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Abstract—Bottlenecks are a simple and well-understood phe-
nomenon in service systems and queueing models. However in
systems with layered resources bottlenecks are more complicated,
because of simultaneous resource possession. Thus, the holding
time of a higher-layer resource, such as a process thread, may
include a small execution demand, but a large time to use other
resources at a lower layer (such as a disk). A single saturation
point may in fact saturate many other resources by push-back,
making diagnosis of the problem difficult. This paper gives a
new corrected definition of a layered bottleneck, and develops a
framework for systematic detection of the source of a bottleneck,
for applying improvements and for estimating their effectiveness.
Many of the techniques are specific to layered bottlenecks.

I. INTRODUCTION

When a system is throughput-limited but none of the

devices (processors, disks, bus, network) are saturated, the

bottleneck is some other kind of resource. Here, these are

called “layered bottlenecks”, using a model which describes

computer systems, and many other systems.

In simple service systems (“flat” resource systems) a job is

using resources one at a time. The most heavily loaded server

is the bottleneck, and if it is relieved by some means, the next

most heavily loaded server takes over [17].

Layered bottlenecks arise from simultaneous resource pos-

session. The holding time of a resource R may include waiting

for and using other “lower” resources, one at a time. For

example, while holding a process thread resource, a program

may use the disk.

A layered bottleneck resource B has the following features:

1) B is a saturated resource, that is its units are all in use

almost all the time.

2) Resources “below” it are unsaturated. As an example, a

processor may have low utilization in a memory bottle-

neck.

3) It tends to spread saturation to resources which include it

in their holding times. This is “pushback” of load away

from the bottleneck.

4) Thus, there may be many saturated resources which are

not themselves the bottleneck.

This makes the understanding of layered bottlenecks more

difficult than flat resource system bottlenecks.

Although bottlenecks are often considered an asymptotic

property of systems which are heavily loaded, the present dis-

cussion considers the limiting factors in any system, regardless

of the workload intensity. If a closed system is lightly loaded,

its bottleneck is defined to be at the source of workload.

Layered bottlenecks were described and named “software

bottlenecks” in [11], but they were familiar to system and

database programmers long before. The name layered bottle-

necks recognizes that they are a feature of many kinds of

resources, not only software.

Layered bottlenecks have been described by many authors

under a variety of names. Thrashing in virtual memory systems

is a well-known example [7]. Maly et al described a bus

bottleneck in a switch, which was layered over the processor

and memory resources [9]. Dilley et al. found a process thread

bottleneck in a web server [2], and threads were also featured

in [6]. Smith and Williams give a tutorial example with a

global lock which forms a layered bottleneck, and limits an

ATM system to a very low throughput [16]. Cechet et al

measured a web-based application with a throughput limit due

to database lock contention [1]. Petriu et al., and Xu et al.,

describe a sequence of steps to mitigate bottlenecks involving

process threads, a buffer pool, class interference, and excessive

synchronization [12], [18]. Gerndt et al describe a cache which

is a bottleneck [5], due to thrashing.

This paper describes a framework for understanding layered

bottlenecks, gives an improved definition, and estimates the

effect of the possible improvements (mitigations) in a given

case.

II. LAYERED RESOURCES

We may regard resources as servers with queues. Everything

done during the holding time of a resource T is part of its

service time XT . If another resource t is used during this

time, its service time is incorporated into XT , as is any time

spent waiting to obtain t. Thus:

Layered services are services which include

other services and their waiting; they are a nested

form of simultaneous resource possession.

Resource T above depends on resource t, because t is required

(always or sometimes) by the holding- time operations of T .

The dependency can be shown as a directed graph with nodes

for resources, and an arc from resource T to each resource t
that it depends on (see Figure 1). We will say that T is in a

higher layer than t. Attention is restricted to acyclic graphs (to

exclude systems with resource deadlocks), and to resources

which are released in reverse order to acquisition (giving

nested holding times). Many extended queueing networks are

layered.

