
Performance-Oriented Software
Architecture Engineering:
an Experience Report

Chung-Horng Lung, Anant Jalnapurkar, Asham El-Rayess
SEAL - Software Engineering Analysis Lab
Nortel Networks

Software Architecture Analysis

• Established in 1995

• Adopted SAAM (Software Architecture Analysis Method)
developed at SEI

– Scenario-based analysis

– Non-functional quality attributes like maintainability,
scalability, and etc.

Why Architecture Analysis?

• Increasing complexity of software systems

• The need to analyze and design systems at higher levels of

abstraction

• The demand to reduce maintenance costs for evolution

• Often conducted in an ad-hoc manner

Motivation to Integrate SA and SPE

The main reasons are:

• Performance issue keep recurring for real-time applications.

• Need to demonstrate how to improve quality attributes,

especially performance in a systematic approach.

• Software architecture and software performance are tightly

coupled.

Performance-Oriented Software Architecture Engineering

Performance-Oriented SW Architecture Eng

Critical elements of POSAE:

• SAAM

• Stakeholders and their values

• Architectural views

• Software partitioning and clustering

• Software performance engineering

– Automatic generation of performance models

• Software architecture trade-off analysis

Software Architecture Views

Static View

Resource
View

Dynamic
View

Map View Messaging diagram,
Causal diagram,
Interaction diagram
State machines

Structure diagram,
Object diagram,
Module diagram

Styles & patterns,
Mapping of components & functions

Performance modeling
Concurrency,
Simulation

POSAE Process - Iterative & Incremental

• Develop or capture a software architecture (static view)

• Identify scenarios, particularly real-time (RT) scenarios (scenario

development)

• Identify execution paths for RT scenarios (dynamic view)

• Apply performance modeling, analysis, and measurements

(resource view)

• Perform architecture analysis based on performance modeling

results (map view, dynamic view, and resource view)

• Conduct trade-off analysis (scenario & 4 views)

• Build a prototype, based on the analysis, to improve
performance or other qualities

Performance Modeling & MAGE

 Capacity Planning

 Load Balancing

 Bottleneck Analysis

 Etc...

Simulation /

Analysis Tools

Application /

Application

Prototype

Instrumentation
 Data Collection

Reverse

Engineering

 MAGE

Rapid

Application

Development

Model
Generation

Software Partitioning: an Example

E9

E8

E7
E6E5

E4

E3E2

E1

S1

S2 S3

E9

E5

E7E4E8

E2

E6E3

E1

S1

S2 S3

Lessons Learned

• End-to-end analysis provides valuable insights.

– Messaging system, run-time environment, application framework,
and the high-level services and applications.

• Software architecture is a critical asset & important to SPE.

– Need an engineering approach.

• Analysis of the interactions of scenarios, not just individual
scenarios, are necessary.

– Example, scenarios query processing, update processing, and OS
scheduling interact.

• Automation of performance model generation and analysis is
needed.

• Prototyping is useful to show values & alternatives.

• Domain knowledge plays a critical role.

Conclusion

Presented a POSAE approach

Some benefits and achievements:

• Capture software architecture

• Identify use case scenarios

• Improve performance.

– Examples: 25% for one project & 500% for another one

• Perform modeling & analysis at the early stage.

• Better document the system.

• Support product evolution.

Ongoing Works & Challenges

• Tool supports

– Reverse engineering tools, especially for OO software

– Reliable performance measurements

– Performance modeling and analysis to support integration of SPE
and software development

• Design patterns and performance

– characterization of design patterns

• Development of best practices and design guidelines

