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Abstract

Layered queueing networks describe the simultaneous-
resource behaviour of servers that request lower-layer services
and wait for them to complete. Layered software systems of-
ten follow this model, with messages to request service and
receive the results. Their performance has been computed suc-
cessfully using mean-value queueing approximations. Such
systems also have multiservers (which model multi-threaded
software processes), multiple classes of service, and what we
call deferred operations or “second phases”, which are exe-
cuted after sending the reply message to the requester. In this
paper, three established MVA approximations for multiclass
multiservers were extended to include deferred service, and
evaluated within the layered queueing context. Errors ranged
from 1% up to about 15%. These servers were then used to
model the Network File System, as implemented on Linux, to
show that the method scales up and gives good accuracy on
typical systems, with computation times of a few seconds to a
few minutes. This is hundreds of times faster than simulation.

Introduction

Good performance of servers in distributed systems often re-
quires multithreading, which can be modeled as a multiserver,
and deferred operations. A server with a deferred operation
(which we will term a “second phase”) is arranged to respond
earlier, by deferring some of its work until after the response,
when that is feasible. The combination of these two features
leads to a performance prediction problem that has not previ-
ously been addressed. This work describes models within a
“layered queueing framework”, with two goals:

1. evaluate the accuracy of various Mean Value Analy-
sis (MVA) multiserver approximations, where they are
adapted to include second phases (one algorithm is found
to be clearly preferable, and relatively simple).

2. demonstrate the performance and economic advantages of
deferred operations, under different conditions.

Multithreading is used to mitigate software bottlenecks, as
described in Neilson et. al. [10]. They are effective in cases
where one server or one thread may be blocked. The com-
bination of blocking remote procedure calls to servers, and
multi-threading, is seen in many application areas such as
web-servers, transaction processing, and in business client-
server systems. In all these areas it has been found to be
imperative, for performance reasons, to have multi-threaded
servers.

Second phases of service improve performance by reduc-
ing the blocking time of customers [7]. A second phase can

only include work which is not essential to produce the re-
sult, such as clean-up after a computation, or pipelined work
which is not needed at once by the client. Examples include
memory release, database commits, delayed writes to a file
server, or sorting an array after insertion of new data. A sin-
gle server with Poisson arrivals and a second phase can be
modelled exactly by the “Walking Server” model [16], but
in a network or any closed system an approximation must be
found. Second phases were studied in depth in [7], where a
number of practical examples were described. Second phase
service in multiserver queues has not been modelled before
this.

We seek a robust analytical approximation, meaning one
that retains its accuracy over a wide range of situations. An
analytical approach has the potential to give very much faster
solutions, which allows one to explore parameter spaces and
sensitivities, and develop greater insight than a few point so-
lutions can give. Speed of computation is a secondary goal.

Layered Queueing Networks (LQN) [20, 6, 12] are a form
of Extended Queueing Network with simultaneous resource
possession and nested use of resources, which arise naturally
with software servers. They can represent systems with many
layers, including software (web server, application, database
server, file server) and layers of hardware (processors, buses
and disks).

The distinct properties of multiservers in layered queuing
models of software systems (compared to the usual queueing
network models with multiservers) are:

• nested service: their service time is augmented by nested
delays for lower layer service, including waiting and ser-
vice at the lower layer,

• classes: they commonly have multiple classes of service,
corresponding to different kinds of operations requested by
their clients. This is usually combined with a FIFO queue.

• second phases: they often reply to the upper layer (thereby
ending the service from the customer’s point of view) after
completing only part of a service. The remainder of the
work, which is the second phases takes additional server
time.

The properties of these queues take us far from the condi-
tions for elementary queueing solutions, under which MVA
can be exact, and definitely requires approximations to ob-
tain solutions. We need to have confidence in the accuracy of
the approximations, to use them in applications, and we need
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Figure 1: A layered queueing network model of web server

connected to two lower-level servers.

to choose which approximations to use. This may involve a
tradeoff of accuracy and computational effort.

After describing layered modeling and the value of a sec-
ond phase of service, this paper assembles three approxima-
tions for delay at a multiserver with a second phase of service
and compares them for accuracy and solution time. One ap-
proximation is found to be the best compromise of accuracy
and speed. Using this approximation, a substantial model
study of the Network File System (NFS) is described, to show
how multithreading and deferred service improves its perfor-
mance.

