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Abstract

This thesis focuses on denoising of positron emission tomography (PET) data.

Cardiac PET scans generated using a rubidium-82 radiotracer are a convenient, non–

invasive method of diagnosing heart disease, but suffer from a high degree of noise.

Denoising methods based on the wavelet transform are capable of outperforming

existing clinical methods due to their ability to better preserve detail while simul-

taneously suppressing noise at multiple scales. We investigate the applicability of

recently developed wavelet denoising methods to cardiac PET data. A comprehen-

sive set of experiments is performed, in which combinations of these techniques are

applied to the different decomposition levels of wavelet coefficients. By doing so, we

determine the relevant importance of each (and the domain in which it is applied)

to the overall quality of the denoised result. With this information, we propose PET

denoising protocols that substantially improve image quality (for static studies) and

lead to better measures of myocardial perfusion (for dynamic studies).
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Chapter 1

Introduction

1.1 Motivation

Positron emission tomography (PET) is a nuclear medicine imaging modality that

is used to observe and measure physiological processes as they occur in the human

body (in vivo). This is accomplished by injecting a positron emitting radiotracer

into a patient, which is selectively taken up in the organ(s) of interest. As the tracer

decays, the resulting radioactivity is measured by the detectors of a PET scanner.

These data are then used to reconstruct either static or time-varying images that

attempt to measure, as closely as possible, the tracer distribution present in the body.

The resulting set of images, and the quantitative information that can be extracted

from them, provides a physician with a representation of underlying pathology. This

is impossible with other modalities that provide anatomical information only, for

instance computed tomography (CT) and conventional magnetic resonance imaging

(MRI). PET is employed in a diverse variety of clinical applications, among these the

diagnosis of psychiatric disorders (such as Alzheimer’s disease) and the measurement

of the extent of cancerous tissue [1].

In this thesis, we are interested in an application currently being used at the Na-

1



CHAPTER 1. INTRODUCTION 2

tional Cardiac PET Center, University of Ottawa Heart Institute (OHI) - the mea-

surement of blood flow to heart muscle tissue (termed myocardial perfusion). Cardiac

PET scans provide useful measures of the location and extent of damaged heart tis-

sue, which can be caused by coronary artery disease (CAD). This information is used

by a cardiologist to prescribe an appropriate course of treatment for patients with

CAD. For example, in order to decide whether or not bypass surgery is potentially

helpful, the viability of the myocardium must be established. If the tissue is damaged

beyond repair (a diagnosis possible with a PET study), there is no point in pursuing

an expensive surgical procedure[2].

myocardium region

Figure 1.1: A enlarged view of a short-axis oriented image of the heart muscle generated
with a 82Rb PET scan. There is a large amount of noise obscuring the true
“ring-shaped” myocardium region (outlined with black lines).

Rubidium-82 (82Rb) is a suitable radiotracer choice for perfusion studies. It is

generator produced and thus does not require an on–site cyclotron for its production.
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82Rb is analogous to potassium in its affinity for muscle tissue and it does not affect

normal metabolism, so it is well incorporated into the cardiac uptake process. Its short

physical half-life (76s) allows repeated studies within a short time period, allowing

flexibility when designing clinical studies. Unfortunately, 82Rb PET scans produce

data highly contaminated by noise, as is evident in Figure 1.1. As a result, dynamic

curves of radiotracer activity that are derived from these data are error-prone and

the resulting perfusion estimates are usually biased[3, 4].

It is desirable to perform image processing techniques in order to suppress the noise

in these images. Such noise-reduced images would provide more accurate indications

of cardiac function and lessen the chance of misdiagnoses and inappropriate treatment

due to poor image quality. Conventional approaches to noise reduction in cardiac PET

(which are still used in practice) include spatial convolution in the image domain with

a Gaussian kernel [5]. This is essentially a low pass filtering operation that, though

satisfactory in certain cases, tends to oversmooth small-scale image features for a

given desired resolution. This is especially detrimental when precise quantitative

information is extracted.

1.2 Thesis Objectives

The goal of this thesis is to develop noise reduction (or denoising) methods that

improve the quality of cardiac 82Rb PET scans, and illustrate their effectiveness and

robustness when used to measure myocardial perfusion.

The denoising methods we propose are based on a wavelet representation. Noise

reduction using the wavelet transform has the potential to outperform existing meth-

ods for medical images, as it exploits the wavelet’s natural ability to separate signal

from noise at multiple image scales. Cardiac PET images are characterized by slowly

changing uniform uptake regions (e.g. in the healthy myocardium) that might be “in-
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terrupted” by smaller scale discontinuities (e.g. due to a cardiac defect). A wavelet

decomposition of a signal is based on a collection of compactly supported oscillatory

basis functions that are related to each other through scalings and translations. The

inclusion of localized fine–scale functions in the basis allows one to better reconstruct

diagnostically significant details at multiple scales. Compared to conventional denois-

ing techniques, this provides an inherent advantage when dealing with non-stationary

signals (like cardiac PET images) and can thereby extend the current state of the art

in cardiac PET denoising.

It is anticipated that applying wavelet-based denoising methods to cardiac PET

data will lead to higher quality images and more accurate measures of myocardial

perfusion. Evaluating the success of noise reduction in a clinical setting is not trivial,

given the lack of a priori knowledge of the “true” radiotracer distribution hidden in

the body. In this thesis, the denoising performance is assessed in the following ways:

1. the use of phantom data modeling the anatomical regions under study,

2. the use of performance parameters extracted from the tracer kinetic model, and

3. a subjective visual assessment by qualified PET personnel.

1.3 Thesis Contributions

The following summarizes the contributions that have been made as a result of

this thesis:

• two state of the art methods in wavelet denoising have been adopted for multi-

dimensional 82Rb cardiac PET scans – spatially adaptive thresholding and cross

scale regularization. We investigate the relative effect that these methods have

on the denoised result when applied in combination across multiple scales. In

addition, we perform denoising in multiple domains, and evaluate the extent to

which noise reduction in each domain is important.
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• a set of novel denoising protocols are proposed that increase the quality of static

PET scans and lead to better measures of myocardial perfusion. These are a

hybrid of the two aforementioned methods, performing cross scale regularization

at the finest scales, in combination with spatially adaptive thresholding.

• a comparison between denoising PET images with the clinical protocol and the

proposed methods is performed.

• a graphical user interface is developed in Matlab to facilitate the evaluation of

denoising results, and to provide a framework for further study of wavelet-based

denoising on cardiac PET data.

1.4 Thesis Outline

In Chapter 2, we present background information on PET. The basic physical

process of positron emission and photon generation is introduced, followed by a de-

scription of the PET scanner’s detection mechanism. We discuss image reconstruc-

tion, which converts the raw measurements in the projection domain to a time series

of three-dimensional images. Since our focus in this work is on noise reduction, we

conclude the chapter with a section on the main sources of noise in PET.

Chapter 3 describes the PET application of interest in this thesis. We discuss

basic cardiac anatomy, cardiac function and the relevant spatial and spatiotemporal

representations of the heart. This is followed by a description of both static and

dynamic PET studies, concluding with a brief overview of the physiological model

used with 82Rb to extract flow measures.

In Chapter 4, we switch our attention to the field of image denoising. We first

present classical noise reduction techniques and discuss their limitations. We then

motivate how these shortcomings can be overcome with a wavelet-based representa-

tion. A review of the wavelet denoising literature is presented, including the methods
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most promising for cardiac PET data. The chapter is concluded by a discussion of

the discrete dyadic wavelet transform (DDWT) - both the motivation for using it and

the necessary mathematical background.

Chapter 5 presents the application of wavelet-based denoising methods to cardiac

PET data. After describing the input data and examining its relevant noise properties,

we provide details on an efficient filter bank implementation of the DDWT. Following

this, we give a full description of the denoising protocols and establish the various

figures of merit that are used to measure denoising performance. The results are

presented, after which we summarize the conclusions that we arrive at as a result of

this study.

Lastly, Chapter 6 summarizes the thesis and discusses future work directions that

would further the value of our research.



Chapter 2

Background — PET

In this chapter, we present a brief overview of the PET image formation process.

The process of positron emission is introduced in Section 2.1, followed by a descrip-

tion of the PET scanner and sinogram arrays that detect and record these emissions

in Sections 2.2 and 2.3 respectively. Section 2.4 describes the most clinically popu-

lar methods of reconstructing images from these projections – filtered backprojection

(FBP) and ordered subset expectation-maximization (OSEM). We conclude this chap-

ter with a discussion of the major noise sources in PET and how this noise degrades

the images in Section 2.5.

2.1 Physics of Positron Emission

For the reasons outlined in the previous chapter, 82Rb is a suitable radiotracer for

cardiac PET studies. It starts to appear in the myocardium within minutes after it

has been administered. Being an unstable isotope, the nucleus decays according to

the following process:

82Rb −→82 Kr + β+ + ν (2.1)

7
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This results in the appearance of a fast-moving positron (β+, an anti-matter electron)

in the myocardium, as well as a neutrino ν. After traveling a short distance (a random

quantity called the positron range, approximately 3 mm for 82Rb in heart tissue), the

positron combines with a neighbouring electron. The collision between the positron

and electron (β−), antiparticles of one another, causes an annihilation, which results

in the conversion of their mass to energy:

β+ + β− −→ 2γ (2.2)

What remains is a pair of gamma-ray photons (γ) (each of energy 511 keV) that

travel away from the annihilation site at almost exactly 180 degrees apart. It is

these photons that escape the body and can be subsequently detected by the PET

scanner [1]. The positron emission and annihilation process is shown in Figure 2.1.

Annihilation

site

Photon

PathNucleus

Detector Ring

Electrons

Photon

Path

Positron

Figure 2.1: Positron emission from 82Rb nucleus followed by positron /
electron annihilation event generating gamma-ray photons,
after positron travels a distance equal to the positron range.
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2.2 Description of PET Scanner and Counts

The ECAT ART PET scanner (CTI Systems, Knoxville, TN) [6] is used at OHI and

is shown in Figure 2.2, along with the co-ordinate system axes used in subsequent

discussion. The scanner consists of a gantry on which a patient, who has had an

injected radiotracer dose, lies prone during the duration of the PET scan. This

gantry can slide along the z direction, so that the appropriate part of the body

can be positioned in the detector aperture, which consists of 24 concentric rings of

detector arrays surrounding the patient. Each ring (in the x − y plane) consists of a

series of small individual detectors oriented around the circumference of the scanner

aperture. When an annihilation occurs, the resulting photons leave the patient’s

body in opposite directions. Under certain conditions (see below), they can be used

to locate a positron emission location - these events are termed true counts. The line

connecting the two detectors that counted the photons is called the line of response

(LOR). To distinguish these from other types of counts, the arrival times of the

photons at each detector are recorded and compared to see if they lie within the same

time window1. If so, such photons are said to be in coincidence and are assumed to

originate from the same annihilation [5].

True counts are recorded when the photons do not get scattered by tissue encoun-

tered on its exit path from the body. When scattering occurs, one or both photons are

“knocked off” their original (almost) straight line trajectory. They can still arrive at

different detectors within the coincidence time window, but the detector has no way

of knowing that one or both of the photons have arrived along a scattered path. In

this case, the straight line between detectors will not correspond to the line on which

the actual annihilation occurred, so the resulting count (called a scattered count) is

mispositioned. Another source of error occurs with random counts, whereby photons

1This window duration is typically on the order of several nanoseconds (10−9 s), since the photons
travel at the speed of light, 3 × 108 m/s, and the distance traveled is typically 10 − 20 cm.
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x

y

z

gantry

aperture with 

detector rings

individual

detector

elements

Figure 2.2: ECAT ART PET scanner, with relevant components iden-
tified. The coordinate system axes used in this thesis is
included.

not due to the same annihilation fall within the coincidence timing window. This also

results in an incorrectly computed LOR. As expected, the effect of random counts is

more pronounced during scans of very high activity [1]. Figure 2.3 illustrates these

three types of counts.

It is also important to note that, due to the finite field of view of the PET scanner,

not all positron annihilations will produce two photons that hit the detectors. In this

category, we have:

• those events in which neither of the annihilation photons get detected, and

• those events in which one photon gets detected, but the other does not. In this

case, the coincidence timing window will expire and the detected photon will

be discarded.

In addition, it is possible that a photon arrives at a detector, but before the coinci-

dence window expires, yet another photon arrives at the same detector. In this case,



CHAPTER 2. BACKGROUND — PET 11

- annihilation site
- scatter site
- photon path
- computed LOR

body

detector

ring

a b c

Figure 2.3: Illustration of (a) a true count, (b) a scattered count, and
(c) a random count. In each case, the photons are detected
within the same coincidence timing window.

since the detector can only identify and maintain coincidence timing for one photon

at a time, both photons are discarded. This time interval in which the detector is

unavailable is called dead time and is a function of count rate and detector size. High

dead times result in lower counts, and hence a lower signal to noise ratio.

2.3 PET Measurements and Sinograms

The raw data for a PET scan consist of radioactive counts described above, col-

lected over a suitably long time interval. As the scan proceeds and annihilations

occur, each count is stored in an array in memory. The image has not yet been

reconstructed at this stage, so this storage array does not correspond to the 2D or

3D image representation of radiotracer activity. Instead, a count is specified by its

LOR only - the actual location (i.e. x, y, z coordinates) of the annihilation along this
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LOR is unknown2. Because there are thousands of individual detectors, the number

of combinations of possible pairs of detectors (and therefore the number of LORs) is

in the millions.

θ

r
R

-R

x

y

r

θ

a b

Figure 2.4: (a) Line of Response in a PET scanner aperture, (b) Sino-
gram array

As seen in Figure 2.4 for a single ring of detectors (i.e. fixed z value), a LOR is

specified by two parameters - its distance from the center of the aperture (r) and the

angle (θ) that the normal to the LOR makes with the +x axis. The memory locations

that holds the raw data are indexed by these parameters in a two-dimensional array

called a sinogram3. Each point (r, θ) in the sinogram specifies a LOR and the integer

value stored at that location is the number of counts that has occurred along that

LOR during the scan time. The data stored in a horizontal row of the sinogram (i.e.

2Calculating the annihilation location based on the difference between photon arrival times at
the detectors forms the basis of another type of emission tomography, called time-of-flight (TOF)
PET.

3The term “sinogram” is used because a) the counts resulting from a point source in the scanner’s
field of view will trace a sinusoidal pattern in the 2D array, and b) the array is accumulating counts
into bins, similar to a histogram.
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fixed θ, varying r) correspond to the counts that occur along all parallel LORs in the

aperture at that θ value - these counts make up a projection.

Finally, we note that the OHI PET scanner used in this study operates in 3D

mode. There are no extended septa separating the rings of detectors, but the count

data are rebinned into a set of 2D sinograms, one for each slice (z value). Image

reconstruction (explained in the next section) is performed in two dimensions on a

per-slice basis, based on the 2D sinogram data at a single z value. In order to ensure

practical scan times, three-dimensional image reconstruction is not used typically[1].

2.4 Image Reconstruction from Projections

The preceding section described how the raw PET data (radioactive counts) are

stored. The next step is to use these projection domain data to generate images that

show the spatial distribution of 82Rb in the heart muscle as accurately as possible.

The problem of image reconstruction from projections was pioneered by J. Radon in

1917 and has undergone successive refinements since then, in such diverse areas of

application as radio astronomy, electron microscopy, and the field at hand, medical

imaging[7].

As mentioned, the photon activity that occurs along a LOR is captured by the

pair of detectors at the endpoints of that line. The counts recorded by the detectors

correspond to an integration of the activity along the corresponding LOR over time.

This process results in a loss of spatial information - namely, the location of individual

annihilation sites along that LOR.

The configuration in two dimensions is shown in Figure 2.5. We denote the actual

radiotracer distribution being imaged in the heart region as f(x, y), f being a positive,

integer valued function measured in units of Bq/cc.4. For now, we assume that x and
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f(x,y)

x

y

Each strip corresponds to a ps[a,b]

“sample” of f(x,y) integration (fixed θ,

varying r in this case)

a b

Figure 2.5: (a) Two-dimensional radiotracer distribution f(x, y) in the
myocardium, as positioned within the detector ring of a
PET scanner, (b) “thin-strip” approximation to line inte-
gral.

y are continuous spatial variables.

The process of projecting the radiotracer concentration f(x, y) onto the detector

rings is described mathematically with the continuous version of the Radon transform

operator Rc that produces the projection data p(θ, r):

p(θ, r) = Rc {f(x, y)}

=

∫ ∞

−∞

∫ ∞

−∞

f(x, y)δ(r − x cos θ − y sin θ)dxdy
(2.3)

where r is a continuous radial variable defined on [−R,R], θ is a continuous angle

variable defined on [0, π], and δ(r) corresponds to the continuous-time Dirac delta

function.

To recover the image from its (continuous) projection representation, one uses the

4The unit Bq (becquerel) corresponds to one nuclear decay per second, and cc is a cubic centimeter
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continuous version of the inverse Radon transform operator, R−1
c :

f(x, y) = R−1
c {p(θ, r)}

=
1

4π2

∫ π

0

∫ ∞

−∞

Pθ(ω)ejω(x cos θ+y sin θ)R(ω)dωdθ
(2.4)

where Pθ(ω) is the 1D continuous time Fourier transform (in the radial variable) of

p(θ, r), and R(ω) = |ω| is the ramp filter, specified in the frequency domain. This

relation is based on the following theorem, illustrated in Figure 2.6.

Fourier Slice Theorem. The Fourier Slice Theorem states that the Fourier trans-

form of a projection of a two-dimensional function f(x, y), seen from an angle θ,

equals the slice of the 2D Fourier Transform of f(x, y), F{f(x, y)} = F (ωx, ωy),

under that same angle θ [7].

f(x,y)

θ

r

p(θ,r)

ωx

ωy

F

Image Domain Frequency Domain

Shape of projection at angle θ

corresponds to slice through F(ωx,ωy)

surface at the same angle.

