
Mobile Core Traffic Balancing by
OpenFlow Switching System

Ebrahim Ghazisaeedi
Department of Systems and Computer Engineering

Carleton University, Ottawa, Canada
eghazisaeedi@sce.carleton.ca

Rahim Tafazolli
Centre for Communication Systems Research

University of Surrey, Guildford, UK
r.tafazolli@surrey.ac.uk

Abstract—Nowadays, one of the main problems of mobile
operators is to handle network traffic more resourcefully.
Techniques, which increase the traffic capacity over the mobile
core with minimum costs, play a fundamental role. Following
advent of smart phones, the most of the traffic bandwidth is
being used for connecting to external IP networks, like the
Internet. Consequently, this overloaded traffic causes congestion
over the mobile core network and degrade the quality of service.
In this regard, we suggest a process, by benefiting from recently
revealed switching system (OpenFlow), in order to balance the
traffic over the mobile core network and use resources more
efficiently. In this paper, we imply a technique to decrease the
core network load using this switching system and provide a
better quality of service for specific services over 3G and Evolved
Packet Core (EPC). Mobile Operators with the proposed solution
may save millions of dollars per year.

Keywords-component; OpenFlow, Traffic Balancing, LTE,
EPC, UMTS, Mobile Core Network

I. INTRODUCTION
The telecommunication industry is in a period of radical

change with the advent of mobile broadband radio access and
the convergence of Internet and mobile services [1]. IP and
packet-switched technology are soon expected to be the base
for data and even voice services on both the Internet and
mobile communications networks [1]. Today, LTE network has
been revealed as an end-to-end IP based network which the
both radio access and the core network are based on IP.

Now, the mobile operators provide lots of new services to
their customers. These kinds of new services enable customers
not only use Internet on their handheld devices, but also
connect their laptops to the Internet network through the
mobile network coverage. Depending on the location, the
increase in mobile data traffic ranges from 300 to 800 percent a
year in 2008 [3]. The high demand of bandwidth for increasing
number of mobile subscribers as well as overloaded traffic
which is result of Internet consumption, leads to congestion in
mobile core networks. The congestion degrade the quality of
mobile network’s service and make the operator and customers
unsatisfied with the system. This became a big challenge for
the mobile operators. The easiest solution for this difficulty is
to increase the number of core network elements to handle this
amount of traffic, while it costs a lot for the providers and
make it more difficult to manage the whole network.
Moreover, some other solutions have been proposed which

require reconfiguring in some part of the core network that is
not easy to be implemented.

In this paper, we suggest a process which benefits from
adapted version of OpenFlow switching system. In this regard,
we try to balance the traffic by rerouting the Internet traffic
over mobile core network.

Since the large portion of overloaded traffic is coming from
the Internet connections and 47.71% of the Internet usage is for
HTTP applications [2], we suggest re-routing a portion of the
Internet traffic, at the core network, directly to the Internet
network. Besides, as there are lots of different traffic flows in
mobile core for the same applications, we try to aggregate them
using OpenFlow switching system. Moreover, as the
applications like VoIP which use Internet, need less latency, we
route them through shorter circuit switching paths.
Furthermore, we propose different options to enable OpenFlow
switches detect the HTTP application flows. In consequence,
we anticipate decreasing the traffic load of mobile core
network traffic, which caused by Internet usage. As it was
expected this scheme is solving the mentioned challenge
without adding any main infrastructure. Besides, it is a cost
effective approach and also it is not required to reconfigure the
network elements.

In the next sections, we reassess the OpenFlow switching
system. Moreover, we propose a plan using OpenFlow for
mobile networks to increase the quality of service by balancing
the core network load. Finally, we evaluate our suggested
technique in defined scenarios with OPNET simulator.

II. OPENFLOW SWITCHING SYSTEM
OpenFlow is a new switching system which has recently

proposed by Stanford University. OpenFlow is based on a
packet switch, with an internal flow table and a standardized
interface to add/edit/remove flow table entries. It makes good
use of the fact that most recent network switching elements
benefits from tables that run at line-rate and map incoming
traffic to outgoing ports. While each vendor’s device is
designed differently, OpenFlow uses a common set of
functions implemented in all switches.