Layered Queueing Networks

A layered queueing network is a kind of Extended Queueing
Network with a layered structure. A server A, in the midst
of serving a customer, can make requests for service from a
server B at a lower layer. During the service by B, the cus-
tomer and server A are both inactive. We can regard this as a
state in which the customer holds both servers, so the essence
of layered queueing is a form of simultaneous resource pos-
session. Layering arises if there is a partial order among the
servers, such that service by “lower” servers is nested within
service by “upper” servers.

Fig. 1 illustrates several of the features of a Layered Queue-
ing Network model using a simplified model of a web server.

• The model is defined by a set of entities called “tasks”
which act as customers and servers, linked by arrows in-
dicating requests or associations. Hardware servers (pro-
cessors) are shown in the Figure as circles, the rest are par-
allelograms.

• The small parallelograms within tasks are called “entries”
and are used to differentiate services provided by tasks.
The solid arrow with a filled head between entries indicates
that the sender blocks (waits for a reply), for example, the
web client waiting for the requested page to be delivered.

• The Clients, which have the role of customers, are a set
of Tasks running on desktop computers. Customers in the
model are assumed to cycle forever. The Clients are indi-
cated as a set of tasks by showing a “stack” of task images,
with the parameter “{y}” to indicate y Clients.

• The processor which serves to execute each task is indi-
cated by a “host” association, shown by an arrow labelled
“(h)”. The processor demand for each entry is defined as
a pair “[s1, s2]” giving the average amount of CPU de-
mand for phase one and phase two. The average processor
demand has an exponential distribution by default, but a
coefficient of variation can be specified.

• The mean number of requests from one task to a lower
layer task are indicated on the request arc by a pair “(y1,
y2)” for requests phase one and phase two. The number of
requests can either be geometrically distributed, with the
given mean, or can be an exact number.

Other features of the model, such as heterogeneous threads
and asynchronous messaging, are not described here.

Analytic Solution

A layered queueing network is solved analytically by split-
ting the original model into set of closed queueing network
“layer submodels”, with implicit relationships between their
parameters (as used in Extended Queueing Networks using
surrogate delays). Each layer submodel contains as servers,
the servers at a given call depth or request depth from the
clients [20, 6, 12]. As customers, it contains surrogates for
all the customers of these servers. A single-threaded higher-
level task gives rise to a customer chain with one customer;
a multi-threaded task gives a chain with a customer for each
thread. Submodels are solved using an approximate MVA al-
gorithm such as linearizer [3].

The parameters of a layer submodel are found partly from
other layers:

• The service times of its servers are calculated from waiting
times and service times in lower layers.

• The time between requests from the customers of a chain is
a surrogate delay or “think time” for the chain, which is de-
termined by the frequency of requests and other behaviour
of the corresponding upper layer entity.

The web of relationships by which results are found in
one layer and used in another layer is resolved by a fixed-
point iterative calculation, which has been described in other
papers [20, 6, 12]. The overall strategy has been applied
to many models and generally converges well (sometimes
under-relaxation must be used), with approximation errors of
a few percent.

Performance Impact of Second Phases

The difference between ordinary one-phase service, and two-
phase service (which was originally introduced in layered
models in [19]), is explained in Fig. 2. The server replies
to its clients as early as possible, then continues to execute
the remainder of the request in parallel with the client. The
model in Fig. 1 will be used to show how second phases can
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improve response times. The number of Clients, y, and the
fraction of phase-2 service time, x, are both varied. All other
parameters are set to the values shown in the figure.

The response time and utilization of the web-server are
shown in Fig. 3. Results were generated using both simula-
tion, and the analytic approximations described below. These
results show that the second phase may have a large or a small
effect. When the number of available threads exceeds the
number of potential customers, two-phase multiservers can
offer substantial performance benefits. However, when heavy
queueing occurs at the two-phase multiserver, as in Fig. 3(d),
second phase service offers little or no performance improve-
ment.

Two-phase Multiclass Multiservers

This section describes the impact of second-phase service on
the calculations for multiclass multiservers which were ex-
plored for simple load-independent servers in [20, 12]. These
servers need new waiting time expressions to compensate for
two factors. First, the client is not held for the entire period
of execution of its request at the server, shown in Fig. 2(b).
Second, a client making a subsequent request to a server may
block while the server completes its own preceding request.
This phenomenon is called overtaking and is shown in Fig. 4.