θ

F(ωx,ωy)

Figure 2.6: Illustration of the Fourier Slice Theorem

We emphasize that the ideal R−1
c operator in equation 2.4 will only give the “true”

tracer distribution f(x, y) when the input projection data are noise free. In reality, the
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noise processes in PET scanners contaminate the measured projection data, adding an

undesired noise contribution in the observed image. For reasons previously outlined,

a noise-free image is neither physically possible, nor a reasonable assumption.

In practice, a PET scanner is a digital device, so the continuously defined quanti-

ties in equations 2.3 and 2.4 pose a practical problem for implementation. A discrete

version of the reconstructed image, which we call fs, is obtained from the continuous

projection data with a sampled version of the inverse Radon transform operator, R−1
s :

fs[m,n] = R−1
s {p(θ, r)}

=
1

4π2

∫ π

0

∫ ∞

−∞

Pθ(ω)ejω(m cos θ+n sin θ)R(ω)dωdθ
(2.5)

where m ∈ [1, . . . ,M ] is the sample number in the x direction, and n ∈ [1, . . . , N ] is

the sample number in the y direction5.

Likewise, the projection data recorded by the scanner (in the form of sinograms)

must be discrete in nature. Assume that these data are represented by ps[a, b], where

a ∈ [1, . . . , A] and b ∈ [1, . . . , B] are the sample numbers in the θ and r directions,

respectively. We can think of each ps[a, b] observation specifying a thin “strip” in the

aperture along which the line integral of activity is computed, as shown in Figure 2.5.

It is important to realize that since we now have a finite number of discrete noisy

projection samples, it is no longer possible to perfectly reconstruct f(x, y) using

equation 2.4. Because of this, we focus on the discrete inverse Radon transform

operator, R−1
d , that uses the noisy projection data to produce a sampled reconstructed

image frec[m,n].

frec[m,n] = R−1
d {ps[a, b]} (2.6)

For obvious reasons, we require the reconstruction frec[m,n] to approximate, as closely

5In this thesis, we follow the well-established convention of using square brackets to denote
discrete sequences (such as f [n]), to distinguish them from functions of a continuous variable such
as f(r).
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as possible, the samples fs[m,n] of the true radiotracer distribution f(x, y). There are

two common techniques used in clinical practice to do this - filtered backprojection

and iterative reconstruction, as explained below.

2.4.1 Filtered Backprojection (FBP)

This is the traditional method still commonly used due to its computational simplic-

ity. PET images are typically characterized as having predominantly low frequency

content, due to the underlying structure. The noise in PET images however, tends

to have significant energy at high spatial frequencies, leading to a serious problem

when applying the ramp filter R(ω) of equation 2.5, whose response increases with

increasing ω [5]. The high frequency noisy components undergo a large amount of

amplification. In order to reduce the effect of the noise term, R(ω) is modulated by

a window function W (ω) that tapers off at high ω to form:

Rfbp(ω) = R(ω)W (ω) (2.7)

Common choices for W include windows used in other areas of digital signal processing

(DSP), e.g. Butterworth, Hann, and Hamming. Replacing R(ω) in equation 2.5 with

the windowed ramp filter Rfbp(ω) gives the expression used to reconstruct an image

with FBP.6

FBP reconstruction has the desired effect of attenuating the noise arising from

high ω, but it also filters out any useful signal content that might be present in this

part of the spectrum. Increased spatial resolution comes at the cost of decreased noise

suppression. In addition, FBP reconstructed images suffer from a radial “streaking”

artifact, which results from noise in the projection data [1]. Although FBP can

6It should also be noted that there is an alternate way of performing FBP called convolution

backprojection, in which the filtering described is performed in the spatial domain instead of the
frequency domain.



CHAPTER 2. BACKGROUND — PET 18

give reasonable results (and is used in practice due to its simplicity and ease of

implementation), the noise properties are far from optimal. An example of an image

reconstructed with FBP is shown in Figure 2.7.

2.4.2 Iterative Reconstruction

This method of image reconstruction is more computationally intensive than FBP, but

can lead to better quality images. Another key advantage of iterative reconstruction

methods is that they allow more sophisticated modeling of noise than possible with

FBP.

Unlike FBP, iterative reconstruction does not use an analytic expression to arrive

at a reconstructed image. The technique is based on an increasingly refined series

of image estimates, which may include any known a priori information (such as the

exclusion of negative numbers in the image, which are physically meaningless for a

radiotracer distribution). After each estimate is generated, it is forward-projected.

The projections resulting from the estimate and the actual measured projection data

are then compared, using an objective function quantifying the discrepancy. The

estimate is then adjusted, and these iterations continue until the objective function

has been minimized, or a suitable result has been obtained [1]. Generally, this process

requires the development of:

• a model that accurately describes the (noisy) data acquisition system,

• an objective function that provides a numerical measure of “goodness of fit” of

measured data to the estimate, and

• an algorithm that refines the image estimate for the next iteration.

The most popular of these techniques include maximum–likelihood expectation–

maximization (MLEM) and ordered–subset expectation–maximization (OSEM). The
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OSEM algorithm, originally proposed by Hudson and Larkin, is based on dividing

the projection data into subsets, and provides very fast convergence times while not

sacrificing image reconstruction quality. An extensive description of OSEM is beyond

the scope of this thesis, but the reader is referred to the original paper for details

[8]. An OSEM reconstructed cardiac PET image is shown in Figure 2.7. Note the

different noise properties, such as the absence of FBP-like streaking artifacts in the

OSEM image.

a b

Figure 2.7: a) A noisy FBP reconstruction, and b) a noisy OSEM re-
construction of the same sinogram data, showing the very
different noise characteristics.

We must emphasize that though the preceding discussion focused on 2D, this

study is concerned with the entire myocardial volume. Hence, our image represen-

tation must encompass all three spatial dimensions. This is done with the use of

volumetric tomography, a technique that represents a 3D volume as a “stack” of 2D

cross-sectional images, called slices, taken at discrete points in the z direction. As

mentioned previously, each image slice is generated independently from 2D projection

data in the OHI PET scanner.
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2.5 Sources of Noise in PET Images

Because this work is concerned with noise removal from PET images, we summa-

rize in this section the most important sources of error that cause the reconstructed

PET images to differ from the actual radiotracer distribution in the body. The pre-

ceding description of PET physics, scanner hardware, and image reconstruction has

revealed several phenomena that degrade the images, namely:

• positron range, leading to loss of resolution

• the reconstruction software’s assumption that the annihilation photons are

ejected at exactly 180 degrees apart, leading to loss of resolution

• scattered counts, leading to counts at erroneous positions

• random counts, leading to counts at erroneous positions

• the effects of detector dead time, leading to loss of counts

• loss of photons that do not hit the detectors (out of field counts)

In addition to these, the following effects (which we will not describe in detail)

introduce additional noise into the reconstructed PET images [1]:

• radial blurring (due to the use of thin, long detector crystals)

• attenuation (which leads to underestimation of activity inside the body)

• poisson counting noise

• patient and organ motion during scan time

• image reconstruction artifacts (e.g. FBP streaking)

Upon inspecting Figure 2.7, we see that the accumulation of all of these effects

contributes such image degradations as:
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• loss of spatial and temporal resolution

• lower acquired signal level

• missing features, which are present in the body but do not appear in the images,

and

• false artifacts and textures, which appear as features in the image, but are not

actually present in the body

The statistical properties of the noise in cardiac PET data are discussed and a model

that can be used to characterize this noise is given in Chapter 5.

In the next chapter, we explain how the principles of PET imaging are applied in

an application of cardiology.



Chapter 3

Background — PET in Cardiology

The previous chapter explained the PET image formation process and discussed the

inherent noise that contaminates these images. This chapter provides the reader with

relevant background details on how PET is used in cardiology, in order for the reader

to understand the PET application considered in this thesis. Section 3.1 gives a brief

description of some relevant aspects of cardiac anatomy and function. Following this

in Section 3.2, we provide an explanation of the different spatiotemporal representa-

tions of the heart. Since the data of interest are time series of images, we describe

dynamic PET studies in Section 3.3, and explain the need for quantitative cardiac

PET studies. Finally, we provide an overview of the method by which perfusion

estimates are extracted from the measured data with compartmental modeling.

3.1 Cardiac Anatomy and Function

Cardiovascular diseases are a major cause of morbidity and mortality and have an

enormous personal, community and health care cost. Cardiovascular diseases (includ-

ing heart disease and stroke) are the leading causes of death in Canada (34%) [9].

Further effects of these illnesses are borne by those living with the disease, through

the impact on quality of life and disability. It is estimated that cardiovascular dis-

22
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ease costs $18.4 billion dollars annually in Canada, including direct and indirect

costs. Consequently, the societal and economical motivations for accurate cardiac

PET studies that might help in the diagnosis and treatment of CAD are self-evident.

As shown in Figure 3.1, the human heart consists of 4 chambers - the left and right

atria, and the left and right ventricles - which are separated by valves which prevent

the backflow of blood between chambers. During the cardiac cycle (i.e. duration of

one heartbeat), the atria collect blood that is returned to the heart through veins

from the previous cycle. The left atrium holds oxygenated blood that returns from

the lungs (via the pulmonary veins) and the right atrium holds deoxygenated blood

being returned from the rest of the body. The ventricles are responsible for pumping

blood to the body through a system of arteries. The right ventricle sends blood to the

lungs via the pulmonary artery. The left ventricle (LV) is responsible for pumping

oxygenated blood to the whole body via the aorta, which then repeatedly branches

into successively smaller arterial blood vessels. This pumping is performed by the

contraction of the muscular wall surrounding the LV (the myocardium). Hence, the

ability for the LV to forcefully contract is of vital importance, as it provides the blood

supply for the entire body. For this reason, cardiac PET studies seek to measure the

degree of LV myocardial perfusion as a measure of the ability of the muscle to perform

this critical role [10].

Typically, cardiac PET images are taken under two conditions – rest and stress7.

High levels of perfusion to specific myocardial regions confirm that the muscle is

viable, or able to perform its role in that area. A lower level of perfusion indicates

a problem with blood supply to that part of the myocardium. If the same area of

restricted perfusion is detected during both rest and stress conditions, a permanent

infarction has most likely occurred, resulting in scar tissue. However, if the restriction

7Normally, a drug such as dipyridamole is administered to simulate exercise conditions (stress),
in order to avoid practical complications that might affect image quality (e.g. excessive patient
motion and short tracer half-life).
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Figure 3.1: a) Diagram of human heart with relevant structures iden-
tified, b) Diagram of left ventricle with relevant structures
identified, showing its orientation with respect to the body
and PET scanner axes

only appears under stress (but not rest), then the cause is likely reversible ischaemia,

a condition that is treatable with surgery [2]. In general, PET images that are taken

under stress conditions are better quality than those taken under rest conditions.

This is because of the higher myocardial perfusion and tracer accumulation in a

stress study, thereby increasing the signal to noise ratio of the raw image.

The tissue being considered in this study will be of the LV and surrounding area.

As seen in Figure 3.1, the LV consists of a muscular wall which surrounds a blood

pool, or cavity. The shape of the myocardium is modeled as a semi–ellipsoid, with

major axis passing through the apex and the center of the ventricular base.

3.2 Representations of the Heart used in PET

There are two common image orientations of the heart muscle, depending on the
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manner in which the tomographic slices of the myocardium are generated.

• Short axis (SA) view

In this case, the image slices are formed from the intersection of a thinly spaced

series of planes perpendicular to the major axis of the LV’s modeled ellipsoid.

For this reason, the myocardium tissue appears as an annular region in each

image, with the diameter of the inner and outer rings decreasing for those slices

that approach the apex. This is shown in Figure 3.2.

Short axis oriented images – 

planes perpendicular to z’ axis

z

y

x

z’

y’

x’

PET scanner 

reference frame

3

1
2

4
5

6

Slice 1 Slice 2 Slice 3

Slice 4 Slice 5 Slice 6

Figure 3.2: Image slices of left ventricle in short axis orientations

• Transaxial view

In this case, the image slices are formed from the intersection of a thinly spaced

series of planes perpendicular to the z axis of the PET scanner. The LV’s

position in the chest is “tilted” with respect to the z axis of the PET scanner,

so the myocardium appears as a “horseshoe” shape in each image due to the

the oblique angle that the myocardium forms with this axis.
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• Cardiac Polar Map

The cardiac polar map is an alternate representation commonly used by cardi-

ologists. As shown in Figure 3.3, this is a projection of the entire myocardium

volume onto a two-dimensional image. The viewpoint is along the major axis

of the ellipsoid model, as seen from the apex. In this representation, a circum-

ferential profile from each SA-oriented slice is represented as a thin ring in the

polar map. The concentric rings in the middle of the polar map correspond

to the slices near the apex, while the outer rings represent those around the

ventricular base. Each ring is divided into sectors around its circumference,

and the colour value in each sector denotes the sum of radiotracer activity in

the corresponding region for that specific slice.

Apex

Apex

Slice corresponding to

ventricular base

Outer ring corresponds 

to ventricular base

POLAR MAP

MYOCARDIUM

VOLUME

Figure 3.3: Cardiac polar map and associated viewpoint
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3.3 Quantitative Dynamic PET Studies

Applying the image reconstruction techniques described in Chapter 2 will give

an image of the three–dimensional spatial distribution of radiotracer present in the

patient’s body. This is formed from an accumulation of photon counts at the scanner’s

detector array over a fixed time. Such a static representation can be useful to a

cardiologist, and is sufficient to perform a qualitative analysis. For example, the

image in Figure 3.4 clearly shows the approximate size, shape and location of a

myocardial defect. However, this qualitative information is not sophisticated enough

to use in a physiological model that extracts quantitative diagnostic parameters, such

as myocardial perfusion.

Reduced uptake

in damaged

area of heart

Figure 3.4: Short axis oriented PET image of infarcted tissue

Dynamic PET studies are concerned with how the tracer distribution changes with

time, giving the information required to measure the in vivo physiological process

of interest. A time-varying representation of the radiotracer activity requires several

images taken in succession, the reconstruction of which is independent from the others.
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Each 3D image has associated with it a time interval (called a frame) during which

the counts occurring during that frame are used to generate that image only. During

the study, the tracer injected into the bloodstream will be carried by a variety of

transport mechanisms to the different regions around the heart. For a 82Rb study

(which lasts 10 min), there are 17 frames, structured as shown in Table 3.1.

Frame Frame Duration Time (start of study is t = 0)

1-12 10 seconds from t = 0s to t = 120s
13-14 30 seconds from t = 120s to t = 180s

15 60 seconds from t = 180s to t = 240s
16 120 seconds from t = 240s to t = 360s
17 240 seconds from t = 360s to t = 600s

Table 3.1: Frame times and durations for dynamic 82Rb PET study

Figure 3.5 is an image sequence showing the variation in radiotracer uptake over

time for a midventricular transaxial-oriented slice. Notice that as the study pro-

gresses, there is transfer of 82Rb activity from the heart chambers to the horseshoe–

shaped myocardium region.

There are two alternate representations of PET data relevant to dynamic studies:

• Time activity curves (TAC)

A TAC is a way of showing the radiotracer activity present in a specific anatom-

ical area (called a region of interest (ROI)) over time. To do this, the my-

ocardium is segmented into different ROIs, which are then superimposed onto

each image in the time series. Summing the pixel activity within an ROI (for a

given time frame), and then repeating for all time frames, generates a one di-

mensional signal (a TAC) that shows the radioactivity of the ROI as a function

of time for the duration of the study. Depending on the location of the ROI

selected, TACs can be generated for different parts of the heart. In this thesis,
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Figure 3.5: Image sequence showing increased myocardial uptake as
study progresses (transaxial view). Frame times are indi-
cated below each image.

we deal with tissue TACs (in which the ROIs are located in the myocardium)

and blood TACs (in which the ROIs are located in the LV blood pool). Typical

TACs (for tissue and blood) are shown in Figure 3.6. Note that the reason

for the faster sampling at the beginning of the study is to capture the TAC

uptake transient (with significant high frequency components) that occurs close

to t = 0 s. It is evident that as the study progresses, activity is transferred from

the blood to the myocardium.

• Dynamic Polar Map

A dynamic polar map is a time-indexed set of cardiac polar map images, in

which each polar map gives the sum of activity during a specific time frame.

Each polar map sector (or collection of adjacent sectors) can define a TAC for

that portion of the myocardium. The sectors are considered as ROIs placed

circumferentially around the myocardium on SA images
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Figure 3.6: An example of a time activity curve, showing myocardial
uptake during a dynamic PET study.

3.4 Tracer Kinetics and Compartmental

Modeling

In order to arrive at a quantitative measure of myocardial perfusion (measured in

mL/min per gram of tissue), it is necessary to use a model relating the spatiotemporal

distribution of radiotracer in the body (measured by the PET scanner) to the flow

parameter of interest. Such a model is called a tracer kinetic model and incorporates

the underlying physiological processes in the body.

When the radiotracer is injected into a patient’s bloodstream, this “labeled” blood

returns to the LV cavity (after being oxygenated) via the circulatory system, as

described at the beginning of this chapter. Subsequent contraction of the LV forces

the labeled blood throughout the body via arteries – among these are coronary arteries

that supply blood to the LV myocardium tissue. These eventually branch off into

thousands of capillaries present in the myocardial wall. In order for the blood to
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travel from these capillaries to the myocardial muscle cells, they have to travel across

the capillary and cell membranes.

Myocardial

Cells

M(t)

Input

function

B(t) K1 k2

Figure 3.7: The one-compartment model used to quantify my-
ocardial perfusion from a dynamic 82Rb PET
study.

The above description forms the basis of various compartmental models that can

be used to model this dynamic system [11]. In this work, we use a simplified one-

compartment model described in [4] and shown in Figure 3.7. The input function to

the model, B(t), corresponds to the time activity curve for the blood pool region (since

this is the source of the myocardial uptake). This model does not consider separate

capillary and interstitial spaces, instead using a single compartment to represent

myocardial tissue. We denote the time-varying uptake of blood in this compartment

as M(t). The exchange of blood to and from this compartment is governed by the

following rate constant parameters:

• K1 (Uptake) - this characterizes the transfer of blood from the LV blood pool

to the myocardium (mL/min/g)

• k2 (Washout) - this characterizes the evacuation of excess blood from the
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myocardium (min−1).