OpenFlow provides the ability to program the flow table in
different switches using an open protocol. The data path in an
OpenFow switch is consisting of a flow table and action which
associated with each flow entry. While in normal packet
switching network elements each packet is switched

Globecom 2013 Workshop - The 5th IEEE International Workshop on Management of Emerging Networks and Services

978-1-4799-2851-4/13/$31.00 ©2013IEEE 824

individually, all packets in a flow are switched the same way,
making the flow the fundamental unit of manipulation within
the switch.

An OpenFlow switch or router consists of at least three
units:

• A flow table, with an action associated with each flow
entry, to tell the switch how to process the flow.

• A secure channel that connects the switch to a remote
controller.

• The open protocol which provides and open and
standard way for controller to communicate with a
switch [4].

Each flow table in OpenFlow switches contains flow
entries. Each flow entry includes a Match field, counters, and a
set of Actions. The three basic actions are listed below.

• Forward this flow’s packets to a given port (or ports).

• Encapsulate and forward this flow’s packets to a
controller. Typically used for the first packet in a new
flow.

• Drop this flow’s packets. Can be used for security, to
curb denial of service attacks, or to reduce spurious
broadcast discovery traffic from end-hosts [4].

III. PROPOSED ARCHITECTURE
Nowadays, most of the mobile operators are providing

Internet services for their customers. As in new network
architectures like UMTS and LTE, networks could provide a
high speed radio access for the customers, not only mobile
handhelds are able to use Internet connection on the road, but
also laptops are also enabled to use broadband services through
the mobile networks. Nevertheless, the increasing number of
subscribers who are using Internet overloads the traffic on the
mobile core network. Due to capacity limits of core network
elements, the quality of service will be degraded and the
congestion rate over the packet core network will be increased.
In this regard, operators have two options. Firstly, operators
could cope with the challenge by increasing the number of core
network elements. For instance, an UMTS operator should
increase the number of SGSN gateways as well as GGSN
routers to deal with the overloaded traffic, and prevent the
congestion. However, this routine costs a lot and it is becoming
more difficult to manage the whole network. Secondly, 3GPP
has released 3GPP Direct Tunnel. Despite the previous
approach the Direct Tunnel focus on data path. Direct Tunnel
removes the data path between RNCs and SGSNs, and
forwards them directly to GGSN. However, this architecture
has two disadvantages. First, it is mandatory to reconfigure the
network elements, at least GGSN. Secondly, although they
bypassed the SGSN and this increase the traffic capacity, but it
is still necessary to increase the number of GGSNs.

Nevertheless, in this paper, we investigate a novel process
which does not require expanding the infrastructure and

reconfiguring the network parts. The operators with our novel
method may save million of dollars a year.

As mentioned before, since the most part of overloaded
traffic is for Internet consumptions and 47.7% of the Internet
usage is for HTTP applications [2], we intend to reroute the
Internet traffic, specifically HTTP traffic of subscribers directly
to external IP network. In this regard, we need a router, which
is able to separate the Internet traffic, aggregate all of the
Internet flows, and route them directly to external IP networks.

Hence, we imply to use two OpenFlow switches. The first
one will be implemented on the data path from RNC to SGSN
in UMTS network. The second one will be placed on the data
traffic from eNodeBs to Serv GW for LTE/EPC networks.

These switches just reroute the HTTP traffic. Therefore,
they will not affect the critical mobile network tasks like
mobility management, location update, authentication, etc, still
taken by SGSN/GGSN in UMTS and MME/Serv GW/PDN
GW in EPC. Thus, the switches forward all the data, except
HTTP sessions, as a simple forwarder to SGSN or Serv GW.
When the HTTP sessions are passing the switch they will be
detected and rerouted directly to Internet.

Therefore, to separate the HTTP data, aggregate them, and
reroute them directly to Internet we proposing to use
OpenFlow switching system. OpenFlow switches are able to
easily identify HTTP data by checking the headers. OpenFlow
will detect the HTTP sessions using destination TCP port
which is 80 for HTTP applications. Besides, the data, except
HTTP sessions, will be forwarded to their normal connection
points, immediately. Moreover, this switching system, using
central controller, helps us to utilize the traffic dynamically
over the network.

