Performance Measurements and Modeling of a Java-based
Session Initiation Protocol (SIP) Application Server

Greg Franks
Department of Systems and
Computer Engineering,
Carleton University
Ottawa, ON Canada K1S 5B6
greg,@sce.carleton.ca

ABSTRACT

The Session Initiation Protocol (SIP) is an Internet protocol
for establishing sessions between two or more parties. It is
becoming ubiquitous in uses such as Voice over IP, instant
messaging, Internet TV, and others. Performance is a chief
concern with SIP because Quality of Service is important
and SIP has internal timers that need to be honored or net-
work efficiency suffers. The Java community has even pro-
vided a standardized API so that SIP applications can now
be built using Java application servers. These new capa-
bilities also bring with them new performance engineering
methods, tools, and benchmarking needs. This paper de-
scribes the experiences and processes for the performance
engineering of SIP applications in a Java environment. In
this paper, a Java 2 Enterprise Edition (J2EE) SIP appli-
cation server’s performance is analyzed in a standalone and
cluster environment, with network traces used to build a per-
formance model of each environment. This included gath-
ering data from test runs and extracting performance pa-
rameters from packet traces to construct the performance
models. The models are then calibrated to match the model
prediction with real system test data. Using the calibrated
models, some bottlenecks were identified and suggestions to
improve the overall maximum throughput were developed
and were subsequently implemented in the system.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Design studies

General Terms

Performance

Keywords

Performance Analysis, Session Initiation Protocol, Ethernet,
Two-phase Server, Layered Queueing Network

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

QoSA 2011 June 20-24, 2011, Boulder CO

Copyright 2011 ACM xxx-xxx-xxX ...$10.00.

Danny Lau
Department of Systems and
Computer Engineering,
Carleton University
Ottawa, ON Canada K1S 5B6
hokching@gmail.com

Curtis Hrischuk
WebSphere Performance, IBM
Software Group
Durham, NC USA 27703
cehrisch@us.ibm.com

1. INTRODUCTION

The Session Initiation Protocol, (SIP) [1], is used for ne-
gotiating sessions between two or more parties that want
to interact or communicate. SIP is used for Voice over IP
(VoIP) and instant messaging applications to connect par-
ties that want to exchange data, audio, or video. SIP differs
from other approaches to session negotiation because it is
decentralized, moving the control handshaking to the end
point, rather than using centralized control. This makes it
extensible, scalable, and useful for mobile applications. SIP
is becoming ubiquitous. Recently, application servers have
been developed which allow both the HTTP and SIP proto-
cols for the same application. It is expected that the next
generation of web based applications will be of this fashion.

The Session Initiation Protocol (SIP) [1] is a signaling pro-
tocol designed to support a super set of the call-processing
functions in the public switched telephone network (PSTN),
but within an Internet Protocol communications network.
These functions include the set up, modification, and tear
down of voice and video calls over the Internet. Once a
session is established, other protocols such as the Real-time
Transport Protocol (RTP) [2] are used to carry the actual
content.

SIP is a peer-to-peer protocol with much of the intelli-
gence at the edge of the network (in contrast with Signaling
System #7, the dominant PSTN protocol, which has dumb
terminals and an intelligent core). However, for practical
public use, SIP requires proxy and registrar network ele-
ments. Typically, an end-point or “user agent” will send a
request to an intermediate proxy server which will forward
the request either to another proxy or to the destination
user agent. For example, in Figure[Il bob@domainl.com es-
tablishes a connection to alice@domain2.com through the
domainl and domain2 proxies, then communicates directly
until Alice ends the connection.

The registrar is not shown in the figure but its purpose is
quite intuitive. The registrar is simply the agent with which
all the SIP users (called User Agents or UA) register to make
themselves known when they first come on line. The UA’s
will also periodically re-register to indicate that they are still
available. A non-intuitive aspect of the registrar is that its
background load due to re-registrations can easily dwarf the
load of new UA’s coming on line, or going off-line.

Telephony applications often have very strict performance
requirements. A performance model of a SIP application
server would be of tremendous use during all stages of its
life cycle. For example, during the initial design, the model

User Agent Proxy Proxy User Agent
bob@domaini.com domaint.com domain2.com alice@domain2.com
T T T T
! Tnvite [| |

1 Invite | Invite |
i |
100 trying 100 trying

100 trying

180 Ringing 180 Ringing

180 Ringing

200 ok

200 ok

200 ok

Media Session

Bye

200 ok

Figure 1: An example of a SIP exchange.

can be used to determine if the performance requirements for
the application server can be met, locate potential problems
prior to coding and to budget the demands of the various
components of the project. During the implementation of a
project, performance models can be used to locate perfor-
mance problems in the design. Finally, once a product is
constructed, performance models can be used for capacity
planning so that a system of sufficient capacity is deployed.
This is especially true for new technologies, where there is
little guidance. For example, models could provide feedback
on how to build a high-performance SIP Java application us-
ing the SIP Java application programming interface (called
JSR 116 [3]).