Submodels that arise from layered queueing networks of-
ten have sets of clients that make different demands on the
servers. Further, software servers usually have first-come,
first-served (FCFS) queueing disciplines. The corresponding
queueing network model must therefore have FCFS service
centers with service demands that vary by chain. Queue-
ing networks with these characteristics do not have a prod-
uct form solution. Fortunately, approximations exist for mul-
ticlass FCFS single- and multiple-servers which are suffi-
ciently accurate for practical purposes [11, 13, 5, 1, 14, 12].
The waiting time expressions described in [13, 5, 12] were
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Figure 4: Overtaking occurs when a client is queued because

a server is still processing the client’s previous request.

deemed the most suitable and are modified here to account
for the second phase of service.

The delay, W , for a customer in chain k at a two-phase,
multiclass multiserver j at a customer population N has the
following components [5]:

1. its own service time, Skj ,

2. the time spent waiting in the queue (effective backlog), xe,
and

3. the time spent waiting for a server to become free (depar-
ture time), xr.

and is calculated using:

Wkj(N) = Skj +
K
∑

c=1

xekcj(N)Qcj(N− ek)

+ PBj(N− ek)xrkj(N) (1)

This expression will be modified for two phases of service
first since it is the most detailed of [13, 5, 12] . The first term
is changed to Skj1, the phase one service time, since the cus-
tomer is not delayed by its own second phase of service at
the server. The second term is the delay which arriving cus-
tomers see, prior to being serviced caused by other customers
waiting in the queue Qcj(N− ek). With a multiphase server,
servers busy in phase two, Ukj2 are equivalent to “new” cus-
tomers that are created when replies to clients are sent. New
arrivals must also wait behind these pseudo customers. The
third term, the departure time, includes both phases of ser-
vice, so it is unchanged, and depends on the probability that
all servers are busy, PBj(N− ek).

The second effect that must be taken into consideration is
overtaking. The probability of overtaking, Pr{OT}kj , is the
probability that a customer from chain k finds server j busy
processing phase two of an earlier request from that same
customer. This probability is calculated based on the race
between

• γkj , the time from the customer’s departure from server j
and its next return, and

• Skj2, the duration of phase two of the server.

If these times are assumed to be exponentially distributed, this
probability is [20, 12]

Pr{OT}kj =
1/γkj

1/γkj + 1/Skj2
(2)

Equation (2) calculates the probability that some server is
still doing a previous phase two for this customer, when it
returns. The total work having to be done before the job en-
ters is then increased by one second phase, and this is spread
across the Mj servers, the same as the work in the queue is
spread in some of the approximations. This probability is
multiplied by the phase two service time, Skj2, to find the
overtaking delay.
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Figure 3: Client response time and Web Server utilization versus fraction of phase two service time for the model in Fig. 1.

Simulations were conducted with 95% confidence intervals of ±1%. The analytic solutions were performed using (3).

After these changes, Equation (1) becomes:

Wkj(N) = Skj1

+

K
∑

c=1

xekcj(N)[Qcj(N− ek) + Ucj2(N− ek)]

+ PBj(N− ek)xrkj(N)

+
Pr{OT}kj

Mj

· Skj2 (3)

Reiser’s multiserver expression [11], modified by [13] for
multiple classes, is modified further for second phases in a
similar fashion:

Wkj(N) =
1

Mj

[

Skj1 +

K
∑

c=1

Scj [Lcj(N− ek)

+ Ucj2(N− ek)]

+ Sj

Mj−2
∑

i=0

(Mj − 1− i)Pj(i,N− ek)

+
Pr{OT}kj

Mj

· Skj2

]

(4)

Rolia’s multiserver expression [12], is modified here both

to handle multiple classes and second phases:

Wkj(N) = Skj1 +
U

(1)
j (N− ek)

M

Mj

×

K
∑

c=1

Scj [Lcj(N− ek) + Ucj2(N− ek)]

+
Pr{OT}kj

Mj

· Skj2 (5)

Accuracy and Performance Comparisons

This section explores the accuracy and performance of the
two-phase multiclass multiserver approximations using two
models. The first model, shown in Fig. 5, is a simple single-
class system used to study accuracy based on the utilization
and fraction of phase two service at the server. The number
of clients, x, was varied from 1 to 10, the number of servers,
y, was varied from 1 to 5, and the and the fraction of phase
one service time, p, was varied from 0 to 1.