Our proposed architecture is shown in Figure 1. Our
suggested switches will be connected to an Internet edge
router. The OpenFlow controller controls all the OpenFlow
enabled switches concurrently. Thus, the controller is able to
detect the congestion over the network. In case of link failure
in one of our suggested links, the controller immediately
updates the flow tables in switches and forwards the packets
normally to SGSN or Serv GW. In the latter case, the
OpenFlow switches act as a simple bridge.

Figure 1. Our Proposed Architecture

Globecom 2013 Workshop - The 5th IEEE International Workshop on Management of Emerging Networks and Services

825

The OpenFlow switch needs to identify the TCP header.
However, the data over Iu or S1-U interfaces are already
encapsulated using GTP-U. GTP-U adds GTP and UDP/IP
header to the original packet. We propose three options to solve
the problem.

1) Option 1
It is required to de-capsulate packets over Iu or S1-U

interfaces before giving them to OpenFlow switch, while we
are saving the tunnel header. We assume the links as
unidirectional, and propose different systems for outbound and
inbound traffic.

For outbound traffic, as it shown in Figure 2, firstly, we
decapsulate the packet and save the GTP/UDP/IP header fields.
Besides, some of the vital information of packet will be saved
in a table. In this regard, each switch will make a table. The
table as is shown in Figure 2, will contain Source IP address,
Source UDP port, and TEID. This information will be used
later for the inbound traffic to encapsulate the data and put
them back into the tunnel. Each tunnel is unique with its TEID,
and UDP port number.

Secondly, the packet will be forwarded to OpenFlow
switch. The OpenFlow switch may redirect the packet to core
network, SGSN or Serv GW, since the traffic may not come
from HTTP applications. In this case, we reattach the saved
header to the packet. Nevertheless, OpenFlow switch may
redirect the packet to the Internet gateway, since the traffic is
from HTTP applications. In this case, the de-capsulated packet
will be routed normally to the Internet.

Figure 2. Option 1-Outbound Process

For inbound traffic, the requested data will come back to
the OpenFlow switch. The data may arrive to the OpenFlow
switch from the core network. So, the packets already have the
tunnel header, and OpenFlow switch simply forward them to
RNC or eNodeB. However, the packet may arrive directly from
the Internet port. These packets should get back to the tunnel
which is over the Iu or S1-U interfaces. So, we need to
reconstruct the GTP-U header and encapsulate the packets
using the saved table information, before giving them to
OpenFlow switch. We just need to know the TEID of tunnel
and UDP port number of ingress end-point. As mentioned in
outbound traffic process each switch makes a table based on
Source IP address (UE source IP address), Source UDP port
(Ingress Point UDP port number) and TEID. The incoming

packet has a destination IP address which is destination UE IP
address. Therefore, we are able to easily match the destination
IP address over the table and find the egress UDP port number
and TEID. By having these values, the header will
reconstructed and the packet will be encapsulated. The
encapsulated packet will be forwarded to OpenFlow Switch
and OpenFlow switch simply forward it back to the tunnel.
OpenFlow does not need to identify the packet header, and
easily forward all incoming packets back to the tunnel. This
process is shown in Figure 3.

Figure 3. Option 2-Inbound Process
It is required to mention that the saved table elements are

the same for inbound and outbound while for outbound we log
the source IP address of packet which will be destination UE IP
address for inbound traffic. The same story will happen for
UDP port. For outbound traffic, we log the ingress UDP port
number while it will be changed to egress UDP port number
for the inbound traffic.

By this method we do not need to reconfigure any network
elements, even OpenFlow switch standard. However, we may
experience more delay as the penalty we are paying for the
method. The delay for different suggested options will be
reviewed in IV.B.

2) Option 2
Secondly, we suggest updating the OpenFlow switch

standard. OpenFlow switch, as discussed in II, is able to
identify VLAN tags and MPLS header formats. This means
OpenFlow will ignore the VLAN header and will check the
payload to find and match the header fields. By updating the
OpenFlow switch to enable it to identify the GTP encapsulated
data, it is not needed to de-capsulate data stream before getting
to the switch, while OpenFlow is able to easily identify the
HTTP traffic by checking the packet payload and probing the
TCP header field.