Despite these benefits, performance models are often not
used [4]. Part of the problem stems from the difficulty of
constructing the model in the first place, moving from the
software domain to the performance modeling domain. Con-
structing the model often requires the expert knowledge of
a performance engineer to ensure that just the right amount
of detail is included in the model. Furthermore, populating
the model with service demands involves either estimation
or measurement. End users are often skeptical of results
based on estimates; using measurement is often labour in-
tensive. Lastly, the marriage of SIP and Java is very new
and there is very little guidance in the literature on how to
construct performance models of this type, especially for a
highly scalable architectural specification like Java 2 Enter-
prise Edition (J2EE).

The primary contribution of this paper is to present a
method for constructing a performance through the analy-
sis of Ethernet packets of a running application. The perfor-
mance model chosen for this work is called a Layered Queue-
ing Network (LQN) [5], which is particularly suited to dis-
tributed applications used today. The architecture of the
performance model is derived from the behaviour of the sys-
tem as defined by the Session Initiation Protocol (SIP) [I].
The parameters for the model are found using a Java imple-
mentation of SIP server by by running transactions (in this
case they are SIP sessions) at low traffic rates; service times
are then derived from the time stamps of the packets. The
model is then solved and its results are validated against the
live system under various load conditions.

The second contribution of this paper is a model of Eth-
ernet behaviour using two-phase servers. The processors
in today’s hardware are becoming so fast that bottlenecks
are now moving from their traditional sources of CPU’s and

disks and onto the communication channels between com-
puters in the network. This work shows that simple queue-
ing servers are not sufficient to model Ethernet connections
accurately.

The remainder of the paper is organized as follows. First,
the SIP scenarios used for the tests are described. Second,
Layered Queueing Networks are briefly described as the per-
formance model used here relies on the special two-phase
servers which not commonly found elsewhere. Next, the
actual model used to study the SIP system under test is
described. Finally, results and conclusions, both for the sys-
tem under test, and for the effect of the second phase are
presented.

2. SIP TEST SCENARIOS

One of the most important SIP performance scenarios
involves the Invite method, where two parties attempt to
establish a connection with each other. This is the first
scenario that occurs before two (or more) parties can do
anything else. The end-to-end performance of this scenario
is important because SIP’s timer T1 has a 500 millisecond
timeout period and will result in a message retransmit when
it expires. Further, So, it is only appropriate to build a
performance model of this scenario first.

Two machines are used for testing, each of which is a Blade
Server running on Red Hat Enterprise Linux 3 Enterprise
Server. Each Blade Server has multiple blades, and each
blade is running an Intel dual-core hyper-threaded proces-
sor at 2.8 GHz. In both test scenarios, the load-generation
“driver” software runs on one machine and the SIP server
runs on the other. For the cluster configuration, the load
balancer and the SIP Server run on a common chassis, but
separate blades. The communication paths between blades
on a Blade Server is at 4 gigabits per second and is on
a switched Ethernet back plane. Communication between
Blade Servers is through a 1 gigabit switch. Figure 2alshows
the deployment diagrams for the two test cases described
above.

Figure [shows the sequence diagrams for the test cases
use to construct a performance model. The scenario consists
of an INVITE request, two redirection hops representing
requests to proxy servers to establish a route, followed by
an OK, indicating that the connection is established. Two
different cases are shown:

(i) one where the SIP server interacts directly with the
incoming request, and

(ii) another where a load balancer distributes the requests
to multiple servers.

The SIP application server and application were written
in Java. The application server was a J2EE server, such as
described in [8]. The application used a Java application
programming interface (API) similar to HT'TP servlets [3].
This API provides an easy-to-use SIP programming model.
In these tests, the application performed little business logic,
executing only the minimum necessary functions for setting
up a call as the objective of the performance testing was to
test the SIP stack itself.

Measurements were conducted at one call per second, 50%
and 100% server load, and with the server overloaded. How-
ever for this work, only the one connection per second and
the 100% server load cases are considered. Wireshark [9] is

SIP Inviter SIP Server SIP Inviter Load Balancer Server SIP Server
Test Driver g] SIP Containergj Test Driver g] Load Balancergj SIP Containergj
K K K K K K
<<ethernet>> <<ethernet>> <<ethernet>> <<ethernet>> <<ethernet>> <<ethernet>>
| | |1 |1 |1 |1
T T T T T T
‘ Local Network ﬁ ‘ 1Gbit Local Network ﬁ ‘ 4Gbit Local Network ﬁ

(a) Standalone

(b) Cluster

Figure 2: Deployment diagrams for the two test environments

| |

1 1: invite (5080)

Load

P1: invite (5080) i i

2: 100 trying (5071)

R1: invite (5080)

R2: 100 trying (5071) P2: 100 trying (5080)

3: invite (5076)

R3: invite (5076) P3: invite (5080)

P4: 300 multiple choices (5080)

4: 300 multiple choices (5080)

5: ack (5076)

R4: 300 multiple choices (5080)

RS: ack (5076) P5: ack (5080)

6: invite (5074)

R6: invite (5074) P6: invite (5080)

7: 300 multiple choices (5080)

P7: 300 multiple choices (5080)

R7: 300 multiple choices (5080)

8: ack (5074)

P8: ack (5080)

R8: ack (5074)

9: invite (5073)

o
RY: invite (5073) P9: invite (5080)

10: 200 ok (5080)

P10: 200 ok (5080)

R10: 200 ok (5080)

11: 200 ok (5073)

R11: 200 ok (5073) P11: 200 ok (5080)

(a) Standalone

T T
| |

(b) Cluster

Figure 3: Invite Scenario.

a packet sniffer that will record all the traffic on an Ether-
net port, including fine grained timestamps, which is used in
post-processing. Wireshark was run on each blade hosting
the system under test to monitor the SIP message traffic.
Traces from the one message per second traffic runs were
used to derive the service times for the analytic models de-
scribed below. The 100% server load case was found by
increasing the offered traffic in the system until the point
where message retransmissions began, indicating an over-
loaded system. These results were used to verify the results
from the queueing model.