Fig. 6 shows contour plots of the error in throughput

(ǫλ = apprx−sim
sim × 100) for the three approximations de-

scribed above. Equations (3) and (5) are clearly superior to
(4). The algorithms are least accurate when the server is fully
saturated and has a high percentage of phase two service.

The second model was adapted from [4] to evaluate the
behaviour of the new approximations using multiple chains
and multiple classes of service (the original queueing net-
work was used to evaluate (1)). Service times for each phase



Eqn %Ph2 ǫλ (%) σ ARE (%) Run Time

Simulation 42:44.5

(3) rand -0.66 0.00 1.34 7:05.1

(4) 0.10 0.07 5.09 15.0

(5) 0.96 0.07 4.92 5.9

(3) 25 -0.80 0.03 1.59 3:43.0

(4) -0.59 0.14 4.08 5.6

(5) 0.60 0.18 4.41 8.8

(3) 50 -0.83 0.03 1.62 3:43.5

(4) 0.93 0.17 4.99 5.1

(5) 0.64 0.20 4.67 6.1

(3) 75 -0.84 0.02 1.66 3:47.3

(4) 1.87 0.48 6.30 5.4

(5) 1.12 0.36 5.33 6.2

(3) 100 -0.79 0.03 1.77 4:22.0

(4) 3.62 0.53 7.24 12.0

(5) 0.94 0.54 5.88 4.4

Table 1: Performance Results for two phase multiclass mul-

tiservers. Simulations were conducted with 95% confidence

intervals of ± 1%.

of service at each of the lower-level servers were chosen ran-
domly from a range of values between 1.275 and 36.195. Two
hundred different networks were tested with the fraction of
phase two varying from 0.04 to 0.96. Another two hundred
test cases were run with phase two fractions fixed at 0.25,
0.50, 0.75 and 1.00 for fifty cases each. The number of visits
to each of the servers was varied from 0.35 to 2.30.

Table 1 shows the results from using the second model. ǫλ
is as above, ARE is the Absolute Relative Error in throughput

(ARE = |apprx−sim|
sim × 100) and the Run Time is the average

time to run a test case. Based on the ARE metric, (3) is more
accurate than either (4) or (5), but much more computation-
ally expensive.

Layered Queueing Model of NFS

This section describes a Layered Queueing Network model
of the Network File System [2] (V2) implementation in the
Linux kernels. First the LQN model is described and val-
idated. Next, some performance predictions are made using
the model (and tested against the live system where possible).
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Figure 5: Single Class test case.
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Figure 6: Single class test case throughput error contour plots.

Performance Model

The workload for the model was based on the the mix of op-
erations used by nfsstones benchmark [15] though the file
sizes were increased by an order of magnitude to account
for the increased memory sizes in today’s machines. The
read, write, and lookup functions dominate the work-
load, so only these operations were modeled. UML se-
quence diagrams of these operations are shown in Fig. 7.
Note that lookup and read use synchronous operations
(Fig. 7(a) and (b)) while write uses asynchronous messages
(Fig. 7(c)). The asynchronous behaviour permits the client to
proceed once the data is written to the local system’s buffer
cache and improves performance substantially, but does not
adhere to the NFS specification.

The layered queuing network model for Linux NFS is
shown in Fig. 8. It is divided up into four principle com-
ponents: the client, the network, the file server and the disk.
nfsstone, nfsiod and rpcnfsiod are all actual Linux processes.
Clientcache and servercache represent the buffer pool and
have two phases of service representing read-ahead and write-
behind for reads and writes respectively. Parameters were
found through instrumentation of the Linux V2.0 kernel while
running nfsstones, though runs with the V2.6 kernel show no
substantial change in performance. The network task rep-
resents the delay caused by the Ethernet. The model here is
from [9] modified to account for the fact that an Ethernet with
large packets is about 83% efficient [17]. The disk task repre-
sents the actual disks. Two buckets were used: one grouping
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(a) Throughput

Method NFSstones Solution

λ ǫλ (%) Run Time

Live 2820 N/A 11:15.00

LQNS 2984 5.82 11.98

Sim. 2883 2.23 2:02:56.80

(b) Utilization

Component Utilization

Live LQNS

client 0.36 0.40
server 0.59 0.67
disk 0.53
network 1.00

Table 2: Base model results. The simulations were run with

a 95% confidence interval of ± 5.0% for each of the entry’s

service times.

reads and writes of 4KBytes, and a second for everything else.