Using this approach, we still do not need to reconfigure any
network element, except OpenFlow switch. This method will
experience less delay in compare of previous one.

3) Option 3
Finally, to enable OpenFlow switch to identify HTTP

traffic, we could add a tag or label for HTTP packets at the
RNC or eNodeB side. The RNC or eNodeB will identify the

Globecom 2013 Workshop - The 5th IEEE International Workshop on Management of Emerging Networks and Services

826

Network: finalstep4-scenario1 [Subnet: top.Campus Network]
-3000 -2000 -1000 0 1000 2000 3000

-3000

-2000

-1000

 0

 1000

 2000

 3000

 4000

 5000

 6000

Gateway_1

Mobile_1_2

Mobile_1_3

Mobile_1_4

Mobile_1_5

Gateway_2

Mobile_2_1

Mobile_2_2

Mobile_2_4

Mobile_2_5

Gateway_3
Mobile_3_3

Mobile_3_4

Mobile_3_5

Gateway_4
Mobile_4_1

Mobile_4_2

Mobile_4_4

Mobile_4_5

Gateway_5

Mobile_5_2

Mobile_5_3

Mobile_5_4

Mobile_6_1

Mobile_6_2

Mobile_6_3

Mobile_6_5

Gateway_7

Mobile_7_1

Mobile_7_2

Mobile_7_3

Mobile_7_4

OpenFlow Switch

Internet

HTTP Server

node_8

Local Router

PDN GW

Serv GW

HTTP packets by probing the TCP header and will add a pre-
defined tag after GTP header. The OpenFlow switch is able to
identify the HTTP traffic by probing the tag, RNC or eNodeB
has added to the packets.

This approach requires reconfiguration of the standards
over the RNC which is less desired for us and the mobile
operators. However, this may load less latency over the
network.

IV. SIMULATION
In this section, we try to evaluate our proposed method

using OPNET ver16.0. The suggested architecture will be
simulated whereas the scope area is covered by LTE access
network. We try to assess our advised process for HTTP traffic
while measuring the core network traffic. Thus, it will be
possible to compare the traffic load over the core network
with/without our planned technique, and evaluate different
proposed options.

In this regard, we use the topology which is shown in
Figure 4. The topology has a 7-cell LTE network whereas each
cell has an eNodeB at the centre. Four mobile nodes are
covered by one eNodeB. The eNodeBs are linked to an
OpenFlow switch through 100BaseT cables. The switch is
already connected to Serv GW as well as directly to the
Internet. Besides, the HTTP traffic over the network will be
generated with the following specifications:

• HTTP ver. 1.1.

• Maximum Connections = 2.

• Maximum Idle period = constant, 10 seconds.

• Page Inter-arrival Time = exponential, mean=5 second.

• Object Size = constant, 10000 bytes.

• Pages per Server = exponential, Mean=10.

• Type of Service = Best Effort

Moreover, in each cell, the arrival process has uniform
distribution with 5 seconds mean.

To evaluate the implied process precisely, two scenarios are
simulated over the main topology.

A. First Scenario
By using our suggested architecture, it is expected to get a

lower level of traffic over the mobile core network. This is the
main objective of our proposed method. Thus, to assess this
impact of the technique on the Evolved Packet Core, we
simulated the topology of Figure 4, while all the eNodeBs are
connected to our optimized OpenFlow switch. The switch is
programmed to function as our suggested procedure in III. EPC
traffic, received/sent data rate, is measured to evaluate the
objectives.

We measured total number of broadcast, multicast and
unicast IP datagrams received/sent per second by the EPC from
the network across all the IP interfaces in the EPC. The
Cumulative Distribution Function (CDF) of gained results is

plotted in Figure 5 for IP.Received data rate and in Figure 6 for
IP.Sent data rate.

Figure 4. Simulation Topology

Figure 5. CDF of EPC Received Traffic

CDF of received IP traffic by EPC is plotted for different

suggested options. Firstly, the topology is simulated in current
architecture of mobile network, without using our suggested
method. In this mode, OpenFlow switch is removed from the
topology. This curve is drawn in blue color. Secondly, CDF of
the EPC received IP traffic is plotted while our suggested
method is used and the OpenFlow switch is added to the
network topology. The result for different options is plotted.