In Figure 1,
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Fig. 1. Resource Dependency Graph

• each node T is labeled by (mT , ZT ) where:

– mT = the multiplicity of the resource T ,

– ZT = the “local service” part of the holding time

of T (that is due only to T itself, and not to nested

resource use),

• each arc (T, t) is labeled by y(T, t), the mean number of

requests to another resource t during a holding time of

T ,

• the system has a closed workload driven by source node

A, with 50 “users”,

• the graph imposes a partial order on resources, ordered

from top to bottom of Figure 1,

• requests can jump over layers (not shown here),

• the set of nodes connected by arcs directly from resource

T will be called RequestedBy(T ), those connected by

arcs to T are the set RequestsTo(T ).

The topmost node A is special, as it has no requests. Such

resources model closed sources of workload to the system.

A represents mA entities which cycle forever, alternating

between a think time of mean ZA and requests for resources

which are top-level servers.

The leaf nodes (with double outlines) are ordinary queueing

servers with mean service time ZT . The set of leaf nodes

will be called Processors, as CPUs have this role in computer

systems. They are not limited to CPUs, however.

The service time XT of any resource T that is not a pro-

cessor is defined recursively in terms of waiting times Wt and

service times Xt of resources t, in the set RequestedBy(T )
of nested requests:

XT = ZT +
∑

t∈RequestedBy(T )

[y(T, t)(Wt +Xt)] (1)

Real systems tend to have many classes of requests, but for

simplicity we will first assume a single class of requests to

each resource.

From the system or a model we can obtain performance

measures for each resource:

• XT = service time of T

• WT = waiting time for requests to T
• RT = response time = WT +XT

• fT = throughput of resource T (acquisitions/sec)

• UT = fTXT = utilization of T (mean number of busy

units of the resource)

• satT = the saturation level of T = UT /mT (utilization

relative to the number of units of resource T )

In a closed system each source of workload (such as A in

Figure 1) has throughput fA and the system response time is

its cycle time mA/fA, minus its think time ZA:

Response Delay at A = (mA/fA)− ZA

A. Examples

With these definitions we can show an example of per-

formance measures for the system of Figure 1, with the

parameters and result values in Table 1.

The throughput at A, as a function of the number of users

mA, follows a classic saturation curve shown in 2. The fact

that B is the one limiting the throughput is confirmed by the

fact that an increase in mB yields a higher throughput. We

obtain the following values for (mB , fA) when mB is varied:

(5, 3.06), (7, 3.62), (9, 3.82), (¿15, 3.87)

On the other hand an increase in other resources (e.g. in

mt1 ) does not change the throughput at all.

TABLE I
EXAMPLE: SOME PARAMETERS AND RESULTS

Res. ZT XT mT fT UT satT
T (sec) (sec) /sec

A 10.0 16.3 50 3.06 50 1

t1 0.01 6.02 20 3.06 18.4 0.92
t2 0.5 1.60 15 9.18 14.6 0.97
t3 .01 0.01 1 6.12 0.06 0.06
B .01 0.543 5 9.18 4.98 0.996
t4 0.2 0.2 5 6.43 1.29 0.26
t5 0.1 0.1 5 9.18 0.92 0.18
t6 0.05 0.063 3 36.7 2.31 0.77
t7 0.01 0.01 1 36.7 0.37 0.37
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Fig. 2. Saturation as Load Increases

A pattern emerges in Figure 3(a) which shows a bold outline

for every task with satT > 0.9 (an ad hoc indicator of

saturation of resource T ). Upper layers are saturated, lower



layers are not. The boundary resource B is the bottleneck

which causes the saturation, and the set Above(B) is saturated

by pushback.

Based on this pattern, a “bottleneck strength” measure was

defined in [11]:

BStrengthOldT =
satT

(maxt∈RequestedBy(T ) sat t)

The resource with the largest value was defined as the bottle-

neck. Table 2 shows the strength values for each task. Column

3 identifies B, with saturation over 0.9 and “old” strength

measure 1.29.

However there is a defect in the measure BStrengthOld ,

illustrated by modifying multiplicity m2 to 1500, instead of

15. This gives Figure 3(b) and the saturation values on the left

side of Table II. The value of sat t2 becomes very small, and

the largest value of BStrengthOld is at t1, even though B
is still the factor which limits the throughput. The pushback

is transmitted through t2 by its holding time, even though

t2 itself is not saturated. This defect is corrected in the new

definition:

BStrengthT =
satT

satShadow(T )
(2)

Shadow(T ) = max
t∈Below(T )

sat t (3)

where maxt sat t is the task t with the largest value of sat t.