The required mass balance results in the following differential equation:

d

dt
M(t) = K1B(t) − k2M(t) (3.1)

which can be solved for M(t):

M(t) = K1

∫ t

0

e−k2τB(t − τ)dτ = K1e
−k2t ∗ B(t) (3.2)

By segmenting the measured PET data (f) into myocardium and blood pool ROIs,

B(t) and M(t) can be estimated from the TACs in these areas. Of course, these data

do not give instantaneous concentration values, but rather an integration of counts

over time frames. Also, the measured PET data in the myocardial ROI consist of

counts due to both a) tracer taken up by the myocardium muscle tissue and b)

tracer in blood within the myocardium (i.e. in the arteries). This is accounted for

by introducing the TBV (total blood volume) parameter and incorporated into the

above model as follows:

f(t) = (1 − TBV ) · M(t) + TBV · B(t) (3.3)

where f(t) refers to the measured PET data at the polar map sector being processed.

The one-compartment model describes a hypothesized “ideal” relationship be-

tween the rates of change of tracer concentrations B(t) and M(t), which is governed

in equations 3.2 and 3.3 by the quantities K1, K2 and TBV . It is important to con-

sider that these parameters vary throughout the myocardium, so they are computed

at each sector in the cardiac polar map. They are determined with a least-squares

analysis, as described below.

The parameters are given arbitrary starting values. With these, the TACs result-
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ing from the model’s equation (the right hand side of equation 3.3) are compared to

the TACs for the measured PET data (the left hand side of equation 3.3). An residual

error (measuring the goodness of fit between the model and the measurement) is cal-

culated and recorded. The constants are then modified, and the new model’s residuals

are determined. This process is repeated until the sum of squares of the calculated

residual represents a minimum, indicating good agreement between the model and

PET measurements. To ensure fast convergence, the adjustment of the rate constants

is a sophisticated gradient-based process (e.g. using the “large-scale: trust-region re-

flective Newton” algorithm in the Matlab lsqnonlin function [12]). Figure 3.8 shows

an example output of the one-compartment 82Rb quantitative model used at OHI,

showing how the parameters of interest vary throughout the myocardium.

Figure 3.8: Example of one-compartment 82Rb quantitative model out-
put.

In the next chapter, we focus on the problem of image noise reduction and explain

how wavelet–based strategies can be used to advantage for cardiac PET data.



Chapter 4

Image Denoising

The previous two chapters have given the reader an overview of PET and its use

in cardiology, and described various sources of noise in PET data. In this chapter,

we turn our attention to the techniques that can suppress this noise. Section 4.1

gives a review of classical noise reduction methods. This is followed in Section 4.2 by

a brief discussion of why these methods are not optimal for PET images, and how

these shortcomings can be overcome by using wavelet-based methods. In Section 4.3,

a detailed review of the wavelet denoising literature is presented. We conclude this

chapter by providing a justification and details of the specific wavelet representation

used in this thesis – the spline-based discrete dyadic wavelet transform.

4.1 Classical Techniques for Image Denoising

Image denoising (also known as image noise suppression or image restoration) is a

well-studied area.8 Accordingly, several techniques have been proposed for eliminating

8We distinguish image denoising from image enhancement, though these are sometimes used in
the literature to describe closely related techniques. Generally, image enhancement is used to make
an output image that is more subjectively pleasing to the observer using, for example, histogram
equalization (to increase contrast in an otherwise dull image) or unsharp masking. Image denoising,
however, generally uses known properties of the noise degradation to recover the original image and
can usually be measured objectively with a numerical figure of merit.

34
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noise from images. These have their own merits and downfalls, depending on both

the type of image being denoised and the characteristics of the noise degrading the

images. After discussing a suitable noise model, we present a brief overview of some

well-known noise filters in this section, summarized primarily from [13].

4.1.1 Noise Model and Properties

The most common noise model is the additive noise model, in which we observe fnoisy,

the combination of a “true” underlying image f (that we are trying to recover) and

a noise contamination term n (that we are trying to remove):

fnoisy[k] = f [k] + n[k] (4.1)

We use a single lexographic index k ∈ {1, 2, ..., N} that varies over all N “pixels” in

the representation, in order that the noise model may be applied in general to multi-

dimensional signals. In each case, the value of n at each k value is a random variable

that follows a probability density function (PDF), for which important characterizing

values are its mean and variance.

The N x N covariance matrix of n is:

Cn =





σ1,1 . . . σ1,N

...
. . .

...

σN,1 . . . σN,N




(4.2)

with each entry the covariance between pairs of random variables (i.e. samples of n):

σi,j = E[(ni − E(ni))(nj − E(nj))] (4.3)

where the E operator represents expectation. If Cn is a diagonal matrix, we have
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uncorrelated noise, the diagonal elements being the individual variances of the noise

samples. If Cn has non-zero off-diagonal elements, the noise is said to be correlated,

indicating that the noise values depend to some degree on the position in the image.

The Cn matrix describes the texture of the noise - a “sparse” matrix (one with isolated

off-diagonal elements) will give a more grainy looking noise contribution than that

resulting from a more dense version, which would appear as larger “blobs” or streaky

artifacts in the image.

A special case of interest is when the noise samples are independently and identi-

cally distributed (i.i.d.) with a zero mean Gaussian distribution, i.e. they follow the

PDF:

pn(x) =
1

σ
√

2π
e−x2/2σ2

(4.4)

where σ2 is the variance of the noise.

The goal of image denoising is to obtain fdenoised, an estimate of f , based on the

noisy observation fnoisy and any known properties of n (e.g. mean, variance, PDF).

4.1.2 Low Pass Filtering

A simple yet effective method of noise reduction can be done with a smoothing filter.

This is an intuitive approach that reduces the effect of noisy pixel values by introduc-

ing controlled blurring. Smoothing filters can be designed and applied in the spatial

domain by performing spatial convolution of the noisy image with an appropriately

selected filter kernel. For each pixel in the denoised image, the value of fdenoised is a

function of the other pixel values in the kernel. Alternatively, smoothing filters may

also be designed and applied in the frequency domain (since image smoothing is a

low-pass operation) with the use of two-dimensional Fourier transform techniques.

Regardless of its implementation, the most important factor affecting performance is

the amount of smoothing applied. Insufficient smoothing leads to inadequate noise
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suppression, while oversmoothing leads to loss of important edge information. This

is because both noisy areas and edge areas consist of sharp transitions in pixel values,

and both are highly affected by the smoothing operation. In order to successfully

use this type of filter, the inherent tradeoff between noise reduction and loss of detail

must be acceptable for the given application.

A smoothing filter of particular importance in this thesis is the Gaussian lowpass

filter (GLPF), which has the following impulse response in 2D:

h(x, y) = k0e
−(x2+y2)/2σ2

(4.5)

and 3D:

h(x, y, z) = k0e
−(x2+y2+z2)/2σ2

(4.6)

Figure 4.1: Impulse response of a 2D GLPF with a) σ = 3, b) σ =
10. The k0 constant has been selected such that the total
“volume” under the curve is equal to one.

The σ parameter controls the width of the Gaussian kernel (see Figure 4.1), with



CHAPTER 4. IMAGE DENOISING 38

higher values of σ leading to increased smoothing in the denoised image. This is

illustrated in Figure 4.2 on the 512x512 Lena test image.

Figure 4.2: Filtered version of noisy “Lena” image using the filters in Figure 4.1 - a)
original image, b) noisy image with σn = 0.005, c) GLPF with σ = 3 applied,
d) GLPF with σ = 10 applied

There are several advantages to using a GLPF:

• it can be reformulated into a separable configuration, since the above impulse

responses can be rewritten as products of one dimensional functions. This allows

very simple and efficient denoising by successively filtering the data along the

row, column (and slice) directions

• the GLPF is a real-valued function in both space and frequency, allowing sim-

plified processing by avoiding the need for complex numbers
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• if a frequency domain design and/or implementation are desired, the GLPF has

the unique property of having the same basic bell-curve shape in both domains.

This behaviour makes it intuitive when investigating the effect of changing the σ

parameter - as σ increases in one domain (widening the bell curve), it decreases

in the other.

Smoothing filters in general are effective at removing several noise types, most

notably Gaussian and uniform noise[13].

4.1.3 Order Statistic Filters

Other classical noise reduction methods are based on order statistics of the image.

Unlike a smoothing filter, the value of the pixel being processed depends on the

sorting order of adjacent pixels. The simplest (yet quite effective) example is the

median filter, which denoises a pixel by replacing it with the median value of the

pixel values in the filter neighbourhood N :

fdenoised[k] = median
a∈Nk

{fnoisy[a]} (4.7)

The median filter can result in better quality images (less blurring) than those de-

noised with smoothing filters for certain noise types. It is especially effective for im-

pulse noise or salt and pepper noise, characterized by isolated extreme values in the

image. Adaptive approaches to median filtering react to changing image characteris-

tics by varying the size of the neighbourhood used. As a testimony to its effectiveness,

more sophisticated refinements on the basic median filter are still appearing in the

literature, for example [14, 15].
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4.1.4 Wiener Filters

This image denoising technique (also known as the minimum mean-squared error

(MMSE) filter) uses a slightly different model of noise contamination than the one

above. The ideal image f is assumed to have been filtered by a linear, shift-invariant

degradation function h before the addition of noise n, resulting in the observed signal

fnoisy:

fnoisy = f ∗ h + n (4.8)

Both the image f and noise n are assumed to be uncorrelated random processes,

and one of them is assumed to have zero mean. In order to get a fdenoised estimate as

close as possible to f , the filter attempts to minimize the following error metric:

e2 = E[f − fdenoised]
2 (4.9)

The image estimate that does this is given in the Fourier domain as:

Fdenoised =

(
1

H

|H|2

|H|2 + Sn/Sf

)
Fnoisy (4.10)

where the uppercase quantities are the Fourier transforms of those in equation 4.8,

Sn = |N |2 is the power spectrum of the noise, and Sf = |F |2 is the power spectrum

of the noisefree image. Because the Sn and Sf quantities are unknown in many

applications, their ratio is often assumed to be a constant, and this value is chosen

manually to give the best subjective denoised result. Wiener filtering is considerably

more complicated than the other methods described above, and the suitability of this

method depends on the validity of the assumptions made[13].
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4.2 Wavelet-based Image Denoising

4.2.1 Motivation

A common image noise reduction method used at OHI involves spatial convolution of

the volume of data with a fixed width, three-dimensional Gaussian kernel. It produces

suitable results in many cases, but does not provide optimal separation of signal from

noise. This is because the amount of smoothing is constant over the entire image,

which consists of a combination of slowly-varying areas interspersed with important

discontinuities. Since there is no way for this method to adapt to changing image

characteristics, increased noise suppression comes at the cost of loss of detail. To

achieve satisfactory noise reduction, we lose important small-scale image features, a

situation that is undesirable when extracting precise regional flow measurements from

these data, as is the case in myocardial perfusion studies.

An example is shown in Figure 4.3, where a portion of the standard Lena test

image has been corrupted with additive Gaussian noise. In order to suppress the

noise that is prominent in the shoulder area (a smooth part of the image), we need to

increase the width of the Gaussian filter kernel. Though effective at removing noise

in this region, we notice that this operation causes undesired blurring effects of the

smaller-scale features in other more detailed areas. For example, the pupil of the

eye cannot be discerned at this level of smoothing. This clearly shows the tradeoff

between increased noise suppression and the resulting loss of detail.

As mentioned in the introduction, the signals that arise in nuclear medicine (such

as PET images and TACs) are not ideally suited to analysis with traditional fre-

quency domain (Fourier) techniques. This is because, in general, such signals are

non-stationary and therefore do not exhibit global, periodic behaviour. Instead, rel-

evant signal features are localized in both space and frequency. The basis functions

of Fourier analysis are sinusoids of a given frequency, defined over the entire signal
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Figure 4.3: Lena image with fixed width Gaussian kernel filtering – a)
noise free image, b) noisy image, and c) smoothed image

domain. Put another way, they have perfect localization in the frequency domain,

but no localization in the space domain. For this reason, it is difficult to efficiently

represent transient features (such as cardiac tissue defects in an image, or an uptake

spike in a TAC) with such a basis. We require an alternate signal representation

which allows joint resolution in both spatial and frequency domains.

The wavelet transform is a tool that possesses such a capability, because the basis

functions are of finite duration and varying scale (a parameter related to frequency,

as explained below). This can be likened to the information in a musical score, where

information about both frequency (which note is played) and time (when and how

long a note is played for) are present. Wavelets comprise one means of performing a

multiresolution analysis (MRA) - an examination of signals at differing resolutions.

This is significant, since having such information makes it possible to process features

of varying size. Wavelet theory is now very well developed, and applications of this

technique (especially in the fields of image compression and denoising) have been
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investigated extensively in the literature during the last decade. Wavelet methods

have been successfully applied in a wide range of biomedical applications, an excellent

overview of which appears in [16]. A more recent review focuses on the success of

using wavelet techniques in medical imaging [17]. In addition, since wavelet analysis

can be applied to multidimensional signals, it is well suited to this study.

4.2.2 Wavelet Transform

This section is a very brief discussion of wavelet concepts relevant to the image de-

noising application. A more thorough tutorial of basic wavelet theory is provided

in Appendix A, and a detailed description of the wavelet representation used in this

thesis (the DDWT) appears in Section 4.4.

In a wavelet representation, a mother wavelet ψ(x) is used to form the basis

functions for the signal expansion. These basis functions are related to one another

through two parameters - scale, s, and translation, τ . The wavelet transform measures

the degree to which an input signal is correlated with these scaled and translated basis

functions. In the case of a discrete wavelet transform (DWT), the s and τ parameters

are sampled along discrete sequences. Therefore, the DWT of an input signal consists

of discrete sets of coefficients. The use of a scaling function φ(x) is required in order to

put a practical lower limit on the scales used in the representation. Because the DWT

is most often implemented as an iterated structure consisting of cascaded low-pass

and high-pass filters (using the fast wavelet transform (FWT)), the analysis section

of the filter bank structure groups DWT coefficients into the following:

• Approximation coefficient subbands

These subbands of coefficients, calculated at each level of the filter bank struc-

ture, provide a low resolution approximation of the signal being represented.

As the level number increases, this approximation becomes increasingly coarse.
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• Detail coefficient subbands

These subbands of coefficients, calculated at each level of the filter bank struc-

ture, provides details corresponding to the difference in information between

the approximations at adjacent levels. As the number of levels increases, these

details become increasingly coarse.

Having generated these coefficients (which represent the input signal in the wavelet

basis), it is desirable to modify them in some way, based on the application at hand.

In image denoising, for example, the noise energy in the input signal is generally

spread over an entire subband of coefficients, so a thresholding operation is applied

in order to suppress this portion. Once the DWT coefficients have been changed, it

is necessary to reconstruct the output signal. This is done by applying the inverse

discrete wavelet transform (IDWT), also implemented with an iterated filter bank (in

this case, the synthesis section).

Figure 4.4 shows a general DWT implemented with a 3-level filter bank, showing

both analysis and synthesis sections.

4.3 Wavelet-based Noise Removal

Most active among denoising research efforts that seek to preserve image details

over multiple scales is wavelet-based denoising. Techniques based on a wavelet rep-

resentation exploit the wavelet’s natural ability to separate signal from noise over

different image scales. This provides an inherent advantage when dealing with non-

stationary signals – the inclusion of localized “fine scale” functions in the basis allows

one to better discern diagnostically significant details.

A thorough overview of wavelet denoising appears in [18]. The seminal work

in this field was performed by Donoho and Johnstone [19, 20, 21]. They proposed

thresholding of the detail coefficients of an orthogonal DWT (denoted with the WDWT
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Figure 4.4: General filter bank showing wavelet coefficients - a) Analysis
filter bank and b) Synthesis filter bank. LPF = low pass
filter, HPF = high pass filter

operator) of a noisy signal fnoisy. This simple method is motivated by the DWT’s

ability to compact most of the signal energy in a small number of high amplitude

coefficients, which are retained. The noise contribution, assumed to be due to lower

amplitude coefficients, are spread out over each detail subband and suppressed during

the thresholding step. The threshold value that is commonly used is the universal

threshold, σn

√
2 log N , where σn is the noise standard deviation (the noise is assumed

to be i.i.d. Gaussian with zero mean and variance σ2
n), and N is the number of signal

samples. Note that other possible threshold choices are possible, as detailed in [18].

When σn is not explicitly available (as is often the case), a robust median estimator

developed by Donoho and Johnstone [19] can be used:

σ̂n = median(abs(W [i]))/0.6745 (4.11)

where i is an index over all detail coefficients W at the finest decomposition level.
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This selection is based on the observation that at this most detailed level, the wavelet

coefficients are primarily due to noise. Because there are very few coefficients due

to signal, using the median eliminates any possible bias these might introduce. The

0.6745 constant stems from the fact that for a set of independent Gaussian random

variables {ni}, i ∈ {1, 2, ..., N} with zero-mean and variance σ2
n, E[Median(abs(ni))] ≈

0.6745σ.

The most common ways of applying the threshold value to a DWT detail coefficient

WD[k] are the soft and hard thresholding functions, defined as follows and shown in

Figure 4.5:

• Soft thresholding (defined by the T soft
η operator, where η is the threshold

value)

T soft
η {WD[k]} =






0 if |WD[k]| < η

WD[k] − η if WD[k] ≥ η

WD[k] + η if WD[k] ≤ −η

• Hard thresholding (defined by T hard
η , where η is the threshold value)

T hard
η {WD[k]} =






0 if |WD[k]| ≤ η

WD[k] if |WD[k]| > η

The denoised image, fdenoised, is formed from its modified wavelet coefficients with

the inverse DWT (defined with the W−1
DWT operator), so the overall operation (using

soft thresholding) is:

fdenoised = W−1
DWT

{
T soft

η {WDWT {fnoisy}}
}

(4.12)

Soft thresholding (also known as wavelet shrinkage) generally performs better than

hard thresholding, due to the latter’s jump discontinuity at the threshold value. In

this approach and its simplest variations, the threshold value is either uniform over
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Figure 4.5: a) Soft and b) hard thresholding operators

all detail coefficient subbands at all scales, or uniform within each detail coefficient

subband. The choice of which subbands to threshold and the threshold value itself

varies depending on the application. Subband-adaptive constant thresholds are ap-

propriate when the noise in the image is known to deviate from the assumption of an

i.i.d. Gaussian distribution (called correlated, or coloured noise)[22]. Note that the

approximation coefficients at the highest decomposition level contain important low

frequency information and normally do not undergo thresholding.