(packets/sec)

Globecom 2013 Workshop - The 5th IEEE International Workshop on Management of Emerging Networks and Services

827

Figure 6. CDF of EPC Sent Traffic

Comparing the CDF curves, current architecture curve is in

far right side of the other curves, while the other option curves
give almost the same traffic load over the EPC. This means by
using our proposed architecture the probability of higher
inbound traffic rates over the EPC, has been decreased. Hence,
our advised technique decreases the inbound traffic of EPC.
This proves our expected objective of the implied scheme.

The same analysis could be used for the Figure 6. In this
figure, CDF of outbound EPC traffic is plotted. Comparing the
CDF curves shows the higher outbound traffic rates, by using
our implied method, are less probable than when network is
working in current architecture. This means our recommended
architecture decrease the outbound traffic of Evolved Packet
Core.

Thus, the proposed process with any of the identification
options helps to decrease the load of Evolved Packet Core. This
is the main achievement of the project. All in all, this scenario
proves that our implied technique in III will degrade the
overloaded traffic came from the Internet consumption, on the
EPC.

B. Second Scenario
In previous scenario, we have showed our new technique

decreases the overloaded traffic of mobile packet core.
However, in III, we have suggested three options. Each option
tries to imply a way to enable OpenFlow switch identifying
HTTP traffic. Each option has its advantages and
disadvantages. In this scenario, we try to give a good
comparison between these three options by using simulation.

The same topology, which was shown in Figure 4, is
simulated. However, all proposed options are examined using
OPNET simulator.

HTTP traffic delay is measured over the network for each
option. The Delay (in seconds) of packets received by the TCP
layer in HTTP server is calculated for all connections. It is

measured from the time an application data packet is sent from
the source TCP layer to the time it is completely received by
the TCP layer in the HTTP server node. The CDF of traffic
delay for all of the options is plotted in Figure 7. The blue
curve stands for current architecture of mobile network while
the proposed technique is not used. The red curve stands for
when the suggested method is used with Option 3. The green
graph shows the result for option 2, and the dark blue curve
stands for option 1.

Analyzing the CDF of TCP delay graph, for different
options, shows that option 1 packets experience more delays
over the network in comparison to the other options. This was
expected since option 1 packets need more processing than the
other options. For this option, all the outbound traffic needs to
be de-capsulated and in some cases inbound traffic needs to be
encapsulated. This increases delay time.

Besides, the option 3 has more delay than option 2.
However, option 2 has less delay than option 3, even half of the
option 2 curve has lower values than current architecture of
network. This shows if eNodeBs identifies the HTTP traffic
and add a tag to the packets, takes more time than when
OpenFlow identifies the HTTP traffic and reroute it.
Nonetheless, as the traffic of option 2 will be routed directly to
the Internet, packets may experience less delay than the current
architecture of network, due to shorter path.

Figure 7. CDF of TCP Delay for different suggested options

Furthermore, CDF of IP processing delay is plotted in
Figure 8. We measure the delay experienced by an IP datagram
though the IP layer (i.e, the delay from the time when the
packets arrives at the IP layer to the time it is dispatched). This
delay includes queuing and processing delay.

The diagram shows that option 1 packets experience more
IP processing delay than the other options. While option 2, 3
and even in current architecture of network has almost the
same IP processing delay.

(packets/sec)

(msec)

(msec)

Globecom 2013 Workshop - The 5th IEEE International Workshop on Management of Emerging Networks and Services

828

Figure 8. CDF of IP Processing Delay for different suggested options

In conclusion, option 1 objective is to enable OpenFlow
switch to identify HTTP traffic while it is not forcing operator
to reconfigure any network element. Nevertheless, the penalty
that we should pay is delay. Option 2 and 3 brings almost the
same delays. Conversely, option 3 requires eNodeB
reconfiguration, while option 2 just need OpenFlow switch
matching system reconfiguration.

V. CONCLUSION
Nowadays, most of the mobile operators provide Internet

access for their customers. This loads a huge traffic over the
mobile core network. Since, all of the network elements are
bandwidth limited, lots of the packets will be dropped due to
the low capacity or congestion. Hence, the service quality will
be degraded and users will be unhappy.