3. LAYERED QUEUEING NETWORKS

Layered Queueing Networks [5] [10, [I1] are a form of ex-
tended queueing network model particularly suited for mod-
eling systems with hierarchically nested resources which arise
from using synchronous send-receive-reply interactions such
as remote procedure calls. Layering arises from causality
of requests from customers to servers in the system. These
types of systems cannot be modeled directly using a conven-
tional queueing network because the time a client is blocked
on a server processing a request is a form of simultaneous re-
source possession. Since SIP interactions are of the request-
reply type, a layered queueing network was used to model
the system’s performance. The next section briefly describes
Layered Queueing Networks. The model used to study the

SIP testbed performance follows.

3.1 Layered Queueing Networks

Figuredshows the major components of the Layered Queue-
ing network meta-model. They are:

Processor: A processor is composed of a set of tasks and
is used to execute the task’s phases. They can repre-
sent actual CPU’s, or can stand in to consume time
for tasks representing customers or hardware devices.
A processor may have more than one instance, which
makes it a multi-server. A processor may also have an
infinite number of instances, which makes it a delay
server. In the models shown here (for example, Fig-
ure [B), processors are shown using a dashed box. The
multiplicity of the processor is shown in the processor’s
label using the number in parenthesis.

Task: A task is used to model:

1. active entities such as a processes,
2. passive resources such as mutexes,

3. physical devices which are not CPU’s such as disks,
and

4. customers in the model (these tasks are called ref-
erence tasks).

Requests are queued at tasks in first-come, first-served
order and are serviced by entries. Tasks are shown
here using large parallelograms. A stacked task icon,
such as server in Figure [8 denotes a multiserver

Entry: An entry is used to differentiate the types of service
offered by a task. It invokes a sequence of one to three
phases to perform the associated action. Entries are
represented using the small parallelograms within task
icons.

Phase: A phase is the lowest level of detail in the per-
formance model. Phases execute in sequence on the
processor associated with the task, and can make re-
quests to entries. Entries which accept synchronous
requests issue a reply after the first phase of execution
completes; this behaviour is described in more detail
below. The service time for a phase is specified as a
list of values in square brackets for the corresponding
entry. Phases are generalized into activities, described
in [5].

Request: A request, with the exception of a forward, is
made from a phase to an entry. A Synchronous re-
quest blocks the sender until the receiver replies. Syn-
chronous requests can be forwarded, where the reply
is treated as a synchronous request at another server
which then either replies to the original client, or for-
wards the request to yet another server. Asynchronous
requests do not block and cannot be forwarded.

Synchronous requests are shown using solid lines with
filled arrow heads, asynchronous requests are shown
with open arrow heads, and forwarded requests are
shown using a broken line with a solid arrow head.
Request rates are shown using labels in parenthesis
associated with the arcs. If the source entry has mul-
tiple phases, then the request rates are also given as a
list with each item in the list corresponding to a phase
in the source.

The model supports many other features which are not de-
scribed here. Most of these additional features are described
in [5].

3.1.1 Two-phase Servers

A two-phase server is a server that, after replying to a
request from a customer, continues to execute, shown in
Figure This type of server is a GNENP (General Non-
Exhaustive Service, Non-Preemptive), SV (Single Vacation)
server and has been studied previously in [12] §2]. Two-
phase servers are often used to enhance performance be-
cause the client and server can run in parallel once the server
replies [13]. For example, in Figure [f] the reply to the client
is issued after phase-1; both the client and server can then
run in parallel. However, this effect can also be used to limit
performance because the client’s subsequent request to the
server cannot be serviced until its previous request has com-
pleted. This effect is called overtaking; the blocking time is
shown as “{t}” in Figure B0l

3.2 SIP Layered Queueing Model

The sequence diagrams in Figure [3] are used to construct
the layered queueing network for the SIP system. The first
three messages in this scenario are used to describe the basic

LayeredQueueing
Network

1.%

Node
Processor /D

executes

invoke 1.t ?1”«
0..*
Entry 0.1 g 1 Phase Request
* 0. v 0. *
forwards | %~ AN \0\" connects Z%

N \ ~
~
~

SendNoReply| | Rendezvous

Forward

Figure 4: Layered Queueing Network Meta-Model.

td: non—overtaking J

E’ Busy
° Blocked 1 1 1 1 1 1 1 1
N Phase 2
e
5 Phase 1
7]
die 1 1 1 1 1 1 1 1 1 1
| | | | | | | | | |
Time T T T T T T T T T T

(a) Non-overtaking event

td: overtaking)