Though effective in some cases, basic wavelet shrinkage of an orthogonal trans-

form can lead to ringing artifacts in the denoised image. Coifman and Donoho later

showed that a substantial improvement on this technique can be achieved if the DWT

employed has the property of translation invariance (TI)[23]. One way of achieving

this is to average the outputs that result from denoising the input image over all pos-

sible translations (called cycle spinning). A more computationally efficient approach

involves omitting the downsampling step in the FWT filter bank implementation. Of
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course, this leads to an overcomplete (redundant) wavelet representation, in which

each subband of detail and approximation coefficients has the same number of samples

as the input signal9.

In an effort to further separate noise from signal over spatially changing image

characteristics, a recent study by Chang et al. focused attention on the choice of

threshold [24]. Rather than using either a globally constant or subband–dependent

constant threshold, they show that superior denoising results can be achieved if the

threshold changes within a subband of detail coefficients - an idea known as spa-

tially adaptive thresholding. The threshold for the coefficient WD[k] in a given detail

subband is :

η[k] =
σ2

n

σw[k]
(4.13)

where σ2
n is the noise variance in the noisy image, and σw[k] is the standard deviation

of the detail coefficient at position k. Each DWT coefficient WD[k] is then modified

(using soft thresholding) with a threshold value unique to that coefficient location, η[k].

The σw parameter is estimated from the neighboring coefficients in a sophisticated

process known as context modeling. This neighbourhood includes coefficients in both

the subband being thresholded, and its parent subband (i.e. the coefficients at the

same spatial location and subband orientation but at the next coarser scale). In areas

where the coefficient variance is large, the image exhibits details (such as an edge) and

the threshold resulting from equation 4.13 is lower, thereby preserving these details.

Conversely, areas with smaller σw correspond to smoother regions and the denoising

can proceed more aggressively by increasing the threshold.

This idea has been extended by Marpe et al., who in addition to using a spatially

adaptive threshold (albeit with a simpler context model), perform multiple iterations

of the thresholding process on the wavelet coefficients [25]. Since the initial estimate

of σw[k] is based on noisy coefficients, it will be somewhat inaccurate. Subsequent

9See Appendix A for more details on overcomplete representations.
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σw[k] estimates (and the resulting adaptive thresholds based on these) are determined

using denoised coefficients, which are found to be more reliable.

Most recent work by Jin et al. uses a refinement called cross-scale regularization

(CSR) which increases noise suppression, particularly at the finest scale of decom-

position [26, 27]. Typically, these subbands contain overwhelming amounts of noise

(indeed, this is why these subbands are used for noise level estimation). Relevant

signal details are present but deeply hidden in this subband, yet it is possible to

“find” these relevant coefficients using information extracted from the next higher

scale wavelet coefficient subband (which is not as noise contaminated). An edge map

on this subband can identify the location of important image features in the finer scale

subband that should be retained. The result provides information that can be used

to refine the reconstruction, by including the coefficients at the same edge positions

in the finer scale subband, and reducing the other coefficients, which are considered

to be due to noise.

Because the data from a dynamic cardiac PET study are four-dimensional in na-

ture, they can benefit from applying the techniques described above using higher

dimensional wavelet transforms. In theory, this can lead to better denoising results

by exploiting the high correlation of pixels within an image, between adjacent im-

age slices, and between consecutive time frames. Multidimensional transforms have

been used with success in other denoising applications, such as transmission electron

microscopy [28] and cardiac ultrasound [29].

Turning to the image class of interest (82Rb cardiac PET studies), wavelet-based

denoising has been used recently by Lin et al. with promising results [3]. A series of

wavelet protocols (that are applied to uptake images, polar maps, TACs and various

combinations of these) were developed and compared in this work. Each protocol

used a basic, modified wavelet shrinkage technique to denoise the 1D and 2D signals.

The application under investigation in this work was similar to ours – the effect of
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denoising on the accuracy of perfusion measures.

In addition to denoising in the image domain, wavelets have been investigated

in other areas of tomography as well. Some groups have shown that advantages

can be gained from incorporating wavelet processing earlier in the reconstruction.

Kolacyk [30] does this by performing a shrinkage operation on coefficients resulting

from a wavelet-vaguelette decomposition introduced by Donoho [31]. Bhatia et al.

represent the standard FBP ramp filter in a wavelet basis, thus allowing a multiscale

reconstruction [32]. Sahiner and Yagle first filter the projection data (treating them as

a series of 1D signals in the radial variable) with the wavelet transform and short time

Fourier transform (STFT) before image reconstruction, then compare these results

with those resulting from image domain denoising. It is interesting to note that they

also extended this idea using iterative thresholding [33, 34]. More recently, Kalifa et

al. performed a study using a wavelet packet decomposition that incorporates the

more realistic Poisson noise model of the sinogram data directly into their thresholding

estimators [35]. Though using wavelets directly in the reconstruction phase is still

an active research area with much promise, we do not pursue this approach in this

thesis. Instead, we rely on standard clinical protocols (such as FBP and OSEM) for

image reconstruction, then perform denoising through post-processing of these images

with wavelet-based methods.

4.4 Discrete Dyadic Wavelet Transform

A very important consideration when analyzing PET signals is the selection of an

appropriate wavelet expansion set. The recent interest in wavelet research has given a

wide variety of possibilities, each of which are suitable for specific areas of application.

Though an orthogonal wavelet transform is desirable for some applications (such as

compression, due to its compact signal representation), it does not possess good
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denoising properties, and is therefore unsuitable for this study. Instead, we seek a

translation-invariant wavelet transform appropriate for denoising biomedical signals.

Because these signals (which, due to underlying physiological and anatomical factors)

are characterized by smooth transitions as opposed to harsh jump discontinuities, it

would be unsuitable to choose a basis of sharp-edged functions, such as the step-

like Haar representation [13]. Instead, we seek one whose elements better match the

features in our PET data. Research using wavelets in medical imaging has shown

that spline-based wavelet transforms are an appropriate choice, as reviewed in [36].

The criteria above can be satisfied by selecting the discrete dyadic wavelet trans-

form (DDWT). The DDWT was introduced by Mallat and Zhong[37] (though they

focused on the application of image edge detection), in which they provided transform

theory (including a FWT-like filter bank implementation) for one and two dimensional

signals. Laine et al. performed several denoising and image enhancement studies on

biomedical images using the DDWT, among them [38, 39]. In [40], Koren and Laine

systematically extended the DDWT theory (and its filter bank implementation) to

more than two dimensions, realizing that such a representation can be advantageous

in medical imaging applications. Furthermore, the work by Lin et al. showed that

the DDWT has successfully been used for our class of cardiac PET signals [3].

The DDWT is based on the following sampling of the CWT10:

• the scale parameter is sampled along the dyadic sequence s = 2j, j ∈ Z, and

• the translation parameter τ is sampled at all integer locations, k ∈ Z. (This

differs from the DWT, for which the sampling interval depends on j).

The result is an overcomplete representation with each coefficient subband having the

same number of elements as the input signal.

10See Appendix A for a description of the CWT.
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4.4.1 One-dimensional Discrete Dyadic Wavelet Transform

(DDWT)

First, we introduce the DDWT for discrete signals of one dimension, f [n], n ∈ Z, and

consider a finite range of scales from 1 to 2J . Recall that the DWT uses a scaling

function to generate a coarse approximation to a signal, accounting for wavelet scales

corresponding to −∞ ≤ j ≤ 0. The DDWT uses an analogous construct called a

smoothing function, s(x) ∈ L2(R), for which we define the smoothing of an arbitrary

function g(x) at scale 2j (with the operator S2j) as:

S2j{g(x)} = g(x) ∗ s2j(x) = g(x) ∗ 2js
(
2jx

)
(4.14)

Returning to our discrete input signal, it was proved in [37] that we can write f [n] as

the smoothing at scale 1 (j = 0) of a non-unique continuous function fs(x) ∈ L2(R),

which is subsequently sampled:

f [n] = S1fs(x)
∣∣∣
x=n,n∈Z

(4.15)

Using this, we define the DDWT of the sequence f [n] (in terms of its “smoothed”

function fs(x)) at scale J as the following sets of coefficients indexed by j and k:

{
{S2J{fs(k + b)}}k∈Z

, {W2j{fs(k + b)}}j∈[1,J ],k∈Z

}
(4.16)

where b is a shift parameter that is determined by the selection of wavelet function

and W2j is a wavelet operator defined with respect to the mother wavelet function

ψ(x):

W2j{f(x)} = f(x) ∗ ψ2j(x) = f(x) ∗ 2jψ(2jx) (4.17)

Like the DWT, the DDWT consists of a group of coefficients representing a low-
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pass approximation, along with a set of wavelet coefficient groups at scales 1 to J

representing increasingly fine details. To simplify the notation, we introduce the

following to represent the DDWT coefficients:

• Approximation Coefficients: {S2J [k]} = {S2J fs(k + b)}k∈Z

• Detail Coefficients: {W2j [k]} = {W2jfs(k + b)}j∈[1,J ],k∈Z

The mother wavelet that we use in this study is one of a family of wavelets defined

in [40] and specified in the frequency domain by:

Ψ(ω) = (jω)r

(
sin(ω/4)

ω/4

)p+r+1

(4.18)

A selection with parameters r = 1, p = 2 was used with success in another quantitative

PET perfusion study [3], so we make a similar choice, giving the following wavelet

and smoothing functions:

Ψ(ω) = (jω)

(
sin(ω/4)

ω/4

)4

(4.19)

S(ω) =

(
sin(ω/2)

ω/2

)3

(4.20)

Note that this choice of wavelet function can be written as the first derivative of a

spline function θ(x) with Fourier transform:

Θ(ω) =

(
sin(ω/4)

ω/4

)4

(4.21)

In practice, the DDWT is calculated with a hierarchical digital filter structure, whose

frequency responses must meet a strict set of criteria in the Fourier domain involving

Ψ(ω), S(ω), and Θ(ω) [40]. Details of the filter bank implementation are given in

Chapter 5.
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4.4.2 Multi-dimensional Discrete Dyadic Wavelet Transform

Having discussed the one-dimensional DDWT, we now consider its extension to mul-

tiple dimensions that we require to perform an analysis of dynamic PET data [40].

We will use S2j ,D to denote a D-dimensional version of the smoothing operator

which uses the smoothing function s(x1, ..., xD) ∈ L2(RD) to smooth an arbitrary

input g(x1, ..., xD) ∈ L2(RD):11

S2j ,D{g(x1, . . . , xD)} = g(x1, ..., xD) ∗ s2j(x1, . . . , xD) (4.22)

Note that in this expression, s2j(x1, . . . , xD) = 2js (2jx1, . . . , 2
jxD) – an extension of

the 1D case.

For a D–dimensional DDWT, there are D versions of the wavelet function, indexed

by d, {1ψ(x1, . . . , xD), 2ψ(x1, . . . , xD), ... Dψ(x1, . . . , xD)}, oriented along the different

dimensions (e.g. for D = 2, we have 1ψ(x1, x2) - oriented along dimension one - and

2ψ(x1, x2) - oriented along dimension two). These define the wavelet operators:

1W2j ,D{f(x1, . . . , xD)} = f(x1, . . . , xD) ∗ 1ψ2j(x1, . . . , xD) (4.23)

...

DW2j ,D{f(x1, . . . , xD)} = f(x1, . . . , xD) ∗ Dψ2j(x1, . . . , xD) (4.24)

where dψ2j(x1, . . . , xD) = 2j · dψ (2jx1, . . . , 2
jxD).

We define the DDWT of a D-dimensional discrete signal f [n1, . . . , nD] at scale J

11The convolution of two functions f1 and f2 in d dimensions is given by:
f1(x1, . . . , xD) ∗ f2(x1, . . . , xD) =

∫
∞

∞
. . .

∫
∞

∞
f1(η1, . . . , ηD)f2(x1 − η1, . . . , xD − ηD)dη1 . . . dηD
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as the following sets of coefficients:

{S2J ,Dfs(n1 + b, . . . , nD + b), {1W2j ,Dfs(n1 + b, . . . , nD + b)},

{2W2j ,Dfs(n1 + b, . . . , nD + b)}, . . . , {DW2j ,Dfs(n1 + b, . . . , nD + b)}}

where j ∈ [1, J ] and b is a shift parameter that is determined by the selection of

wavelet function. Note that this is defined in terms of f ’s smoothed continuous func-

tion, fs(x1, . . . , xD) ∈ L2(RD), a multidimensional version of equation 4.14. Again

simplifying this notation, we refer to the following DDWT coefficients:

• Approximation Coefficients:

{S2J ,D[n1, . . . , nD]} = {S2J ,Dfs(n1 + b . . . , nD + b)} (4.25)

• Detail Coefficients:

{1W2j ,D[n1, . . . , nD]} = {1W2j ,Dfs(n1 + b, . . . , nD + b)} (4.26)

...

{DW2j ,D[n1, . . . , nD]} = {DW2j ,Dfs(n1 + b, . . . , nD + b)} (4.27)

where j ∈ [1, J ] and (n1, . . . , nD) ∈ Z
D. Unlike the 1D DDWT, there are D sets

of detail coefficients at each scale (one for each dimension), each of which are ori-

ented along that dimension (e.g. the 1W2j ,D coefficients will show features oriented

along dimension one). To facilitate the implementation of this transform, the mul-

tidimensional wavelet functions are chosen as separable products involving the one
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dimensional wavelet and smoothing functions given in equations 4.18 and 4.19:

iψ(x1, . . . , xD) = ψ(x)2i−1

D∏

n=1,n 6=i

s(2xn) (4.28)

for i ∈ [1, D]. In three dimensions, for example, we have the following wavelet func-

tions:

1ψ(x1, x2, x3) = 4ψ(x1)s(2x2)s(2x3) (4.29)

2ψ(x1, x2, x3) = 4ψ(x2)s(2x1)s(2x3) (4.30)

3ψ(x1, x2, x3) = 4ψ(x3)s(2x1)s(2x2) (4.31)

To illustrate a practical example of the DDWT, Figure 4.6 shows the standard

512x512 cameraman image, along with its 3-level, two-dimensional (D = 2) DDWT,

both approximation and detail coefficients. The following points should be noticed:

Detail coefficients

  d=1          d=2
Level

2

1

3

Approx.

coeffs

a b

Figure 4.6: a) Cameraman test image and b) the coefficients resulting
from a 3-level, 2D DDWT of cameraman test image.
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• the features in the detail coefficients associated with dimension one are oriented

in the vertical direction,

• the features in the detail coefficients associated with dimension two are oriented

in the horizontal direction,

• the size of the features in the detail coefficients increases with the number of

decomposition levels,

• the approximation coefficients provide a lower resolution version of the origi-

nal image. The resolution of this approximation decreases as the number of

decomposition levels increases.

With the relevant theory and background in hand, Chapter 5 presents our study

investigating the application of wavelet–based denoising methods to 82Rb cardiac

PET data.



Chapter 5

Wavelet–based Denoising of

Cardiac PET Data

We now turn our attention to the data of interest - cardiac 82Rb PET images. After

first describing the input data (both phantom and clinical) used in this study in

Section 5.1, we explain how noise can be characterized in Section 5.2. Section 5.3

provides the details of how the DDWT is implemented as an iterated filter bank.

The proposed wavelet-based denoising protocols are fully explained in Section 5.4,

and a description of the figures of merit used to measure denoising performance is

given in Section 5.5. In Section 5.6 the experimental data are provided and finally,

Section 5.7 discusses these results and presents conclusions that can be drawn from

this investigation.

In this chapter, an abbreviated notation is used, realizing in all cases that the

wavelet basis is the spline-based DDWT described in Chapter 4. Since all denoising

methods use three decomposition levels (as explained in Section 5.4), we omit this

subscript yielding the following notation that is used in this chapter:

• WD – the operator representing a D-dimensional, 3-level DDWT.

• W−1
D – the operator representing a D-dimensional, 3-level inverse DDWT.

58
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• Sl – the DDWT approximation coefficients at level l.

• dWl – the DDWT detail coefficients at level l, oriented along dimension d.

Notice that we have changed the subscript of Chapter 4 from one indicating scale, (e.g.

2j) to one indicating the level of decomposition in the filter bank implementation, as

this is a more convenient notation to use when explaining the denoising protocols.

Furthermore, the dimensionality of the transform (D) appears in the subscripts of

the DDWT operators (WD, W−1
D ) only. The approximation and detail coefficients

(Sl,
dWl) do not include these explicitly – it will be known from the context of the

denoising algorithm.

5.1 Description of Input Data

5.1.1 Phantom PET Data

Measuring the effectiveness of a noise reduction algorithm is not straightforward in

the nuclear medicine setting. Traditional figures of merit used in denoising studies,

such as peak signal to noise ratio (PSNR) and mean squared error (MSE) cannot be

calculated for clinical PET data. This is because the noise-free signal is hidden within

the body and therefore inaccessible, posing a problem when trying to objectively as-

sess denoising performance. This difficulty can be addressed by using a mathematical

phantom, a computer generated image with known properties that models the bio-

logical region of interest. Corrupting the noise-free phantom image with synthesized

noise allows us to compare various denoising algorithms because the “ground truth”

data are available.

• 2D Image Data – For 2D image data, we use the phantom image shown

in Figure 5.1. This is a 128x128 image with outer ring (myocardium) and

inner circle (blood pool) regions of constant intensity on a solid background of
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lower intensity. It models a short axis oriented slice of a healthy myocardium.