Values of BStrength are shown in Table II for both cases, and

correctly identify the bottleneck as task B. It has:

• saturation over 0.9 (this threshold may depend on the

goals of the system)

• the largest value of BStrength .

The effect of the bottleneck is to limit the system throughput.

The maximum possible throughput at B is (5/XB)/sec =
9.2requests/sec. The system throughput fA is proportional to

fB :

Throughput proportionality (Forced Flow Law):

The rates of requests for all resources have fixed

ratios.

This follows from the mean number of requests made dur-

ing a holding time of any resource T , to members of

RequestedBy(T ). Thus we can write:

fT =
∑

t∈RequestedBy(T )

y(t, T )ft

This homogeneous set of linear equations can be solved for

every fT in terms of fA, with the constant of proportionality

y(A, T ):

fT = y(A, T )fA (4)

A ratio y(T, t) = y(A, t)/y(A, T ) is defined for request

frequencies of any resources T and t. Using y(T, t), Eq. (1)

has the alternative form:

XT = ZT +
∑

t

[y(T, t)(Wt+ Zt)] (5)

Also, using Eq. (2) we can write the system throughput in

terms of the bottleneck throughput fB :

fB = mB/XB = y(A,B)fA

fA = mB/(XBy(A,B)) (6)

Definition of a Layered Bottleneck

A layered bottleneck is defined as a saturated re-

source which actively limits the system throughput.

For bottleneck identification it is necessary to set an ad-hoc

resource saturation threshold sat∗. Then

a) if one or more resources in Processors has sat t > sat∗,

then:

• B = maxt∈Processors sat t

b) else if one or more other resources has satt > sat∗, B is

any resource which satisfies both of:

• satB > sat∗

• B = maxT 6∈Processors BstrengthT

B. Mitigation

Eq. (6) dominates the end-to-end performance of the satu-

rated system. As in ordinary queueing networks, the perfor-

mance of a bottlenecked system is relatively insensitive to

changes in parameters away from the bottleneck. To relieve

(mitigate) the bottleneck at B requires changing one or more

of

• y(A,B), the mean requests for B per end-to-end re-

sponse,

• XB , the mean holding time of B,

• mB , the units of resource at B.

Because Eq. (6) depends on contention delays via XB , bottle-

necks can be identified only after evaluating performance. This

may use measurement, simulation, or solution with a layered

queueing solver.

C. Analysis Tools

Layered resources can be analyzed as layered queueing

networks (LQNs), which are a class of extended queueing

networks defined for this situation (and for more general

cases, including open arrivals and multiple classes of service).

Solution methods for LQNs have been described in [3], [4],

[10], [13], [14].

1) Fast Optimistic Bound Analysis: A simple calculation

based only on service times, and ignoring the waiting term

Wt in Eq (1a), is often effective. It calculates an “optimistic

holding time” X−
T , optimistic throughputs f−

A and f−
T and an

“optimistic utilization” U−
T all based on replacing Eq. (5) by:

X−
T = ZT +

∑

t

[y(T, t)Zt] (7)

The optimistic system throughput f−
A is then the largest

feasible value, given the capacities of all the resources. Every

resource utilization must satisfy (using optimistic values):

U−
T = f−

T X−
T = f−

A y(A, T )X−
T ≤ mT
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Fig. 3. Resource Dependency Graph showing Saturated Resources in Bold