5 Busy ’7
o
Blocked 1 1 } 1 1 L 1 /1 1 1
N Phase 2 W
S
g Phase 1 |
t
ldle 1 1 1 1 1 ‘l \l 1 1 1
Time T T T T T } T T }

(b) Overtaking event

Figure 5: Two-Phase server time lines

template for the model. First, the SIP protocol uses asyn-
chronous messages between parties [3]. However, the actual
interactions are synchronous because Driver sends “1: In-
vite” to server which eventually responds with “3: Invite”.
This third message is actually a reply to the original invite
request, so messages 1 and 3 can be converted into a syn-
chronous interaction between the Driver and Server. Message
2 is an acknowledgment to message 1, and is used to reset an
internal timer used by the SIP protocol. This message can
be modeled as an asynchronous request back to the Driver.
Figure [6] shows the modifications to the sequence diagrams
in Figure [3 for these three messages. The other interactions
in the complete scenario are translated in a similar fashion.

Service times for the model were found by taking the
difference in timestamps from a packet trace generated us-
ing Wireshark [9]. On modern Linux systems, these times-
tamps have microsecond precision because they are based on
counting CPU cycles using the TSC register on Intel proces-
sors [14]. The system was run at a request rate of one call

Load
Balancer

1: invite (5080)

’ Driver ‘ ’ Server ‘ K
T T
|
-l

| v |
- PL: invite (5080) -1 RI: invite (5080)
2: 100 trying (5071) PSSTVSR—
R2: 100 trying (5071) 100 trying (5080)
3: invite (5076) .
fffffffff R3: invite (5076) J<7 _ P3:invite (5080)|
creply> ! S | «reply»

| «reply»

(a) Standalone (b) Cluster
Figure 6: Modified Invite scenario using synchronous in-
teractions.

per second to minimize the effects of queueing within the ap-
plication server and the driver and to minimize any effects
caused by the packet capture mechanism. After the run was
completed, the packet traces from each processor were saved
in separate files. Each trace file was then sorted by the SIP
session ID, to separate each unique request from the driver,
and by the time stamp. The result from this sort was a
time-ordered sequence of messages for each SIP request, an
example of which is shown in the trace summary in Figure[7l
Service time parameters were then found by finding the av-
erage value of the differences in the time stamps of between
sets of messages for each call flow.

The sections that follow describe the construction of the
layered queueing model for the two scenarios in detail.

3.2.1 Standalone Model

Figure [8 shows the Layered Queueing Network model of
the standalone system. The model consists of three proces-
sors: Pdriver, SIPserver and Network corresponding to the
elements in the deployment diagram shown in Figure 2al
The Driver and the SIPServer act as peers, which causes a
cycle in the call graph from the asynchronous 100 trying
and ack messages. The cycle is broken by splitting the driver
into two tasks labeled driver and driverports respectively with
driverports used to handle the asynchronous requests. The
SIPServer task is modeled with ten threads which is the num-
ber of active threads configured in the system under test.
The SIP application server process appears to run on only
one processor so the SIPServer’s processor is single-threaded.
Finally, eleven requests are made from User to net. Each of
these requests represents the delay incurred by each packet
send from the driver to the SIP server and vice versa.

Table [l lists the elapsed time (in milliseconds) between
messages for the standalone system as measured by running
Wireshark on the server’s node. This approach takes into
account the Network Interface Card and operating system
overhead, as well as the application server cost. It does
assume that the application server is the only process run-
ning on the system. Columns 1 and 2 identify the to and
from messages in the sequence diagram in Figure [3al used to
compute the time difference. From the server’s standpoint,
the arrival of the from message corresponding to the receive
event, and the to message corresponding to the reply event.
Since the server being driven at a very low traffic rate, it is
assumed that the SIP server processing starts immediately
upon reception of the message and continues until the reply
is sent. Columns 3 and 4 list the mean service time and
the 95% confidence interval after measuring three complete
requests from the driver. Finally, column 5 lists the name
entry in the LQN model in Figure Bl

|
|

Similarly, the data in Table [[al is used to find the service
times for the client. The test driver is busy acting as a server
from message 3 to 4, 6 to 7 and 9 to 10; the sum of these dif-
ferences is used to populate the entry User of the driver task
in Figure 8l However, the driver also receives messages 2, 5,
and 8 (the acknowledgments) without sending replies. The
upper bound on the service time for these cases is the time
between the receipt of the acknowledgment and the receipt
of the following invite and is used to set the service times for
entries port5071 through port5076. Provided that the driver
is not fully utilized, thus limiting the overall throughput of
the system, errors here can be ignored.

Next, the data in Table [Id is used to find the Ethernet
service time. Columns 1 and 2 again refer to the message
number in the sequence diagram in Figure Bal Columns
3 and 4 list the time difference between the from and to
messages from the measurements taken from the Driver’s
node, and columns 5 and 6 list the time differences for the
same two messages from the standpoint of the Server’s node.
The difference between column 3 and column 5 represents
the transit time for two packets. The mean service time
for one packet is one half of the mean of the differences for
items listed in the table. This results in a measured delay
of 0.0648ms with a 95% confidence interval of +0.0425.