To incorporate the inherent resolution of the PET scanner, the phantom is

smoothed with a 2D Gaussian kernel of 10mm FWHM12.

Slice 1 Slice 2 ….

Slice 32….

a

b

Figure 5.1: Image phantoms used - a) 2D image, b) 3D image slices

• 3D Image Data – The concept of a phantom image can be easily extended to

three dimensions, using 32 simulated slices of image data. Each slice represents

a short axis image of a healthy myocardium oriented along the z-axis of the scan-

ner. In order to capture the tapering ellipsoid shape toward the left ventricular

apex, the radius of the circles representing the blood pool/inner myocardium

boundary and the outer myocardium boundary increases gradually in adjacent

slices. The size of each image slice is 128x128 with the myocardium and blood

12FWHM stands for full width at half maximum. It is another measure of the width of the
Gaussian, specifying the distance between the points at half the maximum value on either side of
the bell curve.
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pool regions of constant intensity on a uniform background, and the image slices

are equally spaced, forming isotropic voxels. The 3D phantom is shown in Fig-

ure 5.1. Like the 2D case, the phantom is smoothed with a Gaussian kernel of

10mm FWHM (this time in 3D) to mimic scanner resolution.

5.1.2 Clinical PET Data

We seek denoising algorithms that are effective for a wide variety of “real world”

PET data. To provide a representative sample of the types of clinical images that

would benefit from this denoising study, we have selected test cases from OHI with

the properties shown in Table 5.1. Note that all of the static data were generated

for a single patient (using the conditions specified), and all of the dynamic data were

generated for another patient (using the conditions specified).

Data set Study Conditions Reconstruction

Static Data
1 stress OSEM
2 rest OSEM
3 stress FBP
4 rest FBP

Dynamic Data
1 stress OSEM
2 rest OSEM

Table 5.1: Description of Clinical PET Data

• Static Image Data – The static data are in the form of short-axis oriented

slices, for healthy subjects with expected uniform myocardium (i.e. low risk

of CAD). The clinical PET data are generated by the ECAT scanner software

using either OSEM or FBP reconstruction as indicated above[6]. OSEM re-

construction uses 16 subsets and 6 iterations, while FBP reconstruction uses a

ramp filter. The data are saved in a proprietary binary format called a “ma-
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trix” file (stored in 16-bit integers with units of Bq/cc), from which the data

are extracted in a manner appropriate to the denoising algorithm being used.

• Dynamic Image Data – The dynamic data are structured in a manner iden-

tical to that described above, except the slices are transaxial oriented (also for

healthy subjects), and there are 17 frames of data appearing sequentially in the

matrix file.

At this point, we must mention that the inherent resolution of the ECAT scanner

used at OHI is 10mm, whereas the pixel sizes of the short axis oriented images in

each dimension are x = 1.7mm, y = 1.7mm, and z = 3.7mm. Therefore, this is a very

low resolution oversampled system in which we would not expect to see meaningful

image features smaller in size than roughly 5-6 pixels in the x, y directions and 3

pixels in the z direction. Any features present in the raw data that are smaller than

this represent small scale “grains” of noise and are not due to underlying biological

phenomena at this scale.

5.2 Noise Properties of PET Data

The exact characteristics of the noise in our 82Rb PET images are not accurately

known. The positron emission process that is the source of the detected photons is

well characterized, following a Poisson distribution in which a variance estimate is

equal to the number of counts. This distribution does not hold for the PET image

data, however, since image reconstruction and various correction processing (e.g.

for attenuation and randoms) must be applied to these data, thereby altering the

noise properties[1]. This assumption is based on the fact that there are a number

of different sources of noise in PET images (as described in Chapter 2), of varying

distributions. The effect of adding these unknown distributions’ contribution to a

PET image’s pixel activity, will tend toward a Gaussian distribution (as the central
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limit theorem states)[5]. Several papers [41, 42] have investigated the noise of both

FBP and OSEM image reconstruction methods, which are very different and have

the following qualities (as can be seen from Figure 2.7):

FBP reconstruction

• tends to spread noise variance from regions containing high count densities

to regions containing low count densities, so the noise variance becomes more

uniform throughout the image

• as the FBP filter cutoff frequency decreases, noise become correlated over longer

distances

OSEM reconstruction

• in lower count regions of an image, noise variance is much lower than with FBP

• the variance as a function of position closely resembles the noise-free image

• as iteration number increases, noise become correlated over shorter distances

For postprocessing of PET images (either FBP or OSEM), a common assumption

is that the noise is Gaussian or uncorrelated [5, 11]. The wavelet–based denoising

methods investigated in this thesis assume that the noise between adjacent pixels is

uncorrelated (i.e. independent of position). An inspection of the noisy PET images

(such as those in Figure 2.7) reveals that this is not necessarily the case, as there

exist localized “clusters” of noise that seem to be dependent on position. However,

we anticipate that the denoising methods will still be effective, based on the study

by Lin et al. [3] that showed that wavelet-based denoising performance remained

satisfactory and robust in the presence of such errors.

One method of estimating the noise PDF’s parameters (when only the image data

are available) is to select a region in the image that is free of image features and

generate the histogram of the pixels in this subimage [13]. For our PET data, we
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select a slice in the data set that is far removed from myocardial activity (slice #28

of 32) and compute the histogram of the pixels in a rectangular window. This was

done for multiple image files, and representative results are shown in Figure 5.2 (for

OSEM) and Figure 5.3 (for FBP).

Figure 5.2: Histogram of OSEM noise, using pixels in
rectangular window shown

Figure 5.3: Histogram of FBP noise, using pixels in
rectangular window shown

Notice that the symmetric histogram of the FBP noise closely resembles a zero

mean Gaussian PDF, while that of the OSEM noise is skewed somewhat, more like a
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Poisson PDF.

5.2.1 Noise Level Estimation

Wavelet-based denoising methods require the specification of σn, the standard devi-

ation of the image noise. Since this is unknown a priori, it is necessary to estimate

it (σ̂n) from the measured data. This is done using the robust median estimator

described in Chapter 4. In our case, a slight modification to the σ̂n estimation is nec-

essary, since we are not using a wavelet transform for which there is a single subband

at the most detailed scale. Instead, the D-dimensional DDWT has detail coefficients

spread over D such subbands, so we adopt the following calculation based on the

wavelet modulus (see Section 5.3.2)[3]:

σ̂n = Median(abs(M1[k]))/0.6745 (5.1)

where k is an index over all coefficient locations at level 1.

At this point, we emphasize one of the key advantages of using wavelet-based

denoising over convolution with a fixed width Gaussian kernel. The above discus-

sion illustrates that by using a wavelet representation, we can form an estimate of

the PET data noise σ̂n based on the input data (more specifically in this case, the

DDWT coefficients of the input data). This gives a data-driven noise estimate that

automatically adapts the denoising algorithm to varying noise levels. Because (as we

will see in equation 5.9) σ̂n appears in the expression for the coefficient threshold,

the noise estimate ensures that the appropriate amount of smoothing occurs. For

example, very noisy input data will give a higher σ̂n estimate, thereby increasing the

threshold and providing more aggressive denoising in images that require it. Such be-

haviour is not possible with the Gaussian approach, which uses a fixed width kernel

regardless of the noise level of the input data.
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5.2.2 Noise Simulation

We have already remarked that when performing phantom studies, the phantom

data need to be corrupted with noise. For a noise type like additive white Gaussian

noise (AWGN), this is a trivial task since software that reliably produces samples

from the desired distribution is available. The noise properties of our PET images

are not precisely known, so generating noise samples in a similar manner from a

complicated unknown distribution is not an option. Of course, in order that our

denoising algorithms be effective for clinical PET data, we seek a simulated noise

realization that is as close as possible to that generated from an actual scanner. To

accomplish this, we choose a slice of the data set that is free of myocardial activity,

situated at the edge of the z axis field of view (shown in Figure 5.4). In the absence of

b

a

Slice 1 Slice 2 ……..

Slice 32

Slice 1 Slice 2 ……..

Slice used for noise simulation in 2D

Slice 31

Figure 5.4: a) Slices of clinical PET data set (OSEM reconstruction), with the
slice used for simulation of 2D noise highlighted. b) 3D noise-only
slices of water cylinder scan (OSEM reconstruction). The same is
done for FBP data.
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signal, this image is assumed to be due to noise only, and is fused with the phantom

data to create the simulated noisy image needed[43].

The above approach works in two dimensions, but the situation is different in three

dimensions, where we require 32 slices of “noise only” data. A naive approach might

be to simply duplicate the noisy image for all 32 slices, but this would introduce a false

correlation between slices, potentially biasing the results. A method of generating 32

slices of simulated PET noise that realistically models the correlation between slices

is with the use of a water cylinder phantom. A 20cm diameter, 20cm long water

cylinder was injected with an amount of 82Rb radioactivity similar to that used for

a static clinical image, providing a uniform test signal free of any localized uptake.

Thus, when the images from these data are reconstructed using the same parameters

and orientation as the static image, we arrive at a valid estimate of 32 “noise only”

slices. As in 2D, this image is assumed to be due to noise only, and is fused with the

phantom data to create the simulated noisy image.

5.3 Implementation Details for Discrete Dyadic

Wavelet Transform

5.3.1 One–dimensional DDWT

As mentioned in the previous chapter, an efficient DDWT implementation is possible

using a filter bank structure. A three level decomposition is illustrated in Figure 5.5,

showing how the approximation and detail coefficients at various levels are obtained

through iterated filtering of the input signal. The filter specifications at each level

are more complicated than that of the DWT, being defined in terms of the following

three filter transfer functions. Derivation of this filter bank structure is beyond the

scope of this thesis, but the reader is referred to [40] for details.
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Figure 5.5: 1D DDWT filter bank structure, 3 levels - a) Analysis, b) Synthesis
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H(ω) = ejω/2(cos(ω/2))3 (5.2)

G(ω) = ejω/24j sin(ω/2) (5.3)

K(ω) = − 1

16

(
e−jωG(ω)

) (
1 + (cos(ω/2))2 + (cos(ω/2))4) (5.4)

Note that H(ω) describes a low pass filter, while G(ω) and K(ω) are high pass

filters. All are finite impulse response (FIR) filters with impulse response coefficients

appearing in Table 5.2. In the filter bank structure, the s subscript represents a shift

in the spatial domain – in general, Fs(ω) = e−jωsF (ω). At levels two and above, the

filters appearing in that stage are dilations of the level one filters by a factor 2 l−1.

(e.g. at level 2, H(ω) becomes H(22−1ω) = H(2ω), and at level 3, G(ω) becomes

G(23−1ω) = G(4ω)). In the spatial domain, this can be implemented by upsampling

the filter response by a factor of 2 l−1 (i.e. inserting 2 l−1−1 zeros between samples of

the sequences given in Table 5.2). This method is known in the literature as the à trous

algorithm, and was introduced by Mallat [44]. Notice that the complex conjugate of

the analysis H(ω) filter is used in the synthesis portion, and that the structure in

Figure 5.5 does not have downsampling in the analysis portion (nor upsampling in the

synthesis branches), as is the case with the DWT. This gives the translation-invariant

transform required for denoising purposes.

5.3.2 D–dimensional DDWT

The multidimensional DDWT is also implemented with an efficient algorithm[40].

The general filter bank structure for a D-dimensional DDWT (this time using two

levels) is shown in Figure 5.6 (analysis) and Figure 5.7 (synthesis). Examining these,

we notice that unlike the 1D case, the filter bank branches involve cascades of multiple

filters.

In the analysis portion, the low pass filtering is now performed using a cascade
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Figure 5.6: D-dimensional DDWT analysis filter bank structure
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Figure 5.7: D-dimensional DDWT synthesis filter bank structure
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n h[n] g[n] k[n] l2[n] l3[n]

-4 0 0 0 0 0
-3 0 0 0 0.0078125 0.015625
-2 0.125 0 -0.0078125 0.046875 0.09375
-1 0.375 2 -0.0546875 0.1171875 0.234375
0 0.375 -2 -0.171875 0.65625 0.8125
1 0.125 0 0.171875 0.1171875 0.234375
2 0 0 0.0546875 0.046875 0.09375
3 0 0 0.0078125 0.0078125 0.015625
4 0 0 0 0 0

Table 5.2: Filter coefficients for implementation of spline-based DDWT

of separable filters (we use the ω1, ω2, . . . ωD frequency variables to represent filtering

along the different dimensions of the input signal). For example, with D = 3, this

separable configuration requires filtering the data sequentially along the first, second,

and third dimensions with the same filter kernel H(ω). In addition, there are now D

high pass filter branches, each consisting of a single filter G(ω) that filters the data

along each of the dimensions separately. Filters at level l ≥ 2 are modified in the

same way as in the 1D case - with frequency dilation by a factor of 2 l−1 (which can

be “à trous” implemented in the spatial domain).

The synthesis portion is slightly more complicated. The branches that perform

the filtering of detail coefficients consist of a single dimensional K(ω) filter in cascade

with a multidimensional LD filter:

For D = 2,

L2(ω) =
1

2

(
1 + |H(ω)|2)

)

For D = 3,

L3(ω1, ω2) =
1

3
+

1

6

(
|H(ω1)|2 + |H(ω2)|2

)
+

1

3
|H(ω1)H(ω2)|2

The L3 filter is not separable, but can be reformulated as a combination of separable
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functions:

L3(ω1, ω2) =
1

3
|H(ω1)|2 |H(ω2)|2 +

1

6
|H(ω1)|2 +

1

6
|H(ω2)|2 +

1

3

The synthesis branches that filter the approximation coefficients are filtered in all

dimensions by H∗(ω). All filter coefficients appear in Table 5.2.

Wavelet Modulus – For the multidimensional DDWT, it is also necessary to

define the wavelet modulus, Ml, which is computed at each position in decomposition

level l as follows:

Ml[n1, . . . , nD] =
√

(1Wl[n1, . . . , nD])2 + . . . + (DWl[n1, . . . , nD])2 (5.5)

This quantity can be interpreted as the length of a vector formed from the D detail

coefficients at position [n1, . . . , nD] in level l,

lW[n1, . . . , nD] = [1Wl[n1, . . . , nD] . . .D Wl[n1, . . . , nD]]T (5.6)

with direction defined by the unit vector:

lw[n1, . . . , nD] =
1

Ml[n1, . . . , nD]
[1Wl[n1, . . . , nD] . . .D Wl[n1, . . . , nD]]T (5.7)

As we see in the next section, the wavelet modulus is used to determine denoising

threshold values.
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5.4 Description of Denoising Protocols

5.4.1 Development Environment

The simulations have been performed in the Matlab 6.5 numerical software envi-

ronment, using functions from the Image Processing Toolbox version 3.2. This en-

vironment allows rapid algorithm development, verification, and visualization tools

[45, 46]. A graphical user interface (GUI) was implemented in order to facilitate the

quick evaluation of parameter changes on the denoising results. A screenshot of this

GUI is shown in Figure 5.8.

5.4.2 General Denoising Procedure and Notation Used

As introduced in Chapter 4, we review the overall process of wavelet-based denoising

below. We consider both two and three dimensional input data, so each method will

use either the two or three dimensional DDWT (D = 2, 3).

1. Forward Wavelet Transform

The forward transform (in our case, the D-dimensional, 3-level DDWT) of the

noisy input data fnoisy is calculated, WD{fnoisy}, generating a set of approxi-

mation coefficients at level 3, and D sets of detail coefficients at each of levels

l = 1, 2, 3:

• Approximation coefficients at level 3: S3

• Detail coefficients at level l ∈ 1, 2, 3:
{

1Wl,
2 Wl, . . . ,

D Wl

}

Three levels of wavelet decomposition were deemed to be satisfactory for this

study. Empirically, we found that using greater than three levels increased

computation time but did not improve results.

2. Coefficient Modification
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Figure 5.8: Screenshot of “Wavelet-based Denoising of Cardiac PET Data” GUI
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The DDWT detail coefficients are modified according to a thresholding scheme

that suppresses the noise contribution in the wavelet domain. The approxi-

mation coefficients remain unchanged. We denote the modified, or denoised,

coefficients with a tilde (˜):

• Denoised approximation coefficients at level 3: S3

• Denoised detail coefficients at level l ∈ 1, 2, 3:
{

1W̃l,
2 W̃l, . . . ,

D W̃l

}

3. Inverse Wavelet Transform

The inverse transform of the denoised coefficients is calculated to reconstruct

the denoised image, fdenoised = W−1
D {W̃} (where W̃ refers to all subbands of

denoised coefficients at all levels above).

5.4.3 Details of Denoising Protocols

In this study, we investigate different ways of modifying the detail coefficients at

various decomposition levels, and assess the effect that these methods have on the

denoised output. The techniques adopted are among the most recent in the wavelet

denoising literature, reviewed in Chapter 4:

• spatially adaptive (SA) thresholding

• cross scale regularization (CSR)

For a given overall denoising method (which we call a denoising protocol), we modify

the detail coefficients using a combination of the above methods, as detailed in Table

5.3.

Please note:

1. When the detail coefficients at a given decomposition level are modified using a

certain method, all D subbands at that level are modified in the same manner.
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Detail Detail Detail Detail
Denoising coefficient coefficient coefficient coefficient
Protocol levels levels levels levels

set to zero unmodified modified by modified by
SA thresholding CSR

Denoising protocols using inclusion or deletion of entire subbands
1 1 2 3 – –
2 1 2 3 – –
3 1 2 3 – – –

Denoising protocols using SA
4 – 2 3 1 –
5 1 3 2 –
6 – 3 1 2 –
7 1 – 2 3 –
8 1 2 – 3 –
9 – – 1 2 3 –

Denoising protocols using CSR
10 – 2 3 – 1
11 – 1 3 – 2
12 1 3 – 2
13 – 3 – 1 2

Denoising protocols using both SA and CSR
14 – 3 2 1
15 – – 2 3 1
16 1 – 3 2
17 – – 3 1 2

Gaussian denoising - STATIC studies
18 FWHM = 5 mm
19 FWHM = 10 mm
20 FWHM = 15 mm
21 FWHM = 20 mm

Gaussian denoising - DYNAMIC studies
18 FWHM = 12 mm

Table 5.3: Denoising protocols used in this thesis
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2. In some of these protocols, an entire level of coefficients is set to zero. This

decision is based on the observation that at the finest scales, noise predominates

and it may be better to discard the entire level’s effect in the reconstruction.