The model in Fig. 8 was solved analytically (shown be-
low as LQNS) and by simulation to find the throughput at the
client. The results are compared to the average of twenty live
runs performed on a private switched network in Table 1(a)
for both accuracy and run time (the run time given for the
live run is the sum of the twenty runs). Table 1(b) shows the
utilization of all of the four principle components in Fig. 8.
The performance model clearly shows that the Ethernet is the
bottleneck in the system.
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Figure 8: Layered Queueing Network of principle NFS oper-

ations.

Performance Predictions

The base model described above was varied in a number of
ways to study the effect of possible changes in the system.
The changes were analyzed using the workload described ear-
lier (“Base”), the Laddis workload [18] (“Laddis”), and with
the Laddis workload using a network which is ten times faster
than the 100Mb one analyzed here (“Fast”).

Synchronous Writes The NFS protocol specification states
that writes are to be committed to stable storage before the
server replies to the client. The Linux NFS implementation
simply waits for the write request to complete to the local
buffer cache then replies; the disk block is actually written a
short time afterwards.

To properly implement NFS, rpc.nfsd was modified to per-
form synchronous writes on the live system. The LQN model
was modified as follows.

1. All writes from the server’s buffer cache were moved to
phase one from phase two.

2. Each write is assumed to take the same time as a 4K Read.
The extra time allows for seeking and rotational delays.

3. Each 8K write results in two write requests: one for the



Client Method NFSstones (λ) Change

Model Base Synch. (%)

Base Live 2820 1072 −61.99
LQNS 2984 538 −81.97
Sim. 2883 848 −70.59

Laddis LQNS 1947 254 −86.95
Sim. 1906 406 −78.67

Fast LQNS 2566 254 −90.10
Sim. 2653 406 −84.66

Table 3: Comparison of Synchronous Writes to Base model.

Client Method NFSstones (λ) Change

Model Base Gather (%)

Base LQNS 2990 2977 −0.44
Sim. 2884 2787 −3.35

Laddis LQNS 1947 1940 −0.36
Sim. 1906 1895 −0.57

Fast LQNS 2566 2214 −13.72
Sim. 2653 2213 −16.55

Table 4: Comparison of Synchronous Writes with Gathering

to Base model.

meta data in the inode, and one for the actual data. Both
writes must complete synchronously.

The results, shown Table 3, show a significant degradation
in performance. Even though writes make a small fraction of
the workload, their behaviour has a significant effect on the
performance of NFS.

Synchronous Write Gathering Write gathering [8] is a
technique used to improve NFS performance while retain-
ing the synchronous write semantics. Writes to the disk, and
replies to the client, are delayed by rpc.nfsd in the hope that
additional write requests will arrive a short time later. The
goal is to merge the requests into one large operation thus
saving significant amounts of disk activity from meta data up-
dates intermixed with data updates.

To model synchronous writes, the base model was modi-
fied by moving the write requests at the server’s buffer cache
from phase two to phase one. The write performance from
the base model is retained.

The results, shown in Table 4, show that write gathering
has significant performance benefits. However, when the net-
work performance is improved to the point where it is no
longer the bottleneck, synchronous writes still impact perfor-
mance.

Big Reads The Linux 2.0 NFS implementation performs
reads in chunks no larger than 4K bytes, even if the rsize
mount parameter is larger than this value. This behaviour is
an artifact of the file system implementation because the vir-
tual file system makes read requests on a 4K page basis. Con-
versely, the largest write request is limited only by the wsize
mount parameter. Larger requests can improve performance
by reducing network traffic.

Client Method NFSstones (λ) Change

Model Base 8K Read (%)

Base LQNS 2990 3173 6.10
Sim. 2884 3054 5.89

Laddis LQNS 1947 1973 1.34
Sim. 1906 1930 1.25

Fast LQNS 2565 2654 3.43
Sim. 2653 2733 3.01

Table 5: Comparison of 8K Read Requests to Base model.

To study the performance impact of RPC read requests
which are twice as large, the model was modified as follows:

1. The call rates from the client’s buffer cache read to nfsiod
and rpc.nfsd were halved to reflect the larger reads. The
number of requests to the Ethernet was changed to reflect
the larger read size.