TABLE II
BOTTLENECK STRENGTH VALUES

Case with mt2 = 15 Case with mt2 = 1500

T satT BStrength satT BStrength

old new old new

A 1 1

.92
=1.09 1

.996
=1.004 1 1

.92
= 1.09 1

1
=1.0

t1 0.92 .92
.97

= .95 .92
.996

= .92 0.92 .92
.012

=76.7 .92
1

= .92

t2 0.97 .97
.996

= .97 .97
.996

= .97 0.012 .012
1

= .012 .012
1

= .012
t3 0.06 – – 0.06 – –

B 0.996 .996
.77

=1.29 .996
.77

=1.29 1 1

.77
= 1.29 1

.77
=1.29

t4 0.26 – – 0.26 – –

t5 0.18 – – 0.18 – –

t6 0.77 .77
.37

=2.08 .77
.37

=2.09 0.77 .77
.37

= 2.08 .77
.37

=2.09
t7 0.37 – – 0.37 – –

so f−
A is set to the largest value that satisfies this for every

resource T in the system. This gives:

f−
A = min

T

[

mT

y(A, T )X−
T

]

sat−T = f−
A y(A, T )X−

T /mT

This “Optimistic Bounds Analysis” is elaborated for multiclass

sytems in [17]. It works on the assumption that large queues

occur with reduced relative service capacity, so the optimistic

saturation will be largest where the actual saturation is largest.

This assumption is more effective for resources below the

bottleneck than above it, but that is sufficient for locating the

bottleneck resource. It gives substantial errors in holding times

and utilizations for resources above the bottleneck because

the long wait at the bottleneck resource should be included,

and is not. However, exact utilization values for resources

above the bottleneck are not needed for locating the bottleneck,

for recommending a mitigation strategy, or for estimating its

probable effect.

D. Asymptotic Cases

Special asymptotic cases are sketched in Figure 4. In Fig-

ure 4(a) the bottleneck is at the bottom, at a processor, showing

what is normally regarded as a bottleneck, at a saturated

device. The design of layered resources may reasonably be

oriented to getting the maximum out of the physical processor

resources, and thus towards pushing the bottleneck down to the

processor layer.

In Figure 4(b) it is at the top, at the load source. This

is normally regarded as a non-saturated system as it does

not have enough users to saturate it anywhere. The user

“resources” are busy all the time in every closed system, since

they perpetually cycle through their operations.

Thus there is guaranteed to be a bottleneck somewhere in

a closed layered resource system. When one bottleneck is

relieved, another one takes over. The characteristics of this

“next bottleneck” determine the effectiveness of each step in

increasing the capacity.

It is not correct to think of eliminating system bottlenecks,

only of improving performance to a desired level. There will

be a bottleneck somewhere, but the resulting capacity and

response time will be acceptable.

E. Multiple Classes and Open Workloads

Multiple classes arise with multiple sources, or where a

resource has classes of service. As in ordinary queueing,

classes of service have different parameters and measures. For

class C, ZT is replaced by ZT,C , XT by XT,C , UT by UT,C
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and y(T, t) by y(T,C1; t, C2). The holding time calculation

in Eq. (1) becomes:

XT,C1 = ZT,C1 (8)

+
∑

t,C2∈RequestedBy(T,C1)

[y(T,C1; t, C2)(Wt+Xt)]

Saturation is calculated independent of class, by summing the

class utilizations UT =
∑

C UT,C , and proceeding as for a

single class.

An open workload gives a stream of requests from outside

the system to some class at some resource at a defined rate,

balanced by departures. The request can be passed to other

resources (with routing probabilities, including a probability

of departing the system). Open requests form a distinct class,

but during a holding time for an open request, nested requests

can be made for other resources, including waiting for them

to complete. Thus they can generate closed sub-behaviours.

The LQNS analysis tool [3], [4] models multiclass and open

workloads in layered resource models.

III. PATTERNS AND ROLES IN LAYERED BOTTLENECKS

From the viewpoint of the bottleneck resource B we can

divide the system into three parts:

• Above(B) = the set of resources that depend on B,

directly or indirectly.

• Below(B) = the set of resources that B depends on,

directly or indirectly,

• Beside(B) = the rest.

There are also:

• Sources = the set of load-generating resources,

• RequestsTo(B) = the subset of Above(B) that depends

directly on B,

• RequestedBy(B) = the subset of Below(B) that is

requested directly by B
• Processors = resources with no dependencies.

These sets are indicated in Figure 5, for the same system

as Figure 1. Processors have double outlines. The Shadow

bottleneck Shadow(B) is described below.