3. In some protocols, we leave entire levels of coefficients unmodified.

4. In all cases, the approximation coefficients contain important low frequency

content and are therefore not modified.

5. The denoising protocols are performed using both 2D and 3D DDWT as follows:

Static Data

• In the 2D case, each short-axis oriented slice undergoes 2D denoising. This

process is repeated independently for all slices in the volume.

• In the 3D case, the entire volume of data undergoes 3D denoising at once.

Dynamic Data

• In the 2D case, each transaxial oriented slice undergoes 2D denoising.

This process is repeated independently for all slices in the volume, and

subsequently on all frames in the study.

• In the 3D case, the entire volume of data undergoes 3D denoising at once.

This process is repeated independently for all frames in the study.

6. Protocols 18-21 have been included in order to compare the results our wavelet–

based techniques with those from GLPF smoothing of varying width. The

smoothing filter is a 2D Gaussian for 2D denoising (slice-by-slice) and a 3D

Gaussian for 3D denoising (entire volume at once). Note that protocol 18 is

defined differently for static and dynamic studies.

Having presented the denoising protocols with this approach, we need not provide

repetitive descriptions of algorithm details in each case. It suffices to describe how
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a given modification method is performed on a single arbitrary DDWT coefficient

subband (at level l in dimension d) to yield the denoised coefficients. This is repeated

for each subband and for each level in the DDWT representation using the information

in Table 5.3. After all subbands have been processed, reconstruction of the denoised

image from the modified coefficients is done using the appropriate inverse DDWT

(either 2D or 3D). The description of the different modification methods follows.

Spatially Adaptive Thresholding

The following steps are performed in order to denoise the detail coefficients dWl in

the subband being processed (level l, dimension d) by spatially adaptive thresholding

[47]:

1. Estimate the noise level σ̂n from the modulus of the noisy level 1 coefficients

using equation 5.1.

2. Calculate the adaptive threshold value at each coefficient location in the sub-

band. To do this, we model each coefficient as a random variable with a zero

mean generalized Gaussian distribution, and estimate the value of the distribu-

tion’s variance[24]. At a given coefficient location in the subband, we call this

parameter σ[n1, . . . , nD]. We compute the variance using an equally weighted

average of its neighbouring coefficients[48]:

σ2[n1, . . . , nD] =
1

N




∑

[m1,...,mD]∈N

dWl[n1, . . . , nD]2



 − σ̂2
n (5.8)

where N is a neighbourhood of N pixels around the coefficient currently being

processed. We then use this value in the following expression for the spatially

adaptive threshold:

η[n1, . . . , nD] =
σ̂2

n

σ[n1, . . . , nD]
(5.9)



CHAPTER 5. WAVELET–BASED DENOISING OF CARDIAC PET DATA 79

For this study, N was selected as a 3x3 (for 2D) or 3x3x3 (for 3D) neighbour-

hood, a size that was determined empirically.

3. Finally, perform soft thresholding of the noisy coefficients with the spatially

adaptive threshold value to obtain the denoised coefficients:

dW̃l[n1, . . . , nD] = T soft
η[n1,...,nD]

{
dWl[n1, . . . , nD]

}
(5.10)

Cross Scale Regularization (CSR)

The following steps are performed in order to modify the detail coefficients dWl in

the subband being processed (level l, dimension d) by cross scale regularization. In

this algorithm, the coefficient modification is performed using the wavelet modulus

instead of separately on the individual wavelet vector components[26]. This is done

in order to preserve the direction of the wavelet vector w (the gradient direction), in

which the signal changes the most rapidly.

1. At each coefficient position, compute the wavelet modulus of level l:

Ml[n1, . . . , nD] =
√

(1W1[n1, . . . , nD])2 + . . . + (DW1[n1, . . . , nD])2 (5.11)

and the unit vector defining its direction:

wl[n1, . . . , nD] ,
1

Ml[n1, . . . , nD]
[1Wl[n1, . . . , nD] . . .D Wl[n1, . . . , nD]]T

= [1wl[n1, . . . , nD] . . .D wl[n1, . . . , nD]]T

2. Calculate the wavelet modulus at the next coarsest level, (l + 1), for each coef-

ficient position and normalize this to within the range 0–1 by dividing by the



CHAPTER 5. WAVELET–BASED DENOISING OF CARDIAC PET DATA 80

maximum value of the wavelet modulus at level (l + 1):

Mnorm
l+1 [n1, . . . , nD] =

Ml+1[n1, . . . , nD]

max{Ml+1}
(5.12)

Note that if the coefficients at level (l + 1) are being modified as part of the

denoising protocol, that modification should be completed before performing this

step.

3. Find the modified wavelet modulus of the level l coefficients, lM̃ [n1, . . . , nD] by

the following pointwise multiplication:

M̃l[n1, . . . , nD] = Mnorm
l+1 [n1, . . . , nD] · Ml[n1, . . . , nD] (5.13)

4. Finally, generate the modified detail coefficients at each position by projecting

the vector defined by M̃l and wl onto dimension d:

dW̃l[n1, . . . , nD] = Ml[n1, . . . , nD] · wl[n1, . . . , nD] (5.14)

5.4.4 Signal Extension at Boundaries

Since our DDWT filter bank implementation uses spatial convolution with fixed length

filter kernels, we must extend the input signal at the boundaries in each dimension in

an appropriate manner. Common approaches in image denoising include zero exten-

sion, periodic extension, and mirror extension [13]. Because the first two methods,

in general, have the possibility of introducing abrupt changes at the edges, we do not

consider these. Instead, we choose mirror extension [49, 40].
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5.5 Figures of Merit

From the outset, we emphasize that the denoising protocols ultimately deemed to

be of the highest quality will be the ones that produce denoised output that is the

most diagnostically useful in a clinical setting. The use of phantom images (and the

numerical figure of merit that they provide) is a tool to help us toward that end, but

not an end in itself.

5.5.1 Phantom Data

1. Mean–Squared Error (MSE)

In this thesis, we use the MSE between the noisy and denoised images as the

numerical figure of merit. It is defined as:

MSE =
1

N

N∑

i=1

(fdenoised[i] − fphantom[i])2 (5.15)

where N is the total number of values in the denoised data, fdenoised is the

denoised image and fphantom is the (known) phantom image. Clearly, a better

denoised image will tend to give a lower MSE value.

2. Visual Assessment

Because minimizing the MSE does not necessarily produce the best result, visual

assessments of these denoised images are necessary. Important criteria include

clear delineation of the myocardium region at the inner (blood pool) and outer

boundaries, uniformity of activity in the myocardium and in the blood pool,

and suppression of undesired activity in the background region. Note that for

phantom images, this subjective assessment can easily be done since we know

the true image, alongside which we can directly compare the denoised result.
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5.5.2 Clinical Data

For clinical data, the denoising results must be evaluated differently. Depending on

whether the study in question is a static or dynamic one, these measures are explained

below:

1. Visual Assessment – (used for static studies)

Criteria similar to those described above are used when evaluating clinical im-

ages. However, this approach requires the expertise of a trained PET technician

or cardiologist, who are able to distinguish a diagnostically significant feature

of interest (e.g. a perfusion defect, papillary muscle attached to the aortic valve

at the LV outlet) from a possible artifact of the denoising process.

2. Coefficient of Determination (R2) – (used for dynamic studies)

For dynamic clinical PET data, we can evaluate the effectiveness of the denois-

ing protocol with quantities calculated by OHI’s tracer kinetic model software.

When the modeling has completed (thereby determining flow parameters), a

quantity called the coefficient of determination, or R2, measures how well the

compartmental model fits the measured PET data at the solution parameters.

R2 is a calculation based on the sum of the distances from the measurement

points to the best fit curve of the model, and can vary between 0 and 1 (a value

of 1 corresponds to perfect agreement between model and measurements), so

an effective denoising technique should tend to give a higher R2 value.

3. Normalized Standard Deviation of K1 (SDK1,norm) – (used for dynamic

studies)

This quantity measures the “stability” of the solution, and it is calculated using

the diagonal entries of the covariance matrix output by the model. A small

SDK1 represents a very steep convergence, giving a solution that is insensitive
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to small differences in parameter changes, clearly a desirable property. In order

to reduce bias that might be introduced by the K1 parameter, we use as our

figure of merit a normalized value, SDK1,norm = SDK1/K1.

Since model fitting is performed at each sector in the cardiac polar map, we take

the median of the above quantities, in order to minimize the effect of data outliers.

5.6 Experimental Results

In this section, we present the results of applying the denoising protocols described

above on 82Rb cardiac PET data.

5.6.1 Phantom Data

MSE Results

• 2D – In Figure 5.9, we plot the MSE values resulting from applying the 2D

denoising protocols when the 2D phantom is corrupted with the indicated noise

type.

• 3D – In Figure 5.10, we plot the MSE values resulting from applying the 3D

denoising protocols when the 3D phantom is corrupted with the indicated noise

type, using slice 20/32 in the MSE calculation.
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Figure 5.9: MSE results of denoising protocols on 2D phantom. The MSE of the noisy
images are indicated with the horizontal lines.
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Figure 5.10: MSE results of denoising protocols on 3D phantom. The MSE of the noisy
images are indicated with the horizontal lines.
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Results from Visual Assessment

Some selected visual results of processing the corrupted phantom images with the

denoising protocols are presented as follows:

• Figure 5.11 — 2D phantom image corrupted with OSEM stress noise

• Figure 5.12 — 2D phantom image corrupted with FBP stress noise

• Figure 5.13 — 3D phantom image corrupted with OSEM noise

• Figure 5.14 — 3D phantom image corrupted with FBP noise

All figures that show denoised images in this thesis appear in colour, using a

“jet” colour scale in which blue represents the minimum value in the image and red

represents the maximum value in the image. In the 3D phantom case, we have chosen

to display the mid–ventricular slice # 20/32, due to its similarity to the 2D phantom

image. Notice that in each figure, the original noisy image appears in the lower right

corner.
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5.6.2 Clinical Data

Static Data – Results of Visual Assessment

The following figures show selected visual results of processing the static clinical PET

images with the denoising protocols:

• Figure 5.15 — 2D denoising methods, OSEM stress image

• Figure 5.16 — 2D denoising methods, FBP stress image

• Figure 5.17 — 3D denoising methods, OSEM stress image

• Figure 5.18 — 3D denoising methods, OSEM rest image

• Figure 5.19 — 3D denoising methods, FBP stress image

• Figure 5.20 — 3D denoising methods, FBP rest image

In the 3D case, the results have been displayed for slice # 24/32.



C
H

A
P

T
E

R
5
.

W
A
V

E
L
E

T
–
B

A
S
E

D
D

E
N

O
IS

IN
G

O
F

C
A

R
D

IA
C

P
E

T
D

A
T
A

92

Method 1 Method 2 Method 3

Method 4 Method 5 Method 6 Method 7 Method 8 Method 9

Method 10 Method 11 Method 12 Method 13

Method 14 Method 15 Method 16 Method 17

Method 18 Method 19 Method 20 Method 21 Raw Noisy Image

F
ig

u
r
e

5
.1

5
:

V
isu

al
resu

lts
of

2D
d
en

oisin
g

p
roto

cols
on

clin
ical

d
ata,

O
S
E

M
stress

stu
d
y



C
H

A
P

T
E

R
5
.

W
A
V

E
L
E

T
–
B

A
S
E

D
D

E
N

O
IS

IN
G

O
F

C
A

R
D

IA
C

P
E

T
D

A
T
A

93

Method 1 Method 2 Method 3

Method 4 Method 5 Method 6 Method 7 Method 8 Method 9

Method 10 Method 11 Method 12 Method 13

Method 14 Method 15 Method 16 Method 17

Method 18 Method 19 Method 20 Method 21 Raw Noisy Image

F
ig

u
r
e

5
.1

6
:

V
isu

al
resu

lts
of

2D
d
en

oisin
g

p
roto

cols
on

clin
ical

d
ata,

F
B

P
stress

stu
d
y



C
H

A
P

T
E

R
5
.

W
A
V

E
L
E

T
–
B

A
S
E

D
D

E
N

O
IS

IN
G

O
F

C
A

R
D

IA
C

P
E

T
D

A
T
A

94

Method 1 Method 2 Method 3

Method 4 Method 5 Method 6 Method 7 Method 8 Method 9

Method 10 Method 11 Method 12 Method 13

Method 14 Method 15 Method 16 Method 17

Method 18 Method 19 Method 20 Method 21 Raw Noisy Image

F
ig

u
r
e

5
.1

7
:

V
isu

al
resu

lts
of

3D
d
en

oisin
g

p
roto

cols
on

clin
ical

d
ata,

O
S
E

M
stress

stu
d
y,

slice
24

sh
ow

n



C
H

A
P

T
E

R
5
.

W
A
V

E
L
E

T
–
B

A
S
E

D
D

E
N

O
IS

IN
G

O
F

C
A

R
D

IA
C

P
E

T
D

A
T
A

95

Method 1 Method 2 Method 3

Method 4 Method 5 Method 6 Method 7 Method 8 Method 9

Method 10 Method 11 Method 12 Method 13

Method 14 Method 15 Method 16 Method 17

Method 18 Method 19 Method 20 Method 21 Raw Noisy Image

F
ig

u
r
e

5
.1

8
:

V
isu

al
resu

lts
of

3D
d
en

oisin
g

p
roto

cols
on

clin
ical

d
ata,

O
S
E

M
rest

stu
d
y,

slice
24

sh
ow

n



C
H

A
P

T
E

R
5
.

W
A
V

E
L
E

T
–
B

A
S
E

D
D

E
N

O
IS

IN
G

O
F

C
A

R
D

IA
C

P
E

T
D

A
T
A

96

Method 1 Method 2 Method 3

Method 4 Method 5 Method 6 Method 7 Method 8 Method 9

Method 10 Method 11 Method 12 Method 13

Method 14 Method 15 Method 16 Method 17

Method 18 Method 19 Method 20 Method 21 Raw Noisy Image

F
ig

u
r
e

5
.1

9
:

V
isu

al
resu

lts
of

3D
d
en

oisin
g

p
roto

cols
on

clin
ical

d
ata,

F
B

P
stress

stu
d
y,

slice
24

sh
ow

n



C
H

A
P

T
E

R
5
.

W
A
V

E
L
E

T
–
B

A
S
E

D
D

E
N

O
IS

IN
G

O
F

C
A

R
D

IA
C

P
E

T
D

A
T
A

97

Method 1 Method 2 Method 3

Method 4 Method 5 Method 6 Method 7 Method 8 Method 9

Method 10 Method 11 Method 12 Method 13

Method 14 Method 15 Method 16 Method 17

Method 18 Method 19 Method 20 Method 21 Raw Noisy Image

F
ig

u
r
e

5
.2

0
:

V
isu

al
resu

lts
of

3D
d
en

oisin
g

p
roto

cols
on

clin
ical

d
ata,

F
B

P
rest

stu
d
y,

slice
24

sh
ow

n



CHAPTER 5. WAVELET–BASED DENOISING OF CARDIAC PET DATA 98

Dynamic Data – Quantitative Model Output Results

Figure 5.21 plots the figures of merit extracted from the quantitative model when the

denoising protocols are applied to the OSEM stress study, and Figure 5.22 plots the

figures of merit extracted from the quantitative model when the denoising protocols

are applied to the OSEM rest study.

This is done for both 2D and 3D denoising (FBP is not considered here). For dy-

namic data, we have only included one Gaussian-denoised result with FWHM=12mm,

the value used at OHI for dynamic studies. This appears as Protocol 18.
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Figure 5.21: R2 and SDK1,norm results for dynamic PET data (OSEM stress study). The
horizontal lines denote the values derived from noisy data.
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Figure 5.22: R2 and SDK1,norm results for dynamic PET data (OSEMrest study).The
horizontal lines denote the values derived from noisy data.
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5.7 Discussion

By analyzing the experimental data and images presented in the previous section,

we can draw several conclusions about the denoising protocols that were investigated.

These are presented below, along with some relevant discussion points that help

interpret the results of this study.

1. Full Range of Denoising Results – In this thesis, we have elected to include

the results for all protocols, even though it is clear in some cases the denoised

images are largely oversmoothed or undersmoothed. Similarly, some of the

protocols generate denoised results that are essentially identical to others (e.g.

Protocol 14 and 15. This has been done to clearly illustrate the effect that

changes to both a) the modification methods and b) the modified levels has on

the denoised result. By presenting a comprehensive “collage” of visual outputs,

it helps the reader develop an intuition as to how these factors incrementally

affect the output image quality.

2. Classification of Denoising Protocols based on Image Quality – By an-

alyzing the results visually (both phantom and clinical), we notice that there

is a wide range of variation in quality for a given set of input data. The de-

noised images can be loosely classified according to the degree of smoothing

(or lack thereof) that each denoising protocol generates. Table 5.4 indicates

this grouping of protocols for the set of visual results presented. Because we

have established that 3D denoising gives improved quality over 2D, we restrict

our attention to the 3D results. For the same reason, we consider only OSEM–

reconstructed images in this analysis (while realizing that the denoising methods

offer the same relative improvements for FBP reconstructed images). For the

phantom images, we can easily perform this classification because we know the

properties of the desired image. For the clinical images, subjective assessment
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has been performed based on a set of criteria which was provided after consult-

ing with expert PET staff at OHI, as explained in Section 5.5.2.