2. The call rates from the client buffer cache’s read to ether
was changed from four packets per request to seven packets
per request.

3. The request rates from the server’s buffer cache read to the
disk were doubled because each read request is now twice
as large.

Table 5 shows the estimated performance improvement
from this change. The base model shows the biggest perfor-
mance improvement because the Ethernet is the bottleneck
and the workload is skewed towards reads. When the Laddis
workload mix is used with the 100Mb Ethernet, there is very
little difference between the base and 8k-read throughput re-
sults because this workload has less read activity. However,
with a faster Ethernet, the larger read request size shows more
improvements.

Conclusions

This paper has introduced the analysis of two phase multi-
servers with one or more classes. Two-phase servers, which
reply to a client prior to completing all of the work requested
by that client, can be useful for improving the performance
of a system, provided that the server is not saturated. Three
multiclass multiserver waiting time expressions (i.e., those
which allowed for chain-dependent service times and FCFS
scheduling) were modified to allow for two-phase server op-
erations. All three approximations had good accuracy when
compared to simulation, with approximation errors of less
than 7% on average. When run-time efficiency is considered,
(5) is the best choice. This expression scales exceptionally
well because it does not rely on the marginal probabilities.

The results presented here were studied in Layered Queue-
ing Networks because this type of queueing network is a
convenient way of analyzing the performance of a multi-tier
client-server system. However, Layered Queueing Networks
are solved using conventional queueing networks, so the new
residence time expressions can also be used to solve a con-
ventional queueing network.



Acknowledgments

This research was supported by the Natural Sciences and
Engineering Research Council of Canada and by Communi-
cations and Information Technology Ontario (CITO).

References

[1] S. C. Bruell, G. Balbo, and P. V. Afshari. Mean
value analysis of mixed, multiple class BCMP
networks with load dependent service cen-
ters. Performance Evaluation, 4:241–260, 1984.
doi:10.1016/0166-5316(84)90010-5.

[2] B. Callaghan. NFS Illustrated. Addison Wesley, 2000.

[3] K. M. Chandy and D. Neuse. Linearizer: A
heuristic algorithm for queueing network models of
computing systems. 25(2):126–134, Feb. 1982.
doi:10.1145/358396.358403.

[4] A. E. Conway and D. O’Brien. Validataion of an ap-
proximation technique for queueing network models
with chain-dependent FCFS queues. Computer Systems
Science & Engineering, 6(2):117–121, Apr. 1991.

[5] E. de Souza e Silva and R. R. Muntz. Approximate solu-
tions for a class of non-product form queueing network
models. Performance Evaluation, 7(3):221–242, 1987.
doi:10.1016/0166-5316(87)90042-3.

[6] G. Franks, A. Hubbard, S. Majumdar, D. Petriu, J. Ro-
lia, and M. Woodside. A toolset for performance en-
gineering and software design of client-server systems.
Performance Evaluation, 24(1–2):117–135, Nov. 1995.
doi:10.1016/0166-5316(95)96869-T.

[7] G. Franks and M. Woodside. Effectiveness of
early replies in client-server systems. Perfor-
mance Evaluation, 36(1):165–184, Aug. 1999.
doi:10.1016/S0166-5316(99)00034-6.

[8] C. Juszczak. Improving the write performance of an
NFS server. In Proceedings of the Winter 1994 USENIX
Conference, pages 247–259, San Francisco, CA, Jan.
1994. USENIX Association.

[9] E. D. Lazowska, J. Zhorjan, S. G. Graham, and
K. C. Sevcik. Quantitative System Performance; Com-
puter System Analysis Using Queueing Network Mod-
els. Prentice Hall, Englewood Cliffs, NJ, 1984.

[10] J. E. Neilson, C. M. Woodside, D. C. Petriu, and
S. Majumdar. Software bottlenecking in client-
server systems and rendezvous networks. IEEE
Trans. Softw. Eng., 21(9):776–782, Sept. 1995.
doi:10.1109/32.464543.

[11] M. Reiser and S. S. Lavenberg. Mean value
analysis of closed multichain queueing net-
works. J. ACM, 27(2):313–322, Apr. 1980.
doi:10.1145/322186.322195.

[12] J. A. Rolia and K. A. Sevcik. The method of layers.
IEEE Trans. Softw. Eng., 21(8):689–700, Aug. 1995.
doi:10.1109/32.403785.
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