Nevertheless, in this paper, we have proposed an approach,
which is not expensive and does not necessitate operators, or
vendors, to reconfigure the network parts.

The most portion of overloaded traffic is coming from
Internet consumption. In addition, 47.7% of the Internet
consumption over the mobile networks is for HTTP
applications [2]. So, we suggested using recently revealed
switching system, OpenFlow, route the HTTP traffic directly to
the Internet, before reaching to the core network. The approach
is not interfering with the main tasks of the network, like
mobility management. Besides, it is not essential to reconfigure
the network elements. The suggested technique is expected to
decrease the traffic load over the mobile core network of
UMTS and LTE/EPC. Moreover, as OpenFlow need to identify
the HTTP traffic over the GTP-U tunnel, three different
identification processes has been proposed. .

VI. FUTURE WORK
We implied a novel way using OpenFlow switching system

for the mobile networks. We proved that our suggested
architecture decreases the traffic over packet core network. In

the proposed method, the HTTP traffic is routed directly to the
Internet. The method effect for the EPC has been reviewed, and
showed a worthy consequence. However, when HTTP traffic is
routed, directly, to the Internet before reaching to the core
network, the operators may have some concerns for the billing,
authentication and security issues. Hence, as the first future
plan, we need a signaling system between our suggested switch
and HSS, in UMTS network, and MME, in LTE/EPC network
(Figure 9). It is suggested to use statistics table of OpenFlow
that saves all statistics of packets in forwarding and processing
concerns. The plan may enable operators to have billing and
authentication services for the HTTP applications traffic as
well. Besides, the signaling system should provide QoS and
mobility management services for the traffic that routed
directly to the Internet.

Figure 9. Future signalling system architecture

REFERENCES
[1] Olsson, Magnus; “SAE and The Evolved Packet Core”. Academic Press.

First Edition, 2009. ISBN: 978-0-12-374826-3
[2] Kitahara,T.;Riikonen,A.;Hammainen,H.;”Characterizing traffic generat

ed with laptop computers and mobile handsets in GPRS/UMTS core
networks”. Local Computer Networks (LCN), 2010 IEEE 35th
Conference on . 2010 , Page(s): 1046 - 1053

[3] Cisco Systems, Inc.; ” The Role of 3GPP’s Evolved Packet Core in the
Build-outof the Mobile Internet”. Cisco White Paper. February, 2009.

[4] N. McKeown, et. al., “OpenFlow: Enabling Innovation in Campus
Networks”, SIGCOMM CCR, Vol. 38, Issue 2, March 2008.

[5] Saurav Das, Guru Parulkar, Nick McKeown, “Packet and Circuit
Network Convergence with OpenFlow”. Optical Fibber Communication
Conference 2010. San Diego. March 2010.

[6] “OpenFlow Switch Specifications”, Version 1.1.0 (Implemented). Wire
Protocol 0x02. 28 February 2011.

[7] “Stoke Mobile Data Offload”, White Paper, Stoke Inc. November 2009.
[8] Cisco Systems, Inc; ”Overview of GSM, GPRS, and UMTS, Global

Systems for Mobile Communications”. Cisco White Paper. 2002
[9] Flavio Muratore; “UMTS Mobile Communications for the Future”.

JOHN WILEY & SONS, LTD. 2001. ISBN: 0-471-49829-7
[10] S. Das, G. Parulkar, N. McKeown, “Unifying Packet and Circuit

Switched Networks”, IEEE Global Communications Conference
(GLOBECOM '09) [C], Honolulu, Hawaii, 2009, pp. 1 – 6.

[11] 3GPP Technical Specification Group Services and System Aspects;
Vocabulary for 3GPP Specifications; Release 10; 3GPP TR 21.905
V10.3.0. 2011-03.

[12] 3GPP Technical Specification Group Core Network and Terminals;
General Packet Radio Systems (GPRS) Tunnelling Protocol; User Plane
(GTPv1-U); Release 10; 3GPP TS 29.281 V10.2.0. 2011-06.

(sec)

Globecom 2013 Workshop - The 5th IEEE International Workshop on Management of Emerging Networks and Services

829