PHANTOM CLINICAL
OSEM OSEM OSEM

stress rest

Protocols giving 11 4,6,9,11 4,6,9,10,11,14,15
undersmoothed images

Protocols giving
marginally 4,6,10 1,5,7,10,14,15 1,5,7,13,17

undersmoothed images
Protocols giving 3,8 3 3

oversmoothed images
Protocols giving

marginally 2 2,8 2,8
oversmoothed images

Protocols giving
appropriately 1,5,7,9,12,13, 12,13,16,17 12,16

smoothed images 14,15,16,17

Table 5.4: Classification of denoising protocols based on level of smoothing

3. Denoising Protocols Giving Best Image Quality – Table 5.4 reveals that

denoising protocols 12 and 16 consistently produced denoised images that give

an acceptable level of smoothing, over a wide range of input data quality. This

has been verified for the FBP data separately (though the full results are not

presented). Because these protocols yield excellent denoised results, it is in-

structive to consider these in detail before moving on.

Figure 5.23 allows a comparison of these protocols for a clinical OSEM stress

study (protocols 2, 8, 13 and 17, also judged to give very good subjective image

quality, are included). These images show that protocols 13 and 17 retain more

detailed features around the inner and outer edge of the myocardium ring than

with protocols 12 and 16. This is done without introducing excess graininess

in the rest of the image (i.e. in the background). Indeed, this is the expected

result when the cross scale regularization (CSR) technique is used. Protocols 12
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and 16 use CSR, but not for the finest scale (level 1) detail coefficients, which

are set to zero. Protocols 13 and 17, however, use CSR for both level 1 and 2

detail coefficients. This allows us to conclude that for this data, the benefits

using CSR are fully realized only when it is applied across multiple scales. This

is a different result from that found in [26], where CSR was only applied to level

1 detail coefficients. Figure 5.24 presents the outputs of the same six protocols

on a clinical OSEM rest study. Note in this case that protocols 13 and 17 give

a undersmoothed result, so in this case using CSR on the finest scale is not

appropriate.

We conclude from the above that the value of using CSR approach lies in its

use on the level 2 coefficients. In addition, the similarity of the protocol 12

and 16 results (and those of protocols 13 and 17) for both stress and rest cases

indicate that spatially adaptive thresholding of the level 3 coefficients gives little

additional benefit, since essentially the same result is obtained by leaving these

coefficients unmodified.

4. 3D Denoising vs. 2D Denoising Image Quality – The clinical static

images and the clinical dynamic images illustrate that better denoising results

are achieved by applying a 3D transform to the entire data volume, compared

to “slice–by–slice” 2D denoising. For static images, the denoised image quality

is generally better for the 3D denoising protocols than for the 2D versions.

Specifically, 3D processing suppresses a lot of graininess in the myocardium area

that appears otherwise in the 2D results. It should be noted that this behaviour

was not evident in the 3D phantom studies. Comparing the raw noisy images

for 2D and 3D reveals that the level of noise in the 3D phantom was significantly

higher than the simulated 2D phantom noise. It is probably this increased noise

level, rather than a shortcoming in the 3D denoising technique, that led to an

absence of significantly increased image quality, as is evident in the clinical data
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Method 2 Method 8 Method 12

Method 13 Method 16 Method 17

Figure 5.23: Visual results of protocols 2,8,12,13,16,17 (3D, OSEM,
stress, slice 24 shown)

Method 2 Method 8 Method 12

Method 13 Method 16 Method 17

Figure 5.24: Visual results of protocols 2,8,12,13,16,17 (3D, OSEM,
rest, slice 24 shown)
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(discussed below).

5. Comments on Protocols 1–3: Denoising Protocols using subband in-

clusion and deletion – These protocols, very simple in that coefficient modi-

fication is done by setting entire detail subband levels to zero, provide valuable

information. Protocol 3 illustrates that removing the detail coefficients at levels

1-3 from the reconstruction will give oversmoothed results, so we conclude from

this that there is useful detail at these levels. Protocol 2, despite its simplicity

(levels 1 and 2 set to zero, level 3 unmodified), gave surprisingly good results

that were only marginally smoothed, and would certainly be acceptable in some

circumstances. However, in order to get more detail we must implement a more

sophisticated thresholding method on the level 1 and 2 coefficients.

6. Comments on Protocols 4–9: Denoising Protocols using SA – It is

evident that protocols 4, 6, and 9 give very similar unacceptable results that

are characterized by too much graininess. In each of these, spatially adaptive

thresholding is performed on the level 1 detail coefficients, so we conclude that

this method does not provide aggressive enough thresholding at this level. In

protocols 5 and 7, the level 1 detail coefficients are set to zero and these show

only marginal undersmoothing. The SA thresholding in protocols in 5 and 7 is

done on levels 2 and 2-3 respectively, and these yield nearly identical denoised

images. This suggests that applying the SA technique to level 3 coefficients

provides minimal improvement in quality. Among this group, protocol 8 is

judged to produce the best quality, while noting the similarity to protocol 2

above.

7. Comments on Protocols 10–13: Denoising Protocols using CSR – We

have discussed protocols 12 and 13 above, arguing that the increased detail

that protocol 13 retains around the myocardium boundary can be attributed to
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applying the CSR to multiple detail levels (1-2), instead of discarding the level

1 coefficients. Protocol 11 exemplifies that although using CSR on the level 2

coefficients is beneficial, this improvement is offset by simply leaving the level

1 detail coefficients unmodified. Finally, a comparison between the results of

protocols 4 and 10 shows the increase in image quality that can be achieved

by using CSR on the level 1 coefficients (giving only a slightly undersmoothed

image), as opposed to using SA on the level 1 coefficients (very grainy).

8. Comments on Protocols 14–17: Denoising Protocols using SA and

CSR – Having already mentioned protocols 16 and 17 as optimal results above,

we see that protocols 14 and 15 do not perform as well. This is primarily due

to the fact that in these protocols, CSR is applied only at the finest scale (level

1). Having said this, it does not negate the potential benefit of using a hybrid

denoising scheme that combines spatially adaptive thresholding with CSR. Pro-

tocols 14 (using CSR at level 1, SA at level 2) and 15 (using CSR at level 1, SA

at level 2 and 3) give images that are only marginally undersmoothed. It may

be possible to generate acceptable denoised images with these methods with

changes to the parameters of the SA algorithm (e.g. size of the neighbourhood

N used in the variance calculation).

9. Comparison between Gaussian smoothing and Wavelet-based Denois-

ing – Using the same criteria for visual assessment, we see that the Gaussian

smoothed images of FWHM = 10mm and 15mm provide images judged to be

only marginally lower quality than the best wavelet-denoised results. In clinical

practice at OHI, in order to correct for images of varying image quality (i.e.

noisier than what we have considered), a conservative FWHM = 18mm is ap-

plied. Since the amount of smoothing is not adaptive to noise levels, this tends

to oversmooth the data in many instances. The marginal increase in denoising
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performance that is achieved with wavelet-based denoising is accompanied by

the ability to adapt to image quality, based on the input data – a clear advantage

over Gaussian smoothing.

10. Dynamic Results – The points above have been based on visual interpretation

of the denoised results. Upon inspection of Figure 5.21 and Figure 5.22, some

further comments specific to the effect of the protocols on the physiological

model outputs are in order. Firstly, 3D denoising in general outperformed

2D denoising for both minimizing SDK1,norm and maximizing R2. We should

point out the anomaly that this was not observed with the SDK1 results of

the rest study, as the 2D methods generally did a better job of minimizing

this quantity. Concentrating on the stress study, we notice that Protocol 17

(using 3D denoising) does an excellent job for both figures of merit. This is

especially encouraging, given that this protocol was deemed to be near optimal

using visual assessment as well.

Since Protocol 17 has shown to improve both the visual quality and extracted

model parameters, we decided to investigate this technique over a wider range of

data quality. This experiment measured SDK1,norm and R2 using data (OSEM

stress) from four healthy subjects. The results of using Protocol 17 were com-

pared to the standard clinical protocols used for dynamic studies at OHI – 3D

Gaussian filtering with FWHM=12mm – and appear in Table 5.5. Protocol 17

introduced an average of 3.9% improvement in SDK1,norm and a 2.0% improve-

ment in R2.

Figure 5.25 shows the full quantitative model output using Protocol 17. Notice

how the K1 polar map in the top left corner shows increased uniformity when

compared to the output of the same model from the original noise–contaminated

data in Figure 5.26.
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Subject Protocol 17 (3D) Gaussian (3D)
R2 SDK1,norm R2 SDK1,norm

Subject 1 0.9282 0.0850 0.9188 0.0994
Subject 2 0.9747 0.0578 0.9701 0.0557
Subject 3 0.8892 0.0955 0.8398 0.0949
Subject 4 0.9656 0.0745 0.9600 0.0787

Table 5.5: Comparison of quantitative model outputs between Protocol 17 and 12mm
FWHM Gaussian

11. Caveat: Using MSE as Sole Measure of Image Quality – Certain de-

noising protocols (such as 3) consistently produce denoised images that are

oversmoothed and not clinically useful. Despite this, the MSE values that these

protocols produce are among the lowest seen. This behaviour reiterates the

need to consider both visual and quantitative results when determining how

effective a protocol behaves. In general, Figures 5.9 and 5.10 illustrate that the

best denoising methods (determined by visual assessment), such as protocols 13

and 17 tend to give lower MSE values (as expected), but we cannot use MSE

alone as an indicator of denoising efficacy.

The next chapter concludes this thesis by summarizing the work performed, then

presents some useful future directions in which this research could be taken.
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Figure 5.25: Quantitative model output using Protocol 17

K1 (med = 1)

P

S L

0.5

1

1.5

2
K2 (med = 0.16)

P

S L

0

0.1

0.2

0.3

0.4

TBV (med = 0.49)

P

S L

0

0.5

1
FLOW (med = 4.3)

P

S L

0

5

10

RMSE (med = 1.5e+003)

P

S L

1000

2000

3000

R_SQUARE (med = 0.83)

P

S L

0

0.5

1
EXIT_FLAG (med = 1)

P

S L

−1

−0.5

0

0.5

1

babingg22_stressRb_1comp

0 1 2 3 4 5 6 7 8
0

2

4

x 10
4

K1 = 1.3 ± 0.28
K2 = 0.1 ± 0.036
TBV = 0.61 ± 0.11

High uptake regions

Time [minutes]

A
ct

iv
ity

 [B
q/

cc
]

Figure 5.26: Quantitative model output using original noisy data



Chapter 6

Summary and Future Work

This final chapter summarizes this thesis and its contributions in Section 6.1. A look

toward future work that might be undertaken to extend the value of this research is

presented in Section 6.2.

6.1 Summary

In this thesis, we investigated the applicability of recently published wavelet–based

denoising algorithms on cardiac 82Rb PET data. Principles of PET physics and image

reconstruction were reviewed, with particular focus on the main sources of noise in

PET data. We then illustrated how PET is applied in the field of cardiology – that

is, in a level of detail sufficient to be able to interpret the visual and quantitative

results of the denoising protocols. A review of classical noise reduction techniques

followed, and we described how the high level of noise in 82Rb PET images may not

be optimally suppressed with such tools (such as GLPF smoothing).

Requiring a more sophisticated approach that can adapt to varying scale and local

image properties, we then turned our attention to wavelet representations. A detailed

review of publications that perform denoising using wavelets was included, and we

described two state of the art methods in this field – spatially adaptive thresholding
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and cross scale regularization. We justified our selection of the discrete dyadic wavelet

transform as our signal basis, and described an efficient filter bank implementation

that can be used for processing multidimensional data.

Our interest then turned to cardiac PET data and the development of an experi-

mental framework that could be used to investigate wavelet denoising methods. This

analysis was performed on both phantom data and clinical data obtained from OHI.

After describing how the noise that corrupts cardiac PET images can be character-

ized, estimated, and simulated, we described several figures of merit that are useful

in assessing denoised image quality in the absence of a priori information (a difficult

task faced in nuclear medicine). With these in hand, an exhaustive series of denois-

ing protocols were developed based on the methods above. This made it possible to

determine which combinations of a) thresholding methods, and b) the decomposition

levels at which they were applied, made the most significant improvements to the

denoised images. With the information gleaned from this investigation, we developed

hybrid methods (protocols 12,13,16,17) that apply CSR at multiple levels in com-

bination with SA thresholding. These protocols provide excellent denoising results,

both visually and in terms of the quality of extracted physiological parameters. One

significant advantage over standard clinical protocol is that the noise estimate is data-

driven, providing an amount of smoothing that adapts appropriately to the quality

of the input image.

6.2 Future Work

• Noise Model

In this thesis, we developed denoising protocols based on an assumption of

an additive white Gaussian noise distribution. Despite this, they exhibited

satisfactory behaviour on the input PET data (that has a degree of spatial
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correlation in the image domain for both FBP and OSEM, and a non–Gaussian

PDF for OSEM). This was also observed in the dynamic PET study of Lin et

al., in which they provide a detailed discussion that explains this behaviour [3].

While these methods did lead to improvement over the current clinical protocol,

it is evident from the input data (specifically, the presence of clustered residuals)

that this assumption is not strictly satisfied. We feel that better denoising

performance would be achieved by incorporating a more sophisticated noise

model into the procedure – such models for FBP and OSEM reconstruction are

developed in [41, 42]. To accomplish this, the bootstrap method is a promising

technique by which noise properties can be measured from a single data set

(e.g. PET scan)[50]. This method has been investigated for PET data with

promising results [51, 52]. The effect of the more realistic spatially-varying

noise parameters (σn and covariance matrix) can be investigated in the wavelet

domain to further refine the thresholding procedure.

• Applicability to Higher Dimensional Denoising Algorithms

Our denoising methods in this thesis concentrated on 2D and 3D wavelet trans-

forms to denoise images and image volumes. Because dynamic PET data are

four-dimensional (representing a time–varying volume of data), it should be

possible to refine the proposed protocols to incorporate this. Specifically, a de-

noising algorithm based on 4D wavelet transform has the potential to perform

better noise suppression than what is possible using frame–by–frame denoising.

This is because such a transform would incorporate the correlation between

time frames, and preliminary experiments have been performed to validate this

notion. With this approach, important practical issues that must be addressed

are the uniform resampling of the time dimension (which is not the case with

82Rb studies that have varying frame durations), and a suitable noise estimator

σ̂n. The dynamic polar map is another representation that might potentially
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benefit from these techniques.

• Denoising in the Sinogram Domain

In this thesis, we performed noise reduction by post–processing images that

were reconstructed with standard clinical protocol. As reviewed in Chapter 4,

there have been efforts to incorporate wavelet-based denoising earlier in the

reconstruction process. We believe that there is potential benefit in adapting

our proposed protocols so that they can be applied to sinograms. By doing

so, it would be possible to eliminate from the input data artifacts that result

specifically from image reconstruction (e.g. radial streaking in FBP images).

Also, statistics of the data in this domain are known to be Poisson in nature,

and this may result in a more accurate noise characterization that could be

incorporated into the denoising procedure.

• Alternate Signal Basis Functions

In the most recent literature, there are several “non–wavelet” multiscale repre-

sentations that have proved useful when applied to the image denoising prob-

lem. Among these are platelets, which are localized functions of varying scale,

position and orientation. It is shown in [53] that platelets are particularly

well–suited to photon limited imaging modalities such as PET, for which the

Gaussian noise assumption (which is inherent to wavelet denoising) may not

necessarily be true. The thresholding methods investigated in this thesis (SA

thresholding and CSR) may also be beneficial when applied to the coefficients of

a platelet decomposition. Other recently developed multiscale representations

of similar interest include curvelets [54] and brushlets [55].

• Comparison to Gold Standard for Accuracy of Perfusion Estimates

As we have emphasized throughout this thesis, the “true” spatiotemporal 82Rb

distribution is unknown. Though our denoising protocols have improved both
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the ability to visually interpret the data and certain figures of merit for both

static and dynamic studies, we have not evaluated the accuracy of our perfusion

results – that is, how close they estimate the true value. This comparison can be

done with the use of a gold standard, which for a myocardial perfusion study is

performed with a H15
2 O tracer, producing less noisy data[3]. Performing such a

study would determine the extent of the bias introduced into the flow estimates

with the wavelet-based methods. In a similar manner, a cardiac phantom study

(not to be confused with the mathematical phantom we have used) would allow

a comparison between a known radiotracer distribution and the output of the

denoising methods.

• Application of Denoising Protocols to other Clinical Studies

The denoising protocols presented in this thesis are general in nature and could

potentially benefit other types of static and dynamic imaging studies, both for

PET and for other imaging modalities. In particular, it would be useful to apply

these methods to:

1. ECG-gated cardiac studies, in which the image data are subdivided into

separate frames within the cardiac cycle (the trigger is based on the ECG

signal). These studies are useful in correcting for patient motion and al-

low visualization of cardiac function and determination of the LV ejection

fraction.

2. perfusion studies using different tracers, such as 13N ammonia and 11C

acetate.

• Optimization of Spatially Adaptive Thresholding parameters

When we performed SA thresholding, we used a simple equally weighted neigh-

bourhood N of 3x3 (2D) or 3x3x3 (3D) coefficients for variance estimation. This

gave satisfactory results, but there are some more sophisticated techniques that
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appear in the literature that may prove worthwhile. Finding an optimal size of

N and the weighting of the coefficients (based on their horizontal and vertical

orientations) was explored in [25]. In [24], they include in the neighbourhood

a smaller group of coefficients from the parent subband (the coefficients at the

same spatial location, but at the next coarsest scale) in order to incorporate

the spatial correlation across subbands. In addition, the iterative thresholding

strategy that is used in [25] may hold promise when applied to the data in this

study.

• Significance Testing

This thesis has clearly shown the merits of using the proposed methods (both

with visual and quantitative results) for the data sets considered, which are

typical of those found in a cardiac PET setting. It is not possible to claim

that these methods outperform standard clinical protocol without completing

a more rigorous study. The input of expert PET staff (possibly as receiver

operator characteristic study) and a larger sample size (representing a full range

of image quality) would be required in order to ascertain that the improvements

we demonstrate are statistically significant.
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Appendix A

Background — Wavelet Theory

A.1 Continuous Wavelet Transform

The continuous wavelet transform (CWT) is, in a sense, the most “general” of wavelet

representations and will be described briefly in this section. Though not of practical

interest for digital images, an explanation of the CWT illustrates the mathematical

concepts and provides the motivation for using the discrete dyadic wavelet transform

in our denoising algorithms. This discussion will focus only on one-dimensional signals

- extensions to multidimensional signals appear in subsequent sections.