Finally, the Ethernet has a finite capacity which is often
much less than the advertised bandwidth. For the purposes
of this model, the maximum utilization, 7, was assumed to
be 40%, which is the value measured by [I5] for a switched
Gigabit Ethernet and reported by Cisco [16] for the switch
used by the system under test. To model this effect, the Eth-
ernet model element, labeled as the net entry in Figure[8] is
a phased. The phase one service time, s1, is the value mea-
sured above. The phase two service time, sz = 0.0972mS,
represents the unused 60% of the capacity, and is calculated

using
1—
S2 = S1 (Tn) (1)

3.2.2 Cluster Model

Figure[@shows the LQN model of the cluster system. This
model adds an additional node, LoadBalancer, which is used
to forward messages between the Driver and the SIPServer.
Driver and SIPServer act as peers, as above, with LoadBal-
ancer acting as an intermediary. The LoadBalancer was split
into two proxies, balancer_up and balancer_down, to handle
the synchronous and asynchronous requests respectively, in
order to make the call graph acyclic. Further, the Load
Balancer in the test setup was configured with ten threads,
so this was modeled using a third task, labeled balancer in
Figure @ which executes the request on behalf of either
balancer_up or balancer_down. This model also doubles the
number of calls to the network task, because two messages
are sent for every one message in the standalone model.

The service times between the driver and load balancer,
and the load balancer and the server are different because
of different network connections. They are derived using
the data in Table2land the sequence diagram shown in Fig-
ure[3Dl The service times for the SIP server in Figure[@ were
calculated using the values in Table 2B for the messages R1
to P3, R4 to P6, R7 to P9 and R10 to P11. The values for
the driver task were found in similar fashion using the data
in Table Bal The service times for the load balancer task
was found using the data in Table 2d When the driver is

No Session ID Time Diff Src Dst SIP Message

1 sip:3401@drv 4.946427 0.00071 drv srv Request: INVITE sip:3401@drv

2 sip:3401@drv 4.947137 0.001013 srv drv Status: 100 Trying

3 sip:3401@drv 4.948150 0.000113 srv drv Request: INVITE sip:3401@drv:5076
4 sip:3401@drv 4.948263 0.000427 drv srv Status: 300 Multiple choices

5 sip:3401@drv 4.948690 0.000204 srv drv Request: ACK sip:3401@drv:5076

6 sip:3401@drv 4.948894 9.2e-05 srv drv Request: INVITE sip:3401@drv:5074
7 sip:3401@drv 4.948986 0.000325 drv srv Status: 300 Multiple choices

8 sip:3401@drv 4.949311 9.9e-05 srv drv Request: ACK sip:3401@drv:5074

9 sip:3401@drv 4.949410 0.000104 srv drv Request: INVITE sip:3401@drv:5073
10 sip:3401@drv 4.949514 0.000558 drv srv Status: 200 OK

11 sip:3401@drv 4.950072 0.995326 srv drv Status: 200 0K

Figure 7: Wireshark Trace Summary of a Complete Call Flow. The message numbers in this figure correspond to the numbers

used in Figure [3al

Layer 1

invite
[0.00135] Layer2

/ driverports

\ Pdriver {4}

SIPServer ,

Layer 3

Figure 8: Layered Queueing Network of the Standalone configuration in §3.2.11

making a synchronous request, the balancer task is invoked
for both the request and reply, so the service times is the
sum of the time the balancer handles each message. For ex-
ample, the initial invite from the driver to the server consists
of messages P1, R1, P3 and R3. The sum of the difference
of P1 to R1 and P3 to R3 is the service time for entry c1 on
the balancer task. The asynchronous messages only involve
one message transfer through the load balancer, for example
messages P2 and R2, so the service times for entries process-
ing these requests is simply the difference between the two
messages.

The last consideration for this model is the Ethernet.
Communication between the Driver and the load balancer
is over a 1 gigabit Ethernet link with an estimated maxi-
mum available utilization of 40%. Communication between
the load balancer and the SIP service is over a 4 gigabit
channel with a measured maximum available utilization of
about 20% [I7] before SIP messages were dropped. Ta-
bles and [2d list the time differences used to derive the
Ethernet service time. From this data, the average service
time for packets between the driver and the load balancer is
0.0616ms with a 95% confidence interval of +0.0029. Simi-
larly, the average service time for packets between the load
balancer and the SIP server is 0.0381ms with a 95% confi-
dence interval of +0.0006.

4. RESULTS AND ANALYSIS

The models in the preceding section were validated by
comparing the maximum predicted throughput against the
maximum traffic load that the live system would support.
The results of the comparison are shown in Table[3l For the
standalone system, the model’s throughput prediction is 5%
higher than the measured throughput, and for the cluster
system, the prediction is 4% lower. These results are quite
good given that there is some uncertainty in the observed
maximum throughput as this result was found by increasing
the rate of requests from the test driver until timeouts were
observed caused by lost messages. Table [3] also lists the
utilizations for the SIP server and load balancer for both
the live system and the model. The utilizations reported
in this table are the overall utilization for the four effective
processors in each node. Here, the model’s predictions are
consistently lower. This result is not surprising because the
nodes are running other tasks, which are not captured by
the performance model. It has also been experimentally
verified that, in a moderately loaded system, the network
can drop messages which will result in the additional load
of the application server having SIP timers go off and a
message retransmission (e.g., 200 0K is dropped, causing the
application server to retransmit an invite). Also, there will
be more operating system overhead in the application server
as the load increases due (e.g., context switching).

