Need for Performance Tools for Rapid Application Development

Eric Parsons, Principal Architect, e-Mobility Mobility Access Server, Nortel Networks

The Project

For the past nine months, our team has been developing a new product, which is now being called the “e-Mobility Mobility Access Server”. It is a product designed to support the needs of a mobile professional, leveraging the growing availability of practical wireless data devices (cellphones and wireless PDAs such as the RIM 957). Although this product is relatively innovative in nature, the relevance to this panel is that it serves as a real modern software development activity that can be used to place a discussion about performance tools in context.

The product itself is interesting in its breadth of functionality:

· It provides Web-based-like functionality for wireless devices. (Most wireless devices access the enterprise using some markup language over HTTPS.)

· It provides call control capabilities for incoming voice calls destined to a user of the product.

· It provides interactive voice response (IVR) capabilities, both for users of the product to perform administrative functions, and, more importantly, for those trying to reach these users.

· The functioning of the product is based on a “presence system core”, which continuously manages a user’s current reachability status.

The software is designed primarily in Java, with some C++ or scripting “around the edges”. Rational Rose was used rigorously throughout the development cycle, including the use of its code generation facilities and message sequence charts for major interactions. There were approximately 25 developers involved in the project, and about 150KLOC of code.

Performance Analysis

This product is interesting in its mix of real-time and non-real-time activities. Despite this, timeframes did not allow truly rigorous performance analysis as part of the ongoing development process, and tools were not present to help predict performance and/or capacity up front. What was done is (1) perform a standard analysis of IVR port engineering, and (2) offer conservative estimates for maximum number of supported users (based mostly on the experiences of the senior developers).

One of the first questions to ask is why has so little attention been given to the performance (relative to what may be recommended by the performance community). Some of the reasons may be as follows:

· Lack of Process: Right now, there is no simple methodology to integrating performance analysis within the standard development process, and no simple tools to support such a methodology.

· Lack of Need: In many cases, there is no need for up front performance analysis. If one has a good architect, this architect will ensure that there few or no major performance issues at the architectural level. Such an architect tends to rely on experience in designing past systems to know where performance issues may arise. Add to this the fact that system performance is growing so quickly that it becomes easy to identify the potential problem areas and avoid them. The system or software does not (in this kind of product) need to make 100% efficient use of the hardware resources. Given this, performance analysis falls in the middle to late stages of development, where developers run tools such as memory analyzers and thread analyzers to identify problems and correct them as they go.

· Lack of Business Case: In a product such as this one, the overriding concern is to get something decent to market quickly. This has been achieved, without the aid of formal performance analysis, and occurs in many other projects as well. Getting a “reasonably good” product to market quickly will get the product flowing out to customers which will then support subsequent iterations of the product. In our case, we had approximately a nine-month development cycle (which included three iterations), and each subsequent minor release is planned at a four-month interval.

That being said, I, as the principal architect, have found myself at a distinct disadvantage in fulfilling my role, as I have little in my toolchest to ensure that there are no surprises at the end. I would have certainly liked to have more techniques and/or tools at my disposal in working with my development team. For example, I would have especially appreciated add-on packages to Rational Rose that would have allowed some message sequence charts to be automatically generated from executing code (given our rigorous use of the tool), and measured performance values for these sequences.

Burning Issues

Until performance analysis becomes a more integral part of everyday development, it will become difficult for the discipline to expand beyond its current areas of application. To achieve this, some important:

· Report in quantitative terms the benefit of considering performance analysis in the development cycle of modern projects. At this time, software systems are being successfully delivered with reasonably accurate planning. The performance community needs to work more closely with industrial projects to this end.

· Actively develop tools, like plug-ins for Rational Rose, and a set of tools for those responsible for the end-to-end system architecture to easily track performance during the development process, and help estimate the performance at delivery.

PAGE
2

