NORTEL

NORTHERN TELECOM

Performance-Oriented Software
Architecture Engineering:
an Experience Report

Chung-Horng Lung, Anant Jalnapurkar, Asham El-Rayess

SEAL - Software Engineering Analysis Lab
Nortel Networks



Software Architecture Analysis

Established in 1995

Adopted SAAM (Software Architecture Analysis Method)
developed at SEI

Scenario-based analysis

Non-functional quality attributes like maintainability,
scalability, and etc.



Why Architecture Analysis?

Increasing complexity of software systems
The need to analyze and design systems at higher levels of

abstraction

The demand to reduce maintenance costs for evolution

Often conducted in an ad-hoc manner



Motivation to Integrate SA and SPE

The main reasons are:
Performance issue keep recurring for real-time applications.
Need to demonstrate how to improve quality attributes,
especially performance in a systematic approach.
Software architecture and software performance are tightly

coupled.

Performance-Oriented Software Architecture Engineering



Performance-Oriented SW Architecture Eng

Critical elements of POSAE:

SAAM
Stakeholders and their values

Architectural views
Software partitioning and clustering

Software performance engineering
Automatic generation of performance models

Software architecture trade-off analysis



Software Architecture Views

Styles & patterns,
Mapping of components & functions

Simulation

Map VIeW Messaging diagram, i

Structure diagram, Causal diagram, |
Object diagram, Interaction (_jiagram i
Module diagram tate machines :
Static Vi Dynamic i

atiC view . !

View |

Resource |

View |

Performance modeling :

Concurrency, :

_________________________________________________________________________________________



POSAE Process - Iterative & Incremental

Develop or capture a software architecture (static view)

Identify scenarios, particularly real-time (RT) scenarios (scenario
development)

Identify execution paths for RT scenarios (dynamic view)

Apply performance modeling, analysis, and measurements
(resource view)

Perform architecture analysis based on performance modeling
results (map view, dynamic view, and resource view)

Conduct trade-off analysis (scenario & 4 views)

Build a prototype, based on the analysis, to improve
performance or other qualities



Performance Modeling & MAGE

Application /
Application
Prototype

Rapid
Application

Development

Instrumentation
Data Collection

I

Model
Generation

}

Simulation /

Analysis Tools

Reverse
Engineering

MAGE

— Capacity Planning
- Load Balancing

-y Bottleneck Analysis

y Etc...



Software Partitioning: an Example




Lessons Learned

End-to-end analysis provides valuable insights.

Messaging system, run-time environment, application framework,
and the high-level services and applications.

Software architecture is a critical asset & important to SPE.
Need an engineering approach.

Analysis of the interactions of scenarios, not just individual
scenarios, are necessary.

Example, scenarios query processing, update processing, and OS
scheduling interact.

Automation of performance model generation and analysis is
needed.

Prototyping is useful to show values & alternatives.

Domain knowledge plays a critical role.



Conclusion

Presented a POSAE approach
Some benefits and achievements:
Capture software architecture
Identify use case scenarios

Improve performance.

Examples: 25% for one project & 500% for another one

Perform modeling & analysis at the early stage.
Better document the system.

Support product evolution.



Ongoing Works & Challenges

Tool supports

— Reverse engineering tools, especially for OO software
— Reliable performance measurements

— Performance modeling and analysis to support integration of SPE
and software development

Design patterns and performance
characterization of design patterns

Development of best practices and design guidelines