The bottleneck is a layered system is the entity found
at the deepest level of the call graph with the highest uti-

Table 1: Standalone Test Environment Inter-Message Times (mS). Message numbers correspond to those used in Figure [Bal

—

)

invite_d m_ch_1d
[0] [0

[0]

m_ch_2d

[0]

[0]

p5074_u
[0]

) (%

)

N

(a) Driver (b) Server
Message Measured Time | Entry Message Measured Time | Entry
From | To A +95% From | To A¢ +95%
2 3 | 0.869 0.310 | port5071 1 3 | 1.345 0.297 | calll
3 4 | 0.060 0.113 | User 4 6 | 0.481 0.074 | call2
5 6 | 0.178 0.109 | port5076 7 9 | 0.336 0.064 | call3
6 7 | 0.056 0.078 | User 10 11 | 0.433 0.308 | call4
8 9 | 0.106 0.073 | port5074
9 10 | 0.053 0.110 | User
(c) Driver to Server
Message Measured Time
From | To Driver Server
Ay +95% Ay +95%

1 3 | 1.458 | 0.570 | 1.345 | 0.297

4 6 | 0.580 | 0.137 | 0.481 | 0.074

7 9 | 0432 | 0.114 | 0.335 | 0.064

10 11 | 0.542 | 0.043 | 0.333 | 0.308

invite m_ch_1 [mutl_ch_2 ok !
[0.00121] | [0.000552] | [0.000428] | [0.000402] |||

44444@—\<

p5071 p5076 pS074
[0.000514] | [0.000164] | [0.000136]

/ [0.000491]

invite_l m_ch_11 / m_ch_21

[0.000185]

[0.000176]

ok_l
[0.000143] | [0.000177]

pSO71_1 | pSO76.1 | p5074.1
[9.27e-05]

[9.07e-05]

|
|

|
|

|
|

|
Do

/ driverports | : /

|

|
!

balancer {10}

\ Pdriver {4} \

LoadBalancer

T R

netl net2 |
.1/6e—-05,9.24e+05) |
3.§1e—05.0.000/152]

I
w
I

Network

sepver {10} / :
|
I

SIPServer ,

1
-

Figure 9: Layered Queueing Network of the Cluster configuration in §3.2.21

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Table 2: Cluster Test Environment Inter-Message Time (mS)

(a) Driver (b) Server
Message | Measured Time | Entry Message Measured Time | Entry
Ay +95% Ay +95%
R2 | R3 | 0.514 0.417 | portb071 R1 P3 | 1.211 0.622 | serverl
R3 | P4 | 0.062 0.081 | User R4 | P6 | 0.552 0.068 | server2
R5 | R6 | 0.164 0.070 | portb076 R7 P9 | 0.428 0.056 | server3
R6 | P7 | 0.062 0.093 | User R10 | P11 | 0.402 0.077 | serverd
R8 | P9 | 0.136 0.029 | port5074
R9 | P10 | 0.044 0.071 | User
(c) Load Balancer Service Times (d) Driver to Load Balancer
Message Measured Time | Entry Message Measured Time
From | To | From | To Ay +95% From | To Driver Load Balancer
P1 R1 P3 R3 | 0.491 0.163 | cl Ay +95% A +95%
P2 R2 0.177 0.020 | r1 R1 P3 | 1.290 | 0.625 | 1.212 0.623
P4 R4 P5 R5 | 0.185 0.035 | c2 R4 P6 | 0.629 | 0.071 | 0.552 0.068
P5 R5 0.093 0.010 | r2 R7 P9 | 0.506 | 0.055 | 0.428 0.056
P7 R7 P9 R9 | 0.176 0.004 | c3 R10 | P11 | 0.476 | 0.077 | 0.402 0.077
P8 RS 0.091 0.015 | r3
P10 | R10 | P11 | R11 | 0.143 0.009 | c4
(e) Load Balancer to Server
Message Measured Time
From | To | Load Balancer Server
Ay +95% Ay +95%
P1 R3 | 1.899 0.788 | 1.780 | 0.785
P4 R6 | 0.946 0.067 | 0.814 | 0.070
P7 R9 | 0.812 0.060 | 0.681 | 0.057
P10 | R11 | 0.729 0.072 | 0.618 | 0.072
Table 3: Results
Standalone Cluster
Result Meas. | Pred. Err. || Meas. | Pred. Err.
Throughput 350 369 5% 290 280 | -3%
Server Utilization 31% | 24% | -23% 28% | 18% | -36%
Load Balancer Utilization Not Applicable 10% 9% | -10%

lization [I8]. If the entity is a leaf node in the call graph,
the bottleneck is a device, otherwise it is a task. Table (]
show the utilization results for each of the entities (except
the driver) for the two configurations. For the standalone
configuration, the bottleneck is the SIP Server itself. This
bottleneck can be mitigated by either improving the per-
formance of the software, or by spreading the load to more
processors. For the cluster model, the network is the bottle-
neck.