Shadow(B)

Beside B

Above B

Below B
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Fig. 5. Resource roles relative to a bottleneck B

The maximum number of concurrent requests to B is its

available concurrency AvConcur(B). It can be computed

recursively using

AvConcur(A) = mA (9)

for A in Sources, and

AvConcur(T ) =
∑

t∈RequestsTo(T )

[min(AvConcur(t),mt)]

for other resources T .

The resources in Above(B) are saturated not by their own

workload but because (WB +XB) is large due to congestion

at B. Increased workload increases the queue at B and service

times in Above(B).
On the other hand the resources in Below(B) are protected

by the bottleneck, which prevents traffic from reaching them.



The workload intensity in Below(B) is independent of the

load on the system as a whole, if B is saturated. Many

admission controls are bottlenecks which are deliberately

introduced.

A. Taxonomy of Cases

The performance properties of the resources in their roles

relative to B determines what will work in mitigating the effect

of the bottleneck. Cases include:

• local bottleneck at B (ZB is the only or major part of

XB): change is needed at B,

• resource-supported bottleneck (the support is

Shadow(B)): reducing y(B,Shadow(B)XShadow(B))
is indicated,

• heavy bottleneck: if AvConcur(B) is much greater than

mB and satB is near unity, then the queue length at B is

large and large improvements are possible by changes to

mB and XB .

• light bottleneck: if AvConcur(B) is only slightly greater

than mB, there is limited potential for improvement.

B. Estimation of Effect

In examining various kinds of mitigation, we will estimate

the potential improvement using the holding times calculated

in the base case. These values naturally change under the mit-

igation, so the estimates are only approximate extrapolations

of conditions in the base case. They may be optimistic or

pessimistic.

IV. BOTTLENECK MITIGATION: ADD RESOURCES

An obvious way to relieve a bottleneck is to provide more

resources, in the form of more resource units. If mB is

increased, Eq. (3) shows that throughput will increase in

proportion to mB at first. However this change may make

little difference, depending on the system context.

A. Max-Resources Analysis

A simple way to estimate suitable values for all multiplic-

ities is to replace the system values by the largest feasible

value, for all resources except sources, and resources with

load-dependent Zt, (the latter are simply too complex for

this approach to be effective). Some resources by their nature

exist in a single copy (an index page of a database and a

critical section are two examples in software systems) or are

constrained by economic factors. A derived max-resource per-

formance model with these maximum values is solved, giving

a bottleneck at resource Bmax , and a throughput fA,max . Then

Bmax is a fundamental limiting resource. The multiplicity of

each other resource T may be set to a value somewhat greater

than its utilization UT,max , which is the mean number of busy

resources in the max-resource case.

However this only considers resource multiplicity as a

source of performance constraint, and it does not find the

best combination of economical and effective design changes.

Increasing the multiplicity of resources may be simple (as in

changing the size of a buffer pool or thread pool) or difficult

(as in introducing concurrency into sequential code).

B. Case of Leaf Node Bottleneck

If sufficient resources are added at a leaf node B they will

reach the maximum number of concurrent requests that can be

made by the dependent resources which we will call the avail-

able concurrency AvConcur(B). If AvConcur(B) > mB

then throughput at B increases, but is limited to a new value

f∗
B given by:

f∗
B =

AvConcur(B)

XB

=
AvConcur(B)

mB

fB

at which the resource B is starved of requests. This limits the

system to a throughput estimated as:

f∗
A,starve =

f∗
B

y(A,B)
(10)

and the bottleneck migrates to another resource, as considered

below.

C. Case of non-Leaf-Node Bottleneck

If mB is increased B may become starved by limited

available concurrency, or a resource below B may become

saturated. A good candidate for this is the resource t in

Below(B) with the largest value of sat t, which we will call

the Shadow Bottleneck:

Shadow(B) = max
t∈Below(B)

satt

Assuming Xt stays the same and throughput increases due to

larger mB , resource Shadow(B) will be the new bottleneck,

giving a new system throughput f∗
A:

f∗
A,shadow = y(A,Shadow(B))f∗

Shadow(B)

= y(A,Shadow(B))
mShadow(B)

XShadow(B)

=
satB

satShadow(B)
fA

= BStrength(B)fA (11)

In Figure 1, resource t6 is the Shadow Bottleneck because

its saturation value of 0.77 is the highest in Below(B) (which

is {t4, t5, t6}); it is labeled Sh(B) in Figure 5. The limit on

improvement is the smaller of f∗
A,starve and f∗

A,shadow .

