu+mv) du dv. (65)

Comparing the Fourier series coefficients cn,m in (65) with

r
(i)
n,m, i = ul in (25) and invoking the definition of ϑ′(·, ·)

in (63), it can be readily shown that

r(ul)n,m = cn,m + δ(ul)n,m, n = 0,±1, . . . ,±(N − 1),

m = 0,±1, . . . ,±(M − 1). (66)

Letting Sk1,k2 =
{

(n,m)|n = 0,±1, . . . ,±k1, m =
0,±1, . . . ,±k2

}

and substituting for {cn,m}, from (66)

in (64), we have

ϑ′(u, v) =
∑

(n,m)∈SN−1,M−1

(r(ul)n,m − δ(ul)n,m)e−(nu+mv)

+
∑

(n,m)∈S̄N,M

cn,me
−(nu+mv), (67)

where S̄N,M=S∞,∞\SN−1,M−1. Using (63), we can substitute

for ϑ(u, v) from (67) in (25) with i = dl, which yields

r(dl)n,m =
1

(2π)2

∫ π

−π

∫ π

−π

(

∑

(n′,m′)∈SN−1,M−1

(

r
(ul)
n′,m′ − δ

(ul)
n′,m′

)

× e−(n
′u+m′v)

)

eα(nu+mv) du dv

+
1

(2π)2

∫ π

−π

∫ π

−π

(

∑

(n′,m′)∈S̄N,M

cn′,m′

× e−(n
′u+m′v)

)

eα(nu+mv) du dv + δ(dl)n,m (68)

=
∑

(n′,m′)∈SN−1,M−1

r
(ul)
n′,m′ sinc(αn− n′) sinc(αm−m′)

+ ε(dl)n,m, (69)

where

ε(dl)n,m =
∑

(n′,m′)∈S̄N,M

cn′,m′ sinc(αn− n′) sinc(αm−m′)

−
∑

(n′,m′)∈SN−1,M−1

δ
(ul)
n′,m′ sinc(αn− n′) sinc(αm−m′)

+ δ(dl)n,m, (70)

We can rewrite (69) in the following matrix format

r(dl)n = ΨR̂
(ul)

φn + ε(dl)n , n = 0, . . . , N − 1, (71)

where r
(dl)
n , Ψ, R̂

(ul)
, and φn are given in Theorem 2 and

ε
(dl)
n =

[

ε
(dl)
n,−(M−1) . . . ε

(dl)
n,(M−1)

]T

. An upper bound on

{|ε(dl)n,m|} is provided in the following lemma. This lemma

along with (71) completes the proof.

Lemma 5: |ε(dl)n,m| is upper bounded by

|ε(dl)n,m| ≤ 4MN
(

1− 1

(2π)2

∫ π

−π

∫ π

−π
ϑ(u, v) du dv

)

+ o
(

(

min(N,M)
)−k)

. (72)

Proof: Using the fact that | sinc(·)| ≤ 1 in (70) yields

|ε(dl)n,m| ≤
∑

(n′,m′)∈SN−1,M−1

|δ(ul)n′,m′ |+
∑

(n′,m′)∈S̄N,M

|cn′,m′ |

+ |δ(dl)n,m|. (73)

First, we consider the first and third terms on the RHS

of (73). Using (23) and (24), it can be shown that

δ
(i)
n,m = 1

(2π)2

∫∫

A1\A2
ρ′(u, v)eµn,m(u,v) du dv, where A1 =

{

(u, v)
∣

∣|u| ≤ 2πγy, |v| ≤ 2πγz
}

and A2 =
{

(u, v)
∣

∣|u| ≤
min(π, 2πγy), |v| ≤ min(π, 2πγz)

}

. Using this along with

the definition of ϑ(·, ·) in (23), we can write

|δ(i)n,m| ≤ 1

(2π)2

∫∫

A1\A2

|ρ′(u, v)| du dv

=
1

(2π)2

∫∫

A1

ρ′(u, v) du dv

− 1

(2π)2

∫∫

A2

ρ′(u, v) du dv

= 1− 1

(2π)2

∫ π

−π

∫ π

−π
ϑ(u, v) du dv. (74)

To obtain (74), we used the fact that the APS, ρ(·, ·), is a

real, positive function satisfying
∫ π

−π
∫ π

2

−π
2
ρ(θ, φ) dθ dφ = 1

and hence, ρ′(·, ·) in (20) is also real, positive satisfying

1

(2π)2

∫ 2πγy

−2πγy

∫ 2πγz

−2πγz

ρ′(u, v) du dv = 1.
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So far, we have obtained an upper bound on the first and

third terms of (73). Now, we consider the second term on the

RHS of (73). To obtain an upper bound on that term, we use

the fact that, for a Ck-2-dimensional-periodic function f(x, y),

i.e., f(x, y) has k continuous partial derivatives
∂kϑ(u,v)
∂uk1∂vk2

such

that k1 + k2 = k, the Fourier series coefficients {cn,m} decay

faster than 1
nk1mk2

, that is, |cn,m| = o( 1
nk1mk2

), k1 + k2 = k.

Assuming that ϑ′(u, v) belongs to Ck, we can write
∑

(n′,m′)∈S̄N,M

|cn′,m′ | =
∑

|n′|≥N

∑

|m′|≥M
|cn′,m′ |

+
∑

|n′|≥N

∑

|m′|<M
|cn′,m′ |+

∑

|n′|<N

∑

|m′|≥M
|cn′,m′ |

= o(
1

Nk1Mk2
) + o(

1

Nk
) + o(

1

Mk
)

= o
(

(

min(N,M)
)−k)

. (75)

Using (74) and (75) in (73) yields

|ε(dl)n,m| ≤ 2(2MN −M −N + 1)

×
(

1− 1

(2π)2

∫ π

−π

∫ π

−π
ϑ(u, v) du dv

)

+ o
(

(

min(N,M)
)−k)

,

≤ 4MN
(

1− 1

(2π)2

∫ π

−π

∫ π

−π
ϑ(u, v) du dv

)

+ o
(

(

min(N,M)
)−k)

. (76)
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