Entity Standalone | Cluster
net 0.66 1.00
balancer task 0.47
Balancer proc. 0.32
server task 2.12 4.57
SIPServer proc. 0.96 0.73

Table 4: Utilization Results

4.1 Phased Ethernet Model

One of the novel aspects of this performance model is the
use of a two-phase server to model the Ethernet. In this
work the second phase is used as a vacation in order to limit
throughput (second phases are usually used to improve per-
formance by increasing parallelism between the client and
the server [13]). For the cluster model, the maximum uti-
lization of the 1 gigabit external Ethernet was assumed to be
40%, and the maximum utilization of the 4 gigabit internal
Ethernet was measured to be approximately 20%. Further,
the service time measurements on the live system had some
spread. To explore the effects of these variations, a factorial
experiment was run by varying the maximum Ethernet uti-
lization, n, by +10% and by varying the measured Ethernet
service time, s1, from its lower to upper confidence interval
limit.

Figure [10] shows the results from varying the service time
of the two Ethernets as a surface plot. The high and low
plots represent the upper and lower bounds of the through-

put using the confidence intervals for the Ethernet service
time. Figure[I0 also shows that when the maximum utiliza-
tion of the Ethernet improves to 50% on the 1 gigabit link,
and 30% on the 4 gigabit link, a new bottleneck (the SIP
server) takes over to limit throughput.

Figure [I0 also shows the 290 calls per second throughput
contour — the measured value from the live system. This
contour gives the feasible values for the maximum available
utilizations for both Ethernet connections.

4.2 Sources of error

Two simplifying assumptions were made that can lead to
errors in the results from the analytic model. First, it was as-
sumed that the SIP application running on the server made
no requests to lower level servers, such as disks, not also
running on the server. If the SIP server were to do so, the
blocking time on the lower-level device would be reflected
in the measured service time, and therefore the predicted
utilization of the SIP server’s CPU. If the CPU is a bot-
tleneck, the predicted throughput would be lower than ob-
served. However, the results in Table Bl show that the pre-
dicted CPU utilization at server is lower than the measured
value, so the assumption appears to be valid. Second, is
was assumed that the SIP server ran to completion for each
service request received during the measurement runs. Con-
text switching would lengthen the service time and raise the
predicted CPU utilization. Again, this assumptions appears
to be valid.

Another source of error in the performance model arises
from the asynchronous messages, for example, the 100 try-
ing from the server to the driver. No indication is given
by the SIP Driver when the service for these message com-
pletes, so the service time at the driver is assumed to be
the difference between the next request from the server and
preceding asynchronous acknowledgment. This time inter-
val will be too long, raising the predicted utilization at the
driver’s CPU. However, provided that this device is not a
bottleneck in the model, this error can be ignored as it will
not limit the predicted throughput.

Finally, the measurements only capture the load caused by
SIP processing. The blades in the system are also running
other daemons which consume CPU time. Further, the Java
garbage collector runs periodically, stopping all service for
external requests. This extra load is not captured in the
model, so the predicted utilizations will be lower than the
measured values. One mitigating factor, however, is that
each blade is running a multiprocessor, so that the extra load
caused by services other than those used for SIP processing
can run in parallel with the SIP processing. The assumption
used for the performance model is that the SIP server had
the exclusive use of exactly one processor.

S. CONCLUSIONS

This paper has presented a layered queueing network per-
formance model of a prototype JSR116 compliant SIP ap-
plication server. Two systems were studied: a standalone
system where clients interact directly with the SIP server,
and a cluster system where a SIP load balancer is interposed
between the two parties. The parameters for the perfor-
mance model were found by using timestamps from packet
traces from the various servers in the system. In both cases,
the capacity predicted by the model was within 5% of the
capacity measured from the prototype system.

The utility of the performance models here comes from lo-
cating bottlenecks in the performance of the system. For the
standalone configuration, the performance bottleneck is the
SIP server itself. This result is somewhat curious in that the
measured utilization of the processor is only 31%, suggesting
plenty of capacity to spare. However, this is the aggregate
utilization of all of the processors in the Intel chip. The per-
formance model implies that only one of the four processing
threads is actually being used to process requests. This sug-
gests that improvements are needed to the application to
exploit parallelism on the processor. For the cluster con-
figuration, the bottleneck is the Ethernet connection. The
extra traffic put on the shared link is saturating the system.
Unfortunately, it is not known whether this bottleneck is
caused by the Ethernet hardware itself, or from a lack of
resources, such as buffers, at one of the blades in the test
system.

Finally, this paper has presented a novel way of modeling
Ethernet by using a two-phase fixed-rate server. The first
phase is used to represent the time the Ethernet is busy
transmitting the packet, while the second phase is used to
represent the time the Ethernet is “on vacation” and unable
to accept new requests. Because of these vacations, the Eth-
ernet can be saturated even though its maximum through-
put is significantly lower than the advertised bandwidth.

Acknowledgments

The authors gratefully acknowledge the assistance of IBM
for providing equipment for conducting this research and the
financial support of NSERC (Natural Sciences and Research
Council of Canada).