D. Migration of the Bottleneck

Predictions about the impact of a change are based on

performance values at a nominal configuration, and must be

checked. With that caveat,

• a bottleneck may migrate down to a Shadow bottleneck

• or up to a higher layer due to starvation of B.

In the latter case, a good candidate is the resource whose

multiplicity is limiting in the min function in Eq. (9), for

AvConcur(B).



E. Recommendation:

Increased resources are useful:

• for processor bottlenecks with a large value of the ratio

AvConcur(B)/mB
• for higher-level bottlenecks that satisfy both of

– a large value of satB/satShadow(B)

– a large value of the ratio AvConcur(B)/mB

If other factors cannot be changed, suitable resource levels

can be found for all resources at once, by solving the derived

max-resource model.

F. Examples

In computer systems: process pools, thread pools, buffer

pools, and multiprocessing limits are software resources whose

multiplicity can be increased. Multiprocessors and cluster sizes

can be increased. In networks: window sizes for flow control,

admission controls, links in parallel are all examples.

V. BOTTLENECK MITIGATION: REDUCE THE BOTTLENECK

HOLDING TIME

The second factor that can give improvement is to reduce

the holding time XB of the bottleneck resource. From Eq. (5)

there are three ways to do this:

• reduce the local service time ZB , or any local service

time Zt that is included in XB ,

• reduce the requests to lower level resources.

• parallelize some local service, or some set of requests.

The impact of reducing any Zt is given by Eq. (5).

If a request parameter between any pair of tasks in B ∪
Below(B) is reduced by an amount ∆y, the reduction in

y(B, t) for any t has the linear form

∆y(B, t) = a+ b∆y (12)

and the reduction in XB :

∆XB =
∑

t

[∆y(B, t)(Wt + Zt)] .

Then Eq. (4) gives

f∗
A = fA/(1−∆XB/XB)

(for a decrease in holding time, ∆XB is positive). The limit

to the improvement will come from rising throughputs which

saturate some other resource. One possibility is Shadow(B),
whose utilization rises with fA; another is that a resource in

Beside(B) may saturate and move the bottleneck there.

A. Recommendation

Look for a term with a large contribution in Eq. (5),

and reduce it. For parallelization, the effect on reducing XB

depends on the relative delays of the parallel paths and the

overhead introduced to launch them.

B. Examples

Batching of requests can be effective if the combined

requests contribute less in Eq. (5); gains are made when the

overhead of the combined operation is lower (communications

and scheduling times). Smith and Williams describe principles

that can be applied to reduce the workload of computer

programs [16], with examples.

VI. MITIGATION: REDUCE REQUESTS FOR B

A potent way to increase the saturation throughput is to

reduce the value of y(A,B), so the bottleneck is simply used

less. This employs changes to the request parameters y(t, t′) in

the Above(B) set. Eq. (12) makes ∆y(A,B) = a+ b∆y, and

by Eq. (6), the new system throughput bound can be predicted

as roughly

f∗
A =

fA
1−∆y(A,B)/y(A,B)

(13)

(for a decrease in requests, ∆y(A,B) is positive).

Improvement is limited by starvation, as for reduced holding

time, but has more potential because other resources also

have fewer requests. Resources in Below(B) see constant load

at the increased throughput, and resources in Above(B) and

Independent(B) may or may not see increased load, depend-

ing on the point where requests are reduced. To determine the

limit:

• Apply Eq. (12) find ∆y(A, t) for each t
• Apply Eq. (13) with t in place of B, to give a virtual

system throughput f∗∗
A,t for a new bottleneck at t.

• as ∆y increases, test to discover if some resource t causes

a lower virtual throughput than B. If so, this t is the “next

bottleneck” and f∗∗
A,t is the resulting throughput.

A. Recommendation

Decreasing the requests to the bottleneck is recommended

when it also reduces requests to other tasks above B. That is,

the higher the resource where the change is made, the better.

B. Examples:

Batching of requests to B, or to a resource above B, is

effective here also.