The CWT is always performed with respect to a chosen continuous function ψ(x),

called a mother wavelet, and transforms a continuous signal f(x) ∈ L2(R) 13 into a

function ψWC(s, τ) of two continuous variables - scale, s ∈ R, and translation, τ ∈ R.

It is denoted with the ψWC operator: 14

ψWC(s, τ) = ψWC{f(x)} = 〈f(x), ψs,τ (x)〉 =

∫ ∞

−∞

f(x)ψs,τ (x)dx (A.1)

In this expression, ψs,τ (x) corresponds to versions of the wavelet function that have

13The notation f(x) ∈ L2(R) means that f(x) belongs to the space of square integrable func-

tions,i.e.
∫
∞

−∞
|f(x)|2 dx ≤ ∞.

14The notation 〈f(x), ψs,τ (x)〉 denotes the inner product.

122
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been shifted by the translation parameter τ , and dilated by the scale parameter s, as

given by:

ψs,τ (x) =
1√
s
ψ

(
x − τ

s

)
(A.2)

Note that ψ(x) must be oscillatory and have zero average, (i.e.
∫ ∞

−∞
ψ(x)dx = 0).

Some examples of ψs,τ (x) are shown in Figure A.1 for an arbitrary mother wavelet

(called a Mexican hat). This figure shows that we can interpret the scale parameter s

as being inversely related to frequency - as s increases, the oscillations of the wavelet

function “spread out” (and the frequency of the oscillations in this local signal window

decreases).

Figure A.1: Various dilations and translations of an arbitrary wavelet function

As with other signal transforms used in electrical engineering, we can interpret

equation A.1 as a correlation. In this case, the CWT measures how well correlated
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f(x) is with shifted and dilated versions of the mother wavelet. In other words, if

the signal f(x) has a localized feature that matches closely with a particular version

of the wavelet, say ψso,τo
(x), we would expect the value of ψWC (represented as a

surface in the (s, τ) plane) at the point (so, τo) to be very large. The advantage of

using the CWT in locating this small feature is evident - it allows us to “localize”

this information in the transform domain in a much more concise manner than in the

Fourier basis, which would require an infinite number of sinusoids.

The CWT, then, can be interpreted as an infinite set of transform coefficients,

{ψWC(s, τ)}, that measure the similarity of f(x) with the infinite set of scaled, trans-

lated wavelet functions {ψs,τ (x)}. Because both parameters s and τ are continuous,

the CWT is a highly redundant transform.15

A.2 Discrete Wavelet Transform

Ultimately, we intend to use digital image processing techniques to denoise the

PET images, so we need to eliminate the practical limitations of the CWT. This

is done by using a discrete wavelet transform (DWT), as outlined in the following

section, which is based primarily on the development in [13].

A.2.1 Signal Expansions as a Series

Recall that an arbitrary function f(x) ∈ L2(R) can be written as a weighted sum of

expansion functions, called an expansion series representation:

f(x) =
∑

k

αkek(x) (A.3)

where the functions {ek(x)}k∈Z are the expansion functions of the series, and the

scalars {αk}k∈Z are the expansion coefficients of the series. Each value αk gives the

15We further note that under strict admissibility conditions, the original function f(x) can be
reconstructed with the use of the inverse CWT, but the details of this are not included here.
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“weight” of the signal associated with the kth expansion function ek(x).

If there is only one set of {αk} for each f(x), then the expansion is unique. In this

case, the set of expansion functions {ek(x)} are said to form a basis for the class of

functions being represented, and each individual ek(x) is called a basis function. The

set of all functions that can be written in this basis (by varying the αk coefficients)

defines a function space V , referred to as the closed span:

V = Span
k

{ek(x)} (A.4)

If a function f(x) is contained in that span, we write f(x) ∈ V . To compute

the coefficients {αk} for a given f(x) in this space, we use the corresponding dual

functions of the expansion set, denoted {ẽk(x)}k∈Z, with the following inner product:

αk = 〈ẽk(x), f(x)〉 =

∫ ∞

−∞

ẽk(x)f(x)dx (A.5)

There are three cases of interest:

1. The expansion set {ek(x)} forms an orthonormal basis for V , that is:

〈em(x), en(x)〉 =






0 if m 6= n

1 if m = n

If this is the case, ek(x) = ẽk(x) , so we can compute the αk’s by substituting

ek(x) for ẽk(x) in equation A.5.

2. The expansion set are an orthogonal (but not orthonormal) basis for V :

〈em(x), en(x)〉 = 0 for m 6= n (A.6)
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In this case, the basis functions {ek(x)} and their duals {ẽk(x)} are biorthogonal :

〈em(x), ẽn(x)〉 =






0 if m 6= n

1 if m = n

and the {αk} are computed with equation A.5.

3. The expansion set is not a basis for V , but a spanning set in which there are

more than one set of {αk} coefficients for a given f(x). The expansion functions

are said to form a frame for which the following holds 16:

C1

∥∥(f(x))2
∥∥ ≤

∑

k

|〈ek(x), f(x)〉|2 ≤ C2

∥∥(f(x))2
∥∥ (A.7)

for C1 > 0 and C2 < ∞. In this case, the expansion functions and their duals

are called overcomplete or redundant.

A.2.2 Multiresolution Theory

In order to describe the DWT, it is first necessary to introduce some background

concepts and results from multiresolution analysis (MRA) theory. Note that the

following assumes an orthogonal expansion set, a condition that will be relaxed in

subsequent sections.

An MRA uses two types of functions to represent a signal f(x) ∈ L2(R) at multiple

resolutions:

1. a scaling function φ(x), which is used to generate a series of approximations of

f(x), and

2. a wavelet function ψ(x), which is used to generate the details representing the

difference between successive approximations.

16The notation ‖f(x)‖ denotes the norm, that is: ‖f(x)‖ =
∫
∞

−∞
f(x)f(x)dx
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Scaling Functions

Consider a very specific expansion set, the members of which are a discrete set of

scaled, dilated, and shifted versions of a function φ(x) ∈ L2(R) called a scaling

function:

{ek(x)} = {φj,k(x)} =
{
2j/2φ(2j(x − k))

}
(j,k)∈R2

(A.8)

where 2j determines the amount by which φ(x) is compressed/stretched, 2jk deter-

mines the translation of φ(x) along the x axis, and 2j/2 is a scaling factor.

Next, we see how this expansion set might form a basis for L2(R). Fixing j =

jo gives us a subset of these expansion functions, {2jo/2φ(2jo(x − k))}k∈Z, in which

the functions have constant width (scale), but vary over translations. The class of

functions that can be built with a linear combination of this (reduced) expansion set,

defines the Vjo
space:

Vjo
= Span

k
{2jo/2φ(2jo(x − k))} (A.9)

in which a function f(x) ∈ Vjo
is written:

f(x) =
∑

k

αkφjo,k(x) =
∑

k

αk2
jo/2φ(2jo(x − k)) (A.10)

Clearly, using a single jo scale selection limits the size of the details possible in

such a function. Consequently, Vjo
is a subspace within L2(R). As jo increases, the

expansion functions become “skinnier” and increasingly fine details can be represented

in Vjo
.

In order to form a valid MRA, the scaling function φ(x) must satisfy the following

conditions:

1. φ(x) and its integer translates {φ(x − k)}k∈Z must be mutually orthogonal,

2. the subspaces spanned by φ(x) at lower scales are nested within those spanned

by φ(x) at higher scales (see Figure A.2),
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3. if f(x) ∈ Vj then f(2x) ∈ Vj+1,

4. the only function common to all Vj is f(x) = 0, and

5. as jo → ∞, any function f(x) ∈ L2(R) can be represented with arbitrary

precision with the {2jo/2φ(2jo(x − k))}k∈Z expansion set.

Vj-1

Vj

Vj+1

Wj-1Wj

Figure A.2: a) Nesting of V subspaces, b) Nesting of V/W subspaces

If these conditions are met, the relationship between the members of the scaling

function expansion sets at scales j and j + 1 is:

φj,k(x) =
∑

n

αnφj+1,n(x) (A.11)

Substituting the original definition of {ek(x)} in equation A.8, replacing αn with

the more “digital filter-like” notation hφ[n] (for reasons that will soon be evident),
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and realizing that φj,k(x) evaluated at j = 0, k = 0 becomes φ0,0(x) = φ(x), gives the

MRA refinement equation for scaling functions :

φ(x) =
∑

n

hφ[n]
√

2φ(2x − n) (A.12)

This key result implies that the expansion functions for an arbitrary subspace Vjo
,

can be defined in terms of the same expansion functions at the next higher subspace

Vjo+1. The weightings that define this relationship are given by the hφ[n] sequence,

called the scaling function coefficients.

Wavelet Functions

We have seen that an MRA based on scaling functions can represent a signal f(x) ∈

L2(R) with arbitrary precision, using sufficiently “skinny” scaling functions. It is

important to be able to express the difference in detail between adjacent scaling

subspaces Vjo
and Vjo+1. For this reason, we introduce another expansion set based

on a wavelet function ψ(x) and its scaled, dilated and translated copies:

{ek(x)} = {ψj,k(x)} =
{
2j/2ψ(2j(x − k))

}
(j,k)∈R2

(A.13)

where 2j determines the amount by which ψ(x) is compressed/stretched , 2jk deter-

mines the translation of ψ(x) along the x axis, and 2j/2 is a scaling factor.

This expansion set of wavelet functions (at a particular scale jo) defines a function

space Wjo
:

Wjo
= Span

k
{2jo/2ψ(2jo(x − k))} (A.14)

which can be used to represent f(x) ∈ Wjo
as follows:

f(x) =
∑

k

βkψjo,k(x) =
∑

k

βk2
jo/2ψ(2jo(x − k)) (A.15)
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Wjo
corresponds to the difference between the scaling function spaces Vjo

and Vjo+1.

That is, the set of all functions that can be represented in Vjo+1 but not in Vjo
is

contained in Wjo
, as illustrated in Figure A.2. Thus, Wjo

is the orthogonal complement

of Vjo
in Vjo+1, and is said to obey the direct sum relationship:

Vjo+1 = Wjo
⊕ Vjo

(A.16)

This relationship holds for any level j, so we can decompose Vj into the scaling

and wavelet function spaces at the next lowest resolution step. If we start at an

arbitrary scale jo, and continually apply this relationship, we can represent the L2(R)

function space in terms of scaling function spaces only, or as a combination of scaling

and wavelet spaces:

L2(R) = V∞

= V0 ⊕ W1 ⊕ W2 ⊕ . . .

= Vjo
⊕ Wjo

⊕ Wjo+1 ⊕ . . .

(A.17)

Because the wavelet space Wj is part of a larger scaling space Vj+1, any function in

Wj can be written in terms of the Vj+1 expansion functions:

ψ(x) =
∑

n

hψ[n]
√

2φ(2x − n) (A.18)

Comparing this to equation A.12, we realize that this is a MRA refinement equa-

tion for wavelet functions. In this case, the weightings are given by the hψ[n] sequence,

called the wavelet function coefficients. The scaling function coefficients {hφ(n)} and

the wavelet function coefficients {hψ(n)} obey the following relationship:

hψ[n] = (−1)nhφ[1 − n] (A.19)
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A.2.3 Representation of Signals in terms of MRA Functions

Continuous Signals

We can use the MRA “tools” developed above to represent our signal of interest,

f(x) ∈ L2(R). This can be done with a wavelet series expansion (at an arbitrary

starting scale j = jo):

f(x) =
∑

k

cjo
[k]φjo,k(x) +

∞∑

j=jo

∑

k

dj[k]ψj,k(x) (A.20)

where {cjo
[k]} are the approximation coefficients of the series expansion (given by

〈f(x), φjo,k(x)〉 for an orthonormal basis) and {dj[k]} are the detail coefficients of the

series expansion (given by 〈f(x), ψj,k(x)〉 for an orthonormal basis).

The first sum provides a lower resolution approximation of f(x) ∈ Vjo
. The second

sum represents a set of increasingly fine details which are added to the low resolution

approximation. As j increases from jo to jo + 1, . . ., these details belong to the Wjo
,

Wjo+1, . . . subspaces. In the limit (as j → ∞), enough details are available that

the wavelet series becomes a precise reconstruction of f(x). The similarity between

the functions of equation A.20 and the corresponding subspaces of equation A.17 is

evident.

Discrete Signals

Finally, we consider the case where the continuous f(x) has been sampled to produce

a finite discrete sequence of N samples {f [n], n = 0, 1, . . . , N − 1}. In this case, the

wavelet representation of f [n] is known as the discrete wavelet transform (DWT),

which is defined at a starting scale jo. The DWT consists of sets of approximation

coefficients {φWD[jo, k]}k∈Z and detail coefficients {ψWD[j, k]}k∈Z,j≥jo
measuring the

correlation between the input signal f [n] and the expansion functions (scaling and

wavelet, respectively) at various scalings/translations. For orthonormal expansion
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functions, the DWT coefficients are given by:

φWD[jo, k] =
1√
N

∑

n

f [n]φjo,k[n] (A.21)

ψWD[j, k] =
1√
N

∑

n

f [n]ψj,k[n] (A.22)

Note that the expressions above replace the integration of the wavelet series repre-

sentation with a finite summation, reflecting the discrete nature of f [n]. φjo,k[n] and

ψj,k[n] are discretized versions of the scaling and wavelet functions. The signal can

be reconstructed using the inverse DWT :

f [n] =
1√
N

∑

k

φWD[jo, k]φjo,k(x) +
1√
N

∞∑

j=jo

∑

k

ψWD[j, k]ψj,k(x) (A.23)

Clearly, it is impractical to calculate these coefficients using all scales j > jo, so

we fix the number of scales to J . At the same time, it is useful to normalize the

coarsest scale, jo, to 0 and the number of samples, N = 2J . Thus, the wavelet scales

of interest are given by j = 0, 1, . . . , J − 1.

Note that by considering a finite length, discrete sequence and by discretizing the

scale parameter s = 2−j, j ∈ Z and translation parameter τ = 2−jk, (j, k) ∈ Z
2, we

have overcome the practical limitations that were highlighted during our discussion

of the CWT.

A.2.4 Fast Wavelet Transform (FWT)

In a manner analogous to the fast fourier transform (FFT), which has greatly in-

creased the implementation speed of Fourier analysis, the DWT also has an efficient

realization called the fast wavelet transform (FWT). This representation was derived

by Stephane Mallat [56] and is based on the following relationships of the {φj,k(x)}
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and {ψj,k(x)} expansion sets to the scaling function at the next highest scale:

φ(2jx − k) =
∑

m

hφ(m − 2k)
√

2φ(2j+1x − m) (A.24)

ψ(2jx − k) =
∑

m

hψ(m − 2k)
√

2φ(2j+1x − m) (A.25)

A thorough derivation appears in [56], but by using these equations with the definition

of the wavelet and scaling functions and the definition of the DWT, it can be shown

that:

ψWD[j, k] =
∑

m

hψ[m − 2k]φWD[j + 1,m] (A.26)

and

φWD[j, k] =
∑

m

hφ[m − 2k]φWD[j + 1,m] (A.27)

This provides an alternate means of computing the DWT coefficients at scale j in

terms of the DWT coefficients at the next finest scale, j+1. Furthermore, the φ(x) and

ψ(x) expansion functions do not even appear in this expression. The computational

advantages are gained by realizing that equations A.26 and A.27 represent convolution

operations that can be implemented with a digital filter bank structure:

ψWD[j, k] = hψ[−n] ∗ φWD[j + 1, n]
∣∣∣
n=2k,k≥0

(A.28)

and

φWD[j, k] = hφ[−n] ∗ φWD[j + 1, n]
∣∣∣
n=2k,k≥0

(A.29)

In this case, φWD[j, k] and ψWD[j, k] are the inputs, while hψ[−n] and hφ[−n] are

the filter impulse responses. There is a downsampling operation after the convolution.

In the Fourier domain, hφ[−n] represents a low pass filter, which generates a coarser

approximation at its output, while hψ[−n] is a high pass filter that outputs high



APPENDIX A. BACKGROUND — WAVELET THEORY 134

frequency details. Because of this frequency domain behaviour, the {φWD[j, k]} and

{ψWD[j, k]} sets of coefficients are commonly called DWT subbands.

Since these relationships hold at adjacent scales, this process can be repeated

to create the iterated analysis filter bank structure shown in Figure A.3. By con-

tinuing this method L times, a set of wavelet coefficient subbands {ψWD[j, k], j =

J − L, . . . , J − 1} are generated. The number of times that the wavelet coefficients

are calculated (L) is called the number of decomposition levels.

It is important to note that at the highest scale, the inputs to the overall filter

bank are the DWT approximation coefficients {φWD[J, k])}. Assuming sufficiently

fast sampling, these can be represented by the samples of the discrete input function

f [n].

Reconstructing a function from its DWT coefficients (i.e. the inverse DWT opera-

tion) can also be accomplished with a similar efficient technique. The approximation

and detail coefficients at scale jo are used to form the approximation coefficients at

the next highest scale jo + 1. This is repeated until we recover a signal at scale J ,

the original sampling scale of f [n]. In the synthesis filter bank structure shown in

Figure A.3, the downsamplers are replaced with upsamplers, hφ[−n] and hψ[−n] are

replaced with their time-reversed counterparts, and an addition operation occurs in

each filter bank branch. Again, the reader is referred to [56] for a derivation.

It is not always possible to implement a FWT for an arbitrary wavelet function

ψ(x) (which may not have a corresponding scaling function). When it is possible,

we can use the FWT to find the DWT coefficients without ever knowing what the

actual MRA functions look like. This result is possible due to the extraordinary

correspondence between filter coefficients and MRA functions - a wavelet basis can

be defined with either. We stress that the FWT developed above pertains to an

orthogonal signal decomposition - the total number of DWT coefficients (at all scales)

is equal to the number of input samples.
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Figure A.3: A three-level FWT iterated filter bank a) Analysis b) Synthesis
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