6. REFERENCES

[1] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. J. J.
Peterson, R. Sparks, M. Handley, E. Schooler,
RFC 3261: SIP: Session initiation protocol (Jun.
2002).
URL http://www.ietf.org/rfc/rfc3261.txt

[2] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson,
RTP: A transport protocol for real-time applications
(Jul. 2003).
URL http://www.ietf.org/rfc/rfc3550.txt

[3] A. Kristensen, SIP servlet API 1.0 specification,

http://www.jcp.org/aboutJava/communityprocess/final /jsr116/

(feb 2003).

[4] M. Woodside, G. Franks, D. C. Petriu, The future of
software performance engineering, in: L. C. Briand,
A. L. Wolf (Eds.), Future of Software Engineering
FOSE 07, Minneapolis, MN, USA, 2007, pp. 171-187.
doi:10.1109/F0SE.2007.32.

[5] G. Franks, T. Al-Omari, M. Woodside, O. Das,
S. Derisavi, Enhanced modeling and solution of
layered queueing networks, IEEE Trans. Softw. Eng.
35 (2) (2009) 148-161.|doi:10.1109/TSE.2008.74.

[6] C. E. Hrischuk, C. M. Woodside, J. A. Rolia,
R. Iversen, Trace-based load characterization for
generating performance software models, IEEE Trans.
Softw. Eng. 25 (1) (1999) 122-135.
doi:10.1109/32.748921.

[7] T. Israr, M. Woodside, G. Franks, Interaction tree
algorithms to extract effective architecture and layered
performance models from traces, J. Syst. and Soft.

http://www.ietf.org/rfc/rfc3261.txt
http://www.ietf.org/rfc/rfc3261.txt
http://www.ietf.org/rfc/rfc3550.txt
http://www.ietf.org/rfc/rfc3550.txt
http://dx.doi.org/10.1109/FOSE.2007.32
http://dx.doi.org/10.1109/TSE.2008.74
http://dx.doi.org/10.1109/32.748921

[13]

[14]

[15]

400
350
Throughpu800
250
200
150 ¥

290 -
290 -

Figure 10: Throughput versus maximum Ethernet utilization using a two-phase server.

80 (4) (2007) 474-492.
doi:10.1016/7.jss.2006.07.019.

E. Bayeh, The WebSphere Application Server
architecture and programming model, IBM Syst. J.
37 (3) (1998) 226-348./doi:10.1147/sj.373.0336.
Wireshark: A network protocol analyzer,
www.wireshark.org.

J. A. Rolia, K. A. Sevcik, The method of layers, IEEE
Trans. Softw. Eng. 21 (8) (1995) 689-700.
doi:10.1109/32.403785.

C. M. Woodside, J. E. Neilson, D. C. Petriu,

S. Majumdar, The stochastic rendezvous network
model for performance of synchronous
client-server-like distributed software, IEEE Trans.
Comput. 44 (8) (1995) 20-34.
doi:10.1109/12.368012.

B. Doshi, Single server queues with vacations, in:

H. Takagi (Ed.), Stochastic Analysis of Computer and
Communication Systems, North Holland, 1990, pp.
217-265.

G. Franks, M. Woodside, Effectiveness of early replies
in client-server systems, Performance Evaluation

36 (1) (1999) 165—-184.
doi:10.1016/50166-5316(99) 00034-6.

A. Pasztor, D. Veitch, PC based precision timing
without GPS, in: Proc. ACM SIGMETRICS 2002
International Conference on Measurement and
Modeling of Computer Systems, Marina Del Rey,
California, 2002, pp. 1-10.
doi:10.1145/511334.511336.

P. A. Farrell, O. Hong, Communication performance
over a gigabit Ethernet network, in: Proc. IEEE
International Performance, Computing, and
Communications Conference, 2000. (IPCCC ’00),
Phoenix, AZ, USA, 2000, pp. 181-189.

do0i:10.1109/PCCC.2000.830317.

C. Systems, Cisco 7500 gigabit ethernet interface
processor (geip), White Paper (1998).

C. Hrischuk, G. Deval, A tutorial on SIP application
server performance and benchmarking, in: The 32"¢
International Conference for the Resource
Management and Performance Evaluation of
Enterprise Computing Systems CMG 2006, Vol. 2,
Computer Measurement Group, Reno, NV, 2006, pp.
729-740.

G. Franks, D. Petriu, M. Woodside, J. Xu,

P. Tregunno, Layered bottlenecks and their
mitigation, in: Proc. 3" International Conference on
the Quantative Evaluation of Systems (QEST’06),
Riverside, CA, USA, 2006, pp. 103 — 114.
doi:10.1109/QEST.2006.23

http://dx.doi.org/10.1016/j.jss.2006.07.019
http://dx.doi.org/10.1147/sj.373.0336
http://dx.doi.org/10.1109/32.403785
http://dx.doi.org/10.1109/12.368012
http://dx.doi.org/10.1016/S0166-5316(99)00034-6
http://dx.doi.org/10.1145/511334.511336
http://dx.doi.org/10.1109/PCCC.2000.830317
http://dx.doi.org/10.1109/QEST.2006.23

	Introduction
	SIP Test Scenarios
	Layered Queueing Networks
	Layered Queueing Networks
	Two-phase Servers

	SIP Layered Queueing Model
	Standalone Model
	Cluster Model

	Results and Analysis
	Phased Ethernet Model
	Sources of error

	Conclusions
	References