VII. ASYNCHRONOUS RESOURCE USE

It is possible to reduce the bottleneck holding time by

modifying not the entire holding time of its RequestsTo

set, but just the part of the holding time that requires the

simultaneous resource B. If part of the requested operation

can be performed without B, it may increase performance. To

describe this, the model of layered service must be extended

to include:

Partly asynchronous service: a resource holding

time is divided into two parts, which we will call

phase 1 and phase 2. When resource T requests t,
Phase 1 at t blocks the requesting resource T for

only the phase 1 holding time Xt1. Phase 2 at t is

executed either immediately after, or some time later,



and is not included in any other resource holding

time.

Each phase p of the holding time of resource T has a complete

set of request parameters: a local service time ZTp, request

rates y(T, p; t) to other resources, and a holding time XTp.

Then Eq. (1) is modified to an equation for each phase at T ,

and nested holding of any other resource t only includes phase

1:

XTp = ZTp +
∑

tinRequestedBy(T )

[y(T, p; t)(Wt +Xt1)] (14)

The resource utilization includes both phases:

UT = fT (XT1 +XT2)

The effect of asynchronous service at some T below B is

to reduce the holding time of B, by propagating less delay

upwards. If an amount ∆xT can be shifted to second phase,

the reduction in holding time of B is y(B, T )∆xT , and as

long as the bottleneck remains at B the new system bottleneck

bound is

f∗
A =

XB

XB − y(B, T )∆xT

fA

However it is less effective than simple reduction of holding

time, since the total holding time of T is still effective and T
may saturate.

A. Recommendation

Apply asynchronous service wherever functionally permis-

sible, as it is a no-lose option.

B. Examples

Delayed writes in file systems and databases, operations

which execute autonomously once initiated.

VIII. LOAD-DEPENDENT DEMANDS

Some resources have the additional feature that their de-

mands depend on the intensity of the applied load.

For example, [1] describes an application with a lock

management bottleneck in a MySQL database which causes

throughput not just to saturate, but to drop sharply beyond a

certain point. This is characteristic of cases where increasing

congestion creates additional management overhead. Examples

include optimistic locking (where high contention causes a

high rate of transaction restarts), in thrashing in database

buffers used as caches, and in virtual memory thrashing.

We shall assume that all the available customers of a

bottleneck are in contention for it, which is approximately

true; this number is AvConcur(B) given by Eq. (9). Then the

dependence makes ZT , y(T, t) and hence XT to be functions

of AvConcur(B). Figure 6 compares implementations of a

system that includes a database, in which throughputs show the

effect of load-dependent bottleneck. In the cases with simple

saturation (the highest and lowest curves, which level off)

the authors [1] detected processor saturation; in the cases

with declining throughput no processor was saturated and they

Fig. 6. Throughput versus clients (fA vs mA) for a locking bottleneck
(from [1])

described a “locking bottleneck”. It shows the clear signs of

load-dependent saturation with AvConcur(B) = mA.

In general, if there is a load-dependent resource T then

Eq. (3) for the limiting system throughput can be written as:

fA =
mB

y(A,B)XB(AvConcur(B))

Supposing that AvConcur(B) = mA throughout the range in

Figure 6, then in the rising curve on the left of Figure 6 the

bottleneck is the load source, whereas in the falling curve it

is a load-dependent lock-related resource, with a holding time

that rises with mA.

IX. CASE STUDY

This section considers a distributed telephone switch, based

loosely on an industrial project. Historically, the architecture of

voice switches has been dominated by the need for increased

capacity and performance. For instance, a description of

Lucent’s 5ESS architecture [15] emphasizes continual perfor-

mance improvement, the tradeoffs between performance and

other properties, call flows and delays, overload control, and

software resource engineering. Standards govern acceptable

delays to receive dial tone, and to obtain an indication of a

connection.
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Fig. 7. Abstract view of a telephone network



A. Architecture of a Class IV Voice-over-Packet (VoP) Switch

A Class IV switch connects Class V switches that actually

have subscribers connected. This system distributes the func-

tionality of a Class IV switch as shown in Figure 7, using

a packet switch as a switching fabric. The Call Connection

Agent includes:

• Line Information Database (DB)

• Call Processing Server (COCO): call routing decisions

and coordination of connectivity.

• SS7 Interface (SS7): to the public network.

• H248 component: interface to the VoP network.

The gateway switch has a node controller (CTL) and connects

to an intra-switch network using:

• H248 interface

• Call Control (CACO)

• A module SVC that terminates the connection requests

and has an interface to the packet switch.

• line cards (interfaces) called NLC and ILC.

The packet switch has similar modules SVC, CTL, NLC and

ILC.

B. Resources in the Distributed Switch

All of these modules are multithreaded concurrent processes

which behave as resources in our model, and all have their

own (single) processors. Figure 8 shows a resource graph for

the system, with nodes shown as parallelograms. Each node

represents a software resource (many of them multithreaded)

with a processor (not shown).

There are are four subsystems, with a source that represents

an originating Class V switch, with mOrigV = 1000 users and

think time ZA = 3.6 sec to represent a potential for 500,000

call requests per hour. An LQNS model based on Figure 8 was

populated with parameters that roughly represent an actual

prototype product with a loosely related resource structure,

and solved. The initial model carried 280,000 calls/hour, and

had a connection delay of 2.8 seconds with a bottleneck at

the COCO node (Strength = 9.6, with Shadow(COCO) being

node H248Ip).

C. Bottleneck Mitigation

Two steps of bottleneck mitigation were carried out. In

the first, mCOCO was increased from 10 to 110. The new

throughput was 463,000 calls/hour with a connection delay of

284 ms. The new bottleneck was CACO1 (the CACO node

on the left) with Strength = 1.55. We notice that the shadow

node did not become the bottleneck in this case, but it is in

the saturated path from the top to CACO1. The new Shadow

node is CTL1, the CTL node on the left (since SVC has a

very high multiplicity).

In the second step mCACO1 was increased from 4 to 9.

The final throughput was 490,320 calls/hour, with a connection

delay of 68 ms. (this source can only reach 500,000/hour with

zero response delay, so this is an excellent result). The final

bottleneck is starvation at the source, which means that this

configuration has capacity for additional traffic without satu-

rating. The model-based recommendations were very similar

to those developed by the project team. Table III summarizes

some of the key results for the three configurations.

TABLE III
SOME RESULTS FOR THE MODEL IN FIGURE 8.

Node Saturation values, written as U/m
Case with I Case with II Case with III

SS7In IP
150/
50

=1.0
150/
50

=1.0 19.3
150

=0.129

COCO 10

10
=1.0 73.6

110
=0.67 19.3

110
=0.175

(bottleneck)

H248Ip 2.1
20

=0.105 19.97
20

=0.985 5.5
20

=0.275
(shadow)

COCO Proc 0.086
1

=0.086 0.141
1

=0.141 0.150
1

=0.150

CACO1 1.92
4

=0.480 3.98
4

= .995 5.2
9

=0.578
(bottleneck)

CTL1 0.174
1

=0.174 0.257
1

=0.257 0.27
1

=0.27
(shadow)

SVC1 1.84
20

=0.92 3.84
20

=0.192 5.05
20

=0.252

X. CONCLUSIONS

A framework for the systematic analysis and mitigation of

layered bottlenecks has been described, including a taxonomy

of cases and a detailed study of the effectiveness of the

different possible changes. It is not surprising that many of

the changes prescribed are related to Smith and Williams’

principles for improving performance in general [16], but they

take a specific form here. Space has precluded the inclusion

of a great many examples, but the references help to supply

this deficiency.

New definitions were given for the bottleneck strength mea-

sure first stated in [11], which deals with heavily provisioned

resources in the bottleneck zone, and for a layered bottleneck.

The latter depends on the value of a saturation threshold sat∗

which must be chosen. If it is chosen too close to unity, no

bottleneck will be found, and the analysis can be repeated

with a smaller value. In a well balanced system there is no

single bottleneck, and further improvement may require many

simultaneous changes.

Not discussed here, but also relevant to removing bot-

tlenecks in distributed computer systems, is re-allocation of

processes to processors. An approach is described in [8] to

optimize the allocations of layered resources